• Login
    • Library Home
    View Item 
    •   BracU IR
    • BSRM School of Engineering
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Design Report, BSc (Electrical and Electronic Engineering)
    • View Item
    •   BracU IR
    • BSRM School of Engineering
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Design Report, BSc (Electrical and Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time-independent schrodinger-poisson coupled simulation based study of InP and InAlAs quantum well field effect transistors

    Thumbnail
    View/Open
    13121029, 13121039 & 13121110_EEE.pdf (3.015Mb)
    Date
    2016
    Publisher
    BRAC University
    Author
    Ahsan, Mehdi
    Hayat, Abrar
    Nath, Apurba
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/6401
    Abstract
    The electronics industry first started appreciating QWFETs over MOSFETs back in late 2011 due the QWFET’s unique wrapped gate around channel structure, which provided better control over threshold voltage and reduced operating voltage. Our main purpose was to observe the changes in the gate capacitance of QWFETS with InP as the upper barrier compared to InAlAs as the upper barrier. So we devised a Schrodinger-Poisson coupled simulation in COMSOL® Multiphysics®. The Poisson Equation in our simulation was used to determine the conduction band profiles across the geometry and the Schrodinger Equation was used to find the corresponding probability densities of electrons. We performed the above experiments in both doped and undoped conditions with both InP and InAlAs as upper barriers with increasing gate voltages to see the changes. At the end, we could infer that devices with doped variants of both InP and InAlAs as the upper barrier had better yields of gate capacitance than the undoped materials themselves and more importantly doped InAlAs as the upper barrier had much better yields of capacitance than doped InP as the upper barrier.
    Keywords
    InP; InAlAs; Schrödinger equation
     
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2016.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 46-47).
    Department
    Department of Electrical and Electronic Engineering, BRAC University
    Type
    Thesis
    Collections
    • Thesis & Design Report, BSc (Electrical and Electronic Engineering)

    Copyright © 2008-2023 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2008-2023 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback