
Distinguishing Between Factual
Information and Insulting or Abusive
Messages bearing Words or Phrases in

News Articles

A thesis presented

by

Altaf Mahmud
Student Id: 02201117

Kazi Zubair Ahmed

Student Id: 02101119

to

Department Of Computer Science and Engineering

In partial fulfillment of the requirements

for the degree of

Bachelor of Computer Science and Engineering

BRAC University

Dhaka, Bangladesh

August 2006

 2

To our friends & well-wishers

 i

Acknowledgements

Dr. Mumit Khan was a wonderful advisor. He gave us not only the

intellectual freedom of choice in pursuing this topic as our undergraduate

thesis, but also consistently gave us the good advice for the idea. Moreover,

his lectures on Natural Language Processing help us a lot to learn plenty of

useful things and formulate our basic idea. We want to give our heartiest

gratitude to Mr. Sumon Shahriar as one of our advisor; he also pushed us to

think from many new angles of this research. We would like to thank

NaushadUz Zaman for his remarkable and unwavering help about using

some useful tools.

 We would like to give a special thanks to Dr. Melanie J. Martin, who has

done some work on subjective language, for her influential and effective

suggestion about background study.

 ii

 Abstract

DISTINGUISHING BETWEEN INFORMATION AND

INSULTING OR ABUSIVE MESSAGES BEARING

WORDS OR PHRASES IN NEWS ARTICLES
Altaf Mahmud

Kazi Zubair Ahmed

Supervisor: Dr. Mumit Khan

Since Internet has become the leading source of information for the users,

flames or abusive messages have also become the prominent factors of time

wasting for retrieving information. Moreover, a text can contain factual

information as well as abusive or insulting contents. This paper describes a

new approach for an automated system to distinguish between information

and personal attack containing insulting or abusive messages in a given

document. In NLP, flames or abusive messages are considered as extreme

subjective language, which refers to detect personal opinions or emotions in

a news article. Insulting or abusive messages are viewed as extreme subset

of the subjective language because of its extreme nature. We defined some

rules to extract the semantic information of a given sentence from the

general semantic structure of that sentence .

 iii

Contents
Acknowledgements .. i

Abstract .. ii

Chapter 1: Background .. 1

1.1 Introduction ... 1

1.2 Definition of Insult .. 2

Chapter 2: Literature Review ... 3

2.1 Subjective Language .. 3

 2.1.1 Why flames are extreme subset? 5

2.2 Background study in subjectivity 6

2.3 Related Work Done in Flame Recognition 9

 2.3.1 Our contrast with Smokey 10

 2.4 Statistical parsing .. 11

2.4.1 Basic idea ... 11

2.4.2 Probabilistic Context-Free

Grammars (PCFGs) ….................................. 11

2.4.3 Estimating Probabilities using a Treebank 12
2.4.4 Using Probabilities to Parse .. 12

2.4.5 Obtaining the best parse 13

2.4.6 Problems with PCFGs 14

2.4.7 Lexicalized PCFGs .. 15

2.4.8 Incorporating head probabilities 16

 iv

2.4.9 Calculating rule probabilities ... 17

2.4.10 Adding info about

word-word dependencies 17

2.5 Dependency Parsing ... 18

2.5.1 Basic Concepts ... 19

2.5.2 Dependency functions 21

2.5.2.1 Main functions 21

2.5.2.2 Verb complementation 22

2.5.2.3 Determinative functions 24

2.5.3 Robinson’s axiom .. 24

2.5.4 Dependency relation .. 25

2.5.5 Stanford dependency parser by Dan Klein 26

Chapter 3: Methodology ... 29

3.1 Preprocessing .. 29

3.2 Processing ... 38

3.2.1 Stack Manipulation .. 40

3.2.2 Marking phase .. 47

 3.2.3 Building Tree ... 50

3.2.4 Detection ... 51

Chapter 4: Result .. 71

Chapter 5: Conclusion, Limitations and The Future Work 73

5.1 Conclusion ...74

5.2 Limitations .. 74

5.3 Future Work .. 75

References ... -1-

 v

List of figures
fig-1 .. 12

fig -2 ..16

fig -3: Lexicalized parsing can be seen as producing dependency trees18

fig -4 ... 27

fig -5 ... 28

fig -6 ... 39

fig-7 .. 39

fig -8 ... 41

fig -9 ... 43

fig -10 ... 43

fig -11 .. 44

fig -12 .. 44

fig -13 .. 46

fig -14 .. 46

fig -16 .. 52

fig -17 .. 53

fig -18 .. 54

fig -19 .. 55

fig -20 .. 55

fig -21 .. 56

fig -22 .. 57

fig -23 .. 58

fig -24 ... 58

 vi

fig -25 ... 59

fig -26 ... 60

fig -27 ... 61

fig -28 ... 61

fig 29 .. 62

fig 30 ... 63

fig 31 ... 64

fig 32 ... 64

fig 33 ... 64

fig 34 ... 65

fig 35 ... 67

fig 36 ... 68

fig 37 ... 69

fig 38 ... 69

 1

Chapter 1: Background

1.1 Introduction

 Most of the time, Internet users get frustrated when they search for any

information in a specific site, because some peoples take it as a fun to use

personal attacking or insulting messages for on-line communication. The

best example can be ‘wikipedia [1]’ where many times these occurrences are

happened, which they called ‘wiki vandalism’. If an automated system will

help a user for distinguishing flames and information in a web page or in e-

mail, user can decide whether or not to read that article. Some messages can

contain insulting words or phrases but still they are considered as factual

information. For example: a sentence ‘X is an idiot’ is an insult, doesn’t

contain any factual information and should be discarded. But if a sentence is

‘Y said that X is an idiot’ is not an insult any more, because it conveys

information about what Y said about X. Normal text searching methods or

looking for obscene expressions will annotate both of the sentences as flame.

From this perspective, we outlined a sophisticated NLP application, which

can identify a message whether it is an insult or information. This program

looks for some key words in a given sentence; interpret the basic meaning

according to the semantic information of dependency structure; then apply

some predefined rules to distinguish whether it is information or a flame.

 Recently, some works have been done in Natural Language Processing

for detecting personal opinions, emotions and speculations where flames or

abusive messages are considered as very high or extreme intensity level. Our

 2

initial idea was to evaluate the head verb of a dependency structure for a

sentence whether it is a factual verb or it reflects the writer’s personal

opinion or emotion. Then if any insulting word or phrase is found within that

sentence then we can classify it as a flame.

 This system can identify texts as an insult only bearing insulting words

such as idiot, nonsense or phrases get a life, get lost etc. The semantic

information we are getting by only processing the text what it gives us, we

are ignoring surroundings and the context. For example: “Get that socialist

out of my pocket” – this is a personal attack. If this sentence is to be

classified as a flame, we extremely need some world knowledge, we need to

know that the word ‘socialist’ refers to a human being and someone wants to

get him/her off from the pocket. So, the sentence contains a ‘sense’ of

demeaning someone’s (socialist) personal status. We are not being able to

classify it as a flame because lack of considering world knowledge.

1.2 What is Insult?

Human being perceives Insult as demeaning his or her personal status.

Researchers from some sub area of NLP, viewed insult as a super subset of

subjective language, where the intensity level of personal opinion or

emotions is very high or extreme. That’s why it is called the extreme subset.

 3

Chapter 2: Literature Review

This chapter first gives a short overview about subjective language and our

background study about subjectivity. Then we have some discussion about

statistical parsing to show how dependency parsing can be originated from

statistical parsing, after that we moved to elaborate discussion of the main

key concern of this thesis, the dependency parse tree, which gives a

syntactical structure of a sentence as well as gives general semantic

information.

2.1 Subjective Language

Subjective language is language used to express private states in the context

of a text or conversion. Private state is a general covering term for opinions,

evaluations, emotions, and speculations. Many natural language processing

applications could benefit from being able to distinguish subjective language

from language used to objectively present factual information. Information

retrieval system should be able to distinguish between factual information

(which should be extracted) and non-factual information (which should be

discarded or labeled as uncertain). Question answering systems should

distinguish between factual and speculative answers. Automatic subjectivity

analysis would also be useful to perform flame recognition, email

classification etc [3].

Expression of private states in language are classified in three main

categories:

 4

- Direct mentions of private states

- Speech events expressing private states

- Expressive subjective elements (Banfield, 1982).

An example of a direct private state is “fears” in (1). An example of a speech

event expressing a private state is the one referred to by “continued” in (2).

1. “The US fears a spill-over,” said Xirao-Nima.

2. “The report is full of absurdities,” he continued.

Sentence (2) also contains an example of an expressive subjective element,

namely “full of absurdities”. With expressive subjective elements, sarcasm,

emotion, evaluation, etc. are expressed through the way something is

described or through particular wording. The subjective strength of a word

or phrase is the strength of the opinion, emotion, or other private state that it

expresses.

Following are some examples of subjective sentences taken from reference

paper [3].

• At every different layers, it’s a fascinating tale [a book review

example].

• “The cost health care is eroding our standard of living and sapping

industrial strength,” complains Walter Maher, a Chrysler health-and-

benefits specialist [a news story].

 5

In contrast, following are examples of objective sentences without

significant expressions of subjectivity, which are also taken from the

previous paper

• Bell Industries Inc. increased its quarterly to 10 cents from 7 cents a

share.

• Northwest Airlines settled the remaining lawsuits filed on behalf of

156 people killed in a 1987 crash, but claims against the jetliner’s

marker are being pursued, a federal judge said. [“Northwest Airlines

Settles Rest of Suits”, Wall Street Journal, 11/1/89]

2.1.2 Why flames are ‘extreme’ subset?

Flames or abusive messages always reflect someone’s personal opinions and

emotions which has very high intensity level. A very little amount personal

opinion bearing ‘event’ or verb has a significant impact on an insulting or an

abusive message. For an example: Mary confirmed that John doesn’t know

any behavior. Here, the event is confirmed which reflects a very little

amount of personal emotion, can be a factive event for a normal message but

in this case the sentence is an insult. Suppose the sentence Mary confirmed

that John doesn’t know how to eat spaghetti. This message is considered as

factual. The comparison between these two examples shows that although

the verb confirmed is considered as factual to convey information for a usual

message but in case of abusive messages it is no more considered as factual

event.

 6

2.2 Background Study in Subjectivity

Since subjective language is a very recent swell of interest of the researchers

in NLP, we studied some papers on this topic to formulate our basic concept.

Following is the list of some papers, for each of that paper we outlined our

extracted concept:

1. Learning Subjective Language [3]

This paper described a learning mechanism to learn subjective

language from corpora by subjectivity clues which were gathered and

tested. Their described clues and their analysis in contrast to

subjectivity analysis helped us to gather the basic concept of

subjective language.

2. Annotating opinions in the world press [7]

This paper describes the manual schemes how to annotate the personal

opinion, emotions in newspaper articles. Basic concepts about private

states, speech events and expressive subjective elements, nested

sources, explicit and implicit speech events. It also describes

about inter-annotator agreement of annotating articles.

3. Annotating expressions of opinions and emotions in language [8]

This paper describes the main annotation scheme of MPQA corpus.

We got very good concept about the annotation scheme.

4. Annotating attributions and private states [9]

 7

It has extended features containing attitude and target annotation

frames (negative or positive attitude). Integrating with other

annotating projects of ‘pie in the sky’, which has proposed another

layer of annotation scheme of subjectivity would produce the better

result. But it is irrelevant to our thesis.

5. Automatic annotation of speech events and explicit private state in

newswire [10]

This paper describes how to do automatic annotations of speech

events (say, told, according to etc) with some training features using

CASS (a partial parser by Abney). We found this useful but we won’t

be able to include this work in our short thesis.

6. Instructions for annotating opinions in newspaper articles [11]

We got significant help about nested sources, inside and outsides of

scopes, private states etc.

7. Opinion finder: A system for subjectivity analysis [12]

It describes a system and its working procedures for detecting

opinions. We have been introduced some essential software- Abney

stemmer, Sundance Partial Parser.

8. Automatic detection of opinion bearing words and sentences [13]

This paper has given idea that opinions can be annotated by their

included words and sentences using antonyms and synonyms. This is

also helpful for us but the problem is we didn’t get much more time to

include this.

 8

9. Just How Mad Are You? Finding strong and weak opinion clauses

[14]

It has described some clues to annotate strong and weak opinions

clauses (polarity) by combining previous annotations scheme-

annotate strong or weak opinions manually and the newer scheme is

syntactic clues using dependency parse tree. Here, I have got the

concept about dependency parse tree and developed the idea for our

thesis. The papers didn’t give any idea about our concept, but their

description of syntactic clues helped us to develop our own idea.

10. A corpus study of evaluative and speculative language [15]

This is just a corpus study. It gives an outline of annotating

expressions of negative attitude and machine learning. So, it didn’t

help us at all.

11. Recognizing and organizing opinions expressed in the world press

[16]

The paper stated that information about the source of subjective

language is also important. A question answering system will need to

evaluate the source of the answer by clustering the opinions with their

sources. Applying these information to various documents and topics,

to build various groups and sources, and observe how attitudes

changes over time. We found that if this is included to our thesis we

will be able to produce a significant amount of output. But, the

problem is as usual, we won’t be able to complete our thesis.

 9

2.3 Related Work Done in Flame Recognition

Smokey: Automatic Recognition of Hostile Messages by Ellen Spertus
(1997).

Smokey is an automatic flame recognition system. Based on the syntax and

semantics of each sentence they build 47 element feature vectors and

combining it for a message, it can recognize flames. The 47 rules or features

are the 47 features for each sentence. From these features the value of the

rule classes (1 or 0) are generated and feed it to the decision tree generator

(C4.5) which generates a decision tree. The decision tree classifies a

message as flame, maybe or ok. It can correctly categorize 64% of flames

and 98% of non flames in a test set of 460 messages which trained from 720

messages.

To study on flames the author of this paper collect messages from the

controversial pages of -“NewtWatch”, ”The Right Side of the Web”, “FAIR

(Fairness and Accuracy in Reporting)”. They are media watch group and

best known for their criticisms.

Another flame recognition was e-mail filtering by Kaufer (2000)

2.3.1 Our contrast with Smokey

 Our application is a sophisticated NLP application, not an AI

application, since learning is not involved here.

 Smokey’s semantic rules are some classification rules, which checks

some patterns of words sequence and tries to match the pattern

 10

simultaneously for a message through its decision tree. We are using

semantic information to interpret the basic meaning of a sentence, not

for pattern matching.

 We are using the semantic information as well as syntactic

information where smokey Smokey is message level classification but

our system is sentence level classification.

 We didn’t make any observation from sociolinguistic point of view as

Smokey does, to identify messages as an insulting manner. Our

system can identify texts as an insult only bearing insulting words

such as idiot, nonsense or phrases get a life, get lost etc. The semantic

information we are getting by only processing the text what it gives

us, we are ignoring surroundings and the context.

2.4 Statistical parsing

We can use CFGs to parse with, but some ambiguous sentences could not be

disambiguated, and we would like to know the most likely parse. We could

use a corpus to do that.

2.4.1 Basic idea

- Start with a Treebank (we can say bank of trees, e.g. Penn

Treebank) which is a collection of sentences with syntactic

annotation, i.e., already-parsed sentences.

- Examine which parse trees occur frequently

 11

- Extract grammar rules corresponding to those parse trees,

estimating the probability of the grammar rule based on its

frequency.

That is, we’ll have a CFG augmented with probabilities (PCFG).

2.4.2 Probabilistic Context-Free Grammars (PCFGs)

Definition of a PCFG:

- Set of non-terminals (N)

- Set of terminals (T)

- Set of rules/productions (P), of the form Α → β

- Designated start symbol (S)

- function, D assigns probabilities to each rule in P

D = P (A → β)

2.4.3 Estimating Probabilities using a Treebank

- Given a corpus of sentences annotated with syntactic annotation
(e.g., the Penn Treebank)

- Consider all parse trees

- (1) Each time we have a rule of the form A → β applied in a

parse tree, increment a counter for that rule

- (2) Also count the number of times A is on the left hand side of

a rule

- Divide (1) by (2) D = P(A→ β | A) = Count (A → β) /

Count (A)

 12

2.4.4 Using Probabilities to Parse

• P(T) = probability of a particular parse tree

 = the product of the probabilities of all the rules r used to expand

each node n in the parse tree

 fig-1

We have the following rules and probabilities (adopted from figure 12.1,

Jurafsky Martin)

- S → VP .05

- VP → V NP .40

- NP → Det N .20

- V → book .30

- Det → that .05

- N → flight .25

P (T) = P (S → VP) * P (VP→ V NP) *… * P (N → flight)

 13

= .05 * .40 * .20 * .30 * .05 * .25 = .000015

So, the probability for that parse is 0.000015. Probabilities are useful for

comparing with other probabilities. Whereas we couldn’t decide between

two parses using a regular CFG, we now can.

2.4.5 Obtaining the best parse

• The best parse T(S), where S is our sentence is the tree which has the

highest probability.

• We can use the Cocke-Younger-Kasami (CYK) algorithm to calculate

best parse

- CYK is a form of dynamic programming

- CYK is a chart parser, like the Earley parser

2.4.6 Problems with PCFGs

• It’s still only a CFG, so dependencies on non-CFG information is not

captured.

- e.g., Pronouns are more likely to be subjects than objects:

P [(NP → Pronoun) | NP = subject] >> P [(NP → Pronoun)

| NP =obj]

• Ignores lexical dependency information (statistics), which is usually

crucial for disambiguation of “PP attachment ambiguity” and

“Coordination ambiguity”.

 14

- (T1) America sent [[250,000 soldiers] [into Iraq]]

- (T2) America sent [250,000 soldiers] [into Iraq]

“Sent” with “into”-PP always-attached high (T2) probability.

An example of Coordination ambiguity is two parses of the phrase

“dogs in houses and cats”

- (T1) [[NP dogs] in [NP houses and cats]]

- (T2) [[NP dogs in houses] and [NP cats]]

Here T1 is semantically wrong and T2 is correct but both tree results

same score. So only PCFG is not enough to disambiguate parse trees,

lexical dependency information is also needed.

• To handle lexical information, we’ll turn to lexicalized PCFGs.

2.4.7 Lexicalized PCFGs

• Lexicalized Parse Trees

- Add “headwords” to each phrasal node. Each PCFG rule in a

tree is augmented to identify one RHS constituent to be the

head daughter

- The headword for a node is set to the head word of its head

daughter

- Headship not in (most) treebanks

- Usually use head rules, e.g.:

 15

- NP:

• Take leftmost NP

• Take rightmost N*

• Take rightmost JJ

• Take right child

- VP:

• Take leftmost VB*

• Take leftmost VP

• Take left child

 fig-2

2.4.8 Incorporating head probabilities

• Previously, we conditioned on the mother node (A):

[book]

[flight]

[book]

 16

- P (A → β | A)

• Now, we can condition on the mother node and the headword of A

(h(A)):

- P(A → β | A , h (A))

We’re no longer conditioning on simply the mother category A, but on

the mother category when h(A) is the head.

- e.g., P (VP → VBD NP PP | VP , dumped)

2.4.9 Calculating rule probabilities

• We calculate this by comparing how many times the rule occurs with

h(n) as the headword versus how many times the mother/headword

combination appear in total:

P (VP → VBD NP PP | VP , dumped)

= C (VP (dumped) → VBD NP PP) / Σβ C (VP (dumped) → β)

2.4.10 Adding info about word-word dependencies

• We want to take into account one other factor: the probability of being

a head word (in a given context)

- P(h(n)=word | …)

 17

• We condition this probability on two things: 1. the category of the

node (n), and 2. the headword of the mother (h(m(n)))

- P(h(n)=word | n, h(m(n))), shortened as: P(h(n) | n, h(m(n)))

- P(sacks | NP, dumped)

• What we’re really doing is factoring in how words relate to each other

• We will call this a dependency relation later: sacks is dependent on

dumped, in this case

 fig-3: Lexicalized parsing can be seen as producing dependency trees

2.5 Dependency Parsing

Modern dependency grammar has been created by French linguistic Lucien

Tesniere (1959). Although its roots may be traced back to Panini’s grammar

of Sankskrit (predecessor of bangla) several centuries before. In NLP,

dependency parse tree is thought as a ‘bridge’ between syntactic and

semantic analysis, since it gives some semantic information as well as

syntactic. Some peoples also argues that it is an another version of chunk

 18

parsing, because a very careful observation of a dependency tree will reveal

that every subpart of a sentence: subject, object or complements are appeared

in different sub trees or under different relation, where each node is

dependent on another node. These sub trees or semantically dependent nodes

can be though of as separate chunks.

2.5.1 Basic Concepts

In a dependency representation every node in the structure is a surface word

(there are no abstract nodes such as NP or VP), but each word may have

additional attributes such as its part-of-speech (POS) tag. The parent word is

known as the head, and its children are its modifiers. The observation which

derives DG is: In a sentence, all but one word depend on other words. The

one word that doesn’t depend on any other is called the root of the sentence.

A typical DG analysis of the sentence A man sleeps is demonstrated below:

A depends on man

Man depends on sleep

Sleep depends on nothing (it is the root of the sentence)

Or, put differently

A modifies man

Man is the subject of sleep

Sleep is the main verb of the sentence

 19

This is Dependency Grammar. A formulated dependency grammar is given

below:

• Capturing relations between words is moving in the direction of

dependency grammar (DG)

• In DG, there is no such thing as constituency

• The structure of a sentence is purely the binary relations between

words, A B means that B depends on A

Dependencies are motivated by grammatical function, both syntactically and

semantically. A word depends on another either if it is a complement or a

modifier of the latter. The edge between a parent and a child node specifies

the grammatical relationship between the two words (e.g. subj, obj, and adj).

In most formulations of DG for example, functional heads or governors (e.g.

verbs) subcategorize for their complements. Hence, a transitive verb like

‘like’ requires two complements (dependents), one noun with the

grammatical function subject and one with the function object.

In this paper we are using Stanford-Parser version-jdk1.5 for all of the

output and figures.

Ex sentence: John likes Italian food.

 20

Tagged output: John/NNP likes/VBZ Italian/NN food/NN

Constituent structure output:
(ROOT

 (S

 (NP (NNP John))

 (VP (VBZ likes)

 (NP (NN Italian) (NN food)))))

Dependency structure output:
nsubj(likes-2, John-1)

nn(food-4, italian-3)

dobj(likes-2, food-4)

2.5.2 Dependency functions

2.5.2.1 Main functions

main

main element

The main element of a clause is usually a verb, but in a verbless

clause other elements may serve as a head as well.

Ex: a sentence with a verb

He doesn't know whether to send a gift.

 nsubj(know-4, He-1)

 aux(know-4, does-2)

 21

 advmod(know-4, n't-3)

 aux(send-7, to-6)

 whether(know-4, send-7)

 det(gift-9, a-8)

 dobj(send-7, gift-9)

 Ex: a sentence without a verb

 A comprehensive grammar of the English language

 det(grammar-3, A-1)

 amod(grammar-3, comprehensive-2)

 det(language-7, the-5)

 amod(language-7, english-6)

 of(grammar-3, language-7)

2.5.2.2 Verb complementation

nsubj

nominal subject

The dependency syntax collapses the classes of formal subject and

ordinary subject into one. The subject may also be a non-finite clause

that-clause, WH-clause, etc.

dobj

direct object

The notion of object is wider than that in Quirk, comprising

essentially all types of second arguments, except subject

 22

complements. The motivation is that the subtypes of second

arguments are complementary, i.e. they occupy the same valency slot.

There are both simple nominal objects and more complex objects such

as a non-finite clause, that-clause, WH-clause or quote structure.

Ex: John explained that topic

nsubj(explained-2, John-1)

det(topic-4, that-3)

dobj(explained-2, topic-4)

ccomp

coordinated complement

Subject complement is the second argument of a copular verb.

Ex: Mary said John didn't go there

nsubj(said-2, Mary-1)

nsubj(go-6, John-3)

aux(go-6, did-4)

advmod(go-6, n't-5)

ccomp(said-2, go-6)

advmod(go-6, there-7)

iobj

indirect object

Indirect object corresponds to a third argument. The prepositional

 23

dative is described accordingly. Again, the syntactic motivation is that

the prepositional phrase occupies the same valency slot as the indirect

object and is semantically equivalent to it.

 Ex: I gave him my address.

 nsubj(gave-2, I-1)

 iobj(gave-2, him-3)

 dep(address-5, my-4)

 dobj(gave-2, address-5)

 What did Pauline give Tom?

 Pauline gave it to Tom.

2.5.2.3 Determinative functions

det

 determiner

 Central determiners (articles) or a determining pronoun. Successive

 determiners are linked to each other.

 Ex: This is an apple

 nsubj(is-2, This-1)

 det(apple-4, an-3)

 dobj(is-2, apple-4)

 24

2.5.3 Robinson’s axiom

Robinson (1970) formulated four axioms to govern the well-formedness of

dependency structures, depicted below:

1. One and only one element is independent.

2. All others depend directly on some element.

3. No element depends directly on more than one other.

4. If A depends directly on B and some element C intervenes between

them (in the linear order of string), then C depends directly on A or B

or some other intervening element.

The first three axioms ensure that they shall be trees. Axioms 1 and 2 state

that in each sentence, only one element is independent and all others

dependent on some other elements. Axiom 3 states that if element A depends

on B, it must not depend on another element C. This requirement is referred

as single-headness. Axiom 4 is called the requirement of projectivity and

disallows crossing edges in dependency trees.

2.5.4 Dependency relation

A mapping M maps W to the actual words of a sentence. Now for w1, w2 ∈

W, <w1, w2 >∈ R asserts that w1 is dependent on w2. The properties of R

treeness constraints on dependency graphs as Robinson’s axioms.

Ex: Mary loves another Mary

 25

 ↑ ↑ ↑ ↑

 w1 w2 w3 w4

here, M (w1…w4 ∈ W)

1. R ⊂ W × W

2. ∀w1w2…wk-1 wk ∈ W: <w1,w2> ∈ R … < wk-1 wk > ∈ R: w1 ≠ wk

(acyclicity)

3. ∃!w1 ∈ W : ∀w2 ∈ W: < w1,w2 > ∉ R (rootedness)

4. ∀w1w2w3 ∈ W : <w1,w2> ∈ R ∧ <w1,w3> ∈ R→w2=w3 (single-

headedness)

2.5.5 Stanford dependency parser by Dan Klein

This parser uses the feature of Collin’s parser. Michael Collins in his ‘Head

Driven Statistical Parser’ showed mapping of his statistical parser to the

dependency relation sets. Dan Klein’s Stanford parser deals with tagged

words: pairs <w, t>. First the head <wh, th> of a constituent is generated

using ‘Collins head finder’ method, then successive right dependents <wd,

td> until a ‘stop’ token is generated, then successive left dependents until

‘stop’ token is generated. It supports three formats for output:

1. dependencies

2. typedDependencies

3. typedDependenciesCollapsed

 26

For example: Factory payrolls fell in September.

Tagged output: Factory/NN payrolls/NNS fell/VBD in/IN September/NNP

Dependency structure:

nn(payrolls-2, Factory-1)

nsubj(fell-3, payrolls-2)

in(fell-3, September-5)

 fig -4

First, fell-VBD is chosen as the head of the sentence, then, in-IN to the right

is generated, which then generates September-NN to the right, which

generates ‘stop’ token on both sides. Then return to in-IN, generate ‘stop’ to

the right, and so on. The above output is the ‘typedDependenciesCollapsed’

format of Stanford dependency parse tree. This

‘typedDependenciesCollapsed’ doesn’t make separate nodes for the words,

which are obvious in any dependency relation in a sentence; instead it makes

it a relation between two prominent words. In the above example the

 27

preposition ‘in’ is used as a relation or dependency function between the

words ‘fell’ and ‘September’.

For example, only ‘typedDependencies’ format of the above sentence will

be:

nn(payrolls-2, Factory-1)

nsubj(fell-3, payrolls-2)

dep(fell-3, in-4)

dep(in-4, September-5)

 fig -5

Example shows that it makes a separate node ‘in’ between ‘fell’ and

‘September’, which can be used as a relation to make the tree shorter in

depth. This thesis uses the ‘typedDependenciesCollapsed’ format as well

because we don’t need to look at every word to extract necessary

information.

 28

Chapter 3: Methodology

This chapter describes the strategies of how do we adjusting a sentence and

feeding it to the dependency parser and then interpreting the semantic

information to distinguish flames and information. Methodology is classified

in two categories:

1. Preprocessing

2. Processing

3.1 Preprocessing

At preprocessing part we have to process each sentence in such a way so that

the dependency structure will be able to give every necessary information

(such as subject, object, complements and other necessary semantic

information). Since it is not possible always to construct a sentence in that

way, we are leaving some works for the processing part also. But we need to

ensure that we have constructed a sentence to give it all of its clues as much

as possible.

We pointed out two constraints of the parser to solve our purpose:

• The parser can give the best output and semantic information for a

simple sentence. So, we need to split up a sentence into its

corresponding clauses and give each clause a simple construction.

 29

• In a simple sentence, an event or verb must follow its subject. If its

subject follows an event, we need to swap subject and the event.

The steps of our preprocessing part are depicted below:

1. Separate each sentence one per line. We used opennlp 1.3.0 for this

separation, although sometimes it makes confusion in case of dot or

full stop. But we are omitting that mistake since it has the better

performance because of its trained feature.

2. Replace the factive event ‘according to’ by ‘implied that’ and swap

the subject and the event.

 For example: According to Mary, john didn’t go downstairs.

 After replacing ‘According to’ by the event ‘implied that’ the sentence

 will be: implied that Mary, john didn’t go downstairs. This is not a

 correct sentence structure. So, we need to swap the subject and the

 event.

 The final sentence will be like this: Mary implied that John didn’t go

 downstairs.

 Another example: According to her, john didn’t go downstairs.

 Here, the subject is ‘her’, a pronoun. So, ‘her’ must be replaced by

 ‘she’ to give the sentence a correct form. Here are the mappings:

 30

 him -> he

 her -> she

 me -> I

 us -> we

 them -> they

 So, the final sentence becomes: she implied that, john didn’t go

 downstairs.

 The event ‘according to’ can be anywhere in a sentence. So, it has to

 be handled accordingly.

3. Punctuation marks (“”) are used to give a unit scope of speaker’s

speeches. One or more sentences could be in a scope. For example

considering a paragraph:

“John is waiting for the lift. He didn’t go downstairs,” replied Mary

 while talking with Lisa.

 After first two step this paragraph will be like this:

“John is waiting for the lift.

He didn’t go downstairs,” replied Mary while talking with Lisa.

Here, the speaker is ‘Mary’ and event is ‘replied’. We need to place

the agent ‘Mary’ followed by the event ‘replied’ at the beginning of

the punctuation, where the scope begins and the tail ‘replied Mary

 31

while talking with Lisa’ will go to the next line. In the tail here, agent

‘Mary’ and event ‘replied’ needed to be swapped. After applying

above operations, the final output is:

 Mary replied “John is waiting for the lift.

 He didn’t go downstairs.”

 Mary replied while talking with Lisa.

This makes a sentence containing clauses simpler than previous. One

more condition we have to check that if the sentence is like this:

“John is waiting for the lift. He didn’t go downstairs,” replied Mary.

Here, no word is following ‘Mary’. So, we don’t need to place the tail

replied Mary to the next line. Just cut the tail, swap the agent and

event, place it to the beginning.

Mary replied “John is waiting for the lift. He didn’t go downstairs.”

Another example: “John is waiting for the lift.” replied Mary, adding

“He didn’t go downstairs.”

This sentence is processed like this:

Mary replied “John is waiting for the lift.”

 adding “He didn’t go downstairs.”

 That’s it. The rest of it will be done at processing part.

 32

4. Tag each sentence using Stanford parser and keep it in memory. Since

Stanford parser is a probabilistic parser, give it a full sentence before

separate it into clauses.

5. Separate each sentence into clauses. Below is the list of clause

separators in a sentence:

 , (comma)

 and

 or

 nor

 but

 because of

 because

 although

 since

 otherwise

 in order to

 while

 when

 where

 whether

 whose

 who

 which

 ; (semi-colon)

 : (colon)

 33

 - (dash)

 -- (double-dash)

 Once we get these separators we split up the sentence. But, for some

 separators we need to have some special consideration. These are:

 , (comma), and, who, which.

 Below we described sequentially why these are taken as special

 consideration.

 , (comma): Consider a sentence – Italy, France, and Germany have

 played really well in the World Cup’06.

 Here, , (comma) is not used to separate clauses. It just separating

 proper nouns or can be pronouns. The checking is to see the words

 on both sides of comma have same tag except verb. Moreover, the

 word and is also separated, so check the word just after the

 conjunction and also. We are not splitting if these checking are true.

 So, above sentence will not be splitted.

 Noun phrases can also be separated by comma.

 Suppose a sentence: President of the club, John, and Finance Minister

 was present at the meeting.

 Here, President of the club is a noun phrase, which is separated by

 comma with John. So, this sentence will not be splitted as well, since

 we are only splitting sentence into clauses.

 Now, taking another example: John Smith, president of the sports

 34

 club, said “We will not tolerate it anyway.” After separate it by

 comma, it will be like following:

 John Smith

 <,>president of the sports club

 <,> said “We will not tolerate it anyway.”

 The comma between angle brackets shows that we are adding every

 separator in angle brackets in front of a separated clause. Here, the

 concern is the third clause which is started by speech event verb

 said’. It clearly shows that the subject of this speech event is ‘John

 Smith’, which is in a separate clause and in the first line. The rule is,

 at first check the first line to see whether it is only a noun phrase, if it

 is take it as a nominal subject. Now, if there is any clause started

 with a verb, put that nominal subject in front of that verb. Here, the

 verb is ‘said’.

 Then above example will be:

 John Smith

 <,>president of the sports club

 <,> John Smith said “We will not tolerate it anyway.”

 Now, consider another example: We will not tolerate it anyway,

 because we have to win the match, president of the club John Smith

 said yesterday.

 After separated by comma:

 35

 We will not tolerate it anyway

 <,> because we have to win the match

 <,> president of the club John Smith said yesterday.

 The third clause here contains a speech event ‘said’, and its subject is

 ‘president of the club John Smith’. It shows that first and second

 clause are the speeches of John Smith. Here, the mechanism is, put

 punctuation marks (“) at the beginning of the first line and at the end

 of the previous line where the speech event ‘said’ found, to put those

 clauses in a unit scope. Then make the adjustment for punctuation

 marks as described in step 3.

 Then this example will be:

 president of the club John Smith said “we will not tolerate it anyway

 <,> because we have to win the match”

 <,> president of the club John Smith said yesterday.

 Comma just after the speech event is omitted. Ex: She said, “There

 will be no chance.” This sentence will not be splitted.

 and: In case of the separator ‘and’, the checking here is to whether two

 same tagged words are separated by ‘and’ or not. If those two words

 have similar tagging then we are not splitting the sentence by ‘and’.

 As for example: I eat rice, meat and fish. In this example meat and

 fish both have similar tag (common noun). As per rule no splitting

 occurred.

 36

 who and which: These two separators have same significant, that is

 these are considered as a same. Two examples are given below:

 The speaker here is John Smith, who is also president of the club.

 The sports club, which has John Smith as a president.

 At the first example, the separator ‘who’ refers to the speaker ‘John

 Smith’ and at the second clause ‘which’ refers to ‘The sports club’.

 Both of the noun phrase John Smith and The sports club are at just

 before the separators who and which. The mechanism is, split up a

 sentence by separators and put the two noun phrase just at

 beginning of the next separated clause.

 For above two examples next processes are given below:

 After splitting:

 The speaker here is John Smith

 <who>is also president of the club.

 The sports club

 < which> has John Smith as a president.

 After placing the noun phrases:

 The speaker here is John Smith

 <who>John Smith is also president of the club.

 The sports club

 37

 < which>The sports club has John Smith as a president.

 Of course, the observation made here is for typical cases. Some cases,

 it is not possible to match these conditions. For those cases, we just

 leaving it for the processing part just after splitting.

Our preprocessing part is done. Now we are ready to move on to our

processing part.

3.2 Processing

Now, we have to feed each clause to the dependency parser. That clause we

have made in preprocessing part. We have marked each new sentence. If we

are getting any nonfactual insulting or abusive message in a clause, we are

just printing out the whole sentence. We are keeping a stack, after traversing

each dependency tree we are getting some nested sources that is agent,

experiencer with their corresponding events or verbs.

Following is an example:

John believes that Mary said that Lisa knows that he is idle.

This sentence contains four nested sources – John, Mary, Lisa and he

Corresponding events are: believes, said, knows, and is.

 38

 fig -6: The dependency structure of the above example

The fig-6 shows that after traversing the tree we can get the nested sources.

experiencer: John

event: believes

agent: Mary

event: said

experiencer: Lisa

event: knows

experiencer: he

event: is

 fig –7: Corresponding stack contains the nested sources of the tree.

 39

Since, the stack grows downwards, the top of the stack is at the bottom, and

we are following this convention for the rest of this paper.

Stack shows the nested sources from top to bottom. We are considering

‘agent’ and ‘experiencer’ by their corresponding events. Once we get an

event which is a speech event, we are considering the corresponding subject

as an agent, otherwise that will be an ‘experiencer’. This is different from

the ‘thematic’ role in semantic analysis. The fig 4 shows that an agent can be

in a nested scope of an ‘experiencer’, agent Mary is in the scope of the

experiencer John.

3.2.1 Stack Manipulation

This section described how the stack, where every source and its nested

sources with their corresponding events are stored, is being manipulated

before and after processing of each clause. So, first we gave an overview

before go to the actual processing.

Steps are:

1. Before feeding a clause or a sentence to the parser, we are checking

the first word of that clause whether it is a verb.

If verb is found:

• Check whether it is a new sentence, or whether this clause was

separated by while or because. If the checking returns true then

take the last agent from the stack not the experiencer.

 40

Separators while and because, we call them scope detachers.

For example: Mary said John is an idiot while talking with

Lisa.

 After separating by < while >

 Mary said John is an idiot

 < while > talking with Lisa.

 The second clause starts with a verb ‘talking’. So, if the

 question is ‘Who was talking with Lisa?’ The answer should be

 ‘Mary’ not ‘John’. This process is elaborated below:

 First clause: Mary said John is an idiot

agent: Mary

event: said

experiencer: John

event: is

 fig –8: Corresponding stack of the example

 Second clause: talking with Lisa

 Since this clause starts with the verb talking and the separator

 was <while> then we should take the last agent Mary. So, this

 clause will be: Mary talking with Lisa.

This rule is applicable for separator <because> and if a new

sentence begins. Otherwise we have to take the last ‘subject’

 41

from the stack. This subject can be experiencer or can be an

agent. For the above example if the separator was <and> we

had to take the last experiencer which is John. The second

clause would become: John talking with Lisa.

If the first word is not verb

• Then we have to check whether this sentence is not a new

sentence (a separated clause) and is separated by <,> (comma).

If the clause is separated by <,> (comma) and doesn’t contain

any verb, then we are taking the last subject (agent or

experiencer) with the corresponding event and placing it at

beginning of the clause. An example is given below:

I ate fresh rice, small fish, and green vegetables.

After separating by separator <,> and <and>

I ate fresh rice

<,>small fish

<,><and> green vegetables.

 For the first clause: I ate fresh rice

 42

 fig-9

agent: I

event: ate

 fig-10: Stack from the tree

Now, the second clause: small fish

Since, it has no verb and was separated by <,>, take the last

subject with corresponding event (Here, subject is I and event is

ate).

So, second clause will be I ate small fish. The third clause will

be processed at the same way, since the second clause will push

the agent I and event ate to the stack. Then the third clause

green vegetables will become I ate green vegetables.

 43

2. Detach previous scopes from the stack according to the rules. A scope

can be opened by an ‘agent’ or by an ‘experiencer’. First check if the

current sentence is a new sentence.

If this is a new sentence

• A new sentence can be within a scope. That is, several new

sentences can be within a scope defined by a pair of

punctuation marks (“). If this is the case, detach all the scopes

except the scope opener. Following example will make it clear:

Mary said, “I like fish and vegetables. I hate meat.”

After preprocessing:

Mary said, “I like fish and vegetables.

I hate meat.”

Here, for the first sentence the stack will be:
agent: Mary

event: said

experiencer: I

event: like

 fig-11

Now, the second sentence I hate meat.” This new sentence is in

the scope of agent Mary, who is the scope opener of the current

 44

scope. So, detach all of the scopes except the scope opener

Mary. After this, the stack will be like the following:

agent: Mary

event: said

 fig-12

 If this is not the new sentence

• Check if any scope is currently open. Then we have to check

the separator. If the separator is <while> or <because>, detach

all the scopes except the current scope opener. If there is any

another separator, such as <and>, then check if there is any

agent just after the current scope opener. If this, is then detach

all the scopes only after that agent, otherwise if it was an

experiencer then detach scopes except the current scope opener.

An example: Mary said, “John told that he likes fish and he

hates meat.”

After preprocessing:

Mary said, “John told that he likes fish

 <and> he hates meat.”

 First clause: Mary said, “John told that he likes fish

 45

 fig-13: dependency structure for the first clause

 fig-14: Corresponding stack for fig-10

 fig-15: Stack of fig-10 after detaching scopes

 The second clause: he hates meat.” Now, this clause is not

agent: Mary

event: said

agent: John

event: told

experiencer: he

event: likes

Agent: Mary

Event: said

agent: John

Event: told

 46

 separated by <while> or <because>, and this is within a scope.

 The scope opener is Mary, after the scope opener there is an

 agent John. So, the stack will be shortened just after the event

 told of agent John. Fig - 15 exactly shows that next state of the

 stack. In case of <while> or <because> the stack will be

 shortened just after the event of Mary which is said.

• If no scope is open, the scenario will be the same as described

except there will be no scope opener. For the above example, if

the separators are <while> or <because>, the stack will

become empty before processing the second clause.

 If this is a new sentence, then we just need to check whether this

 sentence within a scope. If a scope is open, detach all other except the

 current scope opener with its events. Otherwise if no scope is open,

 make the stack empty. For the above example, if the second clause “he

 hates meat.” is completely a new sentence and not within the scope of

 Mary, the stack will be empty as well.

3.2.2 Marking phase

For a given sentence, some words or phrases are marked in this phase. These

marked words or phrases will be evaluated at the detection phase. This

marking is done for each word in the sentence with its tag.

 47

First job is to make all the insulting phrases to one word by putting a ‘-‘

between the words of that phrase. Ex: Get a life John. After making the

phrase Get a life to one word the sentence will become Get-a-life John.

The next job is to mark the sentence for each word. Here is the list, which

tells what the markings that we are doing. All insulting words and phrases

are marked with a ‘*’ mark.

*<phrase>: Any insulting phrase such as get a life, get lost etc.

*<word>: Any insulting word such as idiot, nonsense etc.

*<comparable>: If a human being is compared to these words such as

donkey, dog etc.

<attribute>: These are the personal attributes of human being such as

behavior, manner, truthfulness etc.

<factive>: All are the speech events such as said, told, asked etc.

<evaluative>: These are the verbs, which are used to evaluate a human

being’s personal attribute such as know, show, have, has, expressed etc.

<modifier>: These are also verbs, which are used to modify another verbs

such as should, would, must etc.

 48

<comparableVerb>: These verbs are used to compare a human being with

the comparable that we have described. Generally, these verbs are auxiliary

verbs, which are is, are, was, and were.

For the above marking phase we have lexicons for these kinds of words or

phrases.

An example: You need to get a life John!

 You should know how to behave.

Two sentences. After marking the first sentence it will become like the

following list:

You/PRP

need/VBP

to/TO

*<phrase>get-a-life/VB

./.

After marking the second sentence:

You/PRP

<modifier>should/MD

<evaluative>know/VB

how/WRB

to/TO

<attribute>behave/VB

./.

 49

For every clause we are marking it and storing in the memory.

3.2.3 Tree Annotation

Each clause is given as an input to the Stanford dependency parser. It gives

an output as a bracketed form. For example: You should know how to

behave. The output is like following:

nsubj(know-3, You-1)

aux(know-3, should-2)

ccomp(know-3, how-4)

aux(behave-6, to-5)

dep(how-4, behave-6)

From this output we are building the tree. We keep four main properties of

each node: label, tag, word no and edge from parent. Suppose we are

building the node for the word You at the first line of the above output:

label: You

word no: 1

edge from parent: nsubj

These are the basic properties.

Now for each node, we also added some extra boolean properties:

insulted

factive

 50

comparable

comparableVerb

phrase

evaluative

negative

attributive

modified

For some of the words in a sentence or a clause, all of the above boolean

properties can be checked to be matched, since in section 3.2.2 we have

marked some words with its tag, except the property ‘negative’. Suppose the

word know, which is marked as <evaluative> in the ‘Marking Phase’, can

set its ‘evaluative’ property to true while building a node for it.

3.2.4 Detection

This is the last part, in fact the main part. We have some predefined rules for

the detection. The rules are described below. Each rule we are describing by

giving an example sentence and its corresponding dependency tree. This

section also described how we manipulated the stack by pushing frames. A

single frame contains an ‘agent’ or an ‘experiencer’ with its corresponding

event or verb, while traversing the tree.

While visiting a node we must have two information:

• The current root node.

 51

• The relation, that means which sub tree we are traversing:

suppose relation ‘nsubj’ indicates that we are traversing the

subject part of the current root node, similarly ‘dobj’ indicates

that we are traversing object part of the current root node.

The rules are:

1. If a dependency structure doesn’t contain any verb as any of it’s root,

then only search for any insulting word. If found then set the

‘insulted’ property of the root node to true.

Ex: That nonsense book.

 fig –16

 The root node is ‘book’, it’s ‘insulted’ property will be set to true

 since the word ‘nonsense’ is found as it’s modifier.

2. Traverse the subject part of the tree. If found any insulting word or

phrase, set the ‘insulted’ property of the current root to true. The

subject will become ‘experiencer’, no matter what the root verb is

(factive or nonfactive).

 52

Ex: Only coward says that great.

 fig –17

In the figure, the root verb is says and the subject is coward, so the

subject itself has an insulted property. The subject here is an

experiencer although the verb is a speech event.

3. If the relation between the verb and an insulting word is “dobj” (direct

object), or “iobj” (indirect object), “with” or “to” then set the root to

be insulted and the subject will be an ‘experiencer’.

Ex: Mary always says that nonsense.

 53

 fig –18

 The word ‘nonsense’ is the direct object of the verb ‘says’, so subject

 ‘Mary’ will be an experiencer, not agent.

4. If the root verb has the negative modifier, then check its children. If

any of its children has its label “only” then root will be insulted,

otherwise not.

Ex: He is not only an idiot

 54

 fig –19

The insulting word ‘idiot’ has a child which label is ‘only’. So, the

negative verb ‘is’ has no more an negative impact on ‘idiot’, root of

this tree will be insulted as well.

Ex: He is not an idiot.

 fig –20

 55

Figure shows that the verb ‘is’ has a negative modifier ‘not’. So, the

negative property of the root verb will be set to true. Since, verb

becomes negative it has a negative impact on the insulting word

‘idiot’. So, the insulted property of the root will be false.

5. If the root is ‘evaluative’ but not ‘negative’, set the root to be insulted.

Ex: He knows rude behavior.

 fig –21

The root verb is know which is evaluative and not negative because it

doesn’t have any negative node as a modifier, the root will be insulted

since ‘rude’ is an insulted node.

6. If the root is evaluative and also negative, it will not be insulted.

Ex: He doesn’t know rude behavior.

 56

 fig –22

Since the root node is ‘evaluative’ and also ‘negative’, it has the

negative impact on the insulted node ‘rude’. The root node will not be

‘insulted’.

7. If the property of an insulted node is ‘comparable’ then check its

property ‘edge from parent’. If that is ‘as, ‘like’ or ‘to’ then it is an

insult. If that is not then check whether it is ‘dobj’ and the root verb is

‘comparable’ verb, set the root’s insulted property to true.

Ex: He played like a donkey.

 57

 fig –23

Here, the ‘edge from parent’ of the node ‘donkey’ is ‘like’.

Ex: He is a donkey.

 fig –24

Here, the ‘edge from parent’ of the node ‘donkey’ is ‘dobj’.

 58

8. If the property of an insulted node is ‘phrase’ then check only the root

verb whether it’s ‘factive’ property is true. If that is not true then set it

is an insulted.

Ex: Mary confirmed that he should get a life.

 fig –25

The root node is ‘confirmed’ and its ‘factive’ property is false,

because it is not a speech event. So, its ‘insulted’ property will be true

because it is an insult.

Another ex: Mary said that he should get a life.

 59

 fig –26

The root node ‘said’ is ‘factive’ since it is a speech event. So, it is not

an insult.

9. If the property of the node is ‘attributive’ then we got sequentially two

checking. First checking is whether the root node is ‘evaluative’ or

‘comparebleVerb’. If these checking return true then next checking is

whether the root node is ‘negative’ or it is ‘modified’. If these also

return true then set ‘insulted’ property of this root to be true.

Ex: John doesn’t know any behavior.

 60

 fig –27

The property of the node ‘behavior’ is attributive. Then check the root

node. The root is an ‘evaluative’ verb, next it is a negative since it has

a negative modifier “n’t”. This sentence is a flame or an insult

(negative evaluation of someone’s personal attribute).

Ex: John should know behavior.

 fig –28

 61

Here, the root verb is ‘evaluative’ and it has auxiliary modifier

‘should’. So, the root is ‘modified’ and the sentence is an insult (a

doubt, whether John knows behavior or not).

10. If the tag of the current node is ‘proper noun’ or ‘pronoun’, see

whether property of the subject was ‘comparable’ and the root verb is

‘comparableVerb’. If these conditions are true the root of this tree will

be insulted.

Ex: A donkey is what he is.

 In this figure once we have reached

 at the node ‘he’ which is pronoun

 we need to check what was the

 main subject. Since, the subject

 here was ‘comparable’ and already

 been visited, and the root verb is

 also ‘comparable verb’ we can set

 the root as an insulted.

 fig –29

11. When the current node’s ‘get edge from parent’ contains the string

‘subjpass’ then this subject will be considered as an ‘experiencer’.

 62

Ex: John was told as an idiot by Mary.

 fig –30

12. If the tag of the current node is ‘proper noun’ or ‘pronoun’ and the

‘edge from parent’ is ‘by’, then the last subject of the stack has to be

changed. Before making that change, check whether the root verb is

‘factive’. If it is then the last subject will be a ‘agent’ other it will be

an ‘experiencer’ and the subject will be changed to the current node’s

label.

In the above example as soon as we visit the node ‘was’ we will push

‘John’ as an experiencer into the stack with the event ‘told’. Next

when we visit ‘Mary’ the last subject which was ‘John’ as an

experiencer will be changed to ‘Mary’ which will be an ‘agent’.

 63

 fig –31: stack before change

 Fig – 32: stack after change

13. If ‘edge from parent’ of the current node is ‘that’ or ‘ccomp’ and any

of its child node’s ‘edge from parent’ is ‘nsubj’ then the current root

will be changed to this current node. Before changing the current root

push the previous subject with that corresponding verb. Subject will

be pushed as an ‘agent’ or an ‘experiencer’ depends on whether the

verb is ‘factive’ or ‘non-factive’.

Ex: Mary said John is nonsense.

 fig –33

experiencer: John

event: told

agent: Mary

event: told

 64

In above figure node ‘is’ is the nested sub root of ‘said’ since it’s

‘edge from parent’ is ‘ccomp’ and it has child ‘John’ and the relation

is ‘nsubj’. So, this node will become the current root, before that

‘Mary’ with it’s event ‘said’ will be pushed into the stack. Subject

‘Mary’ will be pushed as ‘agent’ since the verb ‘factive’ property of

the verb ‘said’ is true.

Now, if the sentence is: Mary believes that John is nonsense. The

subject ‘Mary’ is now an experiencer since the verb ‘believes’ is not a

factive event. Here, the author of this sentence expressing his/her

personal opinion by talking about Mary’s belief state. A factual

information is what ‘Mary’ said about ‘John’, not what she believes

about him. So, this sentence is considered as an insult.

 fig –34

 65

 This figure shows that the node ‘how’, which has its ‘edge from parent’

 is ‘ccomp’ but it has no child as ‘nsubj’. So, the current root will be not

 be changed.

14. If the ‘insulted’ property of the root of a sub tree is set to true, then

it’s immediate parent root’s ‘insulted’ property will be set to true if

that is not ‘factive’.

The example is fig-33 at rule no. 13, where the root verb ‘is’ of a sub

tree is insulted, but it will not set the ‘insulted’ property of it’s parent

root ‘said’, since ‘said’ has it’s ‘factive’ property as true.

15. In case of the property of the current node is ‘ccomp’ or ‘that’ and

both of the parent and its child has their ‘evaluative’ property is true,

then set ‘modified’ property for of them to true.

Ex: He must have to know how to behave.

 66

 fig –35

Above figure, the node ‘know’ is the nested root of ‘have’ and both of

their ‘evaluative’ property is true. So, we can set both node’s

‘modified’ property to true (since both of them is evaluated by each

other).

16. If current node’s tag is verb (VB) and current root’s tag is adjective

(JJ) then push the subject with it’s event which is the current node.

Ex: He is stupid.

 67

In this tree when we will visit the node ‘is’

we can push the subject that is ‘he’ as an

experiencer with its event ‘is’ into the stack.

 fig –36

17. It’s a final check. When we have finished traversing the whole tree,

check if there is any frame yet to be pushed. If there is, then push it

into the stack.

Now, tree traversing has been completed. The root node of the tree has its

‘insulted’ property as a true or as a false, according to the rules described

above. A sentence is being considered as an insult if any of its clause bears

insulting message. To decide a sentence whether it is an insult or not,

following steps have to be executed, once we have got the root of a tree has

its ‘insulted’ property is true:

• First check, currently no scope is open. Then check subject of bottom

of the stack is an ‘agent’ and its immediate top subject is an

‘experiencer’. If that is true then see whether those are the same, if

same then change that ‘agent’ to an ‘experiencer’.

An example: Mary said John is an idiot, Mary doesn’t know any

behavior.

 68

After separated by <,>

Mary said John is an idiot

<,>Mary doesn’t know any behavior.

fig –37: stack after the first clause

fig – 38: stack after the second clause

fig- 38 shows that agent ‘Mary’ and experiencer ‘Mary’ are the same

(they are the same person), the agent ‘Mary’ will become an

experiencer.

This step will not be executed if a scope is open. Consider a sentence:

Mary said, “Mary is an idiot.” The ‘Mary’ inside the scope of

punctuation mark could be an another ‘Mary’.

• Now check whether the stack is empty or bottom of the stack contains

an ‘experiencer’. If that is true, annotate the sentence as an insult.

agent: Mary

event: said

experiencer: John

event: is

agent: Mary
event: said
experiencer: Mary
event: know

 69

The processing part here described is for each clause (or that could be a

simple sentence). So, this processing will be repeated for each clause (or for

a sentence) until the end of the document.

 70

Chapter 4: Result

This chapter shows a snapshot of the output of our program. All the

sentences are here arbitrarily taken. The input text has three paragraphs. The

output shows exactly at which paragraph and at which line (sentence) an

insulting message is found.

Input:

She said, "Lisa doesn't know any behavior." Get a life John! You should be

punished for your shameless work.. Mary knows that John is an idiot. "He

should know the well behavior. Otherwise I will sue him," she shouted. You

sick idiotic liberals, she added there. A donkey is what he is. A donkey does

what he does.

According to John, Lisa is stupid. He told that stupid Lisa cannot do this.

Actually, John told that because he is nonsense. John told yesterday that shut

up you shameless. Shut up you shameless! She didn't show any rude

behavior. According to him, Mary didn't learn any courtesy. Actually, we

think that Lisa didn't learn any courtesy. John expressed that Mary said that

Lisa believes that he is stupid and doesn't know how to behave with a

person. John knows that Lisa doesn't know how to behave with a person.

A dog is barking. A dog doesn't know any manner. He played that shot just

like a stupid coward. Only coward and foolish could reply that as a great,

Mary replied. That idiot said he is a good boy. That good boy said he is an

 71

idiot. "Well, listen to me you bozos, do you know what’s are you talking

about?" she shouted with that guy.

Output:

[Para: 1 Line: 2] Get a life John!

[Para: 1 Line: 3] You should be punished for your shameless work.

[Para: 1 Line: 4] Mary knows that John is an idiot.

[Para: 1 Line: 8] A donkey is what he is.

[Para: 2 Line: 3] Actually, John told that because he is nonsense.

[Para: 2 Line: 5] Shut up you shameless!

[Para: 2 Line: 8] Actually, we think that Lisa didn't learn any courtesy.

[Para: 2 Line: 9] John expressed that Mary said that Lisa believes that he is

stupid and doesn't know how to behave with a person.

[Para: 2 Line: 10] John knows that Lisa doesn't know how to behave with a

person.

[Para: 3 Line: 2] A dog doesn't know any manner.

[Para: 3 Line: 3] He played that shot just like a stupid coward.

 72

[Para: 3 Line: 5] That idiot said he is a good boy.

The output shows that the program has annotated exactly the sentences,

which have classified as an insulting. Sentences, which bear insulting word

or phrases but are speeches of a person, did not come at the output.

 73

Chapter 5: Conclusion, Limitations and

The Future Work

5.1 Conclusion
We present a new and an efficient approach for distinguishing flames and

information by interpreting the basic meaning that a sentence gives us.

However, we are not only annotating flames but also distinguishing. From

statistical analysis it has been revealed that, more than 60% of insulting

messages are posted as a direct insult and direct insulting messages always

contain insulting words or phrases. From psychological point of view, if

these messages are categorized and restrict a user to send these kinds of

messages, then a human intension to post or exchange of abusive messages

can be significantly reduced. Moreover, this automated program can help a

user to retrieve only the factual information. This can be a new topic for

research since the strategies described here have the similarities of

information retrieval mechanism from a syntactical structure along with

semantic information.

5.2 Limitations

The limitations are:

• This can classify and distinguish insulting messages only bearing

insulting words or phrases. The messages, which imply insult as

insulting manner, cannot be categorized.

 74

• Our preprocessing part is not yet been full proved. We still have some

errors. For some complicated sentences it can be failed to process.

• We didn’t yet handle any wrong input such misplacing of comma,

unmatched punctuation marks etc.

• Since Stanford parser is a probabilistic parser, it is not guaranteed that

all of its output is right. For those cases the program also gives the

wrong output.

5.3 Future Work

• Involving world knowledge to make it more efficient.

• Pragmatic analysis.

• Adding learning features, such as ‘supervised learning’.

• Can be extended for detecting personal opinions or emotions.

• Make it for other languages such as ‘bangla’. In that case we need

‘bangla’ dependency parser.

 - 2 -

References

[1] wikipedia
www.en.wikipedia.org

[2] Ellen Spertus. Smokey: Automatic recognition of hostile messages
(1997).
people.mills.edu/spertus/Smokey/smokey.pdf

[3] J. Wiebe, T. Wilson, R. Bruce, M. Bell, M. Martin. Learning Subjective
Language (2002)
http://citeseer.ist.psu.edu/context/2488514/0

[4] Melanie Martin. Annotating Flames in Usenet Newsgroups (2002).
www.cs.csustan.edu/~mmartin/pubs/martin_poster.pdf

[5] Stanford Parser
http://nlp.stanford.edu/software/lex-parser.shtml

[6] OpenNLP 1.3.0
http://aye.comp.nus.edu.sg/portal/RPNLPIR/opennlp_tools_1.3.0,_1.2.0.htm
l

[7] T. Wilson, J. Wiebe. Annotating opinions in the world press (2003)
https://rrc.mitre.org/pubs/sigdial03final.pdf

[8] J. Wiebe, T. Wilson, C. Cardie. Annotating expressions of opinions and
emotions in language (June, 2005).
www.cs.pitt.edu/~wiebe/pubs/papers/lre05withappendix.pdf

[9] Theresa Wilson, Janyce Wiebe. Annotating attributions and private
states (2005).
www.cs.pitt.edu/~twilson/pubs/acl05wkshop.pdf

[10] M. Arthur Munson. Automatic annotation of speech events and explicit
private state in newswire (17, May, 2004).
www.cs.cornell.edu/~mmunson/publications/docs/sw_ons.pdf

 - 3 -

[11] Janyce Wiebe. Instructions for annotating opinions in newspaper
articles (2002)
nrrc.mitre.org/NRRC/publications.htm

[12] T. Wilson, P. Hauffmann, S. Somasundaran, J. Kessler, J. Wiebe, Y.
Choi, C. Cardie, E. Riloff, S. Patwardhan Opinion finder: A system for
subjectivity analysis (2005)
www.cs.cornell.edu/home/ cardie/papers/hlt-emnlp05-demo.pdf

[13] Soo-Min Kim, E. Hovy. Automatic detection of opinion bearing words
and sentences (2005).
www.isi.edu/~skim/Download/Papers/2005/ijcnlp_cameraready_letter.pdf

 [14] T.Wilson, J. Wiebe and R. Hwa. Just How Mad Are You? Finding
strong and weak opinion clauses (2004).
www.cs.pitt.edu/~twilson/pubs/aaai04.pdf

[15] J. Wiebe, R. Bruce, M. Bell. M. Martin, T. Wilson. A corpus study of
evaluative and speculative language (2001).
http://citeseer.ist.psu.edu/wiebe01corpus.html

[16] J. Wiebe, E. Breck, C. Buckley, C. Cardie, P. Davis, B. Fraser, D.
Litman, D. Pierce, E. Riloff, T. Wilson, D. Day, M. Maybury. Recognizing
and organizing opinions expressed in the world press (2003).
www.cs.cornell.edu/home/ cardie/papers/aaai-ss-overall-03.pdf

[17] C. Ovesdotter Alm, D. Roth, R. Sproat. Emotios from text: machine
learning for text-based emotion prediction (2005).
l2r.cs.uiuc.edu/~danr/Papers/AlmRoSp05.pdf

[18] Sid. Identifying Subjective Agents in Text (2004).
www.cs.utah.edu/~sidd/documents/nlp100404.pdf

[19] Jona than Ian Ellis. An exploration of human emotion perception from
short texts (April, 25, 2005).

