Towards a Cross Platform Solution to Share
Small Scale Data Across Smart—Devices
Using Audio Waves

A prototype development in Android Environment

Submitted in partial fulfillment of
the requirements for the award of the degree of

Bachelor of Science
in
Electronic and Communication Engineering

&

Electrical and Electronic Engineering

Submitted by

Roll No Names of Students

13110028 S. M. Ferdous Hasan
13110001 Adnan Bin Murshed
13321086 Ahrar Hayat

Under the supervision of
Rachaen Mahfuz Huq
Lecturer, Department of Electrical and Electronic Engineering,
BRAC University, Bangladesh

BRAC

UNIVERSITY
Inspiring Excellence

Department of Electrical and Electronic Engineering
BRAC UNIVERSITY
66 Mohakhali, Dhaka — 1212

Department of Electrical and
Electronic Engineering

BRAC UNIVERSITY

Certificate

This is to certify that this is a bonafide record of the thesis presented by the
students whose names are given below from January, 2016 to December, 2016
in partial fulfilment of the requirements of the degree of Bachelor of Science
in Electronic and Communication Engineering & Electrical and Electronic
Engineering.

Roll No Names of Students

13110028 S. M. Ferdous Hasan
13110001 Adnan Bin Murshed
13321086 Ahrar Hayat

Rachaen Mahfuz Huq
(Thesis Supervisor)

Date:

Acknowledgments

We would like to seize the opportunity to express a big thanks to those who
helped us conduct this graduation project. Special thanks to our supervisor,
Rachean Mahfuz Huq, Lecturer , Department of Electrical and Electronic
Engineering who made it possible by supervising us from the start to finish.
Lastly, thanks to BRAC University for all their logistic assistance with it’s
resources, such as workstations which helped the smooth finish of the project.

Abstract

In the present era of research on Internet of Things (IoT) and Machine-
type-Communications (MTC), there is a growing need of cross platform so-
lutions for short range communication techniques between machines. The
short range communication standards of present day (Wi-Fi, Bluetooth etc)
were mainly developed for large data streams, but machine type communi-
cations data are usually smaller in size, less complex in nature, but more
frequent and more congestive due to the deemed large volume of participa-
tory devices at a particular area. In this project we explored the potential
of audio waves as a interoperable cross-platform solution for small scale data
and short range Machine-type-Communications (MTC).

Contents

Acknowledgments 2
1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Area 2
1.3 Previous Works 3
1.4 Research Gap and Contribution of the Thesis 3
1.5 Research Question 4
1.6 Outcome of the Thesis 4
1.7 Methods Adopted 5
1.8 Summary of the Following Chapters 6

2 Theoretical Background 7
2.1 Data Communication [6] [7] 7
2.1.1 Data Communication System and its Components . . . 7

2.1.2 Character Encoding 7

213 Dataflow 8

2.2 Transmission of Data 8
2.2.1 Analog and Digital Signal 8

2.2.2 Composite Analog signal 8

2.3 Digital to Analog signal 9
2.3.1 Amplitude Shift Keying 9

2.3.2 Phase Shift Keying 10

2.3.3 Frequency Shift Keying 11

2.3.4 Implementation of Binary FSK 12

2.4 Analog to Digital Conversion 13
2.4.1 Pulse Code Modulation 14

2.5 Zero Crossing 14
2.5.1 Zero-crossing Detection 15

2.6 Root Mean Square Amplitude [15] 15

2.7 Android Sensor Programming Background and Android Envi-
ronment ..o Lo

3 Design Method
3.1 Transmitter Architecture

3.1.1 Encoding

3.1.2 Playing Analog Signal

3.2 Receiver Architecture
3.2.1 Recording the Sound Played
3.2.2 Sampling
3.2.3 RMS Amplitude Calculation
3.24 Decodingo
3.25 BinarytoData 0oL

3.3 Design Consideration

3.4 Design challenges 0oL

3.5 The Prototype Transmission Simulation

4 QOutcome of the Thesis

4.1 Test results and Performance of the Application
4.2 Key Findings o

5 Conclusion and Future Work

5.1 Concluding Remarks
5.2 Future works and Development Opportunities

References

i

19
19
21
21
22
22
23
23
23
24
25
25
26

27
27
31

33
33
33

35

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2

Devices in a smart city capable of M2M communictions
Overview of the mechanism of the application

Waveform of a binary ASK signal
Waveform of a binary PSK signal
Waveform of a binary FSK signal
Implementation of binary FSK
Block diagram of PCM encoder
Zero-crossing in a waveform representing amplitude vs time . .

Data communication Block
Block Diagram of Transmitter’s mechanism
Block diagram of Receiver Architecture
Block diagram for zero-crossing detection

Various levels of accuracy of the received data
Received signal in frequency domain (Generated by Spectrum
Analyze application)

1il

List of Tables

4.1 Application performance with minimal closed room noise . . . 28
4.2 Application performance in presence of loud music as noise . 29
4.3 Application performance with a quality speaker 30

iv

Chapter 1

Introduction

1.1 Background and Motivation

In modern day telecommunication there are several techniques of transmit-
ting and receiving data, each uses different methods and media. Radio
frequency electromagnetic waves play a major role in day to day wireless
communication, such as with GSM, Bluetooth, Wi-Fi along with other elec-
tromagnetic waves such as infrared [1]. Machine to machine (M2M) commu-
nication is the direct communication between devices with little or no human
intervention[2]. By 2020, it is predicted that there will be 50 billion[3] con-
nected devices in the world, those devices will have hundreds of different
manufacturers and the manufacturers will have hundreds of different plat-
forms. Therefore, these devices will require a cross platform communication
solution between them in order to have interoperability. Interoperability be-
tween devices will have a key role in M2M communication. The sound waves
can be used for such short range M2M communications. Using sound waves
for M2M communication will require only a set of working speaker and mi-
crophone, without the need of a separate embedded antenna pair which any
existing short range radio frequency communication protocol would require
for transmission and reception. Therefore, the sound wave can be used as an
alternative media for M2M communications. Thus, our motive is to develop
a technique which uses the sound wave as a possible alternative to the various
conventional existing technologies that uses the electromagnetic spectrum for
transmitting and receiving small data in close proximity.

1.2 Problem Area

Internet of things is the internetworking of physical devices to exchange in-
formation between them [3]. In the era of Internet of things, sound waves
could play a major role. Development of smart cities have been rising rapidly
and is in desperate need of machine to machine communication. An ideal
smart city would take advantage of smart devices to communicate in day to
day activities. Smart devices and autonomous machines can communicate
with each other using sound waves for numerous applications. Autonomous
machines used at home and in the commercial industry such as printers,
computers, refrigerators, TV remotes, air conditioners, vehicles, electronic
equipment in smart grid such as transformers, factory equipment may de-
velop the use of ultra-sonic sound waves in order to communicate.Refer to
the Figure 1.1 for a visual representation of a smart city using machine to
machine communications.Therefore, for developing a smart city, companies
may use this technology to develop autonomous machines that would be com-
patible for using sound spectrum as the transmission media.

Figure 1.1: Devices in a smart city capable of M2M communictions

1.3 Previous Works

The idea of using sound waves as a medium of transmission was used to
implement certain applications before. Using public switch telephone net-
work to connect to the internet via a dial-up modem was a popular design
in the past [4]. In order to connect to the internet, the regular telephone
land line cable would be connected to a dial-up modem and an output cable
from the modem was connected to the computer, the data was encoded and
transmitted to be decoded at the receiving side. All the data transfer was
completed using the sound spectrum which used transmission methods such
as Frequency Shift Keying and Quadrature Amplitude Modulation [4]. Pre-
vious works on the development of the Internet of Things have been done.
Tan et al.[5] proposes the development of the Internet of Things using Ra-
dio Frequency Identification (RFID) techniques. The paper discusses how
human to human communication evolves into human to machine communi-
cation and eventually transforms into M2M. Therefore, previous works used
sound waves, but for a different purpose, also previous works were on pro-
posed development on the Internet of Things but did not use sound waves
to do so.

1.4 Research Gap and Contribution of the
Thesis

Previous works on the quest to achieve a cross platform solution have left
gaps in the research that are yet to achieve closure. The research gap lies
due to unavailability of a cross platform between devices. In this thesis, we
focus on the development of using sound waves as a communication media
to achieve interoperability between devices, so that we can finally close the
gap in research. As mentioned before in section 1.1 there will be 50 billion
connected devices across the globe by 2020 [3]. However, it is unlikely for
the devices to use the same technology. The 50 billion devices will have
different manufacturers, that is why they will have different operating sys-
tems and hardware. A device that uses Wi-Fi or NFC may not be capable
of communicating with a device that does not use Wi-Fi or NFC. Even if
the devices have the hardware to use such technologies, they might not be
able to communicate due to nonconformity in the software. Therefore, the
need for a cross platform solution is crucial for the development of machine
to machine communication. Specifically, the use of sound spectrum may be
vital for the development of a cross platform standard. Hence, the gap in
the research may finally achieve closure with a cross platform solution. This

thesis contributes to that development by providing a model and an android
application, capable of communicating using sound waves, only requiring the
device to have working speakers and a microphone. The basic algorithm of
the technology is, to input bit streams containing the data, and transmitting
them by sound waves with frequency in the audible range, at the receiver,
the sound is received by the microphone and the original information trans-
mitted is extracted. Therefore, the sound waves may play a pivotal role in
the future developments of Internet of Things.

1.5 Research Question

“How to achieve a cross platform in-

teroperable solution to small scale data
transfer for machine to machine com-

munication application ?”

1.6 Outcome of the Thesis

Our main goal was to transmit a data or key via sound waves. The entire
process was done in several unique steps which are mentioned above and
elaborated in the later parts. All these steps together form an algorithm
which is not only applicable for the android platform but also almost all
other machines and devices that might require doing the same task on sim-
ilar conditions. Hence, the algorithm itself is one of the basic and tested
outcome of our thesis work. Secondly, the application which is developed is
also unique in its nature in sensor based android application platform and is
also an important outcome of the thesis. Besides, the research paper can be
used for further research work whenever any research group would want to
carry on their thesis on this field. It is one of the most vital outcome since not
much of any research work has been previously done on this topic. Lastly,
the test results by varying various parameters such as the high and low fre-
quency, sampling rate, noise canceling Root Mean Square (RMS) value used
in the application, distance, error rate and effect of hardware on the overall
performance of the system is also an outcome to understand the efficiency
and applicability of sound as an alternative form of energy other than the
conventional electromagnetic wave to send and receive small scale data on a
short distance between devices running on different platform.

1.7 Methods Adopted

The android application is developed using Android Studio and a number
of algorithm compiled in Java. The basic idea of transmitting data using a
audio wave is to convert a digital data into analog signals with two different
frequencies so that a binary 1 or a 0 can be distinguished at the receiver in
order to successfully decode the encoded data. As sound wave is analog and
out data is digital, binary frequency shift keying is used for digital to analog
conversion. Then to transmit the data, an audio track which represents the
data is played by Android media player. The audio track of PCM format
was created by AudioTrack class and played through the speaker via android
music player function as audio sample.

On the receiver’s end the audio signal is recorded via android audio recorder
and after several evaluation steps to separate noise from original signal and
the frequencies from the recorded audio sample is figured out using zero-
crossing detection method. Then the final output is generated from the
detected frequencies in reverse process. Figure 1.2 shows the overview of the
working mechanism of the application.

TRANSMITTER RECEIVER
ToneTransfer ToneTransfer
Data Data
Digitalization of
data Analog to Digital

Conversion

Digital to Analog

Convertor
Android Android Audio
Audio Player |46 3 Recorder

) Play,/Record audio
Plzy/Record audio)

Figure 1.2: Overview of the mechanism of the application

1.8 Summary of the Following Chapters

The rest of the thesis is organized as follows. In Chapter 2, major definitions
of the methods adopted on the thesis and coding schemes is illustrated. This
chapter also points out the background on Android Sensor Programming.
Chapter 3 illustrates the step by step coding techniques for the development
of an Android application with public APIs. Design challenges and consid-
erations in developing the application is also pointed out here. Through the
experimental results, the performance of the application is evaluated in chap-
ter 4. Finally, we conclude the paper with discussion on the future work that
can be done in chapter 5.

Chapter 2

Theoretical Background

2.1 Data Communication [6] [7]

2.1.1 Data Communication System and its Compo-
nents

Data communication is the exchange of information between two or more
devices via transmission medium such as wired or wireless. For data com-
munication to occur, the communicating devices are also the part of the
communication system and those devices are the combination of hardware
and software. The data communication system consists of several compo-
nents depending on types of communication. The four primary components
are data, transmitter, receiver and transmission medium. The data to trans-
fer can be in different form such as text, number, images, audio, and video.
Besides devices may need to share code or key (combination of alphabet and
number) to exchange information between them. Throughout this paper, the
data will be considered as a key which will identify the file.

2.1.2 Character Encoding

In data communication, data to transfer is represented as a bit sequence
(0s and 1s). Different set of bit patterns have been designed to represent a
character. One of the character encoding techniques is UTF-8. UTF-8 is a
character encoding capable of encoding all possible characters, or code points,
defined by Unicode. UTF stands for Unicode Transformation Format. The
'8 means it uses 8-bit blocks to represent a character. A symbol or alphabet
in UTF-8 format usually contains 8-32 binary bits since it follows a variable
length encoding system.

2.1.3 Data flow

The communication between two devices can be of three types such as sim-
plex, full-duplex and half-duplex. The flow is unidirectional in simplex mode
and bidirectional in both half and full-duplex mode. The only difference
between half and full-duplex is that in full-duplex mode, the communicat-
ing devices can act like both transmitter and receiver simultaneously and in
half-duplex mode, the communicating devices can both transmit and receive
but in different time.

2.2 Transmission of Data

There are two different approaches to transmit a digital data from one device
to another [7].The approaches are baseband transmission and broad band
transmission (using modulation). Baseband transmission means sending a
digital signal over a channel without changing the signal to a analog signal.
Whereas, broadband transmission means changing the digital signal to an
analog signal before transmission. Generally, the data usable to an applica-
tion are not in a form that can be transmitted to a wireless medium. To
be transmitted in wireless medium data must be transformed to an analog
signal.

2.2.1 Analog and Digital Signal

Signal to represent a data, can be both analog and digital. The term analog
signal refers to a simple sine wave which have three characteristics: ampli-
tude, frequency, and phase. The term digital data refers to the data in form
of 0s and 1s that can be converted to an analog signal for transmission in
wireless medium. This analog signal can be captured by a microphone and
sampled and converted to a digital signal again. This how the transmission
of data occurs between two devices where one functions like a transmitter
and another as a receiver.

2.2.2 Composite Analog signal

Composite signal means a combination of simple sine waves with different
frequencies, amplitude and phases. For two devices to communicate needs
a composite signal created from a digital data. Modulation is a well known
process to convert digital data to a composite analog signal.

2.3 Digital to Analog signal

Digital to analog conversion (D/A) is a process of changing one characteristics
of an analog signal based on the digital data. When any characteristic of a
simple analog signal is varied, a different version of that signal is created. So,
by changing one characteristic of an analog signal, it can be used to represent
a digital data. Any of the three characteristics can be varied in this way, give
rise to three mechanisms for modulating digital data to an analog signal [8].
These mechanisms are:

e Amplitude Shift keying (ASK)
e Frequecy Shift Keying (FSK)
e Phase Shift Keying (PSK)

2.3.1 Amplitude Shift Keying

Amplitude Shift Keying is a modulation scheme used to transmit data by
changing amplitude of the carrier signal. Both frequency and phase remain
constant. In Data communication, ASK can be implemented using two levels
and this method is referred as binary amplitude shift keying or on-off keying
(OOK). As illustrated in Figure 2.1, let the binary data stream 101010 is to
be transmitted, the carrier signal will only appear for the time period only
when there is a high bit, otherwise it will be zero. Therefore, on the receiving
side, detecting any signal would mean a 1 and lack thereof would mean a 0
for a successful decoding of the modulated signal.

Carrier

o 5 T T T T
°
2
2 0
S
< _5 I I I I
0 0.2 0.4 0.6 0.8 1
Time
Square Pulses
) 4 T T T T
e]
2
S 2f SR ' ' .
S
< o 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Time
ASK Signal
m 10 T T T T
©
2
3 0f ;
g
_10 I 1 I 1
0 0.2 0.4 0.6 0.8 1
Time

Figure 2.1: Waveform of a binary ASK signal

2.3.2 Phase Shift Keying

In phase shift keying, the phase of the carrier is varied to represent two or
more different signal elements. Both peak amplitude and frequency remain
constant as the phase changes. The simplest phase shift keying (PSK) is
binary PSK; in which we have two signal element to represent the digital data,
one with a phase of 0°, and the other with a phase of 180°. As illustrated
in Figure 2.2 a digital data 101010 is to be transmitted. The phase of the
carrier signal will be changed for the first time for the 0 next to the most
significant bit and change again for the 1 next to it, and at last the phase will
change again for the least significant bit. The phase changes will be detected
on the receiving side to decode the information on the data stream.

10

Carrier

(]
=]
2
=
S
< Il J
0 0.2 0.4 0.6 0.8 1
time
Message Signal
) l T T T
e] .
2
s of
S
< _l L 1 L Il
0 0.2 0.4 0.6 0.8 1
time
PSK
5 T T T T
~ of
_5 1 1 _ 1 1
0 0.2 0.4 0.6 0.8 1

Figure 2.2: Waveform of a binary PSK signal

2.3.3 Frequency Shift Keying

In frequency shift keying, the frequency of the analog signal is varied to
represent data. The frequency of the analog signal is constant for the duration
of one signal element, but changes for the next signal element if the data
element changes. Both peak amplitude and phase remain constant for all
signal elements. The simplest FSK is binary FSK (BFSK). BFSK uses two
frequencies to represent binary 0 and 1 as illustrated in Figure 2.3.

11

FSK Signal with two Frequencies
15 T T T T T T T

0.5 i . : J

Amplitude

-0.5 : : : '

-15 I I I i i i I
0 1 2 3 4 5 6 7 8

Time (bit period)
Original Digital Signal
15 T T T T T T T

Amplitude
o
(6]

_0.5 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Time (bit period)

Figure 2.3: Waveform of a binary FSK signal

2.3.4 Implementation of Binary FSK

There are two implementations of BFSK: noncoherent and coherent. In non-
coherent BFSK, there may be discontinuity in the phase when one signal
element ends and the next begins. In coherent BFSK, the phase contin-
ues through the boundary of two signal elements. Noncoherent BFSK can
be implemented by treating BFSK as two ASK modulations and using two
carrier frequencies. Coherent BFSK can be implemented by changing the
frequency of the analog signal according to the input bit. Figure 2.4 shows
the simplified idea behind the implementation of coherent BFSK.

12

Figure 2.4: Implementation of binary FSK

2.4 Analog to Digital Conversion

Analog to Digital (A/D) conversion is a process of retrieving the digital data
which the analog signal represents [9]. There are various process of A/D
conversion. In this section only one technique, pulse code modulation is
described. A PCM encoder has three steps as illustrated in Figure 2.5.

PCM Encoder

1
1
:
1
Igv;& 1 Sampling
1
1
1
1
1
1

Quantization |——# Encoding Digital data

Analog Signal

My

PAM Signal

Figure 2.5: Block diagram of PCM encoder

13

2.4.1 Pulse Code Modulation

The most common technique to change an analog signal to digital data is
named as pulse code modulation (PCM). As shown in Figure 2.5 the steps
are

1. The analog signal is sampled.
2. The sample signal is quantized.

3. The quantized values are encoded as stream of bits.[13] [14]

PAM Signal

The sampling process produces the pulse amplitude modulated (PAM) signal,
which contain the value of the amplitude of each samples. Figure 2.5 also
points outs the PAM signal generated after sampling process which leads to
the calculation of number of zero-crossing points.

2.5 Zero Crossing

A zero-crossing is a point where the sign of a mathematical function changes
from positive to negative or vice-versa.In a sine waveform, the point where
the sample is at zero amplitude is called zero-crosing point, and this point
occurs twice during each cycle. As illustrated in Figure 2.6 x and y is the
Z€ero-crossing point.

By counting zero-crossings, the fundamental frequency and period of a
periodic analog signal can be estimated.

14

Amplitude
P
“ -
/ \)
r A I \‘
r \ [} \
’ A ! \
[1} ! LY
‘f \ ! A
7 "‘ Zero Crossing ,' \‘
! 1 1]
’f \]
A [}
l" Y !
= ‘1 ;‘I v Time
‘t ’:
(1 ;"
' /
1 [
\ K
\ ’
\ ’
Mo f’

Figure 2.6: Zero-crossing in a waveform representing amplitude vs time

2.5.1 Zero-crossing Detection

As mentioned earlier, zero-crossing point in a period is the point where the
amplitude is zero and at any other point the amplitude of the wave is rising
towards its positive peak or sinking towards its negative peak. When the
value of amplitude of a sample is positive and the value of the next sample
amplitude is negative, we gets a zero-crossing point. Number of zero-crossing
can be used in the calculation of frequency of a signal [10].

2.6 Root Mean Square Amplitude [15]

Calculating the average amplitude of a sine wave, it would unfortunately
results to zero, since it rises and falls symmetrically above and below the zero
reference. This would not tell us very much about its amplitude, since low-
amplitude and high-amplitude sine waves would appear equivalent. A more
meaningful reference has been developed to measure the average amplitude
of a wave over time, called the root mean squared(RMS) method. The RMS
value of a set of discrete values or a continuous function is the square root

of the arithmetic mean of the squares of the discrete values, or the square of
the function.

15

In the case of a set of n values {z1,zs, ...,z H{x1, 22, ..., 2},

1

2.7 Android Sensor Programming Background
and Android Environment

Unlike a personal computer or a laptop an android device is not a device that
only has a central processing unit, bunch of permanent and volatile memory
units and some graphics processors. What makes an android device so special
and unique from others is the integration of a large number of sensors in such
a small device that increases its capacity manifold. The first of the android
devices that came into market in the earliest age of 21st century were not
so great in their hardware and software specifications but quickly captured
market due to some very specific factors and the right use of android sensor
environment is a one of them. The most basic kinds of sensors for an android
device are:

e Touch screen sensor

e Audio microphone sensor
e Photo sensors or camera
e Location sensors

e Magnetic field sensor

e Orientation sensor

e Proximity sensor

e Temperature sensor etc

The later versions of android phones are integrated with some more advanced
bunch of sensors that can monitor the physical environment such as light,
relative humidity, rotation vector, gravity, ambient temperature, Near Field
Communication(NFC) scanner and so on [11]. Some other external sensors
can be added via Android Open Accessory(AOA) system. Iris detector, voice
recognition and fingerprint sensors have made these devices more secure. In
addition to this, the basic kind of sensors are made more sharp and sophisti-
cated that can sense even the slightest change in the physical environment.

16

Such an example can be low light camera which has given birth to a new
term in the dictionary known as mobile photography that can be almost
as good as a professional photographer’s camera in some cases. Heart beat
sensors, location trackers and many other features has been added to this
family as an extra advantage for health-conscious population who can now
monitor their physical condition and the amount of calorie they could burn
while doing physical exercise measuring the distance they covered and num-
ber of steps taken while doing so. Addition of all these features in a common
platform has made android a favorite platform for both the end customers
and android developers who can now use this advanced integrated system to
develop applications that can do amazing things.

While coding an application in android that uses the sensors a developer
must keep in mind three things [12]

e What are the sensing capabilities of the target device

e Which sensors might be required to generate output in the application
and

e How to call and interpret the data in the application obtained from the
Sensors.

There is a built-in framework in android development environment consist-
ing of a wide range of methods and command through which we can call all
types of sensor in the system. Later, we utilize the obtained sensor outputs
as parameters and perform all types of logical operation using a high-level
programming language such as java codes or codes for an android develop-
ment kit like android studio. Once properly utilized these bunch of codes
can generate the necessary output based on which an android application
can run an interact with its user with meaningful data through the User
Interface(UI) of the application.

Before starting to develop an application, an android developer must men-
tion the minimum Application Program Interface(API) level which indicates
the minimum version of operating system that the application can run on.
An application with lower API level can serve more users since many users
do not update their phone regularly. But as a tradeoff a lower API level
will not allow the programmer to use many necessary built-in functions and
sensors that comes with the updated version of devices and their operating
systems. In addition to fixing the API level, a developer also creates a path
to save the source codes along with few other necessary items. Next, the
user interface is created which can be done both by coding or on the built-in
graphical interface which is saved with a . XML file extension. The input-
output boxes along with operational buttons, background and other elements

17

in the UI can also be developed on other graphics designer software and used
in the Ul. Each operational button and input-output box has their unique
identification name that is used in the code to operate with them. Hence a
combination of the right sensors controlled by the correct code which follows
the right algorithm to solve a problem or serve a purpose, backed up by a
user-friendly UI can bring the best out of an android device and meet the
need of a user much efficiently.

18

Chapter 3
Design Method

This Chapter describes the design considerations taken into account during
the development of the application. Specifically, the next section shows the
general architecture of the system, in which the main blocks are presented:
transmitter and receiver, as illustrated in Figure 3.1. These Transmitter and
receiver mechanisms are explained in the following sections.

Figure 3.1: Data communication Block

3.1 Transmitter Architecture

The application hereby presented is unidirectional, that is, the receiver de-
vice needs to be in recording mode when a device is transmitting. When
the app is initiated, user comes across two options named transmitter and

19

receiver, like all communication systems. Both transmitter and receiver has
its own mechanism. The code or key to be sent is digital but transmitting
signal has to be analog as the communication medium is sound wave and the
channel is wireless. So, the transmitter got the mechanism to convert the
digital signal to an analog signal to play. After conversion the analog signal
is saved as an audio format and the app initiate android media player to play
the audio. Now, the following described methods will complete the process.
For example, the key to be sent be XYZ. This code needs to be converted to a
digital domain which is the input of D/A converter and the generated output
be played/transmitted by the transmitter side of the app, as illustrated in
Figure 3.2. However, note that this is an unrealistic example used only for
demonstration purpose.

Genarated + Combination of 16
Key Characters

* Character to binary stream is done by
> Digita]ization UTF-8 character encoding technique

+ Total bit string is trimmed to feed
the D/A converter

Buffering

D/A « FSK modulation is
Convertion used

*Modulated

;> Audio File signal is
. converted to
Formation v by POM

Figure 3.2: Block Diagram of Transmitter’s mechanism

20

3.1.1 Encoding
Text to Binary bit

Java String getBytes() method encodes a string into a sequence of bytes
using the platform’s default charset and storing the result into a new byte
array. The code or key that has to be transmitted is first digitalized by a
character encoding technique, UTF-8.

So, here that XYZ is converted to

010110000101100101011010

Now this binary byte array is run through a trimming and buffering al-
gorithm to feed the D/A converter.

Trimming and Buffering

First the byte array is compared with the pre-determined buffer size. If it is
less than buffer size the encoder wait for the next input. In case, bit length
is above buffer size, the size is trimmed to make it equal to buffer size.

Digital to Analog Signal Conversion

As discussed in Chapter 2, the project uses BFSK mechanism to represent the
digital key. So, we select two frequencies, f; and f; to represent data element
0 & 1 respectively. Any two high frequencies with satisfactory deference
between them will satisfy the purpose. For demonstration, let us consider
m(t) be the required analog signal where f; = 4.9kHz, fo = 7.35kHz. So,
the formula to generate m(t) is as follows

m(t) = 128 + Asin [27 ft]
Where,A =amplitude,f =frequency, Sample rate = 44.1kHz and t =

time period.

In case of frequency determination, if the bit if high then f = f; and if
the bit is a 0 then f = f; frequency is used.

3.1.2 Playing Analog Signal

Android platform has a build-in class to write the analog data to a audio
track. That is,

AudioTrack (int streamType, int sampleRateInHz, int channelCon-
fig, int audioFormat, int bufferSizeInBytes, int mode)

21

To play the analog data we need this AudioTrack class. This class will
build the track that needed to play by the android media player. Setting
up this object requires an audio source, channel configuration, encoding and
buffer size. The type of audio stream is selected as STREAM_MUSIC
which is the audio stream for music playback. There is a convenient method
called getMinBufferSize(), that can calculate the buffer size depending on
the provided configuration of the devices’ hardware. Furthermore, channel
configuration is chosen as CHANNEL _OUT_MONO and to operate the
AudioTrack instance among two modes, pointed out in Chapter 2, stream-
ing mode is being selected.

Now we calling play() signals the AudioTrack to begin playing.

3.2 Receiver Architecture

The receiver is kept ready to listen and record the audio. Then the signal has
to be converted to digital again from the analog signal. Figure 3.3 illustrates
the basic blocks of the Receiver.

Recording | | Sampling . RMS |, Decoding »| Binary to Text

Calculation

Zero-crossing Frequency

Detection Determination

Figure 3.3: Block diagram of Receiver Architecture

3.2.1 Recording the Sound Played

The receiver is kept in recording mode. Recording the transmitted audio
data is done through using a build-in class named AudioRecord. The syn-
tax is,

AudioRecord (int audioSource, int sampleRateInHz, int channel-
Config, int audioFormat, int bufferSizeInBytes)

22

All the parameters here are selected as same as the AudioTrack class.
Only change here is audio source parameter and is selected as MIC. After
the recording is finished the analog signal is sampled with the pre-determined
sampling frequency and then fed to the RMS amplitude calculation box .

3.2.2 Sampling

The recorded audio is first sampled with sampling frequency 44.1 kH z to get
a PAM signal. This PAM signal helps in following calculations.

3.2.3 RMS Amplitude Calculation

The RMS amplitude of the samples is calculated here. The equation to cal-
culate RMS amplitude is as follows.

Where n is the number of sample.
The data is only fed to the decoder if and only if the RMS value is greater
or equal than the pre-determined optimum value.

3.2.4 Decoding

The application uses Zero-crossing detection method to calculate the trans-
mitted high and low frequency combinations. The following subsections de-
scribe the method of determining frequency step by step.

Zero-Crossing calculation

The Zero-crossing point is computed, focusing on the changes of sign of the
signal, using a sample-by-sample sequential algorithm. When the value of
amplitude of a sample is positive and the value of the next sample amplitude
of the PAM signal is negative, we gets a zero-crossing point. Thus, when this
condition is satisfied the number of zero-crossing is increased. The following
block diagram in Figure 3.4 shows the process to calculate the number of
Z€ero crossing.

23

Sample[i] >0 & "
Sample [i+1]<=0 True
—>] OR Zero-crossing

Sample[i] <0 &
Sample[i+1]>==0

Increase the value of

PAM Signal

Decision

Figure 3.4: Block diagram for zero-crossing detection

Determining the Frequencies
The equation used to find the frequency is

_number of cycle

f

sample rate

number of zero— cross
2

number of cycle =

The value of frequency calculated in receiver side will be different from that
is transmitted. As, we have a significant difference between two frequencies
f1 and f5, we can tell the decoder to consider 20% above or bellow the f;
and fy value to detect as 0 and 1. So, the threshold for both the frequencies

are,
Low frequency threshold high = f, + [fll(?OT]
) f2 X T
High frequency theshold low = f, = | =

Here, 7 is the amount of threshold percentage.

3.2.5 Binary to Data

After getting the frequency, the application maps these high and low fre-
quencies to high and low bit which leads to an array of Os and 1s. This is
the digital data which is then converted back to the character string.

24

3.3 Design Consideration

The sound generation and sensing capacity of an android mobile varies from
device to device. Upon testing the capability of range of sound generation on
various high end and medium capacity devices such as Samsung Galaxy S7,
Samsung Galaxy Grand Prime, Samsung Galaxy ACE, Samsung A5(2016),
Motorola and few others it was found that most devices could generate sound
wave starting from the bottom to fairly about 18 kHz to 22 kHz. However,
the range varies more widely from device to device in case of detection. While
some device hardware fabricated with good microphone can detect sound up
to about 22 kH z, others can detect sound of roughly between 15 kHz to 20
kHz.

Hence, while selecting the frequencies for 0s and 1s the frequency range was
kept within this range. In addition to this there is kept enough guard space
between these frequencies so that the system does not make error while de-
tecting these frequencies and generate wrong output.

Since the application might require working on a noisy environment.
Hence, there is another parameter used known as the Root Mean Square(RMS)
amplitude value which is taken from the RMS value of each sample of the re-
ceived audio signal. The RMS value will determine the minimum level below
which a sound will be considered as noise and will be ignored while staying
in idle mode. It is kept 15 for 8-bit and 2000 for 16-bit PCM audio format.
Some higher values above this will decrease the range of audio reception since
most of the received sound will be considered as noise and ignored. But, it
will decrease the probability of error while working in noisy environment. A
lower value might increase the communication range but increases the prob-
ability of error as well since the application might consider an environmental
noise as a valid signal.

3.4 Design challenges

The main challenge lies in how far the communicating devices can exchange
data. Mostly two things affects the effective transmission range. Firstly,
since the entire process is done in a fraction of second it is found that the
processor, sound generator and microphone often becomes overwhelmed with
the sudden burst of load and loses some data during the process. Secondly,
the audio quality mostly depends on the quality of speaker and microphone
of the devices. The transmission range can be increased by using quality
speakers and microphone.

25

3.5 The Prototype Transmission Simulation

A prototype simulation was run on MATLAB to transmit data using the
sound spectrum using ASCII as the coding scheme. The algorithm is very
direct and primitive, each bit of data was represented by two frequencies to
avoid errors transmitting two identical bits one after another. This method
was similar to the coding scheme of DTMF. The detector would have to
perform Fourier transform on the incoming sound signal and decode the in-
formation and hence there would be a successful transmission of the data
using sound waves. Like the Morse code, but instead of a dot and a dash,
each character was represented by a series of binary bits in ASCII language.
For example, 1000001 is the ASCII code for the character A, therefore for
transmitting the character each bit should produce sound waves with signif-
icantly different frequencies in order to avoid interference between them. If
each 1s were given two different frequencies and each Os were also given two
separate frequencies, the detector would be able to decode the character with
minimum error. However, this method would take a very long time to trans-
mit a single character, transmitting a series of characters would take even
longer. Therefore, this prototype was not developed further as in Android
platform there is a faster alternative.

26

Chapter 4

Outcome of the Thesis

4.1 Test results and Performance of the Ap-
plication

While putting the application in test several parameters are taken into con-
sideration. The performance of the application is marked varying the values
of the distance from the sender to receiver, Root Mean Square (RMS) value
of the samples from the received audio signal which determines the minimum
level of sound of within certain frequency below which it will be considered as
environmental noise, various frequency range for 0s and 1s and their overall
corresponding average error rate taken from a repetitive number of tests. The
tests are repeated in both noisy and noiseless environment to find its perfor-
mance in the presence of noise compared to a noiseless atmosphere. The test
is performed between a Motorola G as sender and a Samsung Galaxy Grand
Prime as receiver. The test results are shown in Table 4.1 and 4.2

27

Table 4.1: Application performance with minimal closed room noise

RMS Amplitude | Distance % of accuracy

Point to point 100%
2 inch 100%
3 inch 95%

10 | 4 inch 90%
5 inch 60%
6 inch below 10%
Point to Point 100%
2 inch 100%
3 inch 95%

15 | 4 inch 90%
5 inch 50%
6 inch below 20%
Point to Point 95%
2 inch 90%

30 | 3 inch 80%
Greater than 4 inch | below 10% or no signal received

28

Table 4.2: Application performance in presence of loud music as noise

RMS Amplitude | Distance % of accuracy

Point to Point 100%
2 inch 95%

10
2.5 inch 90%
3 inch 80%
4 inch Below 10%
Point to Point 100%
2-2.5 inch 90%

15
3 inch 80%
4 inch Below 10%
Point to Point 100%
2-2.5 inch 90%
3 inch 80%

20
4 inch 50%
4.5 inch Below 20%
5 inch No signal received
Point to Point 95%

30 | 2-2.5 inch 70%
Less than 3 inch | Below 20% or no signal received

Furthermore, in order to understand the effect of sound quality and am-

29

plitude of the signal, the same test is carried out once more using a good
quality Microlab speaker with higher gain in the presence of small noise.
The results are shown in Table 4.3

Table 4.3: Application performance with a quality speaker
RMS Amplitude | Distance % of accuracy
Point to point | 100%

2-5 inch 90-95%

20
6 inch Below 40%
7 inch Below 10%

Figure 4.1: Various levels of accuracy of the received data

Figure 4.1 shows the different levels of accuracy of the received signal at
different distances. Here, the first screenshot of the output on the receiver
shows fully accurate output and the lower ones represent the degrading out-
put with more error with increasing distance between the sender and the
receiver.

The test is further carried out varying the frequencies for Os and 1s.
The value of frequencies for Os used are 882, 1575, 3150 and 4900 Hz. The
value of frequencies for their corresponding 1s are 1764, 3150, 6300 and 7350
Hz respectively. These values of frequencies could not be exceeded to a
much higher or lower value beyond human audibility range because of the

30

hardware limitations of the android mobile platform. However, it is found
that there is no significant change in accuracy or range of communication
due to the change of value of these frequencies. But in order to avoid error
it is recommended to keep a good distance between the two frequencies. In
Figure 4.2, the top red peaks indicate two frequencies for high and low bit in
frequency domain from the sound generated to send a data. The first peak
at approximately 4900 Hz is representing 0 or low bit and the peak at 7350
Hz represent 1 or high bit.

Figure 4.2: Received signal in frequency domain (Generated by Spectrum
Analyze application)

4.2 Key Findings

There are several important key findings from the test results mentioned
above. Firstly, we can find an inverse relation between the RMS value and
the range of communication with percentage of accuracy. It is seen that on a
noise less environment a lower value of RMS will accept more audio signal as
valid one and give proper output on a larger distance without much of any
error. However, when this value is excessively high (like 30), it also blocks
the valid signal as noise and limits the range of communication. But while
on a noisy environment the RMS value can filter out some good amount of
environmental noise and decrease the percentage of error with respect to dis-
tance. However, just like before an excessive value of RMS will also limit the
range of communication to a significantly lower distance (3 inch). Hence, an
optimal value of 15 is recommended for the exact hardware and environment.

31

Secondly, the performance of this algorithm is highly dependent on the hard-
ware of the platform that it is implemented upon. Comparing the second
and third chart of the above-mentioned application performance test it can
be seen that distance of communication has increased to almost 40% with
significantly lower rate of error on the output. Hence it can be concluded
that since the system is largely dependent on the quality of the hardware and
amplitude of the signal, a good quality speaker and sensitive microphone can
increase the system performance significantly. Also, with much larger sound
from a bigger audio transmitter, the range of communication can be increased
manifold.

Thirdly, the application completes generating an audio signal of a sample

58 characters within one second. On the receiving end the processing takes
about 1.2 seconds. So, the time taken to send and receive the entire data
is not more than 2.2 seconds. Hence the combined data transmission and
reception rate is 26 characters per second approximately. A better processor
can decrease the processing time. Hence, the data transmission and recep-
tion with sound wave is fast enough for small scale data transmission.
Besides, since the frequency values do not affect much in the communication
performance, this algorithm can be further implemented on a platform with
audio generators and receivers which can operate beyond human audibility
range to avoid any noisy situation where constant data transmission and re-
ception is required to maintain communication between machine to machine
for small scale data.

32

Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

Smart cities are an urban vision to integrate information and communication
technology in order to control assets of a city in a secure fashion [16]. In
this thesis, we developed an algorithm for the development of an Android
application for small scale data transmission using audio waves, this is a
step forward on the evolution of machine to machine communication and
may act as a foundation for building smart cities.As we emerge into the
future, the number of connected devices increases and the need for cross-
platform solution for data communication becomes more crucial as assets of
the smart cities such as smart cars, transformers, printers and several other
devices need to be controlled by other machines, which can be achieved by
an interoperable communication system.

5.2 Future works and Development Opportu-
nities

Although the thesis was based on developing the algorithm and testing the
performance on android platform, there are still several important opportuni-
ties for further development to get a full-scale output of the entire technology.
Since machine to machine communication using sound waves might be re-
quired on a large scale in the future, it might create noisy situation. Hence,
devices can be developed which are capable of operating beyond human au-
dibility range. Another solution to the problem can be using the sound of
musical instruments or birds chirping so that it does not sound annoying.

If in the future many smart devices and autonomous machines start using

33

this technology, they might create interference among themselves if operating
under the same room and same frequency. Hence, a sensing algorithm can
be added to sense on what frequency range other devices are operating on to
avoid interference. Besides, a sharp filtering algorithm can be added to the
existing one to lessen the chances of error in the output and hence increasing
the effective communication range.

34

References

1]

2]

[10]

Rappaport, T. S. (1996). Wireless communications: principles and prac-
tice (Vol.2). New Jersey: Prentice Hall PTR.

Starsinic, Michael. (2010, May). System architecture challenges in
the home M2M network. InApplication and Technology Conference
(LISAT), 2010 Long Island Systems (pp. 1-7). IEEE

Chase, J. (2013). The evolution of the internet of things. Tezxas Instru-
ments.

Henderson, P. M. (1997, November). 56 Kbps data transmission across
the PSTN. How does it work?. In Wescon/97. Conference Proceedings
(pp. 352-365). IEEE.

Tan, L., Wing, N. (2010, August). Future internet: The internet of
things. In 2010 3rd International Conference on Advanced Computer
Theory and Engineering (ICACTE) (Vol. 5, pp. V5-376). IEEE

Forouzan, B. A. (2006). Data Communications. In Data communications
networking (pp. 3-7). New Delhi: Tata McGraw-Hill Education.

Forouzan, B. A. (2006). Data and Signals. In Data communications net-
working (pp. 56-80). New Delhi: Tata McGraw-Hill Education.

Rappaport, T. S. (1996). Modulation Techniques for Mobile Radio. In
Wireless communications: principles and practice (Vol.2, pp. 255-346).
New Jersey: Prentice Hall PTR.

Proakis, J. G., Manolakis, D. G. (2006). Analog-to-Digital and Digital-
to-Analog Conversion. In Digital Signal Processing (pp. 19-21). New
Delhi: Prentice-Hall of India.

Logan, B. F. (1977). Information in the zero crossings of bandpass sig-
nals. Bell System Technical Journal, 56(4), 487-510.

35

[11]

[12]

[13]

[14]

[15]

[16]

Sensors Overview. (n.d.). Retrieved from https://developer.
android.com/guide/topics/sensors/sensors_overview.html

Milette, G., & Stroud, A. (2012). Inferring Information From Physical
Sensors. In Professional Android sensor programming (pp. 65-189). John
Wiley & Sons.

Forouzan, B. A. (2006). Analog-to-Digital Conversion. In Data com-
munications networking (pp. 120-122). New Delhi: Tata McGraw-Hill
Education.

Lathi, B. P. (2009). Pulse-Code Modulation. In Modern digital and ana-
log communication systems (pp. 262-263). Oxford University Press, Inc..

Rico, G. (2006). Tech Tip: Effective or RMS Voltage of a Sinusoid. the
Technology Interface, 6(1)

Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An infor-
mation framework for creating a smart city through internet of things.
IEEE Internet of Things Journal, 1(2), 112-121.

36

https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html

	Acknowledgments
	Introduction
	Background and Motivation
	Problem Area
	Previous Works
	Research Gap and Contribution of the Thesis
	Research Question
	Outcome of the Thesis
	Methods Adopted
	Summary of the Following Chapters

	Theoretical Background
	Data Communication datacom trans
	Data Communication System and its Components
	Character Encoding
	Data flow

	Transmission of Data
	Analog and Digital Signal
	Composite Analog signal

	Digital to Analog signal
	Amplitude Shift Keying
	Phase Shift Keying
	Frequency Shift Keying
	Implementation of Binary FSK

	Analog to Digital Conversion
	Pulse Code Modulation

	Zero Crossing
	Zero-crossing Detection

	Root Mean Square Amplitude rms
	Android Sensor Programming Background and Android Environment

	Design Method
	Transmitter Architecture
	Encoding
	Playing Analog Signal

	Receiver Architecture
	Recording the Sound Played
	Sampling
	RMS Amplitude Calculation
	Decoding
	Binary to Data

	Design Consideration
	Design challenges
	The Prototype Transmission Simulation

	Outcome of the Thesis
	Test results and Performance of the Application
	Key Findings

	Conclusion and Future Work
	Concluding Remarks
	Future works and Development Opportunities

	References

