
Optical Character Recognition For Bangla Documents Using HMM

Md. Sheemam Monjel and Mumit Khan

Dept. of CSE, BRAC University, Dhaka, Bangladesh.

sheemam@bracuniversity.net, mumit@bracuniversity.net

Abstract

In this paper we have described an OCR program

made for Bangla documents. This program uses HMM

for the recognition process. The description of full

OCR program is too large to present here. So, we

have given emphasis on the important and Bangla

specific processes of the OCR pro-gram. We have

defined some features of Bangla characters and

described their extraction process.

1. Introduction

So far, all the prominent works related to optical

character recognition for Bangla documents use

artificial neural networks for the recognition process

[2], [4], [9], [10]. The advantage of HMM approach

over ANN approach in optical character recognition is

that it can be easily extendible to the recognition of

handwritten characters. Here, the features required for

HMM recognition process are defined and their

extraction process is described briefly.

2. Steps of OCR

There are 4 major steps in OCR system.

1. Preprocessing.

2. Feature Extraction.

3. Recognition.

4. Post processing.

The Preprocessing step prepares the document

image for feature extraction. It has several sub-steps.

a) Conversion to gray-image: The original

image is converted into a gray-image. Gray level of

each pixel is determined by the average of red, green

and blue levels of that pixel.

b) Noise reduction: The image is passed through

a smoothing process to remove the noise in it. We

have used a non linear smoothing algorithm for this

[6].

c) Binarization: The gray-image is converted

into black & white image. The foreground and

background gray-levels are chosen according to the

context of the image [6].

d) Skew correction: If the page is not scanned

with the proper alignment, the lines will not be

horizontal. So, we have to rotate the image to make the

lines horizontal for further processing. Now, we are

correcting the image if the skew angle is at most 15

degrees.

e) Segmentation:

i. Line segmentation: from the b&w image,

horizontal blackPixel frequencies are calculated for

every row. Then the lines are segmented by the rows

having blackPixel frequency of 0.

ii. Word segmentation: In Bangla script, words

are separated by blank spaces. So, by analyzing the

vertical blackPixel frequencies of a line image, words

are easily separated through the columns having

blackPixel frequency of 0.

iii. Letter segmentation: Here comes the real

challenge. In a Bangla word, all the letters except a

few are joined by an overhead line called matra.

The letters that aren't joined by matra are listed

below:

� � � � � � ◌	 ◌
 � � � � � � ◌	 ◌
 � � � � � � ◌	 ◌
 � � � � � � ◌	 ◌

The letters that are partially joined by matra are :

� �
 � � � � �
 � � � � �
 � � � � �
 � � �
The letters that have a matra but are not connected

with it are :

� �� �� �� �
Some letters always vertically overlap the adjacent

letter :

�◌ ◌� �◌� ◌� ◌� ◌� �◌ ◌� �◌� ◌� ◌� ◌� �◌ ◌� �◌� ◌� ◌� ◌� �◌ ◌� �◌� ◌� ◌� ◌�
Some letters often vertically overlap the adjacent

letter :

�◌ �◌ �◌ �◌ �◌ �◌ �◌ �◌
Example of vertical overlapping :

�������� �� �� �� �� �� �� �� �� �� �� �� ��
So, the matra is very useful to extract the words

but it affects letter extraction process adversely. As

the matra is present in some letters and absent in some

 166

others, removing the matra altogether may cut some

portion of letters. Sometimes removing the matra

causes some letters to divide into pieces. So, we are

preserving the matra as it is and analyze the word

image avoiding the matra region for letter

segmentation. The first step is to determine the matra.

It is the horizontal line whose blackPixel frequency is

highest among all the rows of a segmented line of

script. So, the vertical location of the matra is

determined during line segmentation. Middle region

of a line is bounded by the matra and a horizontal line

whose distance from the bottom limit of the line is

equal to the distance between the matra and the upper

limit of the line. The bottom 5/6 of this middle region

is analyzed to separate the letters vertically. Vertical

blackPixel frequencies are determined in this region

and the columns having blackPixel frequencies of 0

separates the letters. In this segmentation process, the

letters that vertically overlap the adjacent character

outside the middle region are cut into 2 pieces. These

pieces are combined together in the post processing

step that comes after the recognition step.

f) Skeletization: The separated letters are

thinned to have lines of only one pixel width [11].

g) Component extraction: The connected

components are separated.

After the 7
th
 step, we get the skeletized

components of characters. Then features are extracted

from the components. These features are used for

recognition.

For using HMM, we need a sequence of objects to

traverse through the state sequence of HMM. So, we

have to shape the features into a sequence of objects.

Hence, for each character component, we are making a

tree of features and finally the prefix notation of the

tree is applied to the HMM. In the tree, the number of

child of a node is not fixed. So, we are using child-

sibling approach to make the tree. Hence the prefix

notation of the tree will contain nodes in the order:

root, prefix notation of the tree rooted at its child,

prefix notation of the trees rooted at the child’s

siblings from left to right order.

3. Features

Features are the lines of the skeleton of character

components and the points joining the lines.

4. Data Structure

A tree data structure is used for storing the feature

elements. Each node of the tree represents either a line

or a joining point. Suppose a line L1 meets other two

lines (L2, L3) at a point. Then the point will be child

of L1, L2 will be sibling of the point and L3 will be

sibling of L2. The directions of lines are classified into

8 main categories and they are numbered as shown in

Figure 1.

Figure 1: Directions of lines

We use an array dir[][]={{1,2,3},{0,-

1,4},{7,6,5}} to hold the direction numbers. The

direction of a line from a point P1 to an adjacent point

P2 is retrieved readily from the array element dir[P2.x-

P1.x+1][P2.y-P1.y+1]. Two adjacent lines are unified

whenever the difference between their directions is 45

degrees. So, unified lines have two directions. The

data structure for lines and joining points are as

follows.

class imageComponent{}

class joiningPoint extends imageComponent

{

 int lineCount;

 line sibling;

 joiningPoint(int n){lineCount = n;}

 boolean equals(joiningPoint p)

 {return lineCount == p.lineCount;}

}

class line extends imageComponent

{

 int direction1,direction2;

 Point start;

 boolean isObsolete;

 joiningPoint child;

 line sibling;

 line(Point p){start = p; direction1=direction2=-1;}

 void setEndPoint(Point p)

 {

 isObsolete = (start.x==p.x && start.y==p.y);

 167

 if(!isObsolete)

 {

 int max = dir1>dir2?dir1:dir2;

 int min = dir1<dir2?dir1:dir2;

 dir1 = max;

 dir2 = min;

 }

 }

boolean isAppendable(Point from, Point to)

{

 int dir[][]={{1,2,3},{0,-1,4},{7,6,5}};

 int lineDir=dir[to.x-from.x+1] [to.y-from.y+1];

 if((lineDir == dir1) || (lineDir == dir2)) return true;

 else if(dir1<0){dir1 = lineDir; return true;}

 else if(dir2<0)

 {

 if((lineDir==(dir1+1)%8)||

 (lineDir==(dir1-1+8)%8))

 {

 dir2 = lineDir;

 return true;

 }

 else return false;

 }

 else return false;

 }

 boolean equals(line l)

 {

 return (dir1==l.dir1 && dir2==l.dir2);

 }

}

5. Line tracing and making the feature

tree

The steps required for making the feature tree:

1. Initialization:

 curPixel = left top corner point.

 mark curPixel as traced.

 curLine = line starting from curPixel.

 Q = an empty queue.

2. pack all the untraced black neighbors of curPixel into

pointArray and mark them as traced.

 count = no. of untraced black neighbors.

 if (count=0) then goto step 3.

 else if (count=1) then goto step 4.

 else goto step 5.

3. if (Q is empty) then line tracing completed.

 else

 curLine = pop line from Q.

 curPixel = starting point of curLine.

 goto step 2.

4. if pointArray[0] is appendable to the curLine then

 curPixel = pointArray[0].

 Update the direction of curLine.

 else

 set the endpoint of curLine as curPixel.

 Create a joiningPoint and set it as the child of current

line.

 Create a new line starting at pointArray[0] and

enqueue it into Q.

 set this new line as the sibling of the joiningPoint.

 curLine = pop line from Q.

 curPixel = starting point of curLine.

 goto step 2.

5. set the endpoint of curLine as curPixel.

 Create a joiningPoint and set it as the child of current

line.

 Create new lines starting at the points in pointArray

and enqueue them into Q.

 set the first new line as the sibling of current line and

make a sibling chain with all the new lines.

 curLine = pop line from Q.

 curPixel = starting point of curLine.

 goto step 2.

In this algorithm, the black neighbors of the

endpoint of current line are enumerated. If only one

black neighbor is found, the point is checked to insert

into the current line. If the current line is unidirectional

and the direction to new point is only 45 degree away

from direction of current line then the new point is

appended to the current line and the direction of

current line is updated to hold the new direction. If the

current line is compound and it has two directions then

if the direction to new point conforms to one of the

directions then it is appended to the current line. If the

neighbor cannot be appended, then a new line is

started from this point.

 168

Finally, when the endpoint of a line is set, the line

is marked as obsolete if its endpoint is same as the

starting point. These obsolete lines are deleted from

the feature tree.

Figure 2: Lines of different directions

Line 2(a): direction1 = East, direction2 = South-East

Line 2(b): direction1 = East, direction2 = Nil

Line 2(c): direction1 = South, direction2 = Nil

Line 2(d): direction1 = South-East, direction2 = Nil

Line 2(e): direction1 = South-East, direction2 = South

6. An example

Figure 3: A Bangla letter

(a) the letter skeleton (b) corresponding bitmap

Figure 4: The feature tree corresponding to the

letter of Figure 3. A circle denotes line and a

rectangle denotes joining point.

If we represent line by L(dir1,dir2), then

line1 = L(6,5)

line2 = L(4,3)

line3 = L(3,2)

line4 = L(4,-1)

line5 = L(5,4)

If we represent joining Point by P(siblingCount),

then

point 'a' = P(1)

point 'b' = P(2)

point 'c' = P(1)

Now if we express the tree in prefix notation, we

will get

L(6,5) P(1) L(4,3) P(2) L(3,2) P(1) L(5,6) L(4,-1)

This representation is used in HMM for recognition.

7. Recognition

Once the sequence of objects for the letter

components are available, it is very easy to train the

HMM and use it for recognition.

8. HMM

Hidden Markov Models (HMMs) are used for

both online and offline character recognition systems

for different scripts around the world [7],[8]. A

Markov chain or process is a sequence of events,

usually called states, the probability of each of which

is dependent only on the event immediately preceding

 169

it. An HMM represents stochastic sequences as

Markov chains where the states are not directly

observed, but are associated with a probability density

function (pdf). The generation of a random sequence is

then the result of a random walk in the chain (i.e. the

browsing of a random sequence of states Q = {q1, …,

qk}) and of a draw (called an emission) at each visit of

a state. The sequence of states, which is the quantity of

interest in most of the pattern recognition problems,

can be observed only through the stochastic processes

defined into each state (i.e. one must know the

parameters of the pdfs of each state before being able

to associate a sequence of states Q = {q1, …, qk} to a

sequence of observations X = {x1, …, xk}). The true

sequence of states is therefore hidden by a first layer of

stochastic processes. A Hidden Markov Model is

defined by specifying 5 things :

i. Q = the set of states = {q1, q2, …, qn}

ii. V = the output alphabet = {v1, v2, …, vm}

iii. π(i) = probability of being in state qi at time t

= 0 (i.e., in initial states)

iv. A = transition probabilities = {ai,j}, where ai,j

= Pr[entering state qj at time t + 1 | in state qi at time

t].

v. B = output probabilites = {bj(k)}, where bj(k)

= Pr [producing vk at time t | in state qj at time t].

The recognition process measures the

probabilities of generating the object sequence got

from the feature extraction of the component under

consideration from the HMMs of different letter

components . The highest among these probabilities

decides the letter component with the closest match.

The process of calculating these probabilities is

described below.

Let the object sequence corresponding to a letter

component be X = {x1, x2, …, xn}. and the HMM

corresponding to a template letter component be H.

Now, probability of generation of X from H is

p(X|H) = Σ p(X,Q | H) , for every possible Q.

[Q is state sequence {q1, q2, …, qT}].

Now, according to Bayes theorem,

p(X,Q | H) = p(X,Q | H) . p(Q | H)

The terms of right hand side are calculated by:

 p(X,Q | H) = Π p(xi | qi,H) , i = 1 to T

 = b1(x1).b2(x2)…bT(xT).

p(Q | H) = Π ai,i+1 , i = 1 to T-1

 = a1,2.a2,3…aT-1,T

While comparing the lines in HMM, only the

directions are checked for matching. And in the case of

comparing the joiningPoints, the no. of lines

originating from it is considered.

9. Postprocessing

Now, after the recognition process, some post

processing is necessary. It has two steps.

9.1. Constructing the letters from

components.

In the segmentation process, some letters are cut

into pieces because the overlap their adjacent letters.

So, after recognition, the pieces should be joined

together to form the original letter. Consider the

following example.

Figure 5 : Extraction of letters from a word

In this example, a word is separated into 5 parts.

But in the 4
th
 part, there are two components. So, after

the recognition process, we will get 6 objects :

1. consonant letter ssa (�)

2. vowel sign A-kar (◌�)

3. vowel sign A-kar (◌�)

4. upper portion of vowel sign I-kar (�◌).

5. consonant letter dha (�)

6. consonant letter ta (�)

Now, we have to unify the object3 and object4 to

make vowel sign I-kar (�◌).

9.2. Rearranging the letters.

Sometimes, the letters of a word are not stored (in

files) in the order they appear on the screen after

rendering. In Unicode standard, dependent vowels or

vowel signs come after the consonant associated with

it. But on the screen as well as in the printed

documents, the vowel signs may appear on left, down

 170

or right side of the consonant Vowel signs may also

wrap the consonant up from both sides. So, after a

word is recognized, the letters are rearranged

according to Unicode standard[12]. For example,

when we will get e-kar (�◌) and a-kar (◌�) around a
character, we should make it o-kar (�◌�). The same

rule should be applied to make ou-kar (�◌�).

10. Conclusion and future work

There are still some problems regarding the letter

segmentation. Sometimes adjacent letters are joined to

each other in such a way that they cannot be vertically

separated in the normal vertical histogram approach.

Some papers are avail-able describing various ways to

handle the problem of segmentation of joined

characters [1], [3], [5]. Our future work in this regard

will be analyzing the features of joined letters and

incorporating a better way of segmentation.

11. Acknowledgement

This work has been partially supported through

PAN Localization Project (www.PANL10n.net) grant

from the International Development Research Center,

Ottawa, Canada, ad-ministered through Center for

Research in Urdu Language Processing, National

University of Computer and Emerging Sciences,

Pakistan.

12. References

[1] A. Belaid, C. Choisy, U. Pal, “Water Reservoir

Based Approach for Touching Numeral

Segmentation”, Proc. 6th ICDAR, 2001.

[2] B. B. Chaudhury, U. Pal, “OCR in Bangla : An

Indo-Bangladeshi Language”, Proc. IEEE, 2001, pp.

269-273.

[3] B.B. Chaudhury, U. Garain, “Segmentation of

Touching Characters in Printed Devnagari and Bangla

Scripts Using Fuzzy Multifactorial Analysis”, IEEE

Transactions on Systems, Man and Cybernetics-Part

C: Applications and Reviews, Vol. 32, 1o.4, Nov,

2002.

[4] S. Chowdhury, S. Dutta, G. Parthasarathy, “On

Recognition of Bengali Numerals with Back

Propagation Learning”, Proc. IEEE, 1992, pp. 94-99.

[5] Y. K. Chen, J. F. Wang, “Segmentation of

handwritten connected numeral string using

background and fore-ground analysis”, Proc. 15th

ICPR, 2000, pp. 598-601.

[6] E. Gose, R. JohansonBaugh, S. Jost, Pattern

Recognition and Image Analysis, Prentice Hall of

India, New Delhi 2002.

[7] R. Nopsuwanchai, D. Povey, “Discriminative

Training for HMM-Based Offline Handwritten

Character Recognition”, Proc. 7th ICDAR, 2003.

[8] H. Nishimura, T. Timikawa, “Off-line Character

Recognition using On-line Character Writing

Information”, Proc. 7th ICDAR, 2003.

[9] M. M. Rahman, A. N. M. E. Rafiq, S. Rahman,

“Online Handwritten Bangla Numeral Recognition by

Grid Method”, Proc. 2nd ICECE, 2002.

[10] S. H. Shaikot, F. Kawsar, M. S. Saikat, “Bengali

Digit Recognition System using 3-layer

Backpropagation Neural Network”, 6th ICCIT, 2003,

pp.327-331.

[11] C. Y. Suen, T. Y. Zhang, “A Fast Parallel

Algorithm for Thinning Digital Patterns”,

Communications of the ACM, Vol.27, March 1984.

[12] www.unicode.org

