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                              ABSTRACT  
 

For our thesis we study about conditions of a good parallel algorithm which greatly increases 

efficiency in a program, and show that it is possible to implement Lossless Data Compression 

using the Run Length Encoding algorithm in parallel architecture. Lossless compression is when 

the original data that was compressed will not get lost after the data is being decompressed, 

hence without any loss of data we hope to accomplish a massive reduction in execution time by 

applying parallelism to this algorithm. Many compression algorithms are typically executed in 

CPU architectures. In our work, we mainly focused on utilizing the GPU for parallelism in data 

compression. Hence an implementation of Run Length Encoding algorithm is used by the help of 

NVIDIA GPUs Compute Unified Device Architecture (CUDA) Framework. CUDA has 

successfully popularized GPU computing, and General Purpose Compute Unified Device 

Architecture applications are now used in various systems. The CUDA programming model 

provides a simple interface to program on GPUs. A GPU becomes an affordable solution for 

accelerating a slow process. This algorithm is convenient for the manipulation of a large data set 

as oppose to a small one as this technique can increase the file size greatly.  Furthermore, this 

paper also presents the efficiency in power consumption of the GPU being used compared to a 

CPU implementation. Lastly, we observed notable reduction in both execution time and power 

consumption. 
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Chapter 1  
Introduction 
 

Integration of increasing number of processing cores on chip multiprocessors (CMPs) is 

currently considered a trend in computer architecture design. Increasing the CPU clock 

frequency does no longer adds a significant performance enhancement due to much increased 

power dissipation from the CPU. GPUs are an example of many core architectures. GPUs are 

evolved to carry out general purpose computation presenting large amount of simple in-order 

processing elements. The parallel GPUs are increasingly used for acceleration of inherently data-

parallel functions, such as motion estimation algorithms and image transforms. 

Manipulation of huge data efficiently in terms of execution time and power consumption is 

becoming imperative in computer science. To manage huge data sets, there are different 

compression algorithms for different data sets like audio, video, image, texts etc. Using efficient 

algorithms alongside parallel computing can produce a huge speedup of the execution time and 

thus reducing the power consumption of the compression techniques. The way a parallel 

solutions work is simply by the distribution of tasks among different processors, which then 

process the designated data set using standard serial compression algorithms. Faster and efficient 

compression allows for much better performance in memory space management or simply data 

processing in a slower network bandwidth. 

In this paper we present an implementation of Run Length Encoding algorithm on NVIDIA 

GPUs, which is a data compression technique. It is more of a serialized algorithm having number 

of conditional branches which is not efficient enough for GPU threads. Our work focused on 

implementing RLE in parallel on NVIDIA GeForce GTX 1050 Ti GPU using CUDA framework 

to observe significant speedup in execution time and reduction in power consumption compared 

to a CPU implementation. 

1.1 Contribution Summary  
In our thesis work, we have used CUDA toolkit and CUDA C programming language. Among 

many lossless data compression techniques we have chosen Run-Length Encoding (RLE) 
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algorithm. We implemented methods like shared memory, kernel overhead, pinned memory 

optimization in RLE to optimize the execution time. 

1.2 Motivation 
The importance of data transfer is growing day by day with increasing demand for sharing data 

online. This importance in turn placed priority for a faster more efficient compression technique 

such as Run-Length Encoding algorithm, which is an algorithm for data compression. But 

efficiency is the main priority here in order to save network bandwidth consumption. In our 

paper we understood the importance of an efficient more optimized version of compression 

algorithm and to achieve that we need to apply parallelism followed by some optimization 

techniques on the previous algorithm to run more efficiently with less execution time than 

before. Hence those optimizations could save a lot of bandwidth consumption if this was to be 

implemented in the future as an application for online compression for file transfers. 
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1.3 Methodology 

 

1.4 Thesis Orientation 
The rest of the thesis is organized as follows: 
Chapter 2 includes the background information of Graphics Processing Unit (GPU), CUDA. 

Chapter 3 represents the methods and implementation details for RLE in parallel along with 

other optimization techniques. 

Chapter 4 shows the experimental result and comparison. 

Chapter 5 is the conclusion of the thesis and also states the future research directions. 
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Chapter 2  

GPU 
 

2.1 Background Information of GPU  
GPUs (Graphics Processing Unit) are computer processors, an electrical component specialized 

for fast processing of graphical data or generating images in a frame buffer to be displayed in 

various display devices. GPUs are located on plug-in cards, in a chipset on the motherboard or in the 

same chip as the CPU. In the past, there were no dedicated processing units for graphical data, 

rather all graphics operations and calculations were processed by the CPU alone. As software 

demands increased and graphics became more important (especially in video games), a need arose for a 

separate processor to render graphics. On August 31, 1999, NVIDIA introduced the first commercially 

available GPU for a desktop computer, called the GeForce 256 [30]. Modern GPUs are very efficient at 

manipulating computer graphics and image processing, and their highly parallel structure makes them more 

efficient than general-purpose CPUs for algorithms where the processing of large blocks of data is done in 

parallel. 

2.2 GPU Architecture  
Heterogeneous architectures enable throughput or latency optimization. Central Processing Units 

(CPU) and computational accelerators, for example, Graphics Processing Units (GPU) combines 

to form the heterogeneous architecture. Workstations of many engineering or scientific labs have 

supercomputers which uses heterogeneous architecture. This leads to CPU being used for other 

works and users able to do large parallel computing capabilities. But mapping the computational 

algorithm to heterogeneous architecture makes of a programming challenge and difficulty in 

using the GPU efficiently. In the last ten years, parallel global optimization of a GPU improved 

their performances significantly. Many intensive solutions are achieved due to the high 

performance of modern GPUs and parallel processors [2]. Number of cores or scalar processors 

makes up a multiprocessor and many streaming multiprocessors makes up the NVIDIA GPU. 

There are different NVIDIA GPU architectures available such as Kepler, Fermi Tesla etc. 
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2.2.1 Till NVIDIA G70 
Until the latest NVIDIA G70 GPU and their previous generations of architecture came to the 

market, vertex and pixel shading were handled in multiple dedicated units. Array was used, 

where the top eight shaders were used for vertex processing and the processing of pixel was done 

in the middle of the array with twenty four shaders. The pixel shaders had to sit idle until data 

came from the vertex shaders which is a loss. For this reason NVIDIA shifted their vision to new 

architecture [4]. 

2.2.2 G80  
The idleness of the shaders were solved when NVIDIA developed their new G80 architecture. It 

dynamically allocates the number of pixel and vertex shaders as per the current application 

required thus removing the idle issue of hardware. The GPU architecture of G80 was the first 

architecture that integrated one hundred and twenty eight processing elements between eight 

cores of shaders [3]. Pipeline was a major part of the previous architectures but this was no 

longer a part of the G80 architecture. Besides, before a pixel is presented to the frame buffer, the 

pipeline loopback into itself. In the earlier versions, each shaders type had few cores allocated 

for them but this is not the case for G80. All execution units get hold of the shaders due to the 

prioritization controlled by the scheduler. This improves the performance as the hardware can 

increase the number of vertex shaders along the cores. CUDA (Compute unified Device 

Architecture) was introduced by this architecture and the first C-based development environment 

for GPU’s. Another improvement came in the name Tesla [4].  

2.2.3 Tesla Architecture 
The first microarchitecture made by NVIDIA by implementing unified shader model is Tesla. It 

brought notable changes in GPU functionality and compatibility. For instance, separate 

functional units like pixel shaders to homogeneous collection of universal floating point 

processors, known as stream processors. Tesla is used in GeForce 8 Series, GeForce 9 Series and 

others. Tesla was the first GPU which had unified shader with 128 processing elements which 

distributed in 8 shader core [5].  
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2.2.4 Fermi Architecture 
NVIDIA developed a GPU microarchitecture which is a successor to the Tesla 

microarchitecture, named Fermi. Since the original G80, the Fermi architecture is one of the 

most enormous step forward towards GPU architecture. To create the World’s First 

Computational GPU, which needed a completely new approach, NVIDIA made improvements 

on different areas of the Fermi architectures like True Cache Hierarchy, Faster Context 

Switching, ECC support, Double Precision Performance, Faster Atomic Operations and More 

Shared Memory. NVIDIA also collected vast user feedback on GPU computing since the 

introduction of G80 and GT200. The first Fermi based GPU was implemented with 3.0 billion 

transistors and features up to 512 CUDA cores. 512 CUDA cores are organized in 16 SMs of 32 

cores each for executing floating point or integer instructions. Femi has six 64-bit memory 

partitions for a 384-bit memory interface which supports up to a total of 6GB of GDDR5 DRAM 

memory. PCI express, a host interface which connects the GPU to the CPU. Thread blocks are 

distributed to SM thread schedulers by Giga Thread global scheduler [29].  

2.2.5 Kepler Architecture  
After Fermi, NVIDIA presented the Kepler GPU microarchitecture. Power efficiency was the 

main focus for NVIDIA’s engineering team. GeForce arrangement from 600 to 700 and some of 

800 arrangement utilized Kepler design and all are manufactured in 28nm. Efficiency, 

programmability and performance was the main priority enforced by NVIDIA on Kepler 

architecture on the other hand its predecessors focused on increasing performance on compute 

and tessellation. Unified GPU clock, simplification in static schedule instruction and prominent 

importance on performance per watt helped Kepler to achieve such efficiency. The key to Kepler 

high performance is the addition of cores instead of shader clock on previous versions. Cores are 

more power-friendly. Two Kepler core use 90% of power of one Fermi core but unified GPU 

clock scheme diminishes 50% power consumption [7]. 

Later on Maxwell engineering replaced the Kepler architecture. 

2.2.6 Maxwell Architecture  
Maxwell is the next GPU microarchitecture in the development chain of NVIDIA after Kepler 

microarchitecture. Newer versions of Maxwell architecture use new chip code unlike the older 
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versions used chip of Kepler. These chips gave consumers few features as NVIDIA focused 

more on the power efficiency of GPU. In Kepler the L2 cache was 256 KiB whereas on 

Maxwell, it is 2MiB, which decreases the want for more memory bandwidth. Therefore, 

reducing the memory bus from 192 bit in Kepler to 128 bit in Maxwell; a further power saving. 

In Maxwell, the streaming multiprocessors were redesigned, partitioned and named SMM as of 

the previous layouts from Kepler. Despite the texture units and FP64 CUDA cores still shared, 

the structure of the warp scheduler was the same as on Kepler. On the other hand most execution 

unit layout were divided to allow each warp schedulers in an SMM control one set of 32 FP32 

CUDA cores, one set of 8 load/store 15 units and one set of 8 special function units. In 

comparison to Kepler, where each SMX has four schedulers that schedule to a shared pool of 

execution units [8]. 

2.2.7 Pascal Architecture  
After Maxwell architecture, Pascal architecture is the newest addition to the chain of NVIDIA 

GPU architecture, introduced in April 2016 with the GP100 chips. The name is derived from the 

17th century, French mathematician, physicist Blaise Pascal. In Pascal , 64 CUDA cores are used 

in the SM (Streaming multiprocessor), whereas there were 128 cores in Maxwell, 192 cores in 

Kepler, 32 cores in Fermi and 8 cores in Tesla. The GP100 SM is divided in two processing 

blocks where each block contains 32 single precision CUDA Cores, a wrap scheduler, an 

instruction  buffer, two dispatch units and two texture mapping units [9]. Most importantly it 

supports CUDA Compute Capability 6.0.  

 

2.2.8 Titan Architecture 

The newest and most advanced NVIDIA GPU till date is the Titan V Volta. It is based on the 

GV100 GPU architecture which features a total of 5120 CUDA cores along with 320 texture 

units. On contrary, there are 640 Tensor Cores inside the Volta GPU also.  This is the exact same 

amount of cores featured on the Tesla V100. These arrangements are made for maximizing the 

performance of deep learning, for algorithms which are related to artificial intelligence and 

clocked to 1200 MHz base and 1455 MHz boost and comes in a 250W package. Despite the 

heavy specs it requires only one 8 and 6 pin power connector to boot [27]. 
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2.3 CUDA Overview 
CUDA(Compute Unified Device Architecture) which is a NVIDIA GPU architecture that is in 

GPU card made for programming general purpose computation on parallel GPU architectures, 

launched in 2007 [31]. It has positioned itself as a whole new meaning for general purpose 

computing with GPUs. CUDA uses extension of C++ known as CUDA C for programming 

purpose. CUDA provides advantage of huge computational power to the programmer and it is 

famous among them since it gives a lot of freedom to work on. Depending on GPU models, 

CUDA has many cores which works side by side. Here cores can communicate and also they can 

exchange information with each other so that, running multithreaded application there is no need 

for streaming computing in GPU [32]. As previously mentioned CUDA uses C programming 

language, as GPU possesses a large amount of threads and each can execute the same code in 

parallel but here all the threads are executed using same code but different data. CUDA programs 

consist of one or two parts that is 16 executed either on host (CPU) or device (GPU). Depending 

on how much parallelism there is, it is better to execute codes in CPU if it involves little 

parallelism but GPU becomes a much better alternative when the code involves huge parallelism. 

This is due to transfers or copy of data from host to device or device to host which have a 

negative impact on both execution time and power consumption, hence simple codes are not 

meant for parallel execution as it may take longer due to these data transfers but executing 

complex codes in a GPU are a far better option than executing on the CPU as it overcomes data 

copy speed and hence boosts performance. 
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                                                      Figure 1: Processing flow on CUDA 

 

In Figure 1 [26], we can see the processing flow on CUDA. Every algorithm has two parts, data 

dependent and data independent. Data dependent part is not sent to GPU as it takes time to copy 

from CPU to GPU which is not beneficial. On the other hand data independent part is sent to 

GPU for parallelism which makes the algorithm efficient. 

2.3.1 Units of CUDA 
In this part we are going to discuss about those basic units of CUDA, kernel, thread, block, grid 

that it uses to execute and run a program. 
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2.3.1.1 Kernel  

In CUDA CPU and its memory is known as host and GPU and its memory refers to device. Code 

run on host can manage both memory on host and device and launches kernel, special function, 

which are executed on device. A kernel is called to execute parallel functions and defined by 

using _global_ declaration specifier. For a given kernel call, a specific kernel is being executed 

by how many number of CUDA threads is specified using a new <<<...>>> execution 

configuration syntax. A particular thread ID is assigned to each thread that executes the kernel 

that is usable through the included threadIdx variable [17]. Shown in Figure 2 

 

 

               

             

 Figure 2: Kernel 

2.3.1.2 Grid  
A group of threads all running the same kernel is called a grid. Threads here are not 

synchronized. One grid is able to make every call to CUDA from CPU. Starting a grid on CPU is 

a synchronous operation but multiple grids can run at once. For maximum efficiency, several 
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grids are being used by GPUs as grids cannot be shared between GPUs on multi-GPU systems 

[23], which is shown in Figure 3. 

 

             

 

 

                                                      Figure 3: 1D Grid 

2.3.1.3 Block  

 

Blocks make up a grid. Each block is a logical unit containing a number of coordinating threads, 

a certain amount of shared memory. Blocks are not shared between multiprocessors just as grids 

are not shared between GPUs. All blocks in a grid use the same program. To identify the current 

block, a built in variable "blockIdx" can be used. Block IDs can be 1D or 2D (based on grid 

dimension). Usually there are 65,535 blocks in a GPU [23]. Shown in Figure 4 
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  Figure 4: 1D Block 

 

 

 

2.3.1.4 Thread 

 

Blocks are composed of threads. Individual cores of the multiprocessors runs all the threads, but 

unlike grids and blocks, they are not restricted to a single core. Like blocks, each thread has an 

ID (threadIdx). Based on block dimension, thread IDs can be 1D, 2D or 3D. The thread id is 

relative to the block it is in. Threads have a certain amount of register memory. Usually there can 

be 512 threads per block [23]. 

2.3.2 Memory Units in CUDA 

2.3.2.1 Global Memory   
This memory is used for both read and write but is slow on copying. It needs sequential and 

aligned 16 byte read/writes to be fast. This memory is also known as device memory [23]. 
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2.3.2.2 Shared Memory  

This memory is common for all threads in a block and those blocks can use this memory for read 

and write operation. Its size is smaller than global memory [23]. 

2.3.2.3 Constant Memory  

It is slow but with cache and read only memory. Constants and kernel arguments are stored here 

[23]. 

2.3.2.4 Texture Memory  

It is a read only memory and its cache is optimized for 2D spatial access pattern [23]. 

2.3.2.5 Local Memory  

It is generally used for whatever does not fit into register but it is slow and does not have cache. 

Allows automatic coalesced reads and writes [23]. 

2.3.2.6 Registers  

This is the fastest memory among all. One set of register memory is given to each thread and it 
uses them for fast storage and retrieval of data like counters, which are frequently used by a 
thread [23]. Shown in Figure 5. 

   

 

                                                      Figure 5: Memory Model of CUDA 
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2.4 Difference between CPU and GPU  
Processing of tasks by CPU and GPU is different from one another, as there are few CPU cores 

that are responsible for sequential serial processing whereas the GPU supports thousands of tiny 

and much more efficient cores which can carry out numerous concurrent processes. Thus the 

massively parallel architecture enables GPU to carry out functions in a much faster and more 

efficient way than CPU [15]. There are more differences between CPU and GPU which are given 

in the Table 1. 

                                   Table 1: Differences between CPU and GPU [23] 

 

                       CPU                         GPU 

1. Hides memory latency via hierarchy of 
caches 

1. Memory latency not hidden by large cache 

2. Really fast caches (great for data reuse) 2.  Lots of math units 

3. High performance on a single thread of 
execution 

3. High throughput on parallel tasks 

4. CPUs are great for task parallelism  4. GPUs are great for data parallelism 

5.  Lots of different processes/threads  5. Run a program on each fragment/vertex  

6. Fine branching granularity  6. Fast access to onboard memory  

7. CPU optimized for high performance on 
sequential codes (caches and branch 
prediction)   

7. GPU optimized for higher arithmetic 
intensity for parallel nature (Floating point 
operations)   

8. Most die area used for memory cache 8. Most die area used for ALUs 
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                                                             Figure 6: CPU architecture 

 

                 

                                                     

                                                        Figure 7: GPU architecture 
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Chapter 3  
Methods and Implementation Detail 

3.1 Run Length Encoding Algorithm 
Run-length encoding (RLE) is a very straightforward lossless data compression algorithm where 

runs of data which is sequence of same data value exists in consecutive data elements stored as a 

single data value and count, as opposed to the original runs. This technique becomes more 

convenient where the data set contains many such runs for example, in simple graphics images 

animations, icons and line drawings. Its usefulness or the performance of the program 

deteriorates with files that don’t have many runs as it will lead to an increase in the file size 

substantially [28]. 

 

3.2 How RLE Works 

Run Length Encoding works by replacing the sequences of same string of characters. It replaces 

the sequences of repeating string or same data values within a file, called a run, to an encoded 

two bytes. The first byte is used for the representation of the number of characters in the run, 

called the run count. An encoded run in custom may contain 1 to 128 or 256 characters.   

However, the run count is the number of characters minus one which is a value in the range of 0 

to 127 or 255. Lastly, the second byte determines the value of the character in the run in the 

range of 0 to 255, known as the run value. 

A simple example can be as follows: Suppose a string has the following characters; 

TTTTTTTTEEEEEESSSSiiiiiSSSSSSSSS. 

After running RLE compression, the above string will be represented as 8T6E4S5i9S, called 

RLE packet. As a result, the 32-byte string would be compressed to ten (10) bytes of data. Every 

time there is a change in data set, there is change in the run characters accordingly [12][27]. The 

flowchart of RLE is given in Figure 8.        
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                           Figure 8: Flowchart of RLE (Run Length Encoding) Algorithm 
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The attributes in Figure 8 are as follows:   

int* in - pointer for input array. 

int n - size of the input array. 

 int* symbolsOut - pointer for symbols out array 

 int* countsOut - pointer for counts out array. 

int outIndex - the last index for symbols out array. 

int symbol - simple integer for comparing elements of the input array.  

int count - keep count of the number of elements appearing [11].  

3.3 Optimization Techniques 
In the CUDA implementation of Run-Length algorithm, where we have taken the serial code and 

applied parallelism with techniques. To launch the kernels, Hemi library is being used where it 

will automatically choose grid and thread block size for the specific graphics card. Then the 

execution time efficiency of the parallel implementation is observed over the serial execution 

time [11]. For further optimization few of the techniques are used which are being discussed 

below. 

3.3.1 Pinned Memory Optimization 

In parallel computing, data must be transferred from the host (system) memory to the device 

(GPU) memory. After the data is processed, the results transfer back to the host from the device. 

Such back and forth transfers takes place many times and affects negatively on the execution 

time and the overall efficiency of the code. 

Data allocations in CPU (host) are pageable by default. When transfer of data from CPU (host) 

to GPU (device) is invoked, the GPU cannot access the data directly from pageable host memory 

rather the CUDA driver assigns the host array to the pageable memory then the host data is 

copied to the pinned array then finally the transfer of the host data takes place from the pinned 

memory to the DRAM of the device as shown in Figure 9 [13].   
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                                        Figure 9: Pageable and Pinned Data Transfer 

As shown in the Figure 9, it is possible to avoid data transfer between the pageable memory to 

the pinned memory by assigning the host array directly to the pinned memory. This reduces a 

significant data transfer time which ultimately improves the throughput. In CUDA C/C++, 

assigning pinned host memory is done using cudaMallocHost() or cudaHostAlloc(), and 

deallocate it with cudaFreeHost() [13]. 

We used the keywords cudaMallocHost() to allocate our input array with pointer h_in and then 

used cudamemcpy to copy our input array with pointer h_in to the array allocated on the GPU 

with pointer g_in. After that we reviewed the copying time using nvcc profiling tool. 

3.3.2 Reduced Kernel Overhead 

Cost in terms of execution time is severe and also a negative impact on performance is due to the 

overhead launching of kernels where the kernels are launched many times by the CUDA 

application. To minimize the impact of this overhead, the primary focus should be given on 

increasing the amount of work performed in each kernel call and minimizing the total number of 

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g9f93d9600f4504e0d637ceb43c91ebad
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g15a3871f15f8c38f5b7190946845758c
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1gedaeb2708ad3f74d5b417ee1874ec84a
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kernel calls. Subsequent kernel calls heavily improves the performance because kernel 

invocations are asynchronous in the recent CUDA API versions. Multiple kernel calls will be 

batched in the CUDA driver if developers can call kernels numerous times without intervening 

synchronization such as in memory transfers. 

For our parallel algorithm we had 3 kernels in total. First we tried merging two and then all three. 

For small datasets the merge didn't seem that effective but after increasing it by a significant 

amount we achieved our desirable results [18].   

3.3.3 Shared Memory 

One way to make CUDA codes more optimized is to use the shared memory feature. As shared 

memory is located on chip it is much faster for accessing data. All threads in a thread block 

shares the shared memory as it provides a way for the threads to cooperate. Using shared 

memory is much faster compared to global or local memory as it is on chip, in fact the latency of 

shared memory is hundred times lower than uncached global memory latency given that no bank 

conflicts exists between the threads. All threads in a thread block are able to access the same 

shared memory because shared memory is assigned per thread block. Data from shared memory 

is loaded from global memory by threads in the same block so that other threads can have an 

access to the stored data [20]. 

While using shared memory we definitely benefited a lot but were limited to a data set of only 

10,000 since it is cached memory. Since our testing GPU was a normal one 1050 ti we were not 

able to exceed this limit. But however if we had the latest hardware like the titan x we could have 

made great optimization with shared memory since its cache size can hold a lot more. 
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Chapter 4 

Experimental Result 
 

4.1 PC Configurations 
To analyze the performance of CUDA implementation, we used a GeForce GTX 1050TI card 

with CUDA version 9 installed on a machine with Intel(R) Core(TM) i3-540 CPU running at 

3.30GHz. The CPU implementation of RLE is also tested on the same PC.  

 

4.2 Datasets 

For our experiment we were able to use 3 sets only since trying to transfer data which is more 

than 10^8 results in memory error as it is too much to allocate for our for our Device memory. 

● First set     =  8 elements  

● Second set = 10,000,000 elements  

● Third   set   = 409,999,999 elements  

4.3 Execution Speedup 

For benchmarking, data allocation and uploading was done beforehand. This ensures that we will 

only be testing the actual performance of the algorithm on the GPU, and not the transfer 

operation performance from the CPU to the GPU, but we will get into that later. 

Software used were Visual Studio for compilation and profiling was done with command line 

nvcc profiler. 

At first we converted our serial program to parallel program. For parallel we used hemi library 

which allocated thread size and block according to the GPU’s architecture hence much better 

than manual kernel allocation. 
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Below are the experimental results of converting the serial algorithm to our parallel algorithm 

shown in Table 2.   

(Times faster was calculated by dividing the serial time result by the parallel time result.) 

(Test results are in milliseconds) 

 

Table 2: Comparison of CPU execution time and GPU execution time of RLE 

 

 First-set                                                                   Second set Third Set 

Serial    1 millisecond  49 milliseconds  2791 milliseconds  

Parallel ms 0.88485 millisecond 39.476 milliseconds 

Times faster 5.6 55.37 70 

                                   
                             

Observation of these results shows that parallel implementation of the serial algorithm helped 

speedup execution time by a significant amount. Also higher the dataset in value, more the 

speedup achieved. A bar chart illustration is given Figure 10, Figure 11 and Figure 12. 
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                         Figure 10: CPU and GPU execution time for dataset 1 

 

Here in Figure 10 we can see that our implementation was only 5 times faster, reason being 
accessing 8 elements of a single array is not a CPU intensive task hence we did not achieve much 
benefit of running it in parallel. 

 

    

                              Figure 11: CPU and GPU execution time for dataset 2 

 

In Figure 11 for Dataset 2 of 10^7 elements, we see a much better increase. Since accessing 10^7 
elements by a single cpu thread takes quite some time as it access each element one by one hence 
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going through the loop 10^7 times. Here parallelism  really works since all of those elements are 
each being accessed by thousands of threads separately and so an increase of around 55 times 
was achieved.   

 

 
                                 Figure 12: CPU and GPU execution time for dataset 3 

As seen in the charts in Figure 10 and 11, the larger our dataset, more intense processing needed 
for the CPU but a lot easier for the GPU due to its multiprocessor each having thousands of 
threads running in parallel. So in Figure 12 , using dataset 3 where there are 4 * 10^8 elements 
approximately, we see even a better increase in performance that dataset 2 which is around 70 
times.  

 

We were quite happy seeing the results as we achieved significant increase in performance 

reducing the execution time. But we wanted to further optimize our parallel algorithm and so we 

did that by the use of these two techniques. 

1)      Reduced kernel overhead 

2)      Shared memory 

4.3.1 Reduced kernel overhead 
Using kernel overhead reduction technique on our already implemented parallel program we 

were able to achieve these results shown below in Table 3:  

(Times faster was calculated by dividing the serial time result by the parallel time result). 
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(Test results are in milliseconds.) 

 

                    Table 3: Execution speedup using reduced kernel overhead technique 

Dataset  Original results (ms)   After optimization (ms)    Times faster 

First set 0.17824      0.16840                 1.0584 

Second set 0.88485      0.08642 10.2389 

Third set 39.476       2.8866          13 

 

A bar chart illustration of the table above is given below in Figure 13, Figure 14 and Figure 15. 

 

 
Figure 13: Execution speedup using reduced kernel overhead for dataset 1 

As seen previously, smaller dataset leads to very low amounts of speedup .So even after 
optimizing it with kernel overhead , our speedup was only about 1.05 times faster in Figure 13.   
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Figure 14: Execution speedup using reduced kernel overhead technique for dataset 2. 

In Figure 14 , it seems using overhead did optimize the code further, reason being calling each 
kernel over and over again is a costly operation , hence after merging all 3 of our kernels and 
using dataset 2 our parallel program was faster by 10 times. 

  

 

Figure 15: Execution speedup using reduced kernel overhead technique for dataset 3 

In Figure 15, we can see it being around 13 times faster which is a bit faster than results obtained 
in Figure 14, which is about right since all overhead does is merge kernels lowering kernel calls  
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and that's how it saves time, not by deploying extra threads. Hence the speedup is not anything 
like 50 or 60 times faster rather its a few times faster. 

Therefore performance increase using just Kernel overhead reduction and normal parallel 

optimization is shown in Table 4. 

 

Table 4: Combined performance increase using Kernel overhead reduction and normal parallel 

optimization. 

 

Dataset Times faster 

First set 5.6104 

Second set 566 

Third set 966.88 

      A remarkable increase in speedup is observed in Table 4 after implementation of both normal 
parallel optimization and Kernel overhead reduction.       

         

4.3.2 Shared Memory 

For shared memory we used the first data set of 8 and a new data set of 10,000 since our GPU 

did not have enough memory to allocate more than that.Shared memory was implemented after 

implementation of both normal parallel optimization and Kernel overhead reduction.       

Shown in Table 5.  
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Table 5: Shared memory implementation 

 

 First Dataset Set of 10,000 

Not shared 0.168400 0.011776 

Shared 0.006112 0.001312 

Times Faster 16.866987 8.9560 

                               

A bar chart illustration of the table above is given below in Figure 16 and Figure 17. 

 

 

        Figure 16: Speedup comparison of shared memory for dataset 1 

 

As seen in Figure 16 , using shared memory with the First dataset gave us quite a big increase in 
performance. The reason for that is global memory is a lot slower than shared memory and 
loading an array of only 8 elements into shared memory is not an intensive task for the GPU.  
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                    Figure 17:  Speedup comparison of shared memory for set of 10,000 

In Figure 17 we can see that for a dataset of around 10^4 elements it's only 8.9 times faster, 
much lower than the smaller dataset of 8 elements. This is due to loading an array of 10^4 into 
shared memory takes a lot more time than loading an array of 8 elements only. 

The GPU used here is only capable of storing dataset of 10^4 elements in its shared memory, but 
if we had a GPU like Titan X, a much more powerful device than the NVIDIA GeForce GTX 
1050TI, we could have included our original data sets 2 and 3. For a flagship GPU like Titax X, 
our implementation of shared memory on data set 1 would have been at least twice that of our 
card, so it would be 32 times faster, and our second dataset would be at least 16 times faster. 
Keeping this fact in mind we can say that our data sets 2 and 3 will atleast get a performance 
boost of 8.9 times.  

Therefore in conclusion , after taking the serial program and converting it to parallel and then 

further optimizing it with the two techniques , Kernel reduced overhead and shared memory, our 

final performance gain for all three data sets are shown in Table 6 below :    
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Table 6: Final results for execution speedup 

  First set 94.6305 

 Second set 5082.68 

  Third set 8605.23 

                                                                                                                                        

4.4 CPU to GPU Transfer Time 
Now, we wanted to analyze our CPU to GPU transfer operations which are costly and then 

optimizing them by using 

1)     Reduced kernel overhead 

2)      Pinned memory optimization. 

 

4.4.1 Reduced Kernel Overhead 
Using kernel overhead reduction on data set 3, the results achieved are shown in Table 7. 

Table 7: Data Transfer from CPU to GPU using reduced kernel overhead technique 

 

      Normal Reduced Overhead     Times faster 

Data Transfer From 
CPU to GPU 

327.76 milliseconds 260.77 milliseconds        1.25689 

 

 
         A bar chart illustration of the table above is given below in Figure 18. 
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Figure 18: Bar chart of data transfer from CPU to GPU using reduced kernel overhead technique 

 

In Figure 18, we can see that we achieved a boost of about 1.25 times. This is because when our 
3 kernels merged to only one , our CPU to GPU copy  (cudamemcpy()) only got called once 
whereas for 3 kernels it had to be called 3 times. It was not such a big  increase since amount of 
elements to be copied did not change, just the kernel calling cost of cudamemcpy() had 
decreased. 

4.4.2 Pinned Memory Optimization 
Using pinned memory on set three we achieved                                                   

          Table 8: Data Transfer from CPU to GPU using pinned memory optimization technique. 

 

    non-pinned     pinned       Times faster 

Data Transfer From 
CPU to GPU 

304.54milliseconds    127.93milliseconds          2.38052 

 

         A bar chart illustration of the table above is given below in Figure 19. 
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Figure 19: Data transfer from CPU to GPU using pinned memory optimization technique 

As seen in Figure 19, pinned memory helped us decrease copy time by about 2.38 times. It's not 
a big increase since the same amounts of copy is still being done. Only difference is the copy 
time of elements from pageable memory to pinned memory which is no longer in the equation. 

 

So, for CPU to GPU data transfer by using both kernel overhead reduction and pinned memory 

optimization the total performance gained is shown in Table 9. 

 

 Table 9: Final results for CPU to GPU transfer time 

Times Faster Seconds saved in milliseconds 

2.99205 236.61 
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Chapter 5 

Conclusion and Future Works 
5.1 Conclusion 

In this paper we have shown how a serial implementation of Run Length Encoding algorithm can 

be made much more efficient through reducing the execution time by using parallel 

implementation and then using various optimization techniques on the parallel implementation. 

We have seen as the data set gets larger our parallel program shows more increase in 

performance. Hence concluding the fact that more the data, faster the parallel program will be 

compared to the serial one. Several datasets were used to show and compare the execution time. 

A gradual increment of speedup is observed with the increasing number of data. Our main focus 

was to execute a parallel implementation of a serial code and observe/compare its execution time 

and how using optimization techniques affects the overall performance of an algorithm. We were 

quite happy seeing the results as we achieved significant increase in performance. 

5.2 Future Work 
Run Length Encoding algorithm is a lossless data compression algorithm which comes in handy 

in any online media transfer such as in social media sites which needs compression of its data to 

lower its network bandwidth consumption. In order to be more efficient in bandwidth 

consumption, the parallel implementation with the optimization techniques used will play a 

crucial role. In future this knowledge could help us a lot due to growing demand for faster and 

reliable transfer of media data. 
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