

Optimization Techniques for Speedup in a
 Parallel Algorithm

 Supervisor: Dr. Jia Uddin

 Fairuz Faria 13201050

 Tahmid Tahsan Obin 13201057

 Shah Md. Nasir Rahat 13241006

 Tanzim Islam Chowdhury 14301074

 Department of Computer Science and Engineering

BRAC University

26th December 2017

Declaration

We hereby declare that this thesis is based on our own work and results we obtained. All other

resources used have been acknowledged with proper reference, which can be found at the end of

the paper in the reference section. This thesis, neither in part nor in whole has been submitted to

any other University or Institution for the award of any degree or diploma.

Signature of Supervisor: Signature of Authors:

_____________________ ___________________

Dr. Jia Uddin Fairuz Faria

 Tahmid Tahsan Obin

 Shah Md. Nasir Rahat

 Tanzim Islam Chowdhury

ii

Acknowledgement

First of all, we would like to express our deepest gratitude to almighty Allah for giving us the

ability to start and successfully finish the thesis work.

Secondly, we would like to express our sincere gratitude to our advisor DR. Jia Uddin for the

continuous support in our research, for his guidance, motivation, patience and colossal

knowledge. Without his unparalleled support, it would have been an immense tough work to

conduct.

Finally, we would like to express our sincere gratefulness to our beloved families and friends for

their love and care. We are also thankful to them for helping us directly or indirectly to complete

our thesis. Furthermore, we would also like to acknowledge the numerous assistance we received

from diverse online and offline research works.

iii

 Table of Contents

Declaration……………………………………………………………………………………..i

Acknowledgement…………………………………………………………............................ii

List of Figures……………………………………………………..………………................vii

List of tables…………………………………………………………………………………...ix

List of Abbreviations……………………………………………………………………..….x

Abstract………………………………………………………………………………..……….xi

Chapter 1

Introduction…………………………………………………………………….....1

 1.1 Contribution Summary……………………………………………………………...…1

 1.2 Motivation…………………………………………………………..............................2

 1.3 Methodology……………………………………………………………………...…...3

 1.4 Thesis Orientation…………………………………………………………….……….3

Chapter 2

GPU

 2.1 Background Information of GPU………………………….…………………………..4

2.2 GPU Architecture………………………………………………………………..…….4

2.2.1 Till NVIDIA G70……………………………………………………………5

iv

2.2.2 G80…………………………………………………………………………..5

2.2.3 Tesla Architecture………………………………………………………...…5

2.2.4 Fermi Architecture………………………………………………………..…6

2.2.5 Kepler Architecture……………………………………………………….....6

2.2.6 Maxwell Architecture…………………………………………………….…6

2.2.7 Pascal Architecture……………………………………………………….…7

2.2.8 Titan Architecture………………………………………………………...…7

 2.3 CUDA Overview…………………………………………………………………..….8

 2.3.1 Units of CUDA……………………………………….…………………......9

 2.3.1.1 Kernel………………………………………..….……………...10

 2.3.1.2 Grid…………………………………………………...………..10

 2.3.1.3 Block………………………………………………...…………11

 2.3.1.4 Thread……………………………………………………...…..12

 2.3.2 Memory Units in CUDA………………………………………………......12

 2.3.2.1 Global Memory………………………………………………...12

 2.3.2.2 Shared Memory………………………………………..……….12

 2.3.2.3 Constant Memory……………………………………………....13

 2.3.2.4 Texture Memory……………………...……………………......13

 2.3.2.5 Local Memory………………………………………………….13

 2.3.2.6 Registers……………………………………………………..…13

 2.4 Difference between CPU and GPU…………………………………………………..14

v

Chapter 3

Methods and Implementation Detail

 3.1 Run-Length Encoding Algorithm………………………………………………...….16

 3.2 How RLE Works………………………………………………………………..……16

 3.3 Optimization Techniques…………………………………………………………….18

 3.3.1 Pinned Memory Optimization………………………………………...……..18

 3.3.2 Reduced Kernel Overhead………………………………………………..…19

 3.3.3 Shared Memory…………………………………………………...…………20

Chapter 4

Experimental Result

 4.1 PC Configuration…….……………………………………………………...21

 4.2 Datasets……………………………………………………………………...21

 4.3 Execution Speedup………….……………………………………………….21

 4.3.1 Reduced Kernel Overhead…….…………………………………....24

 4.3.2 Shared Memory………….………………………………………....27

 4.4 CPU to GPU Transfer Time………..………………………………………..30

 4.4.1 Reduced Kernel Overhead……..………………………………....30

 4.4.2 Pinned Memory Optimization…….……………………………....31

vi

Chapter 5

Conclusion

5.1 Conclusion………..………………...………………………………………………..33

 5.2 Future Work…………………………………………………………...…………..…33

References………………………………………………………………………...34

vii

List of Figures

Figure 1: Processing flow on CUDA……………..……………………………………………9

Figure 2: Kernel………………………………...………………………..……………………10

Figure 3: 1D Grid…………………………………………………………………………...…11

Figure 4: 1D Block…………………………………………………………………………….12

Figure 5: Memory Model of CUDA…………………………………………………………...13

Figure 6: CPU architecture………………………………………………………………….....15

Figure 7: GPU architecture……………………………………………………………….…....15

Figure 8: Flowchart of RLE (Run Length Encoding) Algorithm……………………………...17

Figure 9: Pageable and Pinned Data Transfer………………………………………….……....19

Figure 10: CPU and GPU execution time for dataset 1…………………………….…….….....23

Figure 11: CPU and GPU execution time for dataset 2…………….………………….…….....23

Figure 12: CPU and GPU execution time for dataset 3………………………….……….….....24

Figure 13: Execution speedup using reduced kernel overhead for dataset 1…………..…...…..25

Figure 14: Execution speedup using reduced kernel overhead technique

 for dataset 2……………………………………….………………………………….26

Figure 15: Execution speedup using reduced kernel overhead technique

 for dataset 3…………………………………………….…………………………….26

Figure 16: Speedup comparison for shared memory……………………………………...……..28

Figure 17: Speedup comparison of shared memory for set of10,000……………………...…….29

viii

Figure 18: Bar chart of data transfer from CPU to GPU using reduced kernel overhead

 technique……………………………………………………………………………..31

Figure 19: data transfer from CPU to GPU using pinned memory optimization

 technique……………………………………………………………………………..32

ix

 List of Tables

Table 1: Differences between CPU and GPU…………………………………………….……14

Table 2: Comparison of CPU execution time and GPU execution time of RLE…..……...…...22

Table 3: Execution speedup using reduced kernel overhead technique……………………..…25

Table 4: Combined performance increase using Kernel overhead reduction and normal parallel

 optimization………………………………………………………….………….……27

Table 5: Shared memory implementation………………………………………..………….…28

Table 6: Final results for execution speedup…………………………………………….….…30

Table 7: Data Transfer from CPU to GPU using reduced kernel overhead technique…..….…30

Table 8: Data Transfer from CPU to GPU using pinned memory optimization technique.......31

Table 9: Final results for CPU to GPU transfer time……………………...………….……..…32

x

 List of Abbreviations

1D One Dimension

2D Two Dimension

3D Three Dimension

ALU Arithmetic Logic Unit

API Application Programming Interface

CMP Chip Multiprocessors

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DRAM Dynamic Random Access Memory

ECC Error Correcting Code

GPGPU General Purpose Compute Unified Device Architecture

GPU Graphics Processing Unit

PCI Peripheral Component Interconnect

RLE Run-Length Encoding

SMM Maxwell Streaming Multiprocessor

SMX Streaming Multiprocessor

xi

 ABSTRACT

For our thesis we study about conditions of a good parallel algorithm which greatly increases

efficiency in a program, and show that it is possible to implement Lossless Data Compression

using the Run Length Encoding algorithm in parallel architecture. Lossless compression is when

the original data that was compressed will not get lost after the data is being decompressed,

hence without any loss of data we hope to accomplish a massive reduction in execution time by

applying parallelism to this algorithm. Many compression algorithms are typically executed in

CPU architectures. In our work, we mainly focused on utilizing the GPU for parallelism in data

compression. Hence an implementation of Run Length Encoding algorithm is used by the help of

NVIDIA GPUs Compute Unified Device Architecture (CUDA) Framework. CUDA has

successfully popularized GPU computing, and General Purpose Compute Unified Device

Architecture applications are now used in various systems. The CUDA programming model

provides a simple interface to program on GPUs. A GPU becomes an affordable solution for

accelerating a slow process. This algorithm is convenient for the manipulation of a large data set

as oppose to a small one as this technique can increase the file size greatly. Furthermore, this

paper also presents the efficiency in power consumption of the GPU being used compared to a

CPU implementation. Lastly, we observed notable reduction in both execution time and power

consumption.

1

Chapter 1
Introduction

Integration of increasing number of processing cores on chip multiprocessors (CMPs) is

currently considered a trend in computer architecture design. Increasing the CPU clock

frequency does no longer adds a significant performance enhancement due to much increased

power dissipation from the CPU. GPUs are an example of many core architectures. GPUs are

evolved to carry out general purpose computation presenting large amount of simple in-order

processing elements. The parallel GPUs are increasingly used for acceleration of inherently data-

parallel functions, such as motion estimation algorithms and image transforms.

Manipulation of huge data efficiently in terms of execution time and power consumption is

becoming imperative in computer science. To manage huge data sets, there are different

compression algorithms for different data sets like audio, video, image, texts etc. Using efficient

algorithms alongside parallel computing can produce a huge speedup of the execution time and

thus reducing the power consumption of the compression techniques. The way a parallel

solutions work is simply by the distribution of tasks among different processors, which then

process the designated data set using standard serial compression algorithms. Faster and efficient

compression allows for much better performance in memory space management or simply data

processing in a slower network bandwidth.

In this paper we present an implementation of Run Length Encoding algorithm on NVIDIA

GPUs, which is a data compression technique. It is more of a serialized algorithm having number

of conditional branches which is not efficient enough for GPU threads. Our work focused on

implementing RLE in parallel on NVIDIA GeForce GTX 1050 Ti GPU using CUDA framework

to observe significant speedup in execution time and reduction in power consumption compared

to a CPU implementation.

1.1 Contribution Summary
In our thesis work, we have used CUDA toolkit and CUDA C programming language. Among

many lossless data compression techniques we have chosen Run-Length Encoding (RLE)

2

algorithm. We implemented methods like shared memory, kernel overhead, pinned memory

optimization in RLE to optimize the execution time.

1.2 Motivation
The importance of data transfer is growing day by day with increasing demand for sharing data

online. This importance in turn placed priority for a faster more efficient compression technique

such as Run-Length Encoding algorithm, which is an algorithm for data compression. But

efficiency is the main priority here in order to save network bandwidth consumption. In our

paper we understood the importance of an efficient more optimized version of compression

algorithm and to achieve that we need to apply parallelism followed by some optimization

techniques on the previous algorithm to run more efficiently with less execution time than

before. Hence those optimizations could save a lot of bandwidth consumption if this was to be

implemented in the future as an application for online compression for file transfers.

3

1.3 Methodology

1.4 Thesis Orientation
The rest of the thesis is organized as follows:
Chapter 2 includes the background information of Graphics Processing Unit (GPU), CUDA.

Chapter 3 represents the methods and implementation details for RLE in parallel along with

other optimization techniques.

Chapter 4 shows the experimental result and comparison.

Chapter 5 is the conclusion of the thesis and also states the future research directions.

4

Chapter 2

GPU

2.1 Background Information of GPU
GPUs (Graphics Processing Unit) are computer processors, an electrical component specialized

for fast processing of graphical data or generating images in a frame buffer to be displayed in

various display devices. GPUs are located on plug-in cards, in a chipset on the motherboard or in the

same chip as the CPU. In the past, there were no dedicated processing units for graphical data,

rather all graphics operations and calculations were processed by the CPU alone. As software

demands increased and graphics became more important (especially in video games), a need arose for a

separate processor to render graphics. On August 31, 1999, NVIDIA introduced the first commercially

available GPU for a desktop computer, called the GeForce 256 [30]. Modern GPUs are very efficient at

manipulating computer graphics and image processing, and their highly parallel structure makes them more

efficient than general-purpose CPUs for algorithms where the processing of large blocks of data is done in

parallel.

2.2 GPU Architecture
Heterogeneous architectures enable throughput or latency optimization. Central Processing Units

(CPU) and computational accelerators, for example, Graphics Processing Units (GPU) combines

to form the heterogeneous architecture. Workstations of many engineering or scientific labs have

supercomputers which uses heterogeneous architecture. This leads to CPU being used for other

works and users able to do large parallel computing capabilities. But mapping the computational

algorithm to heterogeneous architecture makes of a programming challenge and difficulty in

using the GPU efficiently. In the last ten years, parallel global optimization of a GPU improved

their performances significantly. Many intensive solutions are achieved due to the high

performance of modern GPUs and parallel processors [2]. Number of cores or scalar processors

makes up a multiprocessor and many streaming multiprocessors makes up the NVIDIA GPU.

There are different NVIDIA GPU architectures available such as Kepler, Fermi Tesla etc.

5

2.2.1 Till NVIDIA G70
Until the latest NVIDIA G70 GPU and their previous generations of architecture came to the

market, vertex and pixel shading were handled in multiple dedicated units. Array was used,

where the top eight shaders were used for vertex processing and the processing of pixel was done

in the middle of the array with twenty four shaders. The pixel shaders had to sit idle until data

came from the vertex shaders which is a loss. For this reason NVIDIA shifted their vision to new

architecture [4].

2.2.2 G80
The idleness of the shaders were solved when NVIDIA developed their new G80 architecture. It

dynamically allocates the number of pixel and vertex shaders as per the current application

required thus removing the idle issue of hardware. The GPU architecture of G80 was the first

architecture that integrated one hundred and twenty eight processing elements between eight

cores of shaders [3]. Pipeline was a major part of the previous architectures but this was no

longer a part of the G80 architecture. Besides, before a pixel is presented to the frame buffer, the

pipeline loopback into itself. In the earlier versions, each shaders type had few cores allocated

for them but this is not the case for G80. All execution units get hold of the shaders due to the

prioritization controlled by the scheduler. This improves the performance as the hardware can

increase the number of vertex shaders along the cores. CUDA (Compute unified Device

Architecture) was introduced by this architecture and the first C-based development environment

for GPU’s. Another improvement came in the name Tesla [4].

2.2.3 Tesla Architecture
The first microarchitecture made by NVIDIA by implementing unified shader model is Tesla. It

brought notable changes in GPU functionality and compatibility. For instance, separate

functional units like pixel shaders to homogeneous collection of universal floating point

processors, known as stream processors. Tesla is used in GeForce 8 Series, GeForce 9 Series and

others. Tesla was the first GPU which had unified shader with 128 processing elements which

distributed in 8 shader core [5].

6

2.2.4 Fermi Architecture
NVIDIA developed a GPU microarchitecture which is a successor to the Tesla

microarchitecture, named Fermi. Since the original G80, the Fermi architecture is one of the

most enormous step forward towards GPU architecture. To create the World’s First

Computational GPU, which needed a completely new approach, NVIDIA made improvements

on different areas of the Fermi architectures like True Cache Hierarchy, Faster Context

Switching, ECC support, Double Precision Performance, Faster Atomic Operations and More

Shared Memory. NVIDIA also collected vast user feedback on GPU computing since the

introduction of G80 and GT200. The first Fermi based GPU was implemented with 3.0 billion

transistors and features up to 512 CUDA cores. 512 CUDA cores are organized in 16 SMs of 32

cores each for executing floating point or integer instructions. Femi has six 64-bit memory

partitions for a 384-bit memory interface which supports up to a total of 6GB of GDDR5 DRAM

memory. PCI express, a host interface which connects the GPU to the CPU. Thread blocks are

distributed to SM thread schedulers by Giga Thread global scheduler [29].

2.2.5 Kepler Architecture
After Fermi, NVIDIA presented the Kepler GPU microarchitecture. Power efficiency was the

main focus for NVIDIA’s engineering team. GeForce arrangement from 600 to 700 and some of

800 arrangement utilized Kepler design and all are manufactured in 28nm. Efficiency,

programmability and performance was the main priority enforced by NVIDIA on Kepler

architecture on the other hand its predecessors focused on increasing performance on compute

and tessellation. Unified GPU clock, simplification in static schedule instruction and prominent

importance on performance per watt helped Kepler to achieve such efficiency. The key to Kepler

high performance is the addition of cores instead of shader clock on previous versions. Cores are

more power-friendly. Two Kepler core use 90% of power of one Fermi core but unified GPU

clock scheme diminishes 50% power consumption [7].

Later on Maxwell engineering replaced the Kepler architecture.

2.2.6 Maxwell Architecture
Maxwell is the next GPU microarchitecture in the development chain of NVIDIA after Kepler

microarchitecture. Newer versions of Maxwell architecture use new chip code unlike the older

7

versions used chip of Kepler. These chips gave consumers few features as NVIDIA focused

more on the power efficiency of GPU. In Kepler the L2 cache was 256 KiB whereas on

Maxwell, it is 2MiB, which decreases the want for more memory bandwidth. Therefore,

reducing the memory bus from 192 bit in Kepler to 128 bit in Maxwell; a further power saving.

In Maxwell, the streaming multiprocessors were redesigned, partitioned and named SMM as of

the previous layouts from Kepler. Despite the texture units and FP64 CUDA cores still shared,

the structure of the warp scheduler was the same as on Kepler. On the other hand most execution

unit layout were divided to allow each warp schedulers in an SMM control one set of 32 FP32

CUDA cores, one set of 8 load/store 15 units and one set of 8 special function units. In

comparison to Kepler, where each SMX has four schedulers that schedule to a shared pool of

execution units [8].

2.2.7 Pascal Architecture
After Maxwell architecture, Pascal architecture is the newest addition to the chain of NVIDIA

GPU architecture, introduced in April 2016 with the GP100 chips. The name is derived from the

17th century, French mathematician, physicist Blaise Pascal. In Pascal , 64 CUDA cores are used

in the SM (Streaming multiprocessor), whereas there were 128 cores in Maxwell, 192 cores in

Kepler, 32 cores in Fermi and 8 cores in Tesla. The GP100 SM is divided in two processing

blocks where each block contains 32 single precision CUDA Cores, a wrap scheduler, an

instruction buffer, two dispatch units and two texture mapping units [9]. Most importantly it

supports CUDA Compute Capability 6.0.

2.2.8 Titan Architecture

The newest and most advanced NVIDIA GPU till date is the Titan V Volta. It is based on the

GV100 GPU architecture which features a total of 5120 CUDA cores along with 320 texture

units. On contrary, there are 640 Tensor Cores inside the Volta GPU also. This is the exact same

amount of cores featured on the Tesla V100. These arrangements are made for maximizing the

performance of deep learning, for algorithms which are related to artificial intelligence and

clocked to 1200 MHz base and 1455 MHz boost and comes in a 250W package. Despite the

heavy specs it requires only one 8 and 6 pin power connector to boot [27].

8

2.3 CUDA Overview
CUDA(Compute Unified Device Architecture) which is a NVIDIA GPU architecture that is in

GPU card made for programming general purpose computation on parallel GPU architectures,

launched in 2007 [31]. It has positioned itself as a whole new meaning for general purpose

computing with GPUs. CUDA uses extension of C++ known as CUDA C for programming

purpose. CUDA provides advantage of huge computational power to the programmer and it is

famous among them since it gives a lot of freedom to work on. Depending on GPU models,

CUDA has many cores which works side by side. Here cores can communicate and also they can

exchange information with each other so that, running multithreaded application there is no need

for streaming computing in GPU [32]. As previously mentioned CUDA uses C programming

language, as GPU possesses a large amount of threads and each can execute the same code in

parallel but here all the threads are executed using same code but different data. CUDA programs

consist of one or two parts that is 16 executed either on host (CPU) or device (GPU). Depending

on how much parallelism there is, it is better to execute codes in CPU if it involves little

parallelism but GPU becomes a much better alternative when the code involves huge parallelism.

This is due to transfers or copy of data from host to device or device to host which have a

negative impact on both execution time and power consumption, hence simple codes are not

meant for parallel execution as it may take longer due to these data transfers but executing

complex codes in a GPU are a far better option than executing on the CPU as it overcomes data

copy speed and hence boosts performance.

9

 Figure 1: Processing flow on CUDA

In Figure 1 [26], we can see the processing flow on CUDA. Every algorithm has two parts, data

dependent and data independent. Data dependent part is not sent to GPU as it takes time to copy

from CPU to GPU which is not beneficial. On the other hand data independent part is sent to

GPU for parallelism which makes the algorithm efficient.

2.3.1 Units of CUDA
In this part we are going to discuss about those basic units of CUDA, kernel, thread, block, grid

that it uses to execute and run a program.

10

2.3.1.1 Kernel

In CUDA CPU and its memory is known as host and GPU and its memory refers to device. Code

run on host can manage both memory on host and device and launches kernel, special function,

which are executed on device. A kernel is called to execute parallel functions and defined by

using _global_ declaration specifier. For a given kernel call, a specific kernel is being executed

by how many number of CUDA threads is specified using a new <<<...>>> execution

configuration syntax. A particular thread ID is assigned to each thread that executes the kernel

that is usable through the included threadIdx variable [17]. Shown in Figure 2

 Figure 2: Kernel

2.3.1.2 Grid
A group of threads all running the same kernel is called a grid. Threads here are not

synchronized. One grid is able to make every call to CUDA from CPU. Starting a grid on CPU is

a synchronous operation but multiple grids can run at once. For maximum efficiency, several

11

grids are being used by GPUs as grids cannot be shared between GPUs on multi-GPU systems

[23], which is shown in Figure 3.

 Figure 3: 1D Grid

2.3.1.3 Block

Blocks make up a grid. Each block is a logical unit containing a number of coordinating threads,

a certain amount of shared memory. Blocks are not shared between multiprocessors just as grids

are not shared between GPUs. All blocks in a grid use the same program. To identify the current

block, a built in variable "blockIdx" can be used. Block IDs can be 1D or 2D (based on grid

dimension). Usually there are 65,535 blocks in a GPU [23]. Shown in Figure 4

12

 Figure 4: 1D Block

2.3.1.4 Thread

Blocks are composed of threads. Individual cores of the multiprocessors runs all the threads, but

unlike grids and blocks, they are not restricted to a single core. Like blocks, each thread has an

ID (threadIdx). Based on block dimension, thread IDs can be 1D, 2D or 3D. The thread id is

relative to the block it is in. Threads have a certain amount of register memory. Usually there can

be 512 threads per block [23].

2.3.2 Memory Units in CUDA

2.3.2.1 Global Memory
This memory is used for both read and write but is slow on copying. It needs sequential and

aligned 16 byte read/writes to be fast. This memory is also known as device memory [23].

13

2.3.2.2 Shared Memory

This memory is common for all threads in a block and those blocks can use this memory for read

and write operation. Its size is smaller than global memory [23].

2.3.2.3 Constant Memory

It is slow but with cache and read only memory. Constants and kernel arguments are stored here

[23].

2.3.2.4 Texture Memory

It is a read only memory and its cache is optimized for 2D spatial access pattern [23].

2.3.2.5 Local Memory

It is generally used for whatever does not fit into register but it is slow and does not have cache.

Allows automatic coalesced reads and writes [23].

2.3.2.6 Registers

This is the fastest memory among all. One set of register memory is given to each thread and it
uses them for fast storage and retrieval of data like counters, which are frequently used by a
thread [23]. Shown in Figure 5.

 Figure 5: Memory Model of CUDA

14

2.4 Difference between CPU and GPU
Processing of tasks by CPU and GPU is different from one another, as there are few CPU cores

that are responsible for sequential serial processing whereas the GPU supports thousands of tiny

and much more efficient cores which can carry out numerous concurrent processes. Thus the

massively parallel architecture enables GPU to carry out functions in a much faster and more

efficient way than CPU [15]. There are more differences between CPU and GPU which are given

in the Table 1.

 Table 1: Differences between CPU and GPU [23]

 CPU GPU

1. Hides memory latency via hierarchy of
caches

1. Memory latency not hidden by large cache

2. Really fast caches (great for data reuse) 2. Lots of math units

3. High performance on a single thread of
execution

3. High throughput on parallel tasks

4. CPUs are great for task parallelism 4. GPUs are great for data parallelism

5. Lots of different processes/threads 5. Run a program on each fragment/vertex

6. Fine branching granularity 6. Fast access to onboard memory

7. CPU optimized for high performance on
sequential codes (caches and branch
prediction)

7. GPU optimized for higher arithmetic
intensity for parallel nature (Floating point
operations)

8. Most die area used for memory cache 8. Most die area used for ALUs

15

 Figure 6: CPU architecture

 Figure 7: GPU architecture

16

Chapter 3
Methods and Implementation Detail

3.1 Run Length Encoding Algorithm
Run-length encoding (RLE) is a very straightforward lossless data compression algorithm where

runs of data which is sequence of same data value exists in consecutive data elements stored as a

single data value and count, as opposed to the original runs. This technique becomes more

convenient where the data set contains many such runs for example, in simple graphics images

animations, icons and line drawings. Its usefulness or the performance of the program

deteriorates with files that don’t have many runs as it will lead to an increase in the file size

substantially [28].

3.2 How RLE Works

Run Length Encoding works by replacing the sequences of same string of characters. It replaces

the sequences of repeating string or same data values within a file, called a run, to an encoded

two bytes. The first byte is used for the representation of the number of characters in the run,

called the run count. An encoded run in custom may contain 1 to 128 or 256 characters.

However, the run count is the number of characters minus one which is a value in the range of 0

to 127 or 255. Lastly, the second byte determines the value of the character in the run in the

range of 0 to 255, known as the run value.

A simple example can be as follows: Suppose a string has the following characters;

TTTTTTTTEEEEEESSSSiiiiiSSSSSSSSS.

After running RLE compression, the above string will be represented as 8T6E4S5i9S, called

RLE packet. As a result, the 32-byte string would be compressed to ten (10) bytes of data. Every

time there is a change in data set, there is change in the run characters accordingly [12][27]. The

flowchart of RLE is given in Figure 8.

17

 Figure 8: Flowchart of RLE (Run Length Encoding) Algorithm

18

The attributes in Figure 8 are as follows:

int* in - pointer for input array.

int n - size of the input array.

 int* symbolsOut - pointer for symbols out array

 int* countsOut - pointer for counts out array.

int outIndex - the last index for symbols out array.

int symbol - simple integer for comparing elements of the input array.

int count - keep count of the number of elements appearing [11].

3.3 Optimization Techniques
In the CUDA implementation of Run-Length algorithm, where we have taken the serial code and

applied parallelism with techniques. To launch the kernels, Hemi library is being used where it

will automatically choose grid and thread block size for the specific graphics card. Then the

execution time efficiency of the parallel implementation is observed over the serial execution

time [11]. For further optimization few of the techniques are used which are being discussed

below.

3.3.1 Pinned Memory Optimization

In parallel computing, data must be transferred from the host (system) memory to the device

(GPU) memory. After the data is processed, the results transfer back to the host from the device.

Such back and forth transfers takes place many times and affects negatively on the execution

time and the overall efficiency of the code.

Data allocations in CPU (host) are pageable by default. When transfer of data from CPU (host)

to GPU (device) is invoked, the GPU cannot access the data directly from pageable host memory

rather the CUDA driver assigns the host array to the pageable memory then the host data is

copied to the pinned array then finally the transfer of the host data takes place from the pinned

memory to the DRAM of the device as shown in Figure 9 [13].

19

 Figure 9: Pageable and Pinned Data Transfer

As shown in the Figure 9, it is possible to avoid data transfer between the pageable memory to

the pinned memory by assigning the host array directly to the pinned memory. This reduces a

significant data transfer time which ultimately improves the throughput. In CUDA C/C++,

assigning pinned host memory is done using cudaMallocHost() or cudaHostAlloc(), and

deallocate it with cudaFreeHost() [13].

We used the keywords cudaMallocHost() to allocate our input array with pointer h_in and then

used cudamemcpy to copy our input array with pointer h_in to the array allocated on the GPU

with pointer g_in. After that we reviewed the copying time using nvcc profiling tool.

3.3.2 Reduced Kernel Overhead

Cost in terms of execution time is severe and also a negative impact on performance is due to the

overhead launching of kernels where the kernels are launched many times by the CUDA

application. To minimize the impact of this overhead, the primary focus should be given on

increasing the amount of work performed in each kernel call and minimizing the total number of

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g9f93d9600f4504e0d637ceb43c91ebad
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g15a3871f15f8c38f5b7190946845758c
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1gedaeb2708ad3f74d5b417ee1874ec84a

20

kernel calls. Subsequent kernel calls heavily improves the performance because kernel

invocations are asynchronous in the recent CUDA API versions. Multiple kernel calls will be

batched in the CUDA driver if developers can call kernels numerous times without intervening

synchronization such as in memory transfers.

For our parallel algorithm we had 3 kernels in total. First we tried merging two and then all three.

For small datasets the merge didn't seem that effective but after increasing it by a significant

amount we achieved our desirable results [18].

3.3.3 Shared Memory

One way to make CUDA codes more optimized is to use the shared memory feature. As shared

memory is located on chip it is much faster for accessing data. All threads in a thread block

shares the shared memory as it provides a way for the threads to cooperate. Using shared

memory is much faster compared to global or local memory as it is on chip, in fact the latency of

shared memory is hundred times lower than uncached global memory latency given that no bank

conflicts exists between the threads. All threads in a thread block are able to access the same

shared memory because shared memory is assigned per thread block. Data from shared memory

is loaded from global memory by threads in the same block so that other threads can have an

access to the stored data [20].

While using shared memory we definitely benefited a lot but were limited to a data set of only

10,000 since it is cached memory. Since our testing GPU was a normal one 1050 ti we were not

able to exceed this limit. But however if we had the latest hardware like the titan x we could have

made great optimization with shared memory since its cache size can hold a lot more.

21

Chapter 4

Experimental Result

4.1 PC Configurations
To analyze the performance of CUDA implementation, we used a GeForce GTX 1050TI card

with CUDA version 9 installed on a machine with Intel(R) Core(TM) i3-540 CPU running at

3.30GHz. The CPU implementation of RLE is also tested on the same PC.

4.2 Datasets

For our experiment we were able to use 3 sets only since trying to transfer data which is more

than 10^8 results in memory error as it is too much to allocate for our for our Device memory.

● First set = 8 elements

● Second set = 10,000,000 elements

● Third set = 409,999,999 elements

4.3 Execution Speedup

For benchmarking, data allocation and uploading was done beforehand. This ensures that we will

only be testing the actual performance of the algorithm on the GPU, and not the transfer

operation performance from the CPU to the GPU, but we will get into that later.

Software used were Visual Studio for compilation and profiling was done with command line

nvcc profiler.

At first we converted our serial program to parallel program. For parallel we used hemi library

which allocated thread size and block according to the GPU’s architecture hence much better

than manual kernel allocation.

22

Below are the experimental results of converting the serial algorithm to our parallel algorithm

shown in Table 2.

(Times faster was calculated by dividing the serial time result by the parallel time result.)

(Test results are in milliseconds)

Table 2: Comparison of CPU execution time and GPU execution time of RLE

 First-set Second set Third Set

Serial 1 millisecond 49 milliseconds 2791 milliseconds

Parallel ms 0.88485 millisecond 39.476 milliseconds

Times faster 5.6 55.37 70

Observation of these results shows that parallel implementation of the serial algorithm helped

speedup execution time by a significant amount. Also higher the dataset in value, more the

speedup achieved. A bar chart illustration is given Figure 10, Figure 11 and Figure 12.

23

 Figure 10: CPU and GPU execution time for dataset 1

Here in Figure 10 we can see that our implementation was only 5 times faster, reason being
accessing 8 elements of a single array is not a CPU intensive task hence we did not achieve much
benefit of running it in parallel.

 Figure 11: CPU and GPU execution time for dataset 2

In Figure 11 for Dataset 2 of 10^7 elements, we see a much better increase. Since accessing 10^7
elements by a single cpu thread takes quite some time as it access each element one by one hence

24

going through the loop 10^7 times. Here parallelism really works since all of those elements are
each being accessed by thousands of threads separately and so an increase of around 55 times
was achieved.

 Figure 12: CPU and GPU execution time for dataset 3

As seen in the charts in Figure 10 and 11, the larger our dataset, more intense processing needed
for the CPU but a lot easier for the GPU due to its multiprocessor each having thousands of
threads running in parallel. So in Figure 12 , using dataset 3 where there are 4 * 10^8 elements
approximately, we see even a better increase in performance that dataset 2 which is around 70
times.

We were quite happy seeing the results as we achieved significant increase in performance

reducing the execution time. But we wanted to further optimize our parallel algorithm and so we

did that by the use of these two techniques.

1) Reduced kernel overhead

2) Shared memory

4.3.1 Reduced kernel overhead
Using kernel overhead reduction technique on our already implemented parallel program we

were able to achieve these results shown below in Table 3:

(Times faster was calculated by dividing the serial time result by the parallel time result).

25

(Test results are in milliseconds.)

 Table 3: Execution speedup using reduced kernel overhead technique

Dataset Original results (ms) After optimization (ms) Times faster

First set 0.17824 0.16840 1.0584

Second set 0.88485 0.08642 10.2389

Third set 39.476 2.8866 13

A bar chart illustration of the table above is given below in Figure 13, Figure 14 and Figure 15.

Figure 13: Execution speedup using reduced kernel overhead for dataset 1

As seen previously, smaller dataset leads to very low amounts of speedup .So even after
optimizing it with kernel overhead , our speedup was only about 1.05 times faster in Figure 13.

26

Figure 14: Execution speedup using reduced kernel overhead technique for dataset 2.

In Figure 14 , it seems using overhead did optimize the code further, reason being calling each
kernel over and over again is a costly operation , hence after merging all 3 of our kernels and
using dataset 2 our parallel program was faster by 10 times.

Figure 15: Execution speedup using reduced kernel overhead technique for dataset 3

In Figure 15, we can see it being around 13 times faster which is a bit faster than results obtained
in Figure 14, which is about right since all overhead does is merge kernels lowering kernel calls

27

and that's how it saves time, not by deploying extra threads. Hence the speedup is not anything
like 50 or 60 times faster rather its a few times faster.

Therefore performance increase using just Kernel overhead reduction and normal parallel

optimization is shown in Table 4.

Table 4: Combined performance increase using Kernel overhead reduction and normal parallel

optimization.

Dataset Times faster

First set 5.6104

Second set 566

Third set 966.88

 A remarkable increase in speedup is observed in Table 4 after implementation of both normal
parallel optimization and Kernel overhead reduction.

4.3.2 Shared Memory

For shared memory we used the first data set of 8 and a new data set of 10,000 since our GPU

did not have enough memory to allocate more than that.Shared memory was implemented after

implementation of both normal parallel optimization and Kernel overhead reduction.

Shown in Table 5.

28

Table 5: Shared memory implementation

 First Dataset Set of 10,000

Not shared 0.168400 0.011776

Shared 0.006112 0.001312

Times Faster 16.866987 8.9560

A bar chart illustration of the table above is given below in Figure 16 and Figure 17.

 Figure 16: Speedup comparison of shared memory for dataset 1

As seen in Figure 16 , using shared memory with the First dataset gave us quite a big increase in
performance. The reason for that is global memory is a lot slower than shared memory and
loading an array of only 8 elements into shared memory is not an intensive task for the GPU.

29

 Figure 17: Speedup comparison of shared memory for set of 10,000

In Figure 17 we can see that for a dataset of around 10^4 elements it's only 8.9 times faster,
much lower than the smaller dataset of 8 elements. This is due to loading an array of 10^4 into
shared memory takes a lot more time than loading an array of 8 elements only.

The GPU used here is only capable of storing dataset of 10^4 elements in its shared memory, but
if we had a GPU like Titan X, a much more powerful device than the NVIDIA GeForce GTX
1050TI, we could have included our original data sets 2 and 3. For a flagship GPU like Titax X,
our implementation of shared memory on data set 1 would have been at least twice that of our
card, so it would be 32 times faster, and our second dataset would be at least 16 times faster.
Keeping this fact in mind we can say that our data sets 2 and 3 will atleast get a performance
boost of 8.9 times.

Therefore in conclusion , after taking the serial program and converting it to parallel and then

further optimizing it with the two techniques , Kernel reduced overhead and shared memory, our

final performance gain for all three data sets are shown in Table 6 below :

30

Table 6: Final results for execution speedup

 First set 94.6305

 Second set 5082.68

 Third set 8605.23

4.4 CPU to GPU Transfer Time
Now, we wanted to analyze our CPU to GPU transfer operations which are costly and then

optimizing them by using

1) Reduced kernel overhead

2) Pinned memory optimization.

4.4.1 Reduced Kernel Overhead
Using kernel overhead reduction on data set 3, the results achieved are shown in Table 7.

Table 7: Data Transfer from CPU to GPU using reduced kernel overhead technique

 Normal Reduced Overhead Times faster

Data Transfer From
CPU to GPU

327.76 milliseconds 260.77 milliseconds 1.25689

 A bar chart illustration of the table above is given below in Figure 18.

31

Figure 18: Bar chart of data transfer from CPU to GPU using reduced kernel overhead technique

In Figure 18, we can see that we achieved a boost of about 1.25 times. This is because when our
3 kernels merged to only one , our CPU to GPU copy (cudamemcpy()) only got called once
whereas for 3 kernels it had to be called 3 times. It was not such a big increase since amount of
elements to be copied did not change, just the kernel calling cost of cudamemcpy() had
decreased.

4.4.2 Pinned Memory Optimization
Using pinned memory on set three we achieved

 Table 8: Data Transfer from CPU to GPU using pinned memory optimization technique.

 non-pinned pinned Times faster

Data Transfer From
CPU to GPU

304.54milliseconds 127.93milliseconds 2.38052

 A bar chart illustration of the table above is given below in Figure 19.

32

Figure 19: Data transfer from CPU to GPU using pinned memory optimization technique

As seen in Figure 19, pinned memory helped us decrease copy time by about 2.38 times. It's not
a big increase since the same amounts of copy is still being done. Only difference is the copy
time of elements from pageable memory to pinned memory which is no longer in the equation.

So, for CPU to GPU data transfer by using both kernel overhead reduction and pinned memory

optimization the total performance gained is shown in Table 9.

 Table 9: Final results for CPU to GPU transfer time

Times Faster Seconds saved in milliseconds

2.99205 236.61

33

Chapter 5

Conclusion and Future Works
5.1 Conclusion

In this paper we have shown how a serial implementation of Run Length Encoding algorithm can

be made much more efficient through reducing the execution time by using parallel

implementation and then using various optimization techniques on the parallel implementation.

We have seen as the data set gets larger our parallel program shows more increase in

performance. Hence concluding the fact that more the data, faster the parallel program will be

compared to the serial one. Several datasets were used to show and compare the execution time.

A gradual increment of speedup is observed with the increasing number of data. Our main focus

was to execute a parallel implementation of a serial code and observe/compare its execution time

and how using optimization techniques affects the overall performance of an algorithm. We were

quite happy seeing the results as we achieved significant increase in performance.

5.2 Future Work
Run Length Encoding algorithm is a lossless data compression algorithm which comes in handy

in any online media transfer such as in social media sites which needs compression of its data to

lower its network bandwidth consumption. In order to be more efficient in bandwidth

consumption, the parallel implementation with the optimization techniques used will play a

crucial role. In future this knowledge could help us a lot due to growing demand for faster and

reliable transfer of media data.

34

References

[1] X. Tian, R. Xu, Y. Yan, S. Chandrasekaran, D. Eachempati, and B. Chapman, "Compiler
transformation of nested loops for general purpose GPUs," Concurrency and Computation:
Practice and Experience, vol. 28, no. 2, pp. 537–556, Aug. 2015.

[2] K. Barkalov and V. Gergel, "Parallel global optimization on GPU," Journal of Global
Optimization, vol. 66, no. 1, pp. 3–20, Feb. 2016.

[3] Wiggins, N. Schultz, and P. Schmidt, “Nvidia’s gpgpu architecture: Fermi and cuda,”
Oregon State University, Tech. Rep., 2010.

[4] NVIDIA, “Nvidia launches the world’s first graphics processing unit: Geforce 256,” August
1999.

[5] NVIDIA (2016). NVIDIA Tesla P100. Retrieved from
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

[6] NVIDIA (2009). NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
Retrieved from
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architectu
re_Whitepaper.pdf

[7] NVIDIA (2012). NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110.
Retrieved from https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

[8] Smith, Rayan (2014, September 18). The NVIDIA GeForce GTX 980: Review: Maxwell
Mark 2. Retrieved from

https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/2

[9] Whitepaper, “NVIDIA TESLA P100,” 2006. Retrieved from
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.

.

35

[10] L. Nyland and S. Jones, Inside Kepler, NVIDIA Corporation.

[11] Implementing Run-length encoding in CUDA. (n.d.). Retrieved from
https://erkaman.github.io/posts/cuda_rle.html.

[12] Fileformat.info. Run-Length Encoding (RLE). [online] Available at:
http://www.fileformat.info/mirror/egff/ch09_03.htm.

[13] How to Optimize Data Transfers in CUDA C/C. (2017, June 20). Retrieved from
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

[14] RLE compression. (n.d.). Retrieved from https://www.prepressure.com/library/compression-
algorithm/rle

[15] NVIDIA on GPU Computing and the Difference Between GPUs and CPUs. (n.d.).
Retrieved from http://www.nvidia.com/object/what-is-gpu-computing.html.

[16] CUDA Memory Model. (2013, November 26). Retrieved from
https://www.3dgep.com/cuda-memory-model/

[17] "NVIDIA - Kernel,". [Online]. Available: https://docs.nvidia.com/cuda/cuda-
cprogramming-guide/#kernels. Accessed: Nov. 19, 2016.

[18]. Optimization Techniques. Retrieved from
http://www.cs.virginia.edu/~mwb7w/cuda_support/optimization_techniques.html.

[19] Reduced kernel overhead.Retrieved from
http://www.cs.virginia.edu/~mwb7w/cuda_support/kernel_overhead.html.

[20] Using Shared Memory in CUDA C/C. (2017, August 17). Retrieved from
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/

36

[21] Retrieved from https://devtalk.nvidia.com/default/topic/463301/cuda-programming-and-
performance/using-async-memcopy-without-using-cudamallochost-cudahostalloc-/

[22] How to Optimize Data Transfers in CUDA C/C. (2017, June 20). Retrieved from
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

[23] J. Ghorpade, "GPGPU processing in CUDA architecture," Advanced Computing: An
International Journal, vol. 3, no. 1, pp. 105–120, Jan. 2012.

[24] Using Shared Memory in CUDA C/C. (2017, August 17). Retrieved from
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/

[25] C. Cooper(2011), Efficient shared memory use, GPU computing with CUDA. Retrieved
from https://www.bu.edu/pasi/files/2011/07/Lecture31.pdf.

[26] Nambiar, P. P., V., S., & Sowbarnika, V. (1970, January 01). GPU Acceleration Using
CUDA Framework. Retrieved from http://www.rroij.com/open-access/gpu-acceleration-using-
cuda-framework.php?aid=51399.

[27] Mujtaba, H. (2017, December 09). First NVIDIA Titan V Volta Graphics Card Gaming
Benchmark Revealed. Retrieved from https://wccftech.com/nvidia-titan-v-volta-gaming-
benchmarks/

[28] Stoimen's web log. (n.d.). Retrieved December 21, 2017. Retrieved from
http://www.stoimen.com/blog/2012/01/09/computer-algorithms-data-compression-with-run-
length-encoding/

[29] Whitepaper, “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi” 2009.
Retrieved from
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architectu
re_Whitepaper.pdf

37

[30] The World’s First GPU, GeForce 256. Retrieved from
http://www.nvidia.com/page/geforce256.html

[31] CUDA Zone. Retrieved from https://developer.nvidia.com/cuda-zone

[32] An Easy Introduction to CUDA C and C. (2017, August 17). Retrieved from
https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/

