• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Visual object recognition using deep convolutional neural network

    Thumbnail
    View/Open
    17141013_CSE.pdf (399.0Kb)
    Date
    2017
    Publisher
    BRAC University
    Author
    Ahmed, Sabbir
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/8117
    Abstract
    Visual object recognition has been lying at the convergence point between machine learning, computer vision and AI since the very beginning. From robotics to information retrieval, many desired applications demand the ability to identify and localize objects into different categories. Despite a number of object recognition algorithms and systems being proposed for a long time in order to address this problem, there still lacks a general and comprehensive solution for the modern challenges. Most prominently, new approaches and computational models of vision to analyzing data, such as the convolutional neural networks (CNNs), have enabled a much more nuanced understanding of visual representation. In this paper, I have proposed a deep CNN model to solve the aforementioned problem of object recognition and reported a promising performance on a benchmark classification dataset called CIFAR10.
    Keywords
    Visual object; Deep convolutional neural network; Deep learning; Convolutional neural network; Object recognition; Data augmentation
     
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2017.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 30-31).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2023 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2023 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback