

Comparative analysis between SPF and BAR algorithm in

SDN unicast network

SUBMISSION DATE: 24.12.17

Soumen Ghosh (14101157)

Nayeem Mehedi (14101158)

Sahariar Khandoker (14101159)

Sabbir Aanwar (13201072)

Department of Computer Science and Engineering

Supervisor:

Amitabha Chakrabarty, Ph.D

Assistant Professor

Department of Computer Science and Engineering

SUBMITTED BY:

Declaration

We, hereby declare that this thesis is based on results we have found ourselves.

Materials of work from researchers conducted by others are mentioned in

references.

Signature of Supervisor

Amitabha Chakrabarty, Ph.D

Assistant Professor

Department of Computer Science and

Engineering

BRAC University

 Signature of Authors

Soumen Ghosh

(14101157)

Nayeem Mehedi

(14101158)

Sahariar Khandoker

(14101159)

Sabbir Anwar

(13201072)

ABSTRACT

Software Defined Networking (SDN) is a new idea of networking where

Central Server takes all the decisions and finds a path for a packet to move

from source to destination whereas in traditional networking a router takes

decisions and finds path for the packet. The main advantage of SDN is that

it reduces the time complexity of packet transfer as routers do not have to

look up routing table for a path and it can reduce the packet loss to a

minimum level. In traditional network, the routers make decisions

according to their routing table which most of the time cannot grasp the

full network topology. However, in SDN, central server possesses the

entire routing table to control the data flow of network. As a result, the

percentage of packet loss becomes at a minimal level. Though making

packet loss zero percent cannot be achievable due to insufficient data flow

path or any other physical factors, it is still less than the traditional network.

In this paper, we have implemented two algorithms, Shortest Path First

(SPF) and Bandwidth Aware Routing (BAR). We have simulated the

algorithms in different topology using JAVA. We have noted down the

packet loss, latency, path cost and bandwidth. We have developed our

thesis between the comparison of Shortest Path First (SPF) and Bandwidth

Aware Routing (BAR). We have simulated network graph on the both

algorithms to get results of latency, bandwidth, packet loss, path cost. We

hope that this comparison will help to get a clear picture about the

advantages and disadvantages of these algorithms.

Keyword: Software Defined Network, SDN, Routing algorithm,

Comparison, SPF, BAR.

Acknowledgement

This paper is based on Software Defined Network using SPF and BAR

Algorithm in different scenario and performance analysis on the results.

We would like to thank our honorable advisor Dr. Amitabha Chakrabarty

who helped us in every aspect in this paper. It is a great pleasure to

acknowledge our deepest thanks and gratitude to Dr. Amitabha

Chakrabarty, Assistant Professor of Department of Computer Science,

BRAC University for suggesting the topic and his kind supervision. It is a

great honor to work under his supervision.

TABLE OF CONTENTS

LIST OF FIGURES .. I

CHAPTER 1 INTRODUCTION

1.1 Motivation .. 2

1.2 Methodology... 3

1.3 Objective ... 3

1.4 Thesis Overview ... 4

CHAPTER 2 LITERATURE REVIEW

2.1 SPF and BAR Algorithms .. 6

2.2 K-SPF and K-BAR Algorithms .. 7

2.3 Performance Analysis ... 7

2.4 QoS (Quality of Service) .. 8

2.5 Dynamic Traffic Scheduling Algorithm ... 9

2.6 Reliable Multitask Routing .. 10

2.7 AWMR Algorithm ... 10

2.8 Bandwidth-delay Constrained Routing Algorithm 12

CHAPTER 3 TOPOLOGIES

3.1 Shortest Path First(SPF) ... 14

3.2 Bandwidth aware Routing (BAR) .. 16

CHAPTER 4 ALGORITHM IMPLEMENTATION

4.1 Shortest Path First (SPF) .. 18

4.2 Bandwidth aware Routing (BAR) .. 20

CHAPTER 5 RESULT ANALYSIS

5.1 SPF Algorithm .. 25

 5.1.1 Packets Per Node ... 25

 5.1.2 Packet Transferred ... 26

 5.1.3 Hop count to Destination ... 27

 5.1.4 Avg. Cost to Destination ... 28

 5.1.5 Hop Count vs Avg. Cost ... 29

 5.1.6 Hop Count vs Maximum Buffer Size 30

 5.1.7 Path Cost vs Avg. Maximum Buffer Size 31

 5.1.8 Path Cost vs Avg. Remaining Buffer Size 32

 5.1.9 Path Bandwidth vs Hop Count .. 33

5.2 BAR Algorithm .. 34

 5.2.1 Packets Per Node ... 34

 5.2.2 Packet Transferred ... 35

 5.2.3 Hop Count to Destination .. 36

 5.2.4 Avg. Cost to Destination ... 37

 5.2.5 Hop Count vs Avg Cost .. 38

 5.2.6 Hop Count vs Avg Maximum Buffer Size 39

 5.2.7 Path Cost vs Avg Maximum Buffer Size 40

 5.2.8 Path Cost vs Avg Remaining Buffer Size 41

 5.2.9 Path Bandwidth vs Hop Count .. 42

CHAPTER 6 CONCLUSIONS

6.1 Future Plan .. 43

6.2 Challenges .. 43

REFERENCES ... 45

LIST OF FIGURES

Figure 3.1: Execution of Dijkstra’s algorithm .. 15

Figure 3.2: Execution of BAR Algorithm .. 16

Figure 4.1: SPF Topology .. 19

Figure 4.2: BAR Topology ... 21

Figure 5.1.1: Packets Per Node .. 25

Figure 5.1.2: Packets Packet Transferred ... 26

Figure 5.1.3 Hop count to Destination ... 27

Figure 5.1.4 Avg. Cost to Destination .. 28

Figure 5.1.5 Hop Count vs Avg. Cost .. 29

Figure 5.1.6 Hop Count vs Maximum Buffer Size 30

Figure 5.1.7 Path Cost vs Avg. Maximum Buffer Size 31

Figure 5.1.8 Path Cost vs Avg. Remaining Buffer Size 32

Figure 5.1.9 Path Bandwidth vs Hop Count ... 33

Figure 5.2.1 Packets Per Node .. 34

Figure 5.2.2 Packet Transferred ... 35

Figure 5.2.3 Hop Count to Destination .. 36

Figure 5.2.4 Avg. Cost to Destination .. 37

Figure 5.2.5 Hop Count vs Avg Cost ... 38

Figure 5.2.6 Hop Count vs Avg Maximum Buffer Size 39

Figure 5.2.7 Path Cost vs Avg Maximum Buffer Size 40

Figure 5.2.8 Path Cost vs Avg Remaining Buffer Size 41

Figure 5.2.9 Path Bandwidth vs Hop Count ... 42

1

Introduction

In traditional network system, it is quite difficult to customize a network

according to demand. Software Defined Networking (SDN) has changed

the scenario of the traditional networking concept. Network control flow

and routing paths of network routers have become directly programmable

in Software-Defined Network. Network control flow is centralized in

Software Defined Network (SDN) that maintains a global view of the

network [1]. That means, central server has the all information about the

routers in that particular network. With SDN system, central server selects

path for packet according to bandwidth, path cost etc. If a path is down

because of buffer full limitation or any physical reason, then central server

will find out alternative route for that packet to move from source to

destination [1]. So it is easy to maintain the network by SDN.

It is true that our network is dynamic and the costs between two routers

change time to time based on their bandwidths. It is also possible that a

packet has started moving from its source towards its destination. In the

travel time, inner routers costs also may change and this changing can

control the path selection. In our traditional network if this scenario occurs

that packet will be dropped by a router as the expected route may no longer

exist. However, in Software Defined Network as the central server takes

all the decisions it can choose alternate paths for the data to flow. In this

way, we can reduce packet loss by SDN. The Open-Flow protocol is a

foundational element for Software Defined Network (SDN) [15]. Software

Defined Network is a new concept in the networking field. In this paper,

2

we have implemented the Shortest Path First (SPF) and Bandwidth Aware

Routing (BAR) algorithm according to the Software Defined Network

(SDN) protocol [5][2][4].

1.1 Motivation:

Software Defined Network has brought huge change in the networking

field. It has totally changed the concepts of network. Because of SDN the

control plane has become centralized, programmable, flexible and more

scalable. As a result, it is easier to modify the network accordingly.

Traditional network can not guarantee the data transfer and the traffic flow

of the network. It is one of the disadvantages of the traditional network.

Day by day the network size is increasing and data flow also increasing so

the problems faced in the current networks are also increasing. If this

continues it will become a hindrance for the technological advancement.

Thus the current network will be replaced by SDN. As a new field it needs

modification and more research to improve the SDN network if not it might

backfire. That is why we have tried to work with the SDN network and

contribute on its development.

We have implemented SPF and BAR routing algorithms in the SDN

network. After that, we have compared our results between the algorithms.

We worked with the routing algorithms as SDN is a new concept, it is

necessary to implement routing algorithms for the better one. So we tried

to contribute a little in this aspect.

3

1.2 Methodology:

We have implemented the SPF routing algorithm for finding the shortest

path from source to destination whose bottleneck bandwidth is maximum

among the shortest path. Shortest Path First is to find out the route between

source and destination in the network such that the total sum of cost is

minimum. If there are multiple existing paths, we will select the maximum

bottleneck. We have modified the relax operation of Dijkstra's shortest path

algorithm [2][4].

Bandwidth Aware Routing focuses on a path with Maximum Bottleneck

Bandwidth (MBB) of a network by modifying the SPF algorithm. BAR

algorithm selects a shortest path from source to destination which has the

MBB in a network. In case of same MBB, we will select the shortest path

for the packet.

1.3 Objective:

Our objective is to implement SPF and BAR algorithm in Software

Defined Network and simulate the algorithms to find out the hop count,

average cost, average buffer size, packet per node, path size and data loss.

We will compare these criteria between the two algorithms. In Software

Defined Network because of its flexibility and scalability it has become

possible to minimize the data loss percentage as the control plane has

become centralized. So, it is possible to control the data flow and change

the flow to alternate paths. If we can control the data flow the network

congestion will also reduce. After comparing the SPF and BAR algorithms,

we will try to come up with an improved routing solution so that it can

efficiently reduce the traffic congestion and improve the latency of the

4

network. Our objective is to reduce the data loss and network congestion

in Software Defined Network.

1.3 Thesis Overview

Chapter 1: Introduction to SDN, Methodology used and Objective of our

Thesis

Chapter 2: Background concepts and Study of the ideas of the previous

works

Chapter 3: Topologies used in our paper

Chapter 4: Implementation of the algorithms used in this paper

Chapter 5: Results found in each of the algorithms used in the paper

Chapter 6: Conclusion and future plan regarding the thesis

5

Literature Review

Literature review is important as it gives a basic understanding of the

subject and related works. Going through other works, we can grasp a

comprehensive idea of the subject. It also broadens our horizon and enrich

our knowledge. In our paper, we have taken some of ideas and concepts of

other people. The main reason of developing Software Defined Network is

that it takes shorter time for packet transfer than Traditional Network [1].

In our Traditional Network a router has a routing table where it keeps all

the information of its neighboring routers. So when a packet comes to a

router to move forward, that router checks its routing table to take

decisions. That means if a packet need 5 routers to move from source to

destination, then those 5 routers must check their routing table to select the

path for that packet. Therefore, checking routing table each and every time

is really a very slow process. However, in Software Defined Network

routers do not take decisions for path selection for packets. Central server

pre-calculates the route and distributes it to the network. In this time routers

have information about the route and follow the decisions made by central

server. Therefore, routers do not need to look up their routing table. Routers

get the instructions from central server and act accordingly. In this way,

Software Defined Network is way faster than Traditional Network.

Because of these benefits SDN has become a new hot topic of networking.

It is fully programmable and flexible according to the network needs [1].

Unicast routing is when there is only a single source and destination for a

packet to deliver within a network. With the technological advancement in

other sectors, Networking paradigms are also changing. Current

6

networking field is based on the routers with their decisions to take whether

a packet will be delivered or not

2.1 SPF and BAR Algorithms:

Shortest Path First (SPF) algorithm locates the shortest path from source to

the destination and set the bottleneck bandwidth to get maximum among

every single path [2]. For different paths having a similar bottleneck

bandwidth, we chose the path which has the maximum bottleneck flow

entries. The authors chose a path with Maximum Bottleneck Bandwidth

(MBB) of a network by modifying the SPF algorithm [5]. The relax

operation of the SPF algorithm was changed. For every vertex the BAR

algorithm chooses a shortest way from source to vertex which has the MBB

in a network as opposed to choosing the shortest one as in Shortest Path

First algorithm. When a vertex can be reached from source with a non-zero

remaining transmission capacity, they lost the majority of the active edges.

For the same MBB, they chose the one with the shortest path among them

and sorted out all edges of smaller MBB in the original graph. Then

executed the SPF algorithm on the reduced graph to find shortest path with

the MBB from source to destination [5].

The authors evaluated the performance of these algorithms through

simulations where they had used java-programming language to portray

the SDN network [5]. They created a network with 100 switches and 400

hosts. The controller controls all the switches and the number of links

between switches was 850 that were assigned to each switch randomly [5].

7

The links were given the same bandwidth: 1GB/s for the fairness of

comparison [5].

2.2 K-SPF and K-BAR Algorithm:

k-SPF is the modified version of the SPF algorithm [2][4]. The authors

proposed a k-SPF algorithm so that they can find a path with MBB among

the first k shortest paths, where k ≥ 2 is a predefined number [18]. Reversed

the direction of every edge in the original network graph. At that point,

utilized the SPF algorithm to discover one-to-all shortest path beginning at

destination vertex and develop a shortest path tree established at

destination. Utilizing the developed shortest path tree from destination to

all vertices in a network diagram, creators turned around the course of each

edge in the shortest path tree [18]. Along these lines, they could discover

the Shortest Path from all vertices to vertex destination and get a Shortest

Path Tree from all vertices to destination. The last algorithm they

implemented was k-BAR where this algorithm was used to find a shortest

path among the first k largest bottleneck bandwidth paths in a network,

where k ≥ 2 was a predefined number [18]. The authors obtained the k-

BAR algorithm by modifying the k-SPF algorithm.

2.3 Performance analysis:

In the related works the authors evaluated the performance of different

algorithms through simulations [5][7][8] [27]. They created a network with

100 switches and 400 hosts [5]. The controller controls all the switches and

the number of links between switches was 850 that were assigned to each

8

switch randomly. The links were given the same bandwidth: 1GB/s for the

fairness of comparison [5].

The criteria they followed were Average hop count or communication cost

of a request, Average unsatisfied request rate, Average bandwidth

satisfaction rate and Average link utilization. First, they showed the

average hop count result. In the result, it is shown that the OSPF and SPF

were the lowest average hop count among other algorithms. In The average

unsatisfied request rate analysis the authors found that OSPF had the most

unsatisfied request rate on the other hand SPF had the lowest unsatisfied

request rate. The BAR algorithm had the highest average bandwidth

satisfaction rates among various routing schemes. According to the authors

the BAR algorithm choose a path with MBB of a network so that it had the

highest bandwidth satisfaction rate among all schemes. The average link

utilization increments only when the flow size of the solicitations

increments. So if a demand can't be fulfilled, the consuming bandwidth of

a demand will be not as much as the asked bandwidth. It suggests that the

lower bandwidth satisfaction rate is the aftereffect of the lower link

utilization. So the creators inferred that the average link utilization OSPF

was the most minimal and BAR algorithm was the most noteworthy [5].

2.4 QoS (Quality of Service):

QoS is an important aspect of a network. Quality of Service(QoS) is the

measurement of the services a network need so that the customer or clients

can get the optimum benefit. QoS depends based on which type of service

the clients require. As in all other networks QoS is also needed in the SDN

network. QoS can be measured by the packet loss, latency, bandwidth, path

9

cost etc. In SDN network, the control plane is centralized so it is easier to

improve the QoS of the network. Traffic Engineering can be improved a

lot in a SDN network. SDN network can take care of the allotment of the

resources and avoid congestion [20]. TE techniques usually works with the

link weight of a network. Resource utilization is also can be considered as

QoS. There is a chance that the heavily loaded networks data flow can use

more resources. This can be improved by utilizing the flow migration

capability [20]. Maintaining throughput efficiency can be also considered

as Quality of Service. For example, in data centers there are thousands of

servers. It is necessary to provide the data in a timely manner and maintain

the QoS according to the clients need. Through QoS aware algorithm the

throughput can be maintained in a large network [19].

2.5 Dynamic Traffic Scheduling Algorithm:

Day by day networks are growing and it is becoming difficult to manage

the high traffic of the networks. Traffic engineering is based on the network

traffic and distribution of flow paths according to the traffic matrix. Traffic

Engineering is changing continuously as the networks are changing. The

demands of the requirements of the networks are also increasing. But to

keep up with the SDN network Traffic Engineering is not enough. The

traditional TE measures the active flow distribution and flow measurement

which cannot ensure the longevity of the network. In a SDN network load

balancing paths can be measured unlike the traditional network. Traffic

distribution model has been optimized through link utilization ratio [9]. It

can only be used in the SDN network because of the flexibility of the

control plane. The main objective of this model is to cope up with the

10

demand through load balancing and forwarding [9]. Load balancing can be

adjusted in every switch so that it will not affect other switches and it will

increase the effectiveness of the network.

2.6 Reliable Multitask Routing:

Reliable multitask routing (RMR) concept came up to transfer packet to a

higher number of destinations [10]. Traditional multitask routing follows

PIM-SM [16] where it connects the source and destination by a SPF

(Shortest Path First) tree. A route from source and destination is calculated

manually, SPF may lose many good routes by reducing the bandwidth

consumption. To establish RMR, authors followed Johnson’s algorithm,

Mixed Integer Linear Programming. Again to complete RMR, they found

two constraints Path and Tree Routing Constraints and Recovery

Allocation Constraints.

The time complexity of Johnson’s algorithm is 𝑂(𝑛) = 𝑂(|𝑉||𝐸| +

 |𝑉2|𝑙𝑜𝑔|𝑉|)) [10]. Again the overall time complexity is 𝑂(𝑛) =

 𝑂(|𝑉||𝐷2| + |𝑉𝑇|𝑟2|𝐷2|) [10].

They found the packet loss rate of each link is between 1% to 10% and link

delay from 10ms to 100ms [10].

2.7 AWMR Algorithm:

The multipath routing in SDN based data center network using adaptive

worst-fit multipath routing (AWMR), objective was to find a set of paths

in a network for better utilization of the network resources [7][8]. The

11

proposed SDN-based adaptive worst-fit multipath routing (AWMR)

algorithm for DCNs could choose different routing path and decide the

number of paths for a new-coming flow as per the accessible bandwidth of

paths and the requested bandwidth of the new-coming flow, rather than

utilizing a settled number of routing paths for each flow. The proposed

AWMR was made out of two phases [8]. The main phase of the proposed

AWMR finds an underlying path set, including a fundamental number of

paths from source host to destination host, and registers bandwidth

capacity of such a path set. The second phase of the proposed AWMR,

which used the Improved Widest Disjoint Path (IWDP) scheme, would

then choose numerous worst-fit ways as per the requested bandwidth of the

new-coming flow [8]. As the SDN provides the full scenario of the network

it is possible to have the whole routing table beforehand. For that they used

Link-Layer Discovery Protocol (LLDP) message and an OpenFlow

OFPT_STATS_REQUEST message to get the information of network

topology [8]. Using this information, the SDN-Controller can calculate the

cost of from source to destination which can be made offline without

waiting for the coming flow. Using these info, the authors picked paths

from the routing table in an initial path set which will be used to select

routing paths by the proposed AWMR. The authors calculated these from

the k shortest path algorithm based on the Bellman-Ford algorithm. After

that they had proposed the improved widest disjoint path in their paper.

they have derived this architecture from the WDP scheme. Here is the

proposed algorithm [8].

Algorithm1: Proposed AWMR algorithm

1 (a, b) = Host pair of source host a and destination host b

2 B(Fa,b) = Demanded bandwidth of a flow F from a to b

3 W (p) = Available bandwidth of path p

4 Pa,b = Path set for host pair (a, b)

5 W(Pa,b) = Available bandwidth of a path set Pa,b

12

6 H = The necessary-connected-layer for host pair (a, b)

7 find H for (a, b);

8 for each path p whose path layer does not exceed H and

9 W(p) =1= 0 for (a, b)

10 put path pinto P a,b;

11 end

12 compute W(Pa,b) using iwdp;

13 if W(Pa,b) >= B(Fa,b) then

14 decrease the number of paths in P a,b using Algorithm 2;

15 return Pa,b;

16 else if W(Pa,b) < B(Fa,b) and His not the core layer then

17 put all possible paths into Pa,b;

18 compute W(Pa,b) using iwdp(improved widest disjoint path);

19 if W(Pa,b) >= B(Fa,b) then

20 decrease the number of paths in Pa,b using Algorithm 2;

21 return Pa,b;

22 else

23 return no feasible solution;

24 else if W(Pa,b) < B(Fa,b) and H is the core layer then

25 return no feasible solution;

26 end

Algorithm 2: Decreasing the number of routing paths

1 Pa,b = Initial routing path set from Algorithm 1

2 B(Fa,b) = Demanded bandwidth of a new-coming flow F from a to b

3 for each path pcurrent in Pa,b in ascending order of the

4 available bandwidth do

5 remove pcurrent from Pa,b;

6 compute W(Pa,b) using iwdp;

7 if W (Pa,b) >= B(Fa,b) then

8: do nothing;

9 else

10 put pcurrent back into path set Pa,b;

11 end

2.8 Bandwidth-delay Constrained Routing Algorithm:

Fast and efficient bandwidth is introduced to maximize the utilization of

network resources and reduce the computational complexity of central

server [20]. They found that traffic engineering (TE) and bandwidth-delay

routing concludes unsolvable issues in real time frame [23]. In our

dynamic network, some traffic flows might allocate more resources in the

13

time of heavily loaded network. This causes a high chance of system

failure. To solve this issue, Maximum Delay-Weighted Capacity Routing

Algorithm (MDWCRA) [24]. MDWCRA measures the shortest paths

between two nodes. By following this algorithm, 70% packets can be

transferred from source to destination with average delay of 25ms of nodes.

Authors concluded as they have made real implementation and have

evaluated more realistic scenarios [20]. Here is the proposed algorithm to

calculate the link weight [20].

Algorithm: calculation of link weights

1 #path.bw = bandwidth (BW) of the path, G =network graph

2 #DS_ind = indicator of DS traffic, src=source node, dst=destination node

3 function: get_weights(src,dst,B,DS_ind):

4 for link in G.links() do:

5 weights1[link]= 1/link.residual_bw

6 weights2[link]= 0

7 end for

8 for (I,E) in IE_pairs do:

9 if DS_ind == True and (I,E) == (src,dst) then: continue

10 end if

11 for path in DS_paths[(I,E)] do:

12 for link in path.links() do:

13 if link.residual_bw < path.bw +B then: #link is critical

14 weights2[link]+=1/link.residual_bw

15 end if

16 end for

17 end for

18 end for

29 normalize(weights1) # normalize wights in range [1,10]

20 normalize(weights2)

21 for link in G.links() do:

22 weights[link]=(1-α)∙weights1[link] + α∙weights2[link]

23 end for

24 end function

14

Topologies

A SDN design comprises of four parts: Links, SDN-enabled switches, SDN

controller and Hosts [27]. We assume that a SDN comprises of various

switches interconnected by an arrangement of connections and have

different connections between the switches [15]. A SDN network topology

can be represented as a weighted, directed graph G = (V, E) in which V is

a set of vertices and E is an arrangement of edges interconnected vertices

in V [4]. Every vertex in V represents a switch in SDN and each edge in E

represents a switch link in SDN. Since various connections between a

switch pair is permitted, we utilize the notation e(ui , vi) to show the i-th

edge from vertex u to v and utilize the notation S (u, v) to demonstrate the

arrangement of all edges from vertex u to v, where (u, v) ε V [4].

For each edge e ε E, w (e) denotes the link weight and b (e) denotes the

remaining bandwidth of the switch link. Let s ε V be a vertex called source

and d ε V be a vertex called destination [11]. We note that if there is more

than one path with the same cost, we will select the path whose switches

have the maximum bottleneck flow entries [17] [22].

We have worked on two routing algorithms. First is Shortest Path First

where we choose a path with the lowest cost [25]. Other is Bandwidth

Aware Routing using the bottleneck bandwidth among the shortest path of

the network [20].

3.1 Shortest Path First (SPF):

We find the shortest path from source to destination. If more than one

shortest path exists, we will select the path with MBB among all shortest

15

paths [5]. We have modified Dijkstra’s algorithm. Dijkstra’s algorithm

keeps up a set S of vertices whose final shortest path weights from the

source s have just been determined [4]. The algorithm chooses the vertex

u ε V-S with the base briefest path estimate, adds u to S, and relaxes all

edges leaving u. We utilize a low priority queue Q of vertices, which is

calculated by the d value.

Dijkstra’s algorithm run on a weighted, directed graph G = (V, E) with

nonnegative weight function w and s, terminates with u, d = ઠ (s, u) for all

vertices u ε V [4][2]. Finding new paths when processing a vertex u, the

algorithm will examine all vertices v ε Adj[u] [2][4]. For each vertex v ε

Adj[u], a new path from s to v is found (path from s to u plus new edge).

For relaxation, if the new path from s to u is shorter than d[v], then update

d[v] to the length of this new path [2].

Figure 3.1: Execution of Dijkstra’s algorithm

16

3.2 Bandwidth Aware Routing (BAR):

Bandwidth Aware Routing algorithm takes the Maximum Bottleneck

Bandwidth (MBB) as a parameter to choose a path from s to d [24]. If there

is more than one path has the same MBB than we will select the shortest

path.

The following graph the alphabet in the circle is the switch ID and the

number is available flow entries of that switch. The first value of a directed

edge is the weight of that edge and the second value is the available

bandwidth of the edge. We assume our source switch S and destination

switch D.

Figure 3.2: Execution of BAR algorithm

In network graph, there are multiple shortest paths from Source S to

Destination D. They are (I) S - E - F - D, (II) S - B - I - H - D and (III) S -

A - E - G - D and their costs are 33. All these three paths, path (I) S - E - F

- D has c (p) = 14, path (II) S - B - I - H - D has c (p) = 6 and path (III) S -

17

A - E - G - D has c (p) = 11. So our final shortest path for this network

graph from source S to destination D is path S - B - I - H - D and this path

has d (p) = 33, c (p) = 6 and σ (p) = 8.

18

Algorithm Implementation

To develop SDN we have implemented two algorithms. One is Shortest

Path First (SPF) and another one is Bandwidth Aware Routing (BAR). In

this chapter, we will discuss about these two algorithms in details.

4.1 Shortest Path First:

Shortest path first is our first algorithm to implement SDN to transfer

packet from source to destination. To find out the shortest path for a packet

we have calculated the minimum path cost. Again, if there are multiple

shortest path with same bottleneck bandwidth available then we have

selected the path, which has the maximum bottleneck flow entries [5] [14].

For example, in the following graph, the alphabet in the circle is the switch

ID and the number is available flow entries of that switch. The first value

of a directed edge is the weight of that edge and the second value is the

available bandwidth of the edge [3]. In this graph, switch S is source and

switch D is destination. The shortest path is S - E - G - D. The total cost of

this path d(p) = 36. The bottleneck bandwidth is c (p) = 14 and σ (p) = 11.

Therefore, we have selected our shortest path from this graph.

To develop shortest path algorithm, we have followed Dijkstra’s shortest

path algorithm [4]. We have also modified the relax operation. Here we

initial some notations those we have used in SPF algorithm. Each vertex v

ϵ V, d(v) denotes the cost between two vertices v, c (v) denotes the

bandwidth between two vertices and σ (v) denotes the available flow entries

between two vertices. Lastly, p (v) denotes the parent vertex of vertex v.

19

Figure 4.1: SPF topology

When a vertex v ϵ V can be reached from source with a finite cost, we can

relax all of the outgoing edges e (vi, wi) ϵ Su, v as follows.

 If d (w) > d (v) + w (e (vi, wi)), then we update the value of d (w) with

the value of d (v) + w (e (vi, wi)). After that, we have set c (w) to

min{c (v), b (e (vi, wi))}. Lastly we update the value of σ (w) by

min{σ (v), f (w)}and p (v) is set as v [5].

 If d (w) = d (v) + w (e (vi, wi)) and c (w) < min{c (v), b (e (vi, wi))},

then we have changed c (w) to min{c (v), b (e (vi, wi))}, σ (w) is

updated as min{ σ (v), f (w)}, and p (v) is set as v [5].

 If d (w) = d(v) + w(e (vi, wi)), c (w) = min{c (v), b (e (vi, wi))} and σ

(w) < min{σ (v), f(w)}, we update σ (w) as min{σ (v), f(w)} and p (v)

is set as v [5].

Initially all the vertices in this network graph are unvisited. The vertex S,

initially values of d (s) = 0, c (s) = ∞, σ (s) = ∞, and p (s) = null. For each

20

non-source vertex v ϵ V, the initial values of d (v) = ∞, c (v) = 0, σ (v) = 0,

and p (v) = null. Here in this SPF algorithm, we will visit the unvisited

vertices with minimum cost and relax its neighbor vertices. After doing

relax operation we will get the final result. The path we get from the

following graph is S - E - G - D with d (p) = 36, c (p) = 14 and σ (p) = 11.

Time complexity: 𝑂(𝑛) = 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|) [5][4].

Here is the pseudo code of the Dijkstra’s Shortest Path First (SPF)

algorithm:

Shortest Path Algorithm

1 function Dijkstra(Graph, source):

2 dist[source] ← 0

3 create vertex set Q

4 for each vertex v in Graph:

5 if v ≠ source

6 dist[v] ← INFINITY

7 prev[v] ← UNDEFINED

8 Q.add_with_priority(v, dist[v])

9 while Q is not empty:

10 u ← Q.extract_min()

11 for each neighbor v of u:

12 alt ← dist[u] + length(u, v)

13 if alt < dist[v]

14 dist[v] ← alt

15 prev[v] ← u

16 Q.decrease_priority(v, alt)

17 return dist[], prev[]

4.2 Bandwidth Aware Routing:

Bandwidth Aware Routing is our last algorithm to implement SDN to

transfer packet from source to destination. Here, our goal is to find a path

with maximum bottleneck bandwidth (MBB) in our network graph from

21

source to destination. It is quite possible that there could be multiple paths

with same MBB in that network graph. We will select the shortest path

among the same MBB holding paths. Again, if there are multiple shortest

paths then we will select the path which has the maximum bottleneck

bandwidth (MBB) for our packet to move from source to destination.

Figure 4.2: BAR topology

On the following graph, the alphabet in the circle is the switch ID and the

number is available flow entries of that switch. The first value of a directed

edge is the weight of that edge and the second value is the available

bandwidth of the edge. We assume our source switch S and destination

switch D. Here in the network graph there are multiple shortest path from

Source S to Destination D. They are (I) S - E - F - D, (II) S - B - I - H - D

and (III) S - A - E - G - D and their cost are 33. All three paths, (I) S - E -

F - D has c (p) = 14, (II) S - B - I - H - D has c (p) = 6 and (III) S - A - E -

22

G - D has c (p) = 11. So our final shortest path for this network graph from

source S to destination D is path S - B - I - H - D and this path has d (p) =

33, c (p) = 6 and σ (p) = 8.

To develop Bandwidth Aware Routing our main target is to find out the

maximum bottleneck bandwidth (MBB) of the network graph using our

shortest path first algorithm. Relax operation is modified of shortest path

first algorithm [2][4]. BAR algorithm chooses the shortest path from

source to v where vertex v ϵ V and that vertex has the maximum bottleneck

bandwidth (MBB) in the network graph rather than following the shortest

path first algorithm. At the time of selecting a vertex v ϵ V where it can be

visited from S with a non-zero bandwidth, the outgoing edges e (vi, wi) ϵ S

(u, v) will be relaxed. We will get the maximum bottleneck bandwidth

value from S to D in this network graph when we complete |V| times relax

operations. If there are multiple paths with same MBB then we will select

the shortest path from the graph and delete the edges of smaller MBB from

the actual graph. After that, we will run our shortest path first (SPF)

algorithm to get the shortest path with MBB from S to D.

Time complexity: 𝑂(𝑛) = 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|) [5][4]

Here is the pseudo code of the Bandwidth Aware Routing (BAR)

Algorithm:

Bandwidth Aware Routing Algorithm

1 function Bar(Nodes n, Source s,Edges w):

2 Init(n,s);

3 Q=Insert(n);

4 While(Q!empty)

5 u.color=gray

23

6 for each vertex v adjacent to u

7 Relax(u,v,w)

8 minimum=findMiniMumPathCapacity(n)

9 foreach(w:Edges)

10 if(w.bandwidth<minimum)

11 remove w;

12 spf({n,w},s)

This is the definition of initialize method named as Init(),

Init method

1 Init(nodes[] n,source):

2 foreach(n:nodes)

3 n.pathCapacity(0)

4 if(n==source)

6 n.pathCapacity(10000)

This is the definition of Relax() method,

Relax method

1 Relax(parentNode u, childNode v, edge w):

2 min=0;

3 If(u.pathCapacity>w.availableBandwidth)

4 min= w.availableBandwidth;

5 Else

6 min= u.pathCapacity;

7 If(v.patchCapacity<min)

8 v.pathCapacity=min;

24

CHAPTER 5

Result Analysis

In our simulations, we have used our own simulator. It is written in Java.

The simulator was made with the intention to evaluate different routing

algorithms of Software Defined Network (SDN). The Algorithms we are

using here are Shortest Path First (SPF) and Bandwidth Aware Routing

(BAR) algorithm. We considered these parameters in our packet

simulations: Packets Delivery, Path Bandwidth, Buffer Size of Router,

Path Cost and Hop Count to destination node.

We have kept network graph source fixed, at the same time we have set the

destination randomly for every time to get near accurate results for packet

transfer. In the results we will be showing comparisons of SPF Algorithm

first then BAR algorithm’s. We transferred 100 Packets in every simulation

and generated JSON file containing attributes and values for every packet

transferred. Then we used some A/B testing to find out any possible

correlation.

25

5.1 SPF ALGORITHM:

5.1.1 Packets per Node:

Figure 5.1.1: Packets per Node

Here, the number of each node denotes the number of packets it carries.

For instances, n3 passes 5 packets so the packet transfer rate of n9 is 4. The

26

red bubble contains 8 that means, the whole process has lost 8 of the

packets.

5.1.2 Packets Transferred:

Figure 5.1.2: Packets Transferred

When we ran our network graph that has 25 nodes with 54 paths among

them, we fixed our source and we change our destination randomly. For

transferring 100 packets from source to various destinations and our

27

average packet loss is 8%. To reduce packet loss, we refresh our bandwidth

buffer so that it can allocate space for next packets. Again, our network has

more existing routes between two routers. So it is possible to have

alternative route for every packet to move from source to destination. In

our main algorithm, we have shown that, our network is changing

dynamically time to time. So if a node is down because of bandwidth buffer

full, the packet will find alternate route to reach its destination.

5.1.3 Hop Count to Destination:

Figure 5.1.3: Hop Count to Destination

Here, we can see the number of Hops a packet needs to travel to reach the

destination. We then arranged the result by the number of hops and

28

destination with number of packets. Like, in the column “Hop count 2”

there are n2, n4, n5, n7, n8, n9, n10, n12, n18 packets listed and at the

column n7 we can see the number of Packets are 4. So, only 4 packet

reached n7 with a hop count of 2. On the other hand, to reach n9 node 2

packets need 2 Hops and another 2 packets needed 2 Hops.

5.1.4 Avg. Cost to Destination:

Figure 5.1.4: Avg. Cost to Destination

We calculated the Average Cost 47.06 from Source by summing up the

cost for every packet to a node and then took the mean of it. We have also

29

put a reference line in the chart that is 47.06. The grayed area is showing

the 95% confidence interval of the average. So, between 39.85 and 54.27

we will get 95% of the population.

5.1.5 Hop Count vs. Avg. Cost:

Figure 5.1.5: Hop Count vs. Avg. Cost

On the following figure, we can see the Hop Count and the Average Cost

of our pre-defined network graph. We can get a relation from the result that

is if the hop count is higher the cost will also be higher. So, if 1 packet

travels 3 hops to reach the destination then the cost will be around 47 but

if it travels 5 hops the cost will be around 65. This relation trend is true for

all the packets except the last one (we can consider this as an error). In

30

addition, we are 95% confident that Path Cost will be between 31.22 to

65.85. As the cost is path dependent our main focus is to travel least amount

of hops to reach the destination which always not possible due to the

Network topology. But We tried to consider real life-like topology to get a

practical result.

5.1.6 Hop Count vs. Avg. Maximum Buffer Size:

Figure 5.1.6: Hop Count vs. Maximum Buffer Size

We get an Average Maximum Buffer Size of 22.878 for all the hop count.

The differences between Buffer Size is so little that we can not make any

conclusion out of it. So this comparison is clearly not helping us to reach

any decision.

31

5.1.7 Path Cost vs. Avg. Maximum Buffer Size:

Figure 5.1.7: Path Cost vs. Avg. Maximum Buffer Size

We took a range of Cost to go to a destination from the source and made a

graph with the Average Maximum Buffer Size. There is no significant

relation among them but if the Maximum Buffer size is between 21.93 to

23.92 the Average cost is lower to reach a destination (assumption).

32

5.1.8 Path Cost vs. Avg. Remaining Buffer Size:

Figure 5.1.8: Path Cost vs. Avg. Remaining Buffer Size

We again tried to find out relation between Path Cost with the Remaining

Buffer Size and we can see that if Remaining Buffer Size can be kept

between 15.17 to 26.63, then the cost will be between 20 to 60. Packet tend

to choose low cost path if less bandwidth is available.

33

5.1.9 Path Bandwidth vs. Hop count:

Figure 5.1.9: Path Bandwidth vs. Hop Count

Between Hop Count and Path Bandwidth if we can ensure high Bandwidth

packet needs less Hop to pass. 1 hop count and 16.75 Path Bandwidth is

the maximum scenario of our network graph. As the Hop Count is

increasing less Bandwidth is being used. For a packet to travel from source

to destination, needs 12 Bandwidth if the Hop between the source and

destination is 5.

34

5.2 BAR ALGORITHM:

5.2.1 Packets per Node:

Figure 5.2.1: Packets per Node

We have kept network graph source fixed, at the same time we have set the

destination randomly for every time to get near accurate results for packet

transfer. Here, the number of each node denotes the number of packets it

carries. For instances, n9 passes 8 packets so the packet transfer rate of n9

is 8. The red bubble contains 4 that means, the whole process has lost 4 of

the packets.

35

5.2.2 Packets Transferred:

Figure 5.2.2: Packets Transferred

For transferring 100 packets from source to various destinations, our

average packet loss is 4%. To reduce packet loss, we refresh our bandwidth

buffer so that it can allocate space for next packets. Again, our network has

more existing routes between two routers. So it is possible to have

36

alternative route for every packet to move from source to destination. In

our main algorithm, we have shown that, our network is changing

dynamically time to time. So if a node is down because of bandwidth buffer

full, the packet will find alternate route to reach its destination.

5.2.3 Hop Count to Destination:

Figure 5.2.3: Hop Count to Destination

Here, we can see the number of hop (Nodes) a packet needs to reach the

destination. We then arranged the result by the number of hops and

destination with number of packets. Like, in the column “Hop count 2”

there are n2, n4, n5, n7, n8, n9 packets listed and at the column n2 we can

see the number of packets (records) are 1. So, only 1 packet reached n2

37

with a hop count of 2. On the other hand, to reach n9 node 8 packets need

2 hop cost each.

5.2.4 Avg. Cost to Destination:

Figure 5.2.4: Avg. Cost to Destination

We can see the average cost to reach any destination. We calculated the

average cost by summing up the cost for every packet to a node and then

took the mean of it. We have also put a reference line at 49.75 in the chart

which is the average cost to reach any node from the source n1.

38

5.2.5 Hop Count vs. Avg. Cost:

Figure 5.2.5: Hop Count vs. Avg. Cost

On the following figure, we can see the hop count and the average cost of

our pre-defined network graph. We can get a relation from the result that

is if the hop count is higher the cost will also be higher. So, if 1 packet

travels 3 hops to reach the destination then the cost will be around 55 but

if it travels 6 hops the cost will be around 75. This relation trend is true for

all the packets. As the cost is path dependent, our main focus is to travel

least amount of hops to reach the destination which always not possible

due to the Network topology. We tried to consider real life-like topology

to get a practical result.

39

5.2.6 Hop Count vs. Avg. Maximum Buffer Size:

Figure 5.2.6: Hop Count vs. Maximum Buffer Size

Here we can see no special relation of Maximum Buffer Size (Flow

Entries) with Hop count variation among the number of packet. For

distance of hop count 3 we have Maximum Buffer Size (Flow Entries) of

19, 20, 22, 23, 25, 30. So this comparison is not helping us to reach any

decision.

40

5.2.7 Path Cost vs. Avg. Maximum Buffer Size:

Figure 5.2.7: Path Cost vs. Avg. Maximum Buffer Size

We took a range of Cost to get a destination from the source and made a

graph with the Average Maximum Buffer Size (flow entries). There is no

particular relation among them. Cost does not increase or decrease with

Average Maximum Buffer Size (flow entries). Therefore, we cannot come

to a decision from the following figure. As our actual network changes

dynamically. So we cannot predict any relation of packets’ cost with

Average Maximum Buffer Size (flow entries). Cost between two nodes

depends on bandwidth and Buffer Size. For this reason, there is no relation

between packet cost vs. Average Maximum Buffer Size (flow entries).

41

5.2.8 Path Cost vs. Avg. Remaining Buffer Size:

Figure 5.2.8: Path Cost vs. Avg. Remaining Buffer Size

We again tried to find out relation between the average cost range with the

Remaining Buffer Size (flow entries) and we can see that if Remaining

Buffer Size (flow entries) is low then the cost will get low and the cost

increases with the more availability of flow entries. So packet will choose

low cost path if less bandwidth is available. This trend is seen for the first

few columns and later the relation is no longer exists.

42

5.2.9 Path Bandwidth vs. Hop count:

Figure 5.2.9: Path Bandwidth vs. Hop Count

Here we tried to pick up any relation between hop count with Path

Bandwidth (capacity). 10 packets with 4 hop count and 17 Path Bandwidth

(capacity) is the maximum scenario of our network graph. Again, there is

no trend between these variables. For a packet to travel from source to

destination, the existing shortest path may change time to time as we are

working on a dynamic environment.

43

CHAPTER 6

Conclusions

Software defined network is a new concept in networking where central

controller takes all the decisions for transferring packets from source to

destinations. We have implemented two algorithms shortest path first

(SPF) and bandwidth aware routing (BAR). From algorithm analysis, we

have found that the path cost of SPF is lower than BAR. Again, the average

hop count of SPF is higher than BAR. Moreover, the bottleneck bandwidth

of SPF is lower than BAR. Based on network topology we can choose any

of those algorithms.

6.1 Future Plan:

As in SDN, the central controller has the whole information about the

network graph and it determines the routing route for any incoming packet,

so routing algorithms can be changed dynamically based on packet types.

So we have a plan to introduce machine learning in this scenario. Using

machine learning we can determine which kind of packets are transferred

most in particular time. For example, most of the users are using Skype at

any particular time in a day. Machine learning will analysis the time and

determine the preferred algorithms for the requested packets. It is making

the networking more efficient by making the best use of resources.

6.2 Challenges:

Software Defined Networking is a new field in networking. Most of the

functions are new to us. We have studied about these functionalities to have

44

a clear concept. To develop this project, we have faced the given

challenges.

 We have created a network graph to check our simulations working

according to SDN protocol or not. We have kept 25 routers and 54

routes in network.

 Network is dynamic as costs and bandwidths of routers may change

time to time. We have taken values randomly and calculated SPF and

BAR from those random values.

 In dynamic network, a router may not aware if its next router is down

or not. If so then, the route will be down. However, we have developed

our system that checks the entire graph for packet transfer. If the next

router is down, then central server will reselect a new path for packet.

 We have calculated the shortest route by SPF and BAR algorithm and

generate results into JSON file format. With JSON, we have developed

charts and graphs for comparison between SPF and BAR algorithm.

 To simulate 25 routers and 54 routes, we have generated 100 packets to

move from single source to multiple destinations. It takes 2-3 seconds

to transfer these packets. 0.025 - 0.03 second for each packet transfer.

We get this approximate result from our simulation. Therefore, we can

speed up packet transfer.

Most importantly, our main challenge is to implement SPF and BAR

algorithm in SDN environment.

45

REFERENCES

[1] Open Networking Foundation, "Software defined networking: the new

norm for networks," Web white paper, retrieved Apr. 2015.

[2] T. H. Cormen, C. E. Leiserson, B. L. Rivest, and C. Stein, “Introduction

to Algorithms,” 3rd ed., Cambridge: MIT Press, 2009, pp. 658–664.

[3] Q. Ma, and P. Steenkiste. "On path selection for traffic with bandwidth

guarantees," IEEE international conference on network protocols, pp.191-

202, 1997.

[4] E. W. Dijkstra, "A note on two problems in connection with graphs,"

Numerische Math. 1, pp. 269-271, 1959.

[5] Jang-Ping Sheu, Quan-Xiang Zeng, R. Jagadeesha and Yeh-Cheng

Chang, "Efficient unicast routing algorithms in Software-Defined

Networking," 2016 European Conference on Networks and

Communications (EuCNC), Athens, 2016, pp. 377-381. doi:

10.1109/EuCNC.2016.7561066

[6] R. Boutaba, W. Szeto, and Y. Iraqi. "DORA: Efficient routing for

MPLS traffic engineering,"

[7] Syed Asad Hussain, Shuja Akbar, Imran Raza, "A dynamic multipath

scheduling protocol (DMSP) for full performance isolation of links in

software defined networking (SDN)", Recent Trends in

Telecommunications Research (RTTR) Workshop on, pp. 1-5, 2017.

[8] Yi-Chih Lei, Kuochen Wang and Yi-Huai Hsu, "Multipath routing in

SDN-based Data Center Networks," 2015 European Conference on

Networks and Communications (EuCNC), Paris, 2015, pp. 365-369.

doi:10.1109/EuCNC.2015.7194100

[9] H. Ren, X. Li, J. Geng and J. Yan, "A SDN-Based Dynamic Traffic

Scheduling Algorithm," 2016 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), Chengdu,

2016, pp. 514-518. doi: 10.1109/CyberC.2016.103

46

[10] S. H. Shen, L. H. Huang, D. N. Yang and W. T. Chen, "Reliable

multicast routing for software-defined networks," 2015 IEEE Conference

on Computer Communications (INFOCOM), Kowloon, 2015, pp. 181-

189.doi: 10.1109/INFOCOM.2015.7218381

[11] Y. Yang, J.K. Muppala, S.T. Chanson, "Quality of service routing

algorithms for bandwidth-delay constrained applications," Ninth

International Conference on Network Protocols, pp. 62-70, Nov. 2001.

[12] S. Tomovic, N. Prasad, I. Radusinovic,"SDN control framework for

QoS provisioning," TELFOR, pp.111-114, Belgrade, Nov. 2014.

[13] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia,

"SDNbased application-aware networking on the example of youtube

video streaming,” EWSDN, pp. 87–92, Oct 2013.

[14] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelem, "Control of

multiple packet schedulers for improving QoS on OpenFlow/SDN

networking," EWSDN, pp. 81–86, Oct 2013.

[15] “Openflow switch specification v1.3.4,” 2014.

 https://www.opennetworking.org/sdn-resources/onf-specifications

[16] Estrin et al., “Protocol independent multicast-sparse mode (PIM-SM):

Protocol specification,” IETF RFC 2362, May 1998.

[17] H. E. Egilmez, S. Civanlar and A. M. Tekalp, "An optimization

framework for QoS-enabled adaptive video streaming over OpenFlow

networks," IEEE Transactions on Multimedia, vol. 15, no. 3, pp. 710-715,

April 2013.

[18] J. Yen, "Finding the k shortest loopless paths in a network,"

Management Science 17.1, pp. 712-716, 1971.

[19] S. Tariq and M. Bassiouni, "QAMO-SDN: QoS aware Multipath TCP

for software defined optical networks," 2015 12th Annual IEEE Consumer

Communications and Networking Conference (CCNC), Las Vegas, NV,

2015, pp. 485-491. doi: 10.1109/CCNC.2015.7158023

[20] S. Tomovic and I. Radusinovic, "Fast and efficient bandwidth-delay

constrained routing algorithm for SDN networks," 2016 IEEE NetSoft

47

Conference and Workshops (NetSoft), Seoul, 2016, pp. 303-311. doi:

10.1109/NETSOFT.2016.7502426

[21] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S. Lee, P.

Yalagandula, "Automated and scalable QoS control for network

convergence," INM/WREN''10, pp. 1-6, San Jose, CA, Apr. 2010.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in

Campus Networks,” in Proceedings of ACM SIGCOMM Computer

Communication Review, pp. 69–74, New York, USA, April 2008.

[23] S. Chen, "Routing Support for providing guaranteed end-to-end

Quality-of-Service," PhD thesis, Computer Science, University of Illinois,

Urbana-Champaign, 1999.

[24] Y. Yang, J.K. Muppala, S.T. Chanson, "Quality of service routing

algorithms for bandwidth-delay constrained applications," Ninth

International Conference on Network Protocols, pp. 62-70, Nov. 2001.

[25] T. He, D. Goeckel, R. Raghavendra, and D. Towsley, “Endhost-Based

Shortest Path Routing in Dynamic Networks: An Online Learning

Approach,” in Proceedings of IEEE INFOCOM, pp. 2202–2210,

Turin,Italy, April 2013.

[26] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity

Data Center Network Architecture,” in Proceedings of ACM SIGCOMM,

pp.63–74, Seattle, USA, August 2008.

[27] B. Shen, B. Hao, and A. Sen, “On Multipath Routing Using Widest

Pair of Disjoint Paths,” in Proceedings of Workshop on High Performance

Switching and Routing, pp. 134–140, Phoenix, USA, April 2004.

[28] Y. Li and D. Pan, “OpenFlow Based Load Balancing for Fat-Tree

Networks with Multipath Support,” in Proceedings of IEEE ICC, pp. 1–5,

Budapest, Hungary, June 2013.

