
Sign Language Conversion and Training by 
Machine Learning with an IOT Approach 

 

 

 

 

 

 

 

 
 

Rezoan Ahmed Nazib | 13201004 
Tanvir Ahmed | 12121131 
Niloy Siddique | 12121155 

Jahid Hasan Tusher | 12301038 
 

Department of Computer Science and Engineering 
BRAC University 

Supervised by Dr. Md. Khalilur Rhaman 

Submitted on: 21 August 2017 
 

  



i 
 

 

Declaration 

We, hereby declare that this thesis is based on the results found by ourselves. Materials of work 

found by other researcher are mentioned by reference. This Thesis, neither in whole or in part, 

has been previously submitted for any degree. 

 

Signature of Authors 

 

……………………………………. 

Rezoan Ahmed Nazib 

 

…………………………………….. 

Tanvir Ahmed  

 

…………………………………… 

Niloy Siddique 

 

…………………………………… 

Jahid Hasan Tusher 

 

  

Signature of Supervisor 

 

…………………………………… 

Dr. Md. Khalilur Rhaman 

 



ii 
 

Acknowledgements 

Firstly, we would like to thank the almighty to empowering us to start our exploration and 

giving us enough passion to successfully conclude it. 

Furthermore we offer our earnest and heartiest appreciation to our respected Supervisor Dr. 

Md. Khalilur Rahman for his commitment, direction and support in leading the exploration and 

arrangement of the report. His contribution and direction has been of enormous incentive all 

throughout our thesis. 

It would be ungrateful if we don’t thank the Centre for Disability in Development (CDD) for 

their support and time. Their approach for sign language research and development and 

moreover their sign language trainers really helped us to understand the history, grammar and 

application of the language.  

Last yet not the least, we are grateful to the faculties, seniors, friends and our families who has 

inspired us all through this trip. We also want to recognize the help we received from various 

resources over the Internet. 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii 
 

Contents 
Declaration.............................................................................................................................................. i 

Acknowledgements ............................................................................................................................... ii 

List of Figures ........................................................................................................................................ v 

List of Abbreviation ............................................................................................................................. vi 

Abstract ................................................................................................................................................ vii 

Chapter 1: Introduction ........................................................................................................... 1 

1.1 Motivation ....................................................................................................................... 1 

1.2 Our Proposed System ...................................................................................................... 2 

1.3 ASL Learning Application Procedure............................................................................. 2 

1.4 Message Passing Application Procedure ........................................................................ 3 

Chapter 2: Literature Review ................................................................................................. 4 

2.1 Similar Research ............................................................................................................. 4 

2.2 Comparing Our Proposed System with Existing Technologies ...................................... 8 

Chapter 3: Research Methodology ......................................................................................... 9 

3.1 First Phase ....................................................................................................................... 9 

3.2 Second Phase ................................................................................................................ 13 

3.3 Third Phase ................................................................................................................... 16 

Chapter 4: Components ......................................................................................................... 20 

4.1 Hand Glove ................................................................................................................... 20 

4.2 Firebase ......................................................................................................................... 20 

4.3 IDE (Integrated Development Environment) ................................................................ 21 

4.4 Electronics..................................................................................................................... 23 

Chapter 5: Communication ................................................................................................... 27 

5.1 Block Diagram .............................................................................................................. 27 

5.2 Flex Sensor and Arduino .............................................................................................. 27 

5.3 Force Sensor and Arduino ............................................................................................ 28 

5.4 Arduino and SD Card Module ...................................................................................... 29 

5.5 Arduino and NodeMcu ................................................................................................. 30 

5.6 NodeMcu to Firebase .................................................................................................... 31 

5.7 Firebase to Android ....................................................................................................... 32 

Chapter 6: Algorithm ............................................................................................................. 33 

6.1 Reading CSV ................................................................................................................ 33 

6.2 Node MCU ASL ........................................................................................................... 34 

6.3 Node MCU Message Passing ........................................................................................ 35 

6.4 Only Callibration .......................................................................................................... 36 

6.5 Saving Creating CSV .................................................................................................... 37 



iv 
 

Chapter 7: Experiment .......................................................................................................... 38 

7.1 Taking raw values from flex sensors ............................................................................ 38 

7.2 Calibrating the flex sensors ........................................................................................... 38 

7.3 Gyro integration and calibration ................................................................................... 38 

7.4 HMM implementation .................................................................................................. 38 

7.5 Tensor Flow Implementations ...................................................................................... 39 

7.6 Weka Classifier and JavaML ........................................................................................ 39 

7.7 KNN algorithm implementation ................................................................................... 39 

Chapter 8: Result .................................................................................................................... 40 

8.1 Calibration..................................................................................................................... 40 

8.2 Making of the data set ................................................................................................... 40 

8.3 Finding Result from the dataset .................................................................................... 42 

Chapter 9: Problem Analysisand Discussion ....................................................................... 55 

Chapter 10: Conclusion ........................................................................................................... 57 

10.1 Concluding Remarks ..................................................................................................... 57 

10.2 Future Works ................................................................................................................ 57 

References ................................................................................................. Error! Bookmark not defined. 

Appendix .............................................................................................................................................. 61 

 

  



v 
 

 

List of Figures 

Fig.  3.1.1 Initial model10 

Fig.  3.1.2 Initial connection of the gloves with Arduino AT Mega11 

Fig.  3.1.3 Gyro MPU6050 and its schematic diagram12 

Fig.  3.1.4 Angular Rotation12 

Fig.  3.2.1 New glove vs old glove17 

Fig.  3.2.2 The bending points where the plastic tubes are attached with glue17 

Fig.  4.1.1 Hand gloves with plastic tube20 

Fig.  4.2.1 Firebase Interface21 

Fig.  4.3.1 Arduino IDE22 

Fig.  4.3.2 Android Studio23 

Fig.  4.4.1 Arduino Mega 256024 

Fig.  4.4.2 Schematic Diagram of Arduino Mega 256024 

Fig.  4.4.3  Flex sensor25 

Fig.  4.4.4 Force Sensor25 

Fig.  4.4.5 SD Card Module26 

Fig.  4.4.6 NodeMCU26 

Fig.  5.1.1 Block diagram of the system27 

Fig.  5.2.1 Basic Flex Censor Circuit.28 

Fig.  5.2.2 Flex Sensor Circuit Connection with Arduino28 

Fig.  5.3.1  Force Sensor Circuit Connection with Arduino29 

Fig.  5.4.1  SD Card Module Circuit Connection with Arduino30 

Fig.  5.5.1  NodeMcu Circuit connection with Arduino31 

Fig.  5.6.1 Firebase31 

Fig.  6.3.1User interface of the application86 

Fig.  6.3.2 Launcher activity of learning application.86 

Fig.  6.3.3 Application using87 

Fig.  6.3.4 User interface of the application94 

Fig.  6.1.1 The first window of the Message Passing Application95 

Fig.  6.1.2 ListActivity view96 

Fig.  6.1.3 Message Activity98 

Fig.  8.2.1  Dataset41 

Fig.  8.3.1 Data Returned From Algorithm For A43 

Fig.  8.3.2 Displaying “B” and the corresponding result in console45 

Fig.  8.3.3 Showing some datasets and the lowest distance here is of “B”46 

Fig.  8.3.4Displaying “C” and the corresponding result in console47 

Fig.  8.3.5 Showing some datasets and the lowest distance here is of “C”48 

Fig.  8.3.6 Displaying “D” and the corresponding result in console49 

Fig.  8.3.7 Showing the values of the predicted outcomes50 

Fig.  8.3.8 Displaying “E” and the corresponding result in console52 

Fig.  8.3.9  Showing the values of the predicted outcomes53 



vi 
 

List of Abbreviation 

 

   

   

   

   

   

   

   

 

 

 

 

 

 

 

 

  

ASL American Sign Language 

UART Universal Asynchronous Receiver/Transmitter 

1D One Dimensional 

2D Two Dimensional 

TX/RX Transmit/Receive 

SD Secure Digital 

SPI Serial Peripheral Interface 

ANN Artificial Neural Network 

I2C Interface to Communicate 

KNN K Nearest Neighbor 



vii 
 

Abstract 

For the people, who are living without sound due to disabilities, sign language can be a handy 

tool to make their life easy and comfortable. Sign language is actually a medium of 

communication for the people who are either deaf or deaf and mute. Besides, normal people 

can also use sign language to communicate with these people whose viewpoints always remain 

unspoken just because of their ill-fate. Generally, mute or deaf people use manual 

communication and body language to communicate with others. However, there is no such 

device by which a person can learn sign languages and express their thoughts easily. To make 

the things easier and simple we decided to create a device that could help to learn sign language 

via “Learning Application” and a mechanism to translate sign language into text. For 

translating “Sign Languages” into text we have developed one special glove attached with 

necessary sensors to take the relative hand position of the user. We have used one Machine-

Learning classifier to classify the raw data of the sensors to have better accuracy. Then through 

the help of one IOT device we have send the data to mobile application where the actual 

meaning of sign is expressed into text to the receiver. As a part of the whole process, we have 

developed two different mobile applications. Of these two applications one can be used to train 

sign languages and other one simply carries the information that the user want to provide to the 

receiver. However, in some cases deaf and mute people might know the Sign-Language but the 

normal person might not. Therefore, along with helping the deaf and mute people this training 

application will also help normal people to understand the language to communicate disabled 

personnel.  We have used American Sign Languages (ASL) as our standard medium for both 

of the application. The other application has a great usability just after the training session. 

When a mute and deaf person is already trained how to use sign language with our first 

application then he/she may simply use our system to express their words with the second 

application. 

We have chosen the smartphone because of the availability and functionality of the device. As 

Majority number of people owns smartphone it will be easier for anyone to learn and use the 

sign languages through our device. On the other hand we have used IOT devices for sending 

words to a longer distance. Nowadays almost every smartphone user is using internet in their 

handheld device. So it can be easily said that the device is user friendly as well. Overall, this 

device can help to eliminate the obstacles and communication barrier faced by a deaf or mute 

person when it comes to communicate with others. 



1 
 

Chapter 1: Introduction 
1.1 Motivation 

In a society where we are trying to ensure equal right for everyone, there are 360 million people 

or 5% of the total population of the whole world are deaf and mute and they are being deprived 

for their disabilities [1]. These people are used to communicate with sign language, which 

creates a communication gap between the mainstream people and these disable people. In this 

age of science and technology, there are ways that can remove this gap and improve their social 

and personal life. With this goal in mind, we have developed a “Sign Language Converter 

Glove” and “Learning Application” through which they can communicate with the people who 

do not have any idea about the sign language. This device contains an Arduino Mega, Flex 

Sensors, Force Sensors, Node MCU, rubber-woolen glove, and a Communication application. 

Communication via gesture is a route in which the signals made by the client is utilize in a way 

so that other person can picture it in his mind. On the other hand, human signals are a productive 

and intense method for connection. This paper is concentrated on building up an assistance for 

impaired individuals utilizing this signal acknowledgment system. In this framework, the 

motions are changed into instant messages for correspondence. The essential idea includes the 

utilization of information gloves worn by crippled individuals. These gloves are planned to 

utilize Flex sensors and contact sensors but no accelerometer is utilized for tilt location. The 

four flex sensors are regularly connected to the glove. Flex sensors are simple resistors that 

have the capacity like simple voltage dividers. If any point of a flex sensor is twisted, there is 

a change in resistance which is parsed by the ADC of the microcontroller. The greater part of 

the physical amount around us are constant and we imply that the amount can take any esteem 

between two extremes. Presently we have brought a physical amount into the electrical area. 

The electrical amount is just voltage. To bring this amount into computerized area we need to 

change this into computerized shape. For this, two advanced converter is required. 

In the market there are several products using this kind of technology. However, in these 

technologies most of the cases there are many sensors, which have not been properly utilized. 

There are many other Sign language converting applications and devices which uses 3D camera 

to track the movement of a person’s hands and body, image processing, Microsoft’s Kinect 

motion-sensing equipment, lip-readers. As these techniques need lots, of time and memory, 

these are inefficient and these are not helping these people. 



2 
 

1.2 Our Proposed System 

Our whole system is actually divided into two parts. One part teaches the sign language and 

the other part actually express the message that the user want to pass. I will go through both of 

the systems one after another. 

1.2.1 Common Steps for both Approach (Message passing and learning) 
 Sensor Calibration 

First, we have calibrated the sensor according to the size of different hands. To use our glove 

this is the first procedure that a user should do. In this phase, the user will have to squeeze and 

relax his hand for several time. Inside the program it will simply take the highest and lowest 

value of the sensor. In addition, it will simply return the highest and lowest values of the sensors 

in the Serial monitor. 

1.2.2 Teaching the Classifier 

Firstly, we have taken specific known hand gesture for multiple time. For example, we have 

taken the sign of “A” for five times. By pressing the controller button, the Arduino program 

asks to enter the label for the real time hand position. By entering the Label that means the 

letter, the person has to press enter to save it in the SD card.  

1.3 ASL Learning Application Procedure 

The first steps of detecting the correct letter for the specific hand gesture is same for both of 

the case. For this approach, we have different Arduino, NodeMcu and android program. To 

classify one specific hand movement a person will have to press the controller button once 

again. It will simply retrieve all the values from the SD card one after another and check for 

eucledian distance (K-nearest neighbors’ algorithm). Then we sort the distance and take first k 

values of the nearest label. After that, we check for the unique characters and then we send it 

to the NodeMcu. The NodeMcu actually does nothing but forward the data to the server and 

the server forwards the data to our mobile application. If the learning application is asking for 

a sign “V” and the chunk of unique characters has the value “V” inside it then it will simply 

tell you that you have shown the correct move and the application will ask you to show another 

move for a new letter. But if the data that is been send from the gloves does not have the exact 



3 
 

value not even for a single occurrence then the mobile application will show that the user is in 

wring gesture and will ask to make the move for the same letter again. This is how the ASL 

learning application works. In addition, it works fully in real-time. 

1.4 Message Passing Application Procedure 

In this procedure, the user has to give a correct hand gesture and then he/she has to press the 

controller button to justify which letter sign he is actually showing. Now after retrieving and 

comparing with all the values in our dataset the algorithm will check for most occurrence letter 

in the first k’th values. Then the algorithm will simply save the letter and then by pressing the 

same controller it will guess another letter by the hand movement of the user and concatenate 

the new letter with the previous letter. After completing a full word, we have kept another 

controller in the upper side of the hand which will push the word to the NodeMcu. Then the 

NodeMcu will push the word to the server and the server will send the word to our message 

passing mobile application. Here the application has two different phase. After showing 

welcome screen, one tap on the screen will carry the user to the next screen where the user will 

be able to see all of the words he has been pushed throughout the whole time. Long press on 

any item will bring the user to another activity where the user will be able to see only the 

current word he is sending to the mobile application. One button is kept there to clear all the 

words. Otherwise, if two words is received in same window then it will show both of the word 

and this is the way of expressing the whole sentences. All of this procedure has done in real 

time. Therefore, the user will be able to send his message to the receiver instantly. Now the 

classification of the word is under maintenance so the accuracy is low. However, we are 

working to develop the accuracy of the predicted word and expecting to have a good accuracy 

soon. 

  



4 
 

Chapter 2: Literature Review 
2.1 Similar Research 

The main purpose of our project is making a way to learn ASL for the deaf, mute and the people 

who do not know ASL. As a result they will be able to communicate through this sign language. 

We believe with this approach we will be able to remove the barriers to communicate with the 

deaf and mute people in our society. At the beginning of the project we have researched on 

some secondary resources based on this. From this sources, we have been able to know the 

existing functions and determined our work outline.  

According to Kumar, Gurjar and Singh [2], the glove has four flex sensors each sits on each 

finger. The microcontroller consistently checks the bowing of flex sensor. At the point when 

the signal of the letters make particular word based on the sequence appeared in the LCD. The 

glove includes a few contact sensors, which help in recognizing couple of comparable motions 

like of "U" and "V". The precision of each flex sensor is constrained past a specific point. 

Smaller hands will bring about a bigger level of twist. Therefore, the contrast is very high. 

Since all correspondence are done through links, our gadget does not meddle with different 

plans. Any individual who fits into it can utilize the glove; they would just need to prepare on 

it and create new datasets on the off chance that they wish for a higher forecast precision than 

the standard or to consolidate new signs. 

From Arsan and Ulgen [3] we can understand, this framework can be utilized for changing 

over gesture based communication to voice and furthermore voice to communication via 

gestures. A movement catch framework is utilized for communication via gestures 

transformation and a voice acknowledgment framework for voice change. It catches the signs 

and directs on the screen as composing. It additionally catches the voice and shows the gesture 

based communication significance on the screen as motioned picture or video. Microsoft 

Kinect Sensor XBOX 360 is chosen to use for catching capacities and specialized elements to 

the movement catch of sign to voice change. Google Voice Recognition is utilized for the voice 

to sign change. Google Voice Recognition is accessible just on android based projects. 

Inevitably, the voice acknowledgment program CMU Sphinx is picked. This enables us to join 

the two segments in Java. Change program is likewise outlined and written in Java. At last, 

Java based program is created which can make voice acknowledgment, movement catch and 

change over them two to each other. So a hard of hearing individual effortlessly addresses in 



5 
 

gesture based communication before movement sensor, the individual behind the screen can 

see effectively without capacity to talk communication through signing and the other way 

around.  

DVI frameworks are normally arranged for little to medium measured vocabularies and might 

utilize word or expression spotting methods. In the two cases, the basic innovation is pretty 

much the same. Discourse Recognition Techniques and Template Based Approaches, 

Statistical Based Approaches and a Knowledge Based Approaches Matching Unknown 

discourse, which is looked at against an arrangement of pre-recorded words (formats) to locate 

the best match. A specialist information about varieties in discourse is hand coded into a 

framework. In which varieties in discourse are demonstrated measurably, utilizing 

programmed, factual learning methodology, ordinarily the Hidden Markov Models, or HMM. 

To beat the impediment of the HMMs machine learning techniques could be presented, for 

example, neural systems and hereditary calculation/programming. The computerized reasoning 

methodology endeavors to automate the acknowledgment strategy as per the way a man applies 

its insight in imagining, examining, lastly settling on a choice on the deliberate acoustic 

elements. 

Lin and Villalba [4] demonstrated us,Machine Learning (ML) calculation to make an 

interpretation of gesture based communication into communicated in English. Each 

individual's hand is a novel size and shape, and we intended to make a gadget that could give 

dependable interpretations paying little mind to those distinctions. Our gadget utilizes five 

Spectra Symbol Flex-Sensors that we use to evaluate how much each finger is bowed, and the 

MPU-6050 (a three-hub accelerometer and whirligig) can recognize the introduction and 

rotational development of the hand. These sensors are perused, arrived at the midpoint of, and 

orchestrated into bundles utilizing an ATmega1284p microcontroller. These bundles are then 

sent serially to a client's PC to be keep running in conjunction with a Python content. The client 

makes informational indexes of data from the glove for each motion that ought to the end be 

deciphered, and the calculation prepares over these datasets to anticipate later at runtime what 

a client is marking. The point of the investigation is to give a total discourse without knowing 

gesture based communication. The program has two sections. Right off the bat, the voice 

acknowledgment part utilizes discourse handling techniques. It takes the acoustic voice flag 

and changes over it to a computerized motion in PC and afterward show to the client the .gif 

pictures as result. In addition, the movement acknowledgment part utilizes picture handling 



6 
 

strategies. It utilizes Microsoft Kinect sensor and after that provide for the client the result as 

voice. 

Again, from the source [5], we have known that communication via gestures acknowledgment 

device and strategy is accommodated making an interpretation of hand signals into discourse 

or composed content. The contraption incorporates various sensors on the hand, arm and 

shoulder to quantify dynamic and static motions. The sensors are associated with a microchip 

to look through a library of motions and create yield flags that would then be able to be utilized 

to deliver an orchestrated voice or composed content. The mechanical assembly incorporates 

sensors, for example, accelerometers on the fingers and thumb and two accelerometers on the 

back of the hand to identify movement and introduction of the hand. Sensors are additionally 

given on the back of the hand or wrist to distinguish lower arm revolution, a point sensor to 

identify flexing of the elbow, two sensors on the upper arm to recognize arm rise and pivot, 

and a sensor on the upper arm to distinguish arm bend. The sensors transmit the information to 

the chip to decide the shape, position and introduction of the hand with respect to the body of 

the client. 

This venture tries to connect the correspondence hole by planning a convenient glove that 

catches the client's ASL signals and yields the interpreted content on a cell phone [6]. The 

glove is outfitted with flex sensors, contact sensors, and a spinner to quantify the flexion of the 

fingers, the contact amongst fingers, and the turn of the hand. The glove's Arduino UNO 

microcontroller breaks down the sensor readings to distinguish the signal from a library of 

educated motions. The Bluetooth module transmits the motion to a cell phone. Utilizing this 

gadget, one day speakers of ASL might have the capacity to speak with others in a moderate 

and advantageous way. 

According to the journal [7], this framework depicts talk capable hand glove framework which 

goes for interpretation of gesture based communication to dissect content info and voice. This 

framework comprises of a discussion capable glove that can be worn by a hard of 

hearing/moronic individual to encourage the correspondence progressively with other 

individuals. The framework deciphers the hand finger movement to relating letters utilizing 

Contact switch sensors and an Arduino Board. Our primary objective is to distinguish 26 letters 

in order and show message on the LCD. Once the content is gotten on the LCD then content to 

discourse change operation is completed lastly a voice yield is acquired. Further, the content 

pick up can likewise be seen on a LCD or any convenient hand held gadget. Our fundamental 

point is to set an interface between the Deaf or Dumb and typical individuals to enhance the 



7 
 

correspondence abilities so they can discuss conveniently with others. We mount contact 

switch sensor on the discussion capable hand glove and propose and productive strategy to 

change over these communications through signing with the assistance of Arduino UNO. This 

framework will disentangle the correspondence of hard of hearing or imbecilic individuals with 

individuals ready to ordinary interchanges without the need of a human interpreter. 

We can see a project utilizes a sensor glove to catch the indications of American Sign Language 

performed by a client and makes an interpretation of them into sentences of English dialect [8]. 

Fake neural systems are utilized to perceive the sensor esteems originating from the sensor 

glove. These qualities are then ordered in 24 letters in order of English dialect and two 

accentuation images presented by the creator. Along these lines, quiet individuals can compose 

finish sentences utilizing this application. 

The glove translates the sign language gestures into speech according to the American Sign 

Language Standard. The glove contained flex and contact sensors to detect the movements of 

the fingers and bending of the palm. In addition, an accelerometer was built in the glove to 

measure the acceleration produced by the changing positions of the hand. Principal Component 

Analysis (PCA) was used to train the glove into recognizing various gestures, and later classify 

the gestures into alphabets in real time [9]. The glove then established a Bluetooth link with an 

Android phone, which was used to display the received letters and words and convert the text 

into speech. The glove was found to have an accuracy of 92%. The systems used a skin color 

matching algorithm for tracking the hand.  

An automatic American Sign Language recognition system is developed using artificial neural 

network (ANN) and to translate the ASL alphabets into text and sound. A glove circuit is 

designed with flex sensors, 3- axis accelerometer and sEMG sensors to capture the gestures. 

The finger bending data is obtained from the flex sensors on each finger whereas the 

accelerometer provides the trajectories of the hand motion. Some local features are extracted 

from the ASL alphabets which are then classified using neural network [10]. The proposed 

system is evaluated for both user-dependent and user-independent conditions successfully for 

isolated ASL recognition. 

  



8 
 

2.2 Comparing Our Proposed System with Existing Technologies 
2.2.1 For Learning Application 

After reviewing the papers and journals, we have come to a decision that there is no such 

application where a person can learn ASL in real time experience using hand glove. Therefore, 

from this point of view our system is totally new to the research field with a satisfactory 

accuracy level. Because we are taking k’nearest values as candidate keys where some garbage 

values may be there. However, 90% time the algorithm returns the string having the exact letter.  

2.2.2 For Message Passing Application 

At present, the accuracy of our predicted word is not good but we are working on it and 

expecting to have an accuracy over 80% in a near future. That means the system will be able 

to carry the right meaning that the user wanted to express. We have used IOT device so message 

can be send to anyone who uses a smartphone. We have used machine learning algorithm and 

a prediction through the algorithm over 90% accuracy will be saved in the dataset. So the more 

the user will use our system the accuracy will keep increasing. 

  



9 
 

Chapter 3: Research Methodology 
3.1 First Phase 
3.1.1 Making of the initial gloves 
 Materials 

The initial gloves were a woolen one. We choose this fabric or material as it is flexible and it 

fixes with the hand tightly. We attached rubber pads and plastic tubes over the gloves to hold 

the flex sensors. The rubber pads and tubes were attached to the gloves with the help of the 

super glue. 

As the gloves was made of wool so it was comparatively easier to stick the rubber pad over the 

gloves. If we have chosen plastic or rubber gloves the strength of the glue may have reduced 

due to less friction. However, we could have used the plastic tube directly over the gloves but 

the tubes do not bend smoothly and while bending it breaks at the point where pressure is 

applied. That is why we chose to put a layer of rubber padding in between the gloves and the 

tubes holding the flexes. Due to the layer of rubber padding the flexes could bend smoothly. 

 

 

 

Rubber pad 

Woolen Glove 

Plastic tube 



10 
 

 

Fig.  3.1Initial model 

 

 Design of Gloves 

Throughout the entire project we used eight flex sensors in a single glove. Five flex sensors 

were used in five fingers- one in each finger, two sensors were used on the wrist -one above 

the wrist and another one on the lateral part of the wrist along the side of little finger. The last 

one was used along with the plum of the hand. The flex was attached with wires by help of 

metal soldering.  

The flex sensors can detect the amount of bending. That is why we have used the flex sensors 

where the hand is mostly bent while showing the signs. After few analysis and observation, we 

came to the conclusion that the places where the hand is mostly bend are the fingers. But 

integrating flex sensors in the fingers only were not enough as it would not detect the accurate 

posture of the hand. To get the details of the posture we integrated flex in the plum of the hand. 

This sensor position can well detect the fist. Moreover, the sensors residing along the lateral 

side of the wrist can detect the bend towards the outer side of the hand. Again, the sensor over 

the top of the wrist can detect forward and backward bending. We size of the flex sensors along 

the fingers were 4.5 inch and the rest of the three were 2.2 inch. Longer flexes were used in the 

fingers because they cover more area with greater range of bending. 

3.1.2 Initial connection with the Arduino Microcontroller 

The microcontroller used of making this project is Arduino-Mega. The connection was 

established by jumper wires soldered by metal with the flex sensors. The wires were then 

inserted into a breadboard and from there further connection was established with the Arduino. 

Each of the flex sensors needed individual resistors which worked as voltage divider in the 

circuit. The microcontroller was connected to the computer for programming and burning the 

program inside it. Throughout the entire project we used Arduino IDE for writing and 

compiling codes. 

 



11 
 

 

 

Fig.  3.2 Initial connection of the gloves with Arduino AT Mega 

 

3.1.3 Taking Values from Flex Sensors 

During the first stage of the project we worked with the raw values of the flex sensors. We 

measured the amount of bending of each flex while showing sign of a single alphabet and 

recorded those values. The raw values received from the sensors were the reference values 

initially. We detected the posture of the hand from these combination of raw sensor values.This 

was the first technique to detect the signs at initial phase. 

3.1.4 Working on Orientation of Hand 
 Introducing Gyro Sensor 

During the end of our first phase of the project, we decided to work with gyro sensor. 

Gyro sensors, also known as angular rate sensors or angular velocity sensors, are devices that 

sense angular velocity. In simple terms, angular velocity is the change in rotational angle per 

unit of time. The Gyro we used MPU6050 which has fusion of accelerometer. Accelerometers 

are electromechanical devices that sense either static or dynamic forces of acceleration. Static 

forces include gravity, while dynamic forces can include vibrations and movement. 

Arduino Mega 

Bread Board 

Jumper Wires 

Hand Gloves 



12 
 

Our first aim was to work with BSL (Bangla Sign Language). The sign language of Bangla 

comprises of several hand twisting and rotation. Thus, it was not possible to detect the Bengali 

signs from the flex values only. This is why we decided to integrate gyro sensor to our device. 

The gyro sensor was used to detect the rotation and angular position of the hand. The angular 

axes detected by gyro are yaw axis, roll axis and pitch axis. Pitch is the X-axis, Roll is Y-axis 

and Yaw is Z-axis.  So, no matter in which direction the hand remains gyro can detect the exact 

posture. 

 

 

 

 

 

Fig.  3.3 Gyro MPU6050 and its schematic diagram 

 

 

 

Fig.  3.4 Angular Rotation 

 



13 
 

 Calibration of Gyro 

The algorithm and library that we used to take the values from Gyro MPU-6050 is given by 

Jeff Rowberg [11]. Taking the reading from gyro as raw value is easy but it is a bit complex to 

take the value from DMP (“Digital motion Processor”) which is in the gyro. This DMP can be 

programmed with firmware and is able to do complex calculations with the sensor values. Jeff 

Rowberg has used the raw values from DMP and did reverse engineering to get an optimal 

value.   

For calibrating (i.e. marking a standard scale of reading) the values we got by implementing 

the algorithm, we considered a position as zero and used it as reference position of all other 

position. 

This is the initial or primary phase of our project. The flex values were the major concern of 

this part. In the later parts we have worked with hand orientation but did not integrate the 

orientation in this phase. The orientation with the gyro was an experimental approach in the 

fundamental stage. 

 

3.2 Second Phase 
3.2.1 Flex Calibration 

In the primary stage of our project we used the raw value from the flex sensors. But this 

procedure was not very effective because raw value has a huge range and can fluctuate very 

frequently. So, we decided to calibrate the sensor values from each flex in the similar way as 

the gyro was calibrated. We took the raw value from each sensors and marked the highest and 

lowest values of it. Then we made a scaling from 1-20. That is the lowest value of each sensor 

while in bending condition is 1 and the highest value from relaxing position is 20. This scaling 

helped us greatly for making the dataset and classifying it in the right order. All the data after 

calibration falls in the fixed range. This also helped us to measure and classify the value of 

different people's hand. As we know that every people has different hand types and shape so 

the bending posture of all person’s hand will not be always same. In this case the flex 

calibration comes handy. Because flex calibration bounds the value in a given scale and no 

matter what is the size of the hand the limit of the scaling will not be crossed. Thereby, all the 

classification will be same for all sort of hands. And due to this calibration technique any hand 

will show the wright classified answer.  



14 
 

3.2.2 Classification of sensor values According to Range 

Firstly, for classification of the sensor values to know the desired sign we fixed a range for 

each sensor for every sign. Whenever we portrayed a sign then if the sensor values of the 

current sign fall within the range of the classified sign then we came to the decision that is this 

our required sign.  

But this process is very long and extremely inefficient so we migrated to machine learning 

approach. 

3.2.3 Getting Started with Machine Learning 

After classification with range we moved to machine learning. Therefore, in the beginning of 

the second phase of building the system we opt to integrate machine learning algorithms to 

classify the sensor data we got from flex sensors and gyro sensor. Among many promising 

algorithms we chose to work with few of them. The first algorithm that we worked with was 

Hidden Markov Model (HMM). 

A hidden Markov model (HMM) is a statistical model that can be used to describe the evolution 

of observable events that depend on internal factors, which are not directly observable. The 

hidden states form a Markov chain, and the probability distribution of the observed symbol 

depends on the underlying state. 

In our project, we wanted to use HMM because while moving our hand from one position to 

another we considered each position as single state of the markov model. But as these states 

are not target states they are hidden from the eye of the observer. But these states are sequential 

and one state will lead to another. From each state i.e. hand position there is a fixed or measured 

probability to go to the next state. While moving from one state to another the probability to 

get the desired outcome of the sign increases gradually. Thus, a network is formed which can 

be represented as the simplest dynamic Bayesian network. Lastly, the chain of states in the 

Markov Model lead to the optimum possible output. We used python programming language 

for HMM algorithm. 

The Machine Learning Library that we worked with next is TensorFlow . This is an open 

source library for numerical computation, specializing in machine learning applications which 

assists in transfer learning mechanism of Inception. Inception is a pre-trained Convolutional 

neural network (CNN) model [12]. We were going to use the Inception v3 network. We trained 

https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
http://tensorflow.org/


15 
 

the last layer of inception to learn about the dataset of the signs we have provided. After making 

the inception learn about our dataset it could classify the data according to given signs. We 

used python programming language for working with tensor flow. The dataset was made in csv 

(Comma Separated Value) format. In the cvs format all the placeholders are for the data and 

the last one is for label.  

At this stage we experimented with another type of machine learning approach. This is known 

as Weka Classifier. Weka is a collection of machine learning algorithms for data mining tasks. 

The algorithms can either be applied directly to a dataset or called from our own Java code. 

Weka contains tools for data pre-processing, classification, regression, clustering, association 

rules, and visualization. It is also well-suited for developing new machine learning schemes. 

In weka there are many machine learning algorithms which was able to classify our dataset. 

But we could also implement the library from own java code. For working with weka we used 

java programming language. 

Lastly, we also tried to classify our dataset with Java ML. Java has got a collection of machine 

learning algorithm which can classify the dataset. But a major issue was that the accuracy level 

or java ML was not satisfactory. For this we used java programming language. 

With the machine learning approach, we tried to classify both the calibrated flex sensor values 

and gyro sensor values. 

3.2.4 Working on Mobile Application Making 

At the end of our second phase we started to work on Mobile Application. The purpose of our 

project was to show the signs in a mobile application and communicate via that application.  

So, we started to work on an android based mobile application which can receive the data and 

show the desired sign. We needed a server where the classified data will retain so we chose 

Firebase.  Which can be easily and effectively associated with the mobile application. The 

Firebase Real Time Database is a cloud-hosted database. Data is stored as JSON and 

synchronized in real time to every connected client.  

With is much progress we moved to the third phase which is the last and concluding phase of 

our project. 



16 
 

3.3 Third Phase 
3.3.1 Making New Gloves 
 Materials 

At the beginning of this phase we made anew gloves as the previous gloves was not up to the 

mark. From a number of gloves type that were made from rubber, cotton, plastic and medical 

gloves we chose one which is a combination of rubber and cotton. The upper part is cotton and 

the lower past is made from rubber. The reason for choosing this gloves is that is more flexible 

and it capable of attaching with different hand sizes. The combination of cotton and rubber 

material makes it perfectly stretchable as well as gives the capability of perfect stretching. 

 Design 

In the last phase, we made some changes in the design. We removed the rubber padding which 

was in between the flex sensors and the gloves. In place of that we cut the plastic tube in such 

a way that it will cover only the bending area of the hand. Thus we need not to use the rubber 

layer. The flex sensors were now more stable as they were shouldered by metal coating and 

also covered with glue gum so that the soldering does not break down. 

The small pieces of plastic tube were attached with the gloves with the help of super glue.And 

the end of the flex sensors was sewed with the plastic tube and glue gum. 

Due to these change the gloves became more flexible and the value we got from the gloves 

were more accurate.  

Another notable change is that we removed the 2.2-inch flex sensors from the wrist and added 

two 4.5 inches’ flex sensors at those places. We did this because the longer flex sensors covered 

more area and gave better result while classifying. 

 

 

 

Cotton and 
rubber Gloves 

Woolen and 
rubber Gloves 



17 
 

Fig. 3.3.1 The range of gloves from where one is selected 

 
Fig.  3.5 New glove vs old glove 

 
Fig.  3.6 The bending points where the plastic tubes are attached with glue 

 

 Integration of Force Sensors 

Force sensors were integrated at this stage. The force sensors were used for various purpose. 

Here 3 force sensors were integrated in total. One force sensor is attached in the finger which 

was used to differentiate some alphabets mainly it was to differentiate between “U” and “V”. 

The sign of these two alphabets are almost same and they cannot be differentiated with the flex 

sensors. So, the threshold value from the force sensor is deciding where the alphabet is a “U” 

or a “V”. In “U” there is no force applied on the sensor and in “V” force is applied on the 

sensor. 

Old Gloves 

New Gloves 

Plastic tube in small 
pieces 



18 
 

The force sensor is placed in the upper side of the ring finger. 

 Force sensors as Switches 

The rest of the two force sensors are used as switches. One is used to concat the letters to form 

a string of letters and another one is used to send the classified data to the wifi module. Both 

of the force sensors worked as switch for the threshold value over 600. 

 Removal of Gyro from the System 

We decided to remove the gyro from the project as we switched from BSL (Bangla Sign 

language) to ASL (American Sign Language). If we could correctly classify ASL we need not 

use gyro sensor as ASL has lot more simple signs than BSL. 

 New machine Learning Algorithm 

At this last phase, we chose the right and most suitable algorithm for our project. The algorithm 

is KNN (K Nearest Neighbors). The algorithm chooses best k set of values by calculating the 

nearest distance from the reference datasets. Now from the k set of results the result which 

occur the most number of time is the most probable result. So we show that result as the 

outcome. 

We considered the number of k=5 and calculated from the most occurred value. The dataset 

was made in csv for this case. 

 Making the Reference dataset and saving in SD card 

The reference dataset is made in csv format and is saved in SD card. For this purpose, we 

integrated a SD card module with our project. The first eight values are the values from flex 

sensors and the last one is the label. We made an Arduino program to build the dataset which 

is the reference for classification.  

For each alphabet we took five values. We tried to maintain difference in hand orientation and 

posture so that the values can get a good range and classify data in various posture. The values 

were saved in a text file in csv format. And during classification with KNN the values are 

matched with these reference values kept in the text file as csv format. From this format we 

can extract the label and decide the portrayed current value. 

 Wifi module Node MCU ESP8086 and Firebase Server 

The result we got from the classification was sent to the node mcu ESP8086 which is a Wi-Fi 

module. This works wirelesses and can send the data to server. First we connected the node 



19 
 

mcu ESP8086 with the Arduino AT mega via RX TX where node mcu works as slave and 

Arduino works as master.  

The classified data is sent to node mcu ESP8086 8086 and it send the data to firebase server in 

real-time. The fire base server of Google can save real time data. The classified data that is the 

labels we got are push to the database and then are retried later by the mobile application. 

 

3.3.2 Final Mobile Applications 

Finally, two mobile applications are made. One for learning the sign languages and another for 

messaging and communication. 

 The Messaging Application 

The messaging app show the message a deaf person wants to show via the gloves. If he shows 

a sign of alphabet, he need to show the consecutive alphabets to make a word. The word is 

passed if a force sensor switch is pressed and the word goes to the node mcu and the node mcu 

sends it to the firebase server. The mobile application can detect that a new word is available 

so it shows the word in the application as a list and also as a text in another activity. If the 

person shows some consecutive words then the applicationwill show the sentence the person 

wants to show. This is how the message passing application works. 

 The Learning Application 

The learning application is a little bit different than the messaging application. It show the 

picture of an English Alphabet’s ASL sign. And if the person who is learning the sign does the 

same posture by his hand while wearing the gloves and then presses the force sensor switch to 

send the value to the server then the application will show if the posture is correct or not. It the 

sign he made is correct then a “right” sign will be shown but if the sign is wrong then “cross” 

symbol will be shown. If the sign is correct then the application will automatically move to the 

next sign if tapped on the screen and the tutorial part will be repeated. But if the person shows 

wrong sign then the application will show the same alphabet until he learns and shows the 

correct sign. 

This is how the application teaches a person the ASL sign language from A-Z.  

  



20 
 

Chapter 4: Components 
4.1 Hand Glove 

One of the most basic and essential component in our system is the hand gloves. The hand 

gloves which we have selected is made from woolen fabric and rubber. It has a standard size 

so that most of the people’s hands having average shape and size fits inside it.  

Plastic tube strips were attached on the hand gloves with glue so that we could set the flex and 

force sensors in place. 

 

 
Fig.  4.1 Hand gloves with plastic tube 

4.2 Firebase 

Firebase is a technology that permits you to make applications with no server-side 

programming so that development turns out to be quicker and easier. It works as realtime 

database as it stores and sync data between users and devices in realtime using a cloud-hosted, 

noSQL database. Updated data syncs across connected devices in milliseconds, and data 

remains available if your app goes offline, providing a great user experience regardless of 

network connectivity. It also has cloud storage and hosting functionalities. 



21 
 

 

In our project, the Node MCU sends data to firebase database and these data are retrieved via 

android application which is also connected to the same firebase database.  

 
Fig.  4.2 Firebase Interface 

4.3 IDE (Integrated Development Environment) 

We have used multiple IDEs to write and compile our codes. Typically, an IDE is a software 

application that provides comprehensive facilities to computer programmers for software 

development. An IDE normally consists of a source code editor, build automation tools and a 

debugger. The IDEs that we have used in our projects are described below: 

4.3.1 Arduino IDE 

The Arduino Software (IDE) is a open-source IDE which comprises of many libraries. As it 

is open source, it easy to write code and upload it to the board. It runs on Windows, Mac OS 

X, and Linux. The environment is written in Java and based on Processing and other open-

source software. 

For writing code on Arduino Mega board, we have used several libraries. The SD library is 

used for using the methods from the buildin SD library of Arduino. The SDI library is used for 

communicating with the SD card module. With the help of these libraries we can read and write 



22 
 

in sd card. The SoftwareSerial provides some extra libraries which helps to communicate 

between arduino board and node mcu. The serial communication is established by TX-RX pins. 

There are three ways to write in Node MCU ESP8266. The main format is to code with lua 

based scripting language. But we have used Arduino to write on Node MCU, which is not the 

conventional procedure. But we have used this for our convenience. In case of Node MCU we 

have also used many libraries for various purposes. In the connection between Arduino Mega 

and Node MCU the Arduino Mega acts as master and Node MCU acts as slave.  

The SoftwareSerial  library is also used here same like Arduino Mega. This is used for serial 

communication between Node MCU and the Arduino Board. The ESP8266WiFi library is the 

basic library of Node MCU. It helps in the routing process.The Wi-Fi library for ESP8266 has 

been developed based on ESP8266 SDK, using naming convention and overall functionality 

philosophy of Arduino WiFi library. For communication with firebase server there are certain 

libraries. These are Firebase, FirebaseArduino, FirebaseCloudMessaging, FirebaseError, 

FirebaseHttpClient, FirebaseObject. Through these libraries Node MCU send data to firebase 

in real time. These libraries also help to detect errors generated while sending data. Firebase 

Cloud Messaging (FCM) is a cross-platform messaging solution that reliably deliver messages 

at no cost. 

 

 
 Fig.  4.3Arduino IDE 

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi


23 
 

4.3.2 Android Studio IDE 

Android Studio is the official integrated development environment (IDE) for Google's 

Androidoperating system, built based on JetBrains' IntelliJ IDEA software and designed 

specifically for Android development. It is available for Windows, macOSand Linux based 

operating systems. It is a replacement for the Eclipse Android Development Tools (ADT) 

which was used as primary IDE for native Android application development. 

Both of the Mobile applications made for this project are created in Android Studio. 

 
Fig.  4.4 Android Studio 

4.4 Electronics 
4.4.1 Arduino Mega 

The Arduino Mega we used is a microcontroller development board based on 

the ATmega1280. It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 

16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB 

connection, a power jack, an ICSP header, and a reset button. It has everything, which is needed 

to support the microcontroller. It can be powered by simply connect it to a computer with a 

USB cable or an AC-to-DC adapter. The Mega is compatible with most shields designed for 

the Arduino. It’s operating voltage is 5V, input voltage recommended 7-12V, input voltage 

limit is 6-20V, DC current per I/O pin is 40 mA and for 3.3V pin 50 mA, flash memory is 128 

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools


24 
 

KB of which 4 KB used by bootloader, SRAM is 8KB, EEPROM is 4 KB and clock speed of 

16 MHz [11]. 

 
Fig.  4.5 Arduino Mega 2560 

 
Fig.  4.6 Schematic Diagram of Arduino Mega 2560 

4.4.2 Flex sensor 

Flex Sensor is one of the most important components we have used in our device. It takes Angle 

Displacement Measurement from the flex whenever it bends. It is commonly used in fields like 

Robotics, Gaming (Virtual Motion), Medical Devices, Computer Peripherals, Musical 

Instruments, Physical Therapy, Simple Construction, Low Profile etc. It also has two types of 

shape. One is 2.2 inches and other one is 4.5 inches. It has a temperature limit, which is in 

between -35°C to +80°C. Flat resistance is approximately 25K Ohms and the resistance 

tolerance is ±30%. It also has Bend Resistance Range of 45K to 125K Ohms (depending on 

bend radius). The Life Cycle of these sensor is greater than 1 million [13]. 

 

 



25 
 

Fig.  4.7  Flex sensor 

4.4.3 Force Sensor Resistor 

In our project, we have used FSR 400 Series force sensor. Exhibits a decrease in resistance 

with increase in force applied these robust polymer thick film (PTF) devices to the surface of 

the sensor. This force sensitivity is optimized for using in human touch control of electronic 

devices such as automotive electronics, robotics applications, industrial and medical systems. 

It has six different models and we used FSR® 4005mm Circle x 38mm. Its’ actuation Force is 

~0.2N min, Force Sensitivity Range ~0.2N – 20N, Force Resolution is Continuous, Force 

Repeatability Single Part +/- 2%, Non-Actuated Resistance is greater than 10M ohms, 

Hysteresis +10% Average (RF+ - RF-)/RF+, Device Rise Time is less than 3 Microseconds 

[14]. 

 

 
Fig.  4.8 Force Sensor 

4.4.4 Micro SD Breakout Board 

When it comes in need of a portable storage facility then micro SD card breakout board is the 

component we use. It helps to log data. They are strictly 3.3V devices and during writing to the 

card the power, drawing can behigh, up to 100mA or more. That means we have to strictly 

provide 3.3Vpower supply for the card. Also, have 3.3V logic to interface the pins.SD cards 

are sensitive about the interface pins. There are two types of interfacing with SD cards.  One is 

SPI mode and other one is SDIO mode.SDIO mode is faster than SPI but it is more complex 

and requires signing nondisclosure documents. There is an onboard ultra-low dropout regulator 

in the board that will convert voltages from 3.3V-6v down to ~3.3V. Also a level shifter can 

convert the interface logic from 3.3V-5V to 3.3V. 



26 
 

 

 

 

 

 

 

Fig.  4.9 SD Card Module 

4.4.5 NodeMCU 

Node MCU is a Low-power and highly-integrated Wi-Fi solution. A minimal of 7 external 

components with wide temperature range between -40°C to +125°C. It is ESP8285 - ESP8266 

embedded with 8 Mbit flash. Node MCU is an eLua based firmware for the ESP8266 WiFi 

SOC from Espressif. The NodeMCU firmware is a companion project to the popular Node 

MCU dev kits, ready-made open source development boards with ESP8266-12E chips. This 

component is Engineered for mobile devices, wearable electronics and the Internet of Things 

(IoT) applications, ESP8266EX achieves low power consumption with a combination of 

several proprietary technologies. The power saving architecture is featured with three modes 

of operation- active mode, sleep mode and deep sleep mode that allows battery powered 

designs to run longer [15].  

 

Fig.  4.10 NodeMCU 

  



27 
 

 

Chapter 5: Communication 
5.1 Block Diagram 

The block diagram of our project is shown below- 

 
Fig.  5.1 Block diagram of the system 

5.2 Flex Sensor and Arduino 

Flex Sensor works as a voltage divider circuit with the Arduino. One leg of the sensor is 

connected to the 5v and another leg is connected with the resistor. The other leg of resistor is 

connected with the ground of the Arduino. One wire connects the common node of resistor and 

the Flex sensor to the Arduino Analog pin. Whenever the sensor is bend, its resistor varies. 

Depending on that, the divided voltage also varies. Arduino collects the amount of voltage it 

receives depending on the bending of flex sensor.  In our system, we have used 8 flex sensors. 

Which are connected to the Arduino board from pin A0-A7. A0 is connected to the flex, which 

are set to the palm A1 in the thumb, A2 in the index, A3 in the middle, A4 in the ring, A5 in 

the little, A6 in the side and A7 in the upper side of the wrist. We have used 22k resistor for all 

flex sensor in our gloves. 



28 
 

.

 
Fig.  5.2 Basic Flex Censor Circuit. 

 
Fig.  5.3 Flex Sensor Circuit Connection with Arduino 

5.3 Force Sensor and Arduino 

Force sensor also works as a voltage divider circuit with the Arduino.  The connections are also 

more or less similar to the flex sensor. When some force is exerted on the tip of force sensor 

the resistance of the sensor changes so the voltage that was working in the similar node with 

the fix resistor changes. Here we also collect the voltage from same joining node of fix 



29 
 

resistance and ground to the analog pin of the Arduino. We have used three force sensor in our 

system. All of them has their different purposes. One of them is used to differentiate between 

similar sign like “U” and “V”. Another of them is used to concatenate between letters. In 

addition, another the last force sensor is simply used to push the data to the NodeMcu. 

Fig.  5.4  Force Sensor Circuit Connection with Arduino 

One leg of sensor is connected to the 5 volt of the Arduino. Another leg is connected with the 

analogue pin of Arduino and a fix resistor. Another part of the fix resistor is connected to the 

ground. Three of the force resistor is connected to A8, A9, and A10 pin respectively.  

5.4 Arduino and SD Card Module 

We have used one SD card module to save and retrieve our reference data. When we create 

data set we save data to the SD card and when we actually predict data through our classifier 

we need to retrieve all the data from the card and compare. The connection pin is as follows:  

Digital pin 50 is hooked up with MISO pin of the SD card module then digital pin 51 to MOSI, 

pin 52 to SCK and pin 53 to CS of the SD card module. The ground pin shares the same ground 

with all other sensors and the 3.3v pin is attached to the 3.3V pin of Arduino. We have simply 

used the SD library of Arduino.  

 



30 
 

 
Fig.  5.5  SD Card Module Circuit Connection with Arduino 

 

5.5 Arduino and NodeMcu 

After classification of the projected data we send the calculated label/letter/word to the 

nodeMcu(ESP8266 12E). This is an IOT device which is used to send data to the firebase 

server. The communication between the Arduino and the NodeMcu is simply a serial 

communication. We have used Arduino’s softwareSerial library to establish the connection. 

Then we have declared the D2, D3 pin of NodeMcu as RX,Tx pin. On the other hand, for 

Arduino we declared digital pin (2, 3) for this serial communication as Rx and Tx. Here the 

NodeMcu works as a slave, which only receives the data from Arduino and forward the data to 

firebase. We have used 48000 baud rate for the serial communication between the NodeMcu 

and the Arduino. Declared Rx pin of Arduino is connected to the declared Tx pin of the 

NodeMcu. And the declared Tx pin of the Arduino is connected to the declared Rx pin of the 



31 
 

NodeMcu. Apart from that Vin of the NodeMcu is Connected to the Vin Of theArduino.

 

Fig.  5.6  NodeMcu Circuit connection with Arduino 

5.6 NodeMcu to Firebase 

For this communication part we have used the Arduino Firebase library. In total, there are three 

ways to use one NodeMcu. First, one is using the built in firmware by AT commands. Second, 

one is using lua scripting language and third one is using it through Arduino Ide. For the 

preparation of our NodeMcu we have chosen the third option because the Arduino environment 

was already familiar with us and this method is somewhat easier than other methods. Besides 

using this method, it was easier for us to use firebase. FireBase-Arduino library gives access to 

some useful push/get method, which helps to push the data to the database and retrieve the data 

from the database. For the training application, we send the predicted five letters from the 

Arduino to the nodeMcu and we set the value to the firebase using the token “Letter”. For the 

use of the message passing app we needed to use two different token in firebase one (word) 

toset the latest word (sentence) and another is to push the newly generated word. 

 

Fig.  5.7Firebase 



32 
 

5.7 Firebase to Android 

Here we have also used the built in firebase library for android to get the pushed or set data at 

real time. Then we used our logic to process the data in our app. whenever a new child is added 

to the firebase the valueAddedListener is called and the mobile application get to know about 

the new pushed data. Depending on the data, the mobile app takes his decision. 

  



33 
 

Chapter 6: Algorithm 

6.1 Reading CSV 

 

  



34 
 

6.2 Node MCU ASL 

 

  



35 
 

6.3 Node MCU Message Passing 

 

  



36 
 

6.4 Only Callibration  

 

  



37 
 

6.5 Saving Creating CSV 

  



38 
 

Chapter 7: Experiment 
7.1 Taking raw values from flex sensors 

In the initial stage of the project we took raw values from the sensors and tried to find out the 

values from each sensors in a given position showing the required sign. But the value difference 

was very unpredictable and unstable and also the range was very big. Thus working with the 

raw flex sensor value was not an effective process. To overcome this difficulty, we moved to 

fixing scale for every sensor. This is known as calibration. Taking raw value was an 

unsuccessful approach. 

7.2 Calibrating the flex sensors 

We migrated to flex calibration after facing difficulty with raw sensor values.We took a range 

from 1 to 20. For every flex sensor the highest bending point is 20 which is the position where 

the flex is not bent at all and the lowest bending point is 1 which is the position where the flex 

is maximum bent. Now whatever value a person shows will be in between 1-20. Through flex 

calibration the value became much more stable and classification became easier. The flex 

calibration does retain until the last of the project. Flex sensor calibration was hence successful. 

7.3 Gyro integration and calibration 

We used gyro to detect angular rotation and implement the BSL. We also thought that the value 

of gyro will be used to form the states of hidden markov model. But we then decided to switch 

to ASL so we did not need gyro sensor anymore as it made the classification much more 

complex. Though gyro worked pretty well but we did not continue with gyro till the end. So 

working with gyro was not completely successful. 

7.4 HMM implementation 

We worked with machine learning algorithm like HMM to classify the data received from Gyro 

sensors. This algorithm was used to detect states of the hand orientation and thus supposed to 

make a bayesian network of possible states and one state lead to another making it more 

probable of getting the desired value. But we omitted BSL and we did not need continuous 



39 
 

hand orientation movements. That is why we left HMM and gyro both at the same phase. Thus 

using HMM was not successful. 

7.5 Tensor Flow Implementations 

We used tensor flow to classify the datasets we made from flex movement. But we could not 

continue with that. At first we thought that we would write our own server scripts and the 

python code form tensor flow can be integrated with it. But then we started to work with 

firebase server. And we also made java based android application. So we could no more work 

with python codes. So we needed to leave the tensor flow library. Though tensor flow was an 

efficient one but it was not of our work. Thus using tensor flow was unsuccessful. 

7.6 Weka Classifier and JavaML 

We initially wanted to use weka and javaML library after being failed with python. The 

classifier was supposed to be useful but it was tough for the arduino to send an hude string and 

that would be classified in the mobile end. So we started classifying in the arduino end and did 

not need any java based machine learning classification algorithm. We can say that if was also 

a failed approach. 

7.7 KNN algorithm implementation 

Last of all machine learning algorithm we used the KNN algorithm at the arduino end. This 

algorithm was more successful than any other algorithms as it was implemented on the arduino 

side. But it had some problems because the accuracy level of the values was not satisfactory. 

It could not detect or differentiate many alphabets. For example: U and V both gave the result 

U. A, S and T age the same value S. C, E, O values could not be differentiated precisely. Same 

goes for A and M. Other than that the KNN algorithm could detect the projected value. So it 

was 70% successful. And we continued to work with this algorithm.  



40 
 

Chapter 8: Result 
8.1 Calibration 

For making the dataset at first we needed to calibrate the raw values from flex sensors. Different 

sensors had different upper and lower bending limits according to the raw values of the flex 

sensors. So to maintain a fixed range of values and a fixes upper and lower bending limit we 

calibrated the flexes. The raw values were them converted in to calibrated values. Below we 

have shown the BEND_RESISTANCE (Highest limit) and the STRAIGHT_RESISTANCE 

(lowest limit). These are the raw values from the flex which has be converted from 1-20, where 

20 being the highest and 1 being the lowest. It is also important to mention that the calibration 

of the raw values differ from hand to hand i.e. different person have different value of 

calibration. 

 

8.2 Making of the data set 

After the calibration was made the calibrated values from the sensor were put in the piece of 

code which is used to build the dataset. While displaying a sign, reading from each sensors are 



41 
 

taken as references and the collection of all eight calibrated sensor values during that sign is 

the cumulative reference value of that sign. This is how the reference data for each signs are 

taken. For one sign 5 datasets are recorded. Similarly, for 26 alphabets 5 datasets are taken. 

Altogether there are (26x5) =130 reverence datasets to be compared with. 

 
Fig.  8.1  Dataset 

Some part of the dataset s shown here. The dataset is stored in the SD card as csv format. The 

First eight column shows the Flex sensor reading, the 9th column shows the value from the 

force sensor in the finger and the last column denotes the label of the data. 

12 8 6 5 4 6 14 14 151 A

3 6 17 17 17 14 16 14 166 B

9 9 12 9 10 12 15 13 155 C

5 8 16 7 7 7 14 12 154 D

4 3 4 6 6 7 14 14 143 E

9 8 7 17 17 16 16 13 162 F

11 9 16 4 3 5 4 10 143 G

4 6 17 16 5 7 5 11 150 H

9 6 3 3 4 14 14 15 158 I

7 7 5 5 4 14 5 14 148 J

5 12 16 16 5 6 13 16 164 K

12 15 17 4 4 5 14 13 152 L

2 5 6 10 10 6 12 15 147 M

4 6 9 10 4 5 12 14 152 N

8 6 7 7 7 8 14 13 158 O

9 13 17 12 13 11 9 1 154 P

10 14 13 6 5 6 9 1 143 Q

3 7 16 14 5 6 13 13 155 R

11 4 2 3 3 4 12 14 120 S

6 9 6 7 5 5 14 13 113 T

3 6 16 16 4 5 14 12 120 U

3 7 17 16 6 7 13 11 120 V

2 7 17 17 16 6 14 12 122 W

5 2 11 5 6 7 12 12 114 X

15 17 3 4 4 14 11 14 121 Y

8 9 16 5 5 6 7 8 131 Z

12 8 1 1 1 2 13 16 131 A

4 5 16 16 17 14 16 17 153 B

10 8 13 9 10 12 16 18 144 C

5 7 16 5 5 5 15 17 137 D

4 2 3 5 4 5 14 17 127 E

10 8 5 17 17 15 16 17 138 F

8 7 16 6 5 5 3 14 135 G

5 6 16 16 5 7 5 15 139 H

9 8 4 3 4 13 14 16 144 I

11 6 6 5 5 14 4 14 139 J

6 10 16 15 5 4 14 16 147 K

11 14 16 6 5 5 15 13 142 L

3 4 6 9 9 5 13 13 140 M

5 6 9 9 4 5 12 14 150 N

8 6 7 6 7 7 16 14 137 O

8 12 17 11 11 8 8 1 151 P

9 14 13 5 4 4 9 2 143 Q

3 6 15 14 2 4 13 14 141 R

8 5 1 3 3 4 12 14 53 S

8 9 7 7 5 5 13 13 143 T

3 6 16 16 4 4 14 13 151 U

3 6 16 15 5 6 14 12 146 V

3 7 17 17 16 5 14 12 150 W

4 3 13 5 5 6 14 14 146 X

11 12 3 4 4 14 14 15 147 Y

6 7 16 4 4 5 10 11 145 Z



42 
 

8.3 Finding Result from the dataset 

The hardest part was to find the result of a displayed sign form the dataset references. While a 

person projected his hand to show a sign the classification algorithm (KNN) will find the 

nearest values that matches from reference dataset. As we have taken value of K=5 so there 

will be 5 most closest distances from the shown value to the all the reference values. Now, 

among those 5 nearest distances the one with the most common label will be selected as the 

result.  

In the given section we will discuss about the first five alphabets and there corresponding 

results accuracy. 

We, have used some colored marks which has symbolic meanings. The “Green” marks shows 

correct or expected outputs and their labels. The “Red” marks shows the output generated by 

classification algorithm but these are not the expected outputs. The “Yellow” highlights in the 

datasets show the reference’s labels and their respective distances with the projected signs. 

Furthermore, the “Yellow” highlights in the tables shows the first K (5) numbers of results in 

ascending order. 

8.3.1 Displaying Alphabet A 

When we displayed alphabet “A” the following outcome was seen in the console. 

 



43 
 

 

 

 

Fig.  8.2 Data Returned From Algorithm For A 

Here we can see that the showing result for displaying “A” is also “A”. That means the 

classification is working well. But we can see that the algorithm also predicted “S”. So, let’s 

compare the distances between all the reference of “A” and “S” with the displayed sign. 



44 
 

 

Figure no **: Showing the values of the predicted outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table No : 1 

 

We observe from the above result that in the lowest 5 distances “A” occurred 3 times and “S” 

occurred 2 times thus the most occurred one is the result, which is “A”.  

The percentage of accuracy of “A” is (3/5) x 100 = 60% 

Alphabet Distance 
(Ascending order) 

A 31 

S 31 

A 32 

A 36 

S 36 

S 37 

S 37 

S 42 

A 47 

A 50 



45 
 

8.3.2 Displaying Alphabet B 

Displaying “B” showed the following outcome in the console. 

 

 
Fig.  8.3 Displaying “B” and the corresponding result in console 

Here, all the resultant values are “B”. Thus, all the Bs has the minimum distance among all 130 

reference values. 

 



46 
 

 

 

 

Figure no: The lowest values are B 

 
Fig.  8.4 Showing some datasets and the lowest distance here is of “B” 

Since, the five lowest distances are B. So, the percentage of accuracy of “B” is (5/5) x 100 = 

100% 

8.3.3 Displaying Alphabet C 

Displaying “B” showed the following outcome in the console. 



47 
 

 

 
Fig.  8.5Displaying “C” and the corresponding result in console 

In case of “C” also all the resultant values are “C”. Thus all the Cs has the minimum distance 

among all 130 reference values 



48 
 

 

Figure no: For this projection the lowest values are C 

 
Fig.  8.6 Showing some datasets and the lowest distance here is of “C” 

Since, the five lowest distances are C. So the percentage of accuracy of “C” is (5/5) x 100 = 

100% 



49 
 

8.3.4 Displaying Alphabet D 

When we displayed alphabet “D” the following outcome was seen in the console. 

 

 
Fig.  8.7 Displaying “D” and the corresponding result in console 

Here, we can observe that the showing result for displaying “D” is “D”. But we can see that 

the algorithm also predicted “R” and “V”. The comparison of the distances between all the 

references of “D”, “R” and “V” with the displayed sign is shown below. 

 



50 
 

 

 
Fig.  8.8 Showing the values of the predicted outcomes 



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe from the above result that in the lowest 5 distances “D” occurred 3 times, “R” 

occurred 1 time and “V” occurred 1 time. Thus, the most occurred one is the result, which is 

“D”.  

The percentage of accuracy of “D” is (3/5) x 100 = 60% 

8.3.5 Displaying Alphabet E 

When we displayed alphabet “E” the following outcome was seen in the console.  

 

Alphabet Distance 
(Ascending order) 

D 15 

D 20 

V 22 

D 22 

R 22 

V 23 

D 24 

V 24 

R 24 

D 26 

V 26 

R 28 

R 28 

V 29 

R 34 



52 
 

 
Fig.  8.9 Displaying “E” and the corresponding result in console 

Here, we can observe that the showing result for displaying “E” is “E”. But we can see that the 

algorithm also predicted “O” and “X”. The comparison of the distances between all the 

references of “E”, “O” and “X” with the displayed sign is shown below. 

 

 



53 
 

 
Fig.  8.10  Showing the values of the predicted outcomes 

 

Alphabet Distance 
(Ascending order) 

E 12 

E 12 

E 15 

O 15 

X 15 

E 16 

X 16 

E 16 

X 18 

X 19 

X 19 

O 20 

O 20 

O 21 

O 22 



54 
 

We observe from the above result that in the lowest 5 distances “E” occurred 3 times, “O” 

occurred 1 time and “X” occurred 1 time. Thus the most occurred one is the result, which is 

“E”.  

The percentage of accuracy of “E” is (3/5) x 100 = 60% 

8.3.6 Average Percentage of Accuracy 

We have calculated the distance metrics according to the sum of the Euclidean formula 

 

Average percentage of accuracy based on the first five alphabets: (60+100+100+60+60)/5 = 

76% 

 

 

  



55 
 

Chapter 9: Problem Analysisand Discussion 

While going through the whole process of the project, we faced many difficulties. The major 

difficulties are discussed in this section. Initially while calibration we figured out that different 

hands has different values while calibration. So, for every time a new person wears the gloves 

he has to calibrate once again. We also noticed that, even in case of same hand the values of 

calibration is never same. So no matter how many times a person calibrates the accuracy in 

value will not be satisfactory. This is a major drawback of our project. Moreover, every 

individual has different size and shape of hand. So we have to make separate gloves for separate 

persons as the flex will not be in the correct position and will not bend in the similar ways in 

case of different size of hands. Another problem that we faced is that, the value of the sensor 

is never completely stable. And again, the Gloves flexibility is also not stable. It is either more 

or less rigid while wearing depending on the hand. But if we attach glue with it its flexibility 

changes. These are the drawbacks related to gloves. While working with classification of the 

dataset, we tested with different classification algorithms but none of the algorithm gives 

entirely correct value. The last selected machine learning algorithm is KNN (K Nearest 

Neighbor) .In the KNN algorithm the value of K cannot be decided for getting the best value. 

The most occurred unique label was supposed to be the result. But the required result is not 

always the most occurred. The accuracy of this process is not satisfactory. In case of applying 

the KNN algorithm, the distance we took from each saved sensor value to the projected sensor 

value was initially just normal subtraction. Then we approached Euclidean distance, Manhattan 

distance, etc. none of the distances could give exactly correct answer. We also observed that, 

SD card initialization failed frequently. May be as PCB was not integrated that is why the 

connection with the SD card was not always successful. In case of Node MCU, it does not work 

as a proper slave of arduino mega. It creates problem while serial communication with arduino. 

Hence, the communication that we establish was not a reliable one. Moreover the value 

received at the node MCU end from arduino is not fast enough. Again, the library of node MCU 

to firebase is not a stable one. It created problem frequently. Now in case of sensors we faced 

some major difficulties. The sensors are not reliable. They used to get broken very easily. The 

metal shouldering of the flex sensors created immense problem as it broke down after getting 

slightest pressure. Moreover, the sensors are very expensive and the quality of the sensors are 

not up to the mark. We suppose, in Bangladesh good quality sensors and other devices are not 

available. Now in case of Android Applications, as they are real time application they consume 



56 
 

more battery life. However, the mobile application codes are not optimized so they take a lot 

more memory then they should. Lastly, in our project we did not send anything from mobile 

end to the arduino of the server. So the communication is one way. In future we will try to 

overcome this drawback. Also, the internet speed not sufficient to transfer bulk amount of data 

at a time at a good frequency. 

 

  



57 
 

Chapter 10: Conclusion 
10.1 Concluding Remarks 

Every single country including Bangladesh has a great number of mute and deaf people. 

Although every single country tries to use its human resource efficiently but these mute and 

deaf people were never a part of the main stream society just because of the communication 

barrier. Researchers have been working on the problem for a long time and remarkable progress 

has already been done. 

In this work, we have used modern technologies and efficient algorithm just not to give a 

solution proposal but to make a whole system, where the communication barrier will be 

actually bridged in reality. By the name of “OUR PROJECT NAME” we have successfully 

implemented the ASL learning approach and which is really a convenient way. The message 

passing system is also having a good structure which is about to be in its perfect condition after 

few modifications. And together two of its approach works as the most efficient system for 

closing the communication gap of the mute and deaf society which will not only have a good 

impact on the personal life of a mute and deaf person but the whole socio-economic factors 

will see a good progress.  

10.2 Future Works 

We need to collect a huge number of data from different size and shape of hand. The learning 

application gives us a remarkable result but when hand sizes changes drastically the system 

tends to give erroneous result.  

Letter classification for message passing application needs to be modified and we already have 

an algorithm under development where each of the sensor will predict some of the letter it may 

show on that value of the sensor. After that, depending on the result of all sensor most occurred 

letter will be selected as the winner.  

We will add word classification right after the change of letter classification of message 

learning approach. In future after creating a word it will compare its lexicographical values 

from the correct words with the same length. The words which will have least distance will be 

declared as the result of the whole system.  



58 
 

We will add multi user support as soon as possible. By enabling authentication on the mobile 

end, it will be able to recognize who is actually using the device and it will then collect the data 

from that specific user or hand glove.  

  



59 
 

 

Bibliography 

 

[1]      World Health Organization, "Deafness and hearing loss," February 2017. [Online]. Available: 
http://www.who.int/mediacentre/factsheets/fs300/en/. [Accessed 19 August 2017]. 

[2]      M. G. Kumar, M. K. Gurjar and M. S. B. Singh, "American Sign Language Translating Glove using Flex Sensor," Imperial 

Journal of Interdisciplinary Research (IJIR), vol. 2, no. 6, 2016.  

[3]      T. Arsan and O. Ülgen, "SIGN LANGUAGE CONVERTER," International Journal of Computer Science & Engineering Survey 

(IJCSES), vol. 6, no. 4, 2015.  

[4]      M. Lin and R. Villalba, "Cornell University," [Online]. Available: 
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/. [Accessed 19 August 2017]. 

[5]      R. Krishna, S. Lee, S. P. Wang and J. Lang, "Cornell University," [Online]. Available: 
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/sl787_rak248_sw525_fl229/sl787_rak248_sw525_fl229/. 

[Accessed 19 August 2017]. 

[6]      P. Cloutier, A. Helderman and R. Mehilli, "Prototyping a Portable, Affordable Sign," Worcester Polytechnic Institute, 2016. 

[7]      S. N. Pawar, D. R. Shinde, G. S. Alai and S. S. Bodke, "Hand Glove To Translate Sign Language," IJSTE - International Journal 

of Science Technology & Engineering, vol. 2, no. 9, 2016.  

[8]      Y. N. Khan and S. A. Mehdi, "Sign Language Recognition using Sensor Gloves," FAST-National University of Computer and 
Emerging Sciences, Lahore. 

[9]      J. Bukhari, M. Rehman, S. I. Malik and A. M. Kamboh, "American Sign Language Translation through Sensory Glove;," 
International Journal of u- and e- Service, Science and Technology, vol. 8, no. 1, 2015.  

[10]      A. K and R. P. J., "Hand Talk-A Sign Language Recognition," International Journal of Innovative Research in Computer, vol. 2, 
no. 3, July 2014.  

[11]      "Arduino Mega," Arduino, [Online]. Available: https://www.arduino.cc/en/Main/ArduinoBoardMega. [Accessed 18 August 
2017]. 

[12]      "Tensorflow," Tensorflow, [Online]. Available: https://www.tensorflow.org/. [Accessed 19 August 2017]. 

[13]      "FLEX SENSORS: spectrasymbol," spectrasymbol, [Online]. Available: http://www.spectrasymbol.com/product/flex-sensors/. 
[Accessed 18 August 2017]. 

[14]      "Force Sensitive Resistor 0.5": Sparkfun," Sparkfun, [Online]. Available: https://www.sparkfun.com/products/9375. [Accessed 
19 August 2017]. 

[15]      "Espressif," Espressif, [Online]. Available: http://espressif.com/products/hardware/esp8266ex/overview/. [Accessed 18 August 
2017]. 

[16]      "MPU-6050 Accelerometer + Gyro: Arduino," : Arduino , [Online]. Available: https://playground.arduino.cc/Main/MPU-6050. 
[Accessed 19 August 2017]. 



60 
 

 

 

 

  



61 
 

Appendix 

Only Calibration 

We will describe about the code snippet Only Calibration over here. The purpose of this code 

to take the maximum and minimum value of all flex sensor. Where all the maximum and 

minimum value will be printed in the serial monitor. Then we take the values and manually put 

the values wherever we need the code description line by line goes below: 

int FLEX_PIN[8];  

// Declarations of analogue pin by which we will be taking the sensors value from the circuit. 

//these pins are mainly Arduino pin A0-A7 

double STRAIGHT_RESISTANCE [8]; 

 // these containers are declared to save the minimum or straight value of flex sensors. 

double BEND_RESISTANCE [8];  

//to store values coming from flex sensors when the sensors are in maximum bends 

double flexADC [8]; 

//to store the raw values from sensors 

//this method calibratingFlex takes analog values from sensors. After taking all the sensors values at 
once //this method compares the value with its maximum and minimum value. If it is lower than 
minimum then //this method save the value inside STRAIGHT_RESISTANCE[j]. if the raw value is 
more than the maximum //then the value will be saved inside BEND_RESISTANCE; 

//running the method 20,000 times with a delay of 1 millisecond gives the user enough time to 
calibrate //his hands . 

void calibratingFlex(){ 

    for(int i=0;i<8;i++){ 

    int flexADC=analogRead(FLEX_PIN[i]); 

    STRAIGHT_RESISTANCE[i]=flexADC; 

    BEND_RESISTANCE[i]=flexADC; 

   }   

    for(int i=0;i<20000;i++){ 

    for(int j=0;j<8;j++){ 

      int flexADC=analogRead(FLEX_PIN[j]); 

      if(STRAIGHT_RESISTANCE[j]>flexADC){ 

      STRAIGHT_RESISTANCE[j]=flexADC; 



62 
 

      } 

     else if(BEND_RESISTANCE[j]<flexADC){ 

      BEND_RESISTANCE[j]=flexADC; 

      } 

     } 

     delay(1); 

    } 

  } 

 

/* After determining the lowest and highest value for every sensor the purpose of this method is to 
print the values in a way that can be pasted into other method without any kind of editing. 

void pritingingLimits(){ 

  Serial.println("--------------------------------------------------------------------------------------------"); 

  Serial.println("--------------------------------------------------------------------------------------------"); 

  for(int i=0;i<8;i++){ 

    String temp1 ="STRAIGHT_RESISTANCE[" + (String)i + "] = " + 
(String)STRAIGHT_RESISTANCE[i] + ";"; 

    Serial.print(temp1); 

    Serial.println(); 

    String temp2 = "BEND_RESISTANCE[" + (String)i + "] = " + (String)BEND_RESISTANCE[i] + 
";"; 

    Serial.print(temp2); 

    Serial.println(); 

    Serial.println(); 

    } 

  } 

 

/*this setup() will run just for once in its life time. We first initialize the variables with the exact 
analogue pin over here.then we run calibrate the flex and print those values in a way that it can be 
pasted anywhere without any hustle. 

*/ 

void setup()  

{ 

  FLEX_PIN[0]=A0; 



63 
 

  FLEX_PIN[1]=A1; 

  FLEX_PIN[2]=A2; 

  FLEX_PIN[3]=A3; 

  FLEX_PIN[4]=A4; 

  FLEX_PIN[5]=A5; 

  FLEX_PIN[6]=A6; 

  FLEX_PIN[7]=A7; 

  Serial.begin(115200);  

  calibratingFlex(); 

  pritingingLimits(); 

} 

Saving and Creating Dataset (for both approach) 

Here we will discuss about the code snippet “saving_creating_csv” . We have created this file 

to create reference data for our future classification. In this code, we wait for a data to appear 

similarly three times then if the user is sure to save the data he needs to press the controller 

button. Then program will ask the user to enter the label in the serial monitor. When the 

label/letter is being entered then it is saved to the SD card. The code elaboration given below:  

 

//including the necessary file 

#include <SD.h> 

#include<SPI.h> 

 

//this is the declaration of chip select pin of SD card module 

const int CSpin = 53; 

 

//Creating reference for File where the values will be saved 

File sensorData; 

 

// Declarations of analogue pin by which we will be taking the sensors value from the circuit. 

//these pins are mainly Arduino pin A0-A7 

int FLEX_PIN[8]; 

 



64 
 

// Pin connected to voltage divider output. This force sensor is actually used as a controller to send the  

//from the Arduino to sd card 

const int Force_Finger = A8; 

 

//this pin is used to differentiate between u and v 

const int Force_Switch = A9; 

 

//This button was kept purposefully for debugging process 

const int Force_Saved_Button = A10; 

 

double STRAIGHT_RESISTANCE [8]; 

 // these containers are declared to save the minimum or straight value of flex sensors. 

double BEND_RESISTANCE [8];  

//to store values coming from flex sensors when the sensors are in maximum bends 

double flexADC [8]; 

//to store the raw values from sensors 

 

//here value sensor value will be kept saved after gettting from method compareFlexReading 

String valueToBeSaved = ""; 

 

/* 

this method ensures that a steady value is being saved to the SD card. This method takes one 

parameter name ans which is a current value of the flex sensors. Then the values are compared 

with the next two reading of all flex sensors. If it matches, then we save the examinee value to 

global variable “valueToBeSaved”. Then this method simply prints the sequence of steady data 

which indicates that this is a steady position and if you want to save this value as a reference 

you can save it. 

*/ 

void compareFlexReading(String ans) { 

  int count = 0; 

  while (count < 2) { 

    flag = false; 



65 
 

    double tempFlexReading [8]; 

    for (int i = 0; i < 8; i++) { 

      double temp = analogRead(FLEX_PIN[i]); 

      tempFlexReading[i] = map(temp, STRAIGHT_RESISTANCE[i], BEND_RESISTANCE[i], 1, 
20); 

    } 

    for (int j = 0; j < 8; j++) { 

      if (angle[j] != tempFlexReading[j]) { 

        flag = true; 

        return; 

      } 

    } 

    if (flag == true) { 

      break; 

    } 

    count++; 

    delay(50); 

  } 

  if (count == 2) { 

    valueToBeSaved = ans; 

    Serial.println(ans); 

  } 

} 

 

 

/* 

After the data has been shoot to save in the SD card this method is called.It first opens the file 

from SD card and if everything works perfectly it simply saves the value to the SD card and 

closes the file reference 

*/ 

void saveData() { 

  sensorData = SD.open("data.csv", FILE_WRITE); 



66 
 

  if (sensorData) { // check the card is still there 

    // now append new data file 

    sensorData.println(valueToBeSaved); 

    sensorData.close(); // close the file 

  } 

  else { 

    Serial.println("Error writing to file !"); 

  } 

} 

//this method simply takes flex reading and saves into the flexADC global variable 

void takingFlexReading() { 

  for (int i = 0; i < 8; i++) { 

    flexADC[i] = analogRead(FLEX_PIN[i]); 

  } 

} 

 

/* 

Inside the setup method we first begin the serial communication. Then initialize the flex pin 

assigning the pin values. Then we need to manually assign the values of the upper limit of 

lower limit for every single flex sensor. We have go the values from only calibration code 

snippet. Lastly we have set the pinMOde for various analogue pin for reading and writing 

*/ 

void setup() 

{ 

  Serial.begin(115200); 

  FLEX_PIN[0] = A0; 

  FLEX_PIN[1] = A1; 

  FLEX_PIN[2] = A2; 

  FLEX_PIN[3] = A3; 

  FLEX_PIN[4] = A4; 

  FLEX_PIN[5] = A5; 

  FLEX_PIN[6] = A6; 



67 
 

  FLEX_PIN[7] = A7; 

 

  STRAIGHT_RESISTANCE[0] = 111.00; 

  BEND_RESISTANCE[0] = 427.00; 

 

  STRAIGHT_RESISTANCE[1] = 501.00; 

  BEND_RESISTANCE[1] = 776.00; 

 

  STRAIGHT_RESISTANCE[2] = 437.00; 

  BEND_RESISTANCE[2] = 680.00; 

 

  STRAIGHT_RESISTANCE[3] = 505.00; 

  BEND_RESISTANCE[3] = 724.00; 

 

  STRAIGHT_RESISTANCE[4] = 450.00; 

  BEND_RESISTANCE[4] = 708.00; 

 

  STRAIGHT_RESISTANCE[5] = 543.00; 

  BEND_RESISTANCE[5] = 710.00; 

 

  STRAIGHT_RESISTANCE[6] = 575.00; 

  BEND_RESISTANCE[6] = 724.00; 

 

  STRAIGHT_RESISTANCE[7] = 586.00; 

  BEND_RESISTANCE[7] = 710.00; 

 

  //File Code for initializing 

  Serial.print("Initializing SD card..."); 

  pinMode(CSpin, OUTPUT); 

  // 

  // see if the card is present and can be initialized: 

  if (!SD.begin(CSpin)) { 



68 
 

    Serial.println("Card failed, or not present"); 

    // don't do anything more: 

    return; 

  } 

  Serial.println("card initialized."); 

  //File Code Ends 

 

  pinMode(FLEX_PIN, INPUT); 

  pinMode(Force_Finger, INPUT);//Pin setup for force sensor 

  pinMode(Force_Switch, INPUT);//Pin setup for force sensor 

  pinMode(Force_Saved_Button, INPUT); 

 

} 

 

 

 

/* 

This is the main body part of the whole program mainly we run all the method sequentially in 

this loop. First, we take the flex reading and save them to global variable then we map them 

into the from 1-20. And by concatenating we make a string called ans. After pressing the force 

sensor to shoot the value to the SD card. The answer is saved as comma separated value. 

*/ 

void loop() 

{ 

 

  //this force sensor detest which mode should work right now? numerical or letter 

  int force_Button_ADC = analogRead(Force_Switch);//Reading force values 

  if (force_Button_ADC > 600 && flag == false) { 

    flag = true; 

    delay(500); 

  } 

  else if (force_Button_ADC > 600 && flag == true) { 



69 
 

    flag = false; 

    delay(500); 

  } 

 

  // Read the ADC, and calculate voltage and resistance from it 

  String ans = ""; 

  //here we are taking reading from all the sensors and saving them to the flexADC array 

  takingFlexReading(); 

  // Use the calculated resistance to estimate the sensor's 

  // bend angle: 

  for (int i = 0; i < 8; i++) { 

    angle[i] = map(flexADC[i], STRAIGHT_RESISTANCE[i], BEND_RESISTANCE[i], 1, 20); 

    if (i == 0) { 

      ans = angle[i]; 

    } else { 

      ans = ans + "," + angle[i]; 

    } 

  } 

  int force_finger_ADC = analogRead(Force_Finger);//Reading force values 

  ans = ans + "," + force_finger_ADC; 

  //Serial.println(ans); 

  compareFlexReading(ans); 

 

  int force_btn_value_saved = analogRead(Force_Saved_Button); 

  //Serial.println(force_btn_value_saved); 

  //after creating force on this sensor we save value to  file 

  if (force_btn_value_saved > 600) { 

    Serial.println("Please Give Us The Character"); 

    while (!Serial.available()); 

    if (Serial.available() > 0) { 

      char label = Serial.read(); 

      valueToBeSaved = valueToBeSaved + "," + label; 



70 
 

      saveData(); 

    } 

 

    Serial.println(valueToBeSaved); 

    delay(500); 

  } 

 

  delay(100); 

} 

Learning ASL 

Reading csv and testing algorithm 

Here we will talk about another code snippet reading csv and testing algorithm. This program 

mainly takes one specific hand gesture from glove. And with the help of controlling button it 

shoots the value to the Arduino. Whenever a new value is received by the Arduino the k-nearest 

neighbor routine runs and try to find out the neighbors. Then we find out the unique values of 

the string and send it to nodeMcu.Below the code description isgiven: 

 

//includes  sd card library to  the  

#include <SD.h> 

//Includes spi  communication  protocol library  support in the routine 

#include<SPI.h> 

//it is declared to build  the serial communication between  Arduino and nodemcu 

#include <SoftwareSerial.h> 

//Here we declare the  Rx Tx  pin  to communicate with  the Arduino 

SoftwareSerial ArduinoSerial(3, 2); //RX , TX 

const int CSpin = 53; 

//Just declaring the file instance from where the value will  be retrieved.  The file is in the sd card 
which //is inside the sd card module. 

File sensorData; 

//This variable is the most important variable. Here we actually define how many neighbor we will 
take  

const int k = 5; 



71 
 

//File Block Codes END 

//the hardware CS pin (10 on most Arduino boards, 

// 53 on the Mega) must be left as an output or the SD 

// library functions will not work. 

int FLEX_PIN[8]; 

//Container for saving the pin reference of flex sensors 

// Pin connected to voltage divider output 

 int Force_Finger = A8; 

// a force sensor pin which will be used to  throw value to comapare 

const int Force_Switch = A9; 

// a force sensor to differentiate between “u” and “v” 

const int Force_Saved_Button = A10; 

// Buttton for concatenation which is not applicable for this specific program 

//will hold the ultimate answer which will be shoot to the NodeMcu 

String ans = ""; 

//to save temporary guessed ans which is later saved into ans 

String tempAns = ""; 

double STRAIGHT_RESISTANCE [8]; 

 // these containers are declared to save the minimum or straight value of flex sensors. 

double BEND_RESISTANCE [8];  

//to store values coming from flex sensors when the sensors are in maximum bends 

double flexADC [8]; 

//to store the raw values from sensors 

//to store values coming from flex sensors 

double flexADC [8]; 

//to store the angle calculated from map function 

float angle [8]; 

//one boolean flag to change blocks 

boolean flag = true; 

//here value sensor value will be kept saved after gettting from method compareFlexReading 

String valueToBeSaved = ""; 

 



72 
 

/* 

this method ensures that a steady value is being saved to the SD card. This method takes one 

parameter name ans which is a current value of the flex sensors. Then the values are compared 

with the next two reading of all flex sensors. If it matches, then we save the examinee value to 

global variable “valueToBeSaved”. Then this method simply prints the sequence of steady data 

which indicates that this is a steady position and if you want to save this value as a reference 

you can save it. 

*/ 

void compareFlexReading(String ans) { 

  int count = 0; 

  while (count < 1) { 

    flag = false; 

    double tempFlexReading [8]; 

    for (int i = 0; i < 8; i++) { 

      double temp = analogRead(FLEX_PIN[i]); 

      tempFlexReading[i] = map(temp, STRAIGHT_RESISTANCE[i], BEND_RESISTANCE[i], 1, 
20); 

    } 

    for (int j = 0; j < 8; j++) { 

      if (angle[j] != tempFlexReading[j]) { 

        flag = true; 

        break; 

      } 

    } 

    if (flag == true) { 

      break; 

    } 

    count++; 

  } 

  if (count == 1) { 

    valueToBeSaved = ans; 

    Serial.println("New Value Saved..."); 

    // Serial.println(ans); 



73 
 

  } 

} 

 

/* 

After the data has been shoot to save in the SD card this method is called. it first opens the file 

from sd card and if everything works perfectly it simply saves the value to the sd card and 

closes the file reference 

*/ 

void saveData() { 

  sensorData = SD.open("data.csv", FILE_WRITE); 

  if (SD.exists("data.csv")) { // check the card is still there 

    // now append new data file 

    if (sensorData) { 

      sensorData.println(valueToBeSaved); 

      sensorData.close(); // close the file 

    } 

  } 

  else { 

    Serial.println("Error writing to file !"); 

  } 

} 

 

/* 

This method first open the csv file then declare two array to store the distance between the 

projected value and the  saved values in the SD card. Another character array saves the label 

where it will also be sorted when the distance array is sorted. This method takes one single line 

of reference value at a time and compare it with the projected value and save it then go for  the 

next reference value. Then after sorting the array it takes Kth values and then within  the kth 

values  it find out unique  characters that is send to  the nodeMcu 

*/ 

void readAndRetrieve() { 

  Serial.println("readAndRerieve method is calling"); 



74 
 

  int lineSize = gettingHashSize();//Total number of lines in the given txt file 

  sensorData = SD.open("data.csv");  //Opening file 

  if (sensorData) { 

 

    Serial.println(lineSize); 

    double distanceSaver[lineSize];  //Distacne saving array 

    char characterSaver[lineSize];   //Character saving array corresponding to distance 

    String str = "";                 //string variable to save each line in file 

    int count = 0;                   //Counter of the array index 

    //open the file here 

    while (sensorData.available()) { 

      //A inconsistent line length may lead to heap memory fragmentation 

      str = sensorData.readStringUntil('\n');    //Reading and retriving each line in file 

      if (str == "") //no blank lines are anticipated 

        break; 

      //working on delimating  the retrive value 

 

      Serial.println(str); 

      //call the  method givingDistance 

      double distanceTemp = givingDistance(str, valueToBeSaved); // Getting distance between file's 
one retrived value and the current value to be checked 

      distanceSaver[count] = distanceTemp;                       // The distance is saved in the array 

      //might return an error cause I am assuming the  tempAns is having only  one character written by  
givingDistance 

      characterSaver[count] = tempAns[0];                       //The corresponding character is saved in the 
character array, generated from givingDistance() method 

 

      Serial.println(distanceTemp); 

      count++; 

    } 

    sensorData.close(); 

    sorting(distanceSaver, characterSaver, lineSize);     //When array computation are complete then 
they are sorted 



75 
 

    String  uniqueChars = findingUnique(characterSaver, lineSize); //Finding unique charaters-
(concated in a string) from the sorted character array 

    String ANS = (String)findingMostOccurance(uniqueChars, characterSaver);   //Finding most 
occured character among the k number of characters 

 

    Serial.println(ANS); 

    // String sendtoNodeMcu=(String)ANS; 

    ArduinoSerial.println(uniqueChars); 

  } else { 

    // if the file didn't open, print an error: 

    Serial.println("error opening data.csv"); 

  } 

} 

 

/* 

After finding the kth array this method simply returns the unique value from the Arduino. 

*/ 

String findingUnique(char charArray [], int lengthOfArray) { 

  Serial.println("findingUnique is calling"); 

  String unique = (String)charArray[0]; 

  for (int i = 1; i <= k; i++) { 

    char  c = charArray[i]; 

    int j = 0; 

    for (; j < unique.length(); j++) { 

      if (unique[j] == c) { 

        break; 

      } 

    } 

    if (j == unique.length()) { 

      unique.concat(c); 

    } 

  } 

  return unique; 



76 
 

} 

 

/* 

This method returns  thee most occurrence letter 

*/ 

char findingMostOccurance(String unique, char characterArray []) { 

  Serial.println("findingMostOccurance is calling"); 

  int counter = 0; 

  char ans; 

  for (int i = 0; i < unique.length(); i++) { 

    int tempCounter = 0; 

    char tempChar = unique[i]; 

    for (int j = 0; j <= k; j++) { 

      if (unique[i] == characterArray[j]) { 

        tempCounter++; 

      } 

    } 

    if (tempCounter > counter) { 

      counter = tempCounter; 

      ans = tempChar; 

    } 

  } 

  for (int i = 0; i < k; i++) { 

    Serial.println(characterArray[i]); 

  } 

  return ans; 

} 

 

/* 

In this method, we sort the distance of the distance array. Whenever we change any 

value/distance position we change the corresponding character also.so as a result not the 



77 
 

neighboring character becomes in the top of the character array. So, after that we can simply 

take the first k’th character to find out the most occurrence character. 

*/ 

void sorting(double value[], char characters[], int lengthOfArray) { 

  Serial.println("sorting is calling"); 

  for (int i = 0; i < lengthOfArray; i++) { 

    for (int j = 0; j < i; j++) { 

      if (value[i] <= value[j]) { 

        int temp = value[i]; 

        value[i] = value[j]; 

        value[j] = temp; 

        char charTemp = characters[i]; 

        characters[i] = characters[j]; 

        characters[j] = charTemp; 

      } 

    } 

  } 

} 

 

/* 

This method takes two string as parameter. Those string were saved as csv format and here csv 

format values again parsed into double value and kept inside two temporary double array.  Then 

distance have been calculated in between these two values (one of them is projected or testing 

and other is reference or from the dataset). 

*/ 

double givingDistance(String  str, String valueToCheck) { 

  Serial.println("givingDistance is calling"); 

 

  double tempVal[9]; 

  double valueToCheckVal[9]; 

  //for keeping track of which sensor value we are getting right now 

  int counter = 0; 



78 
 

  String temp = ""; 

  double ans = 0; 

  for (int i = 0; i < str.length(); i++) { 

    if (str[i] != ',') { 

      temp = temp + str[i]; 

    } else { 

      tempVal[counter] = temp.toFloat(); 

      counter++; 

      temp = ""; 

    } 

  } 

  tempAns = temp; 

  counter = 0; 

  for (int i = 0; i < valueToCheck.length() ; i++) { 

    if (valueToCheck[i] != ',') { 

      temp = temp + valueToCheck[i]; 

    } else { 

      valueToCheckVal[counter] = temp.toFloat(); 

      counter++; 

      temp = ""; 

    } 

    if (i == valueToCheck.length() - 1) { 

      valueToCheckVal[counter] = temp.toFloat(); 

      counter++; 

      temp = ""; 

    } 

  } 

  //here i am printing  the float array got from above code 

  for (int i = 0; i < 8; i++) { 

    //ans = ans + sq(valueToCheckVal[i] - tempVal[i]); 

    ans = ans + abs(valueToCheckVal[i] - tempVal[i]); 

  } 



79 
 

  //calculating Eucledian distance sqrt(sq(sum(Xi-Yi))) 

  //ans = sqrt(ans); 

  return  ans; 

} 

 

/* 

This method simply returns the line numbers or reference values.  It searches for the “\n” token 

which can only be found once in the end of the line. So, the number of “\n” we are using that 

much line or reference we have in the dataset 

*/ 

int gettingHashSize() { 

  Serial.println("gettingHashSize is printing"); 

  sensorData = SD.open("data.csv"); 

  int  val = 0; 

  if (sensorData) { 

    Serial.println("data.csv:"); 

 

    // read from the file until there's nothing else in it: 

    while (sensorData.available()) { 

      sensorData.readStringUntil('\n'); 

      val++; 

    } 

    // close the file: 

    sensorData.close(); 

  } else { 

    // if the file didn't open, print an error: 

    Serial.println("error opening test.txt"); 

  } 

  return val; 

} 

 

/* 



80 
 

Default function of arduino. Firstly, we set up the baud rate then we begin another serial 

communication for communicating with nodeMcu. After that we have simply initialized pin 

numbers inside the Flex_Pin array. Then we have set some pinmode to input for functioning 

properly. 

*/ 

void setup() 

{ 

  Serial.begin(115200); 

  ArduinoSerial.begin(4800); 

  FLEX_PIN[0] = A0; 

  FLEX_PIN[1] = A1; 

  FLEX_PIN[2] = A2; 

  FLEX_PIN[3] = A3; 

  FLEX_PIN[4] = A4; 

  FLEX_PIN[5] = A5; 

  FLEX_PIN[6] = A6; 

  FLEX_PIN[7] = A7; 

 

  STRAIGHT_RESISTANCE[0] = 111.00; 

  BEND_RESISTANCE[0] = 427.00; 

 

  STRAIGHT_RESISTANCE[1] = 501.00; 

  BEND_RESISTANCE[1] = 776.00; 

 

  STRAIGHT_RESISTANCE[2] = 437.00; 

  BEND_RESISTANCE[2] = 680.00; 

 

  STRAIGHT_RESISTANCE[3] = 505.00; 

  BEND_RESISTANCE[3] = 724.00; 

 

  STRAIGHT_RESISTANCE[4] = 450.00; 

  BEND_RESISTANCE[4] = 708.00; 



81 
 

 

  STRAIGHT_RESISTANCE[5] = 543.00; 

  BEND_RESISTANCE[5] = 710.00; 

 

  STRAIGHT_RESISTANCE[6] = 575.00; 

  BEND_RESISTANCE[6] = 724.00; 

 

  STRAIGHT_RESISTANCE[7] = 586.00; 

  BEND_RESISTANCE[7] = 710.00; 

 

  //File Code for initializing 

  Serial.print("Initializing SD card..."); 

  pinMode(CSpin, OUTPUT); 

  // 

  // see if the card is present and can be initialized: 

  if (!SD.begin(CSpin)) { 

    Serial.println("Card failed, or not present"); 

    // don't do anything more: 

    return; 

  } 

  Serial.println("card initialized."); 

  //File Code Ends 

  pinMode(FLEX_PIN, INPUT); 

  pinMode(Force_Finger, INPUT);//Pin setup for force sensor 

  pinMode(Force_Switch, INPUT);//Pin setup for force sensor 

  pinMode(Force_Saved_Button, INPUT); 

 

} 

 

/* 

In this default Arduino loop we take values of flex sensors we use the map function and we 

map the values inside angle array. Which are then concatenated to one single string and created 



82 
 

a csv value. After that when the controller/force sensor is been pressed we simply calculated 

the distance and findout neighbor through k-nearest neighbor algorithm. 

*/ 

void loop() 

{ 

  //this force sensor detets which mode should work right now? numerical or letter 

  int force_Button_ADC = analogRead(Force_Switch);//Reading force values 

  if (force_Button_ADC > 600 && flag == false) { 

    flag = true; 

    delay(500); 

  } 

  else if (force_Button_ADC > 600 && flag == true) { 

    flag = false; 

    delay(500); 

  } 

  // Read the ADC, and calculate voltage and resistance from it 

  String ans = ""; 

  //here we are taking reading from all the sensors and saving them to the flexADC array 

  takingFlexReading(); 

  // Use the calculated resistance to estimate the sensor's 

  // bend angle: 

  for (int i = 0; i < 8; i++) { 

    angle[i] = map(flexADC[i], STRAIGHT_RESISTANCE[i], BEND_RESISTANCE[i], 1, 20); 

    if (i == 0) { 

      ans = angle[i]; 

    } else { 

      ans = ans + "," + angle[i]; 

    } 

  } 

  int force_finger_ADC = analogRead(Force_Finger);//Reading force values 

  ans = ans + "," + force_finger_ADC; 

  //Serial.println(ans); 



83 
 

  compareFlexReading(ans); 

 

  int force_btn_value_saved = analogRead(Force_Saved_Button); 

  //Serial.println(force_btn_value_saved); 

  //after creating force on this sensor we save value to  file 

  if (force_btn_value_saved > 600) { 

    readAndRetrieve(); 

    delay(500); 

  } 

  delay(100); 

} 

NodeMcu Finale 

In this document, we will showthe elaborationof the NodeMcu Algorithm for 

ASLLearningApp. This code is relatively simple. Once NodeMcu gets values from Arduino it 

simply set the value to firebase under the token “Letter”. I will try elaborate the code below: 

//including all the library which will be neededto communicate with firebase 

#include <SoftwareSerial.h> 

#include <Firebase.h> 

#include <FirebaseArduino.h> 

#include <FirebaseCloudMessaging.h> 

#include <FirebaseError.h> 

#include <FirebaseHttpClient.h> 

#include <FirebaseObject.h> 

#include <ESP8266WiFi.h> 

#include <FirebaseArduino.h> 

#define FIREBASE_HOST "testing-383b1.firebaseio.com"//name of the firebase  database 

#define FIREBASE_AUTH "SeIpXZ386mh8CJRz7zbk67JnJPAn8QQS5MHeGFGR"//the secret of 
the database 

#define WIFI_SSID "#SSID"//you should put your wifi name over here 

#define WIFI_PASSWORD “########”//you should put your wifi name over here 

String str = ""; 

SoftwareSerial NodeSerial(D2, D3); //RX | TX //defining the serial communication pin with  android 



84 
 

 

/* 

Here we initiate serial communication. Establish wifi connection. And set the pinmode of D2,D3 pin 
over here 

*/ 

void setup() { 

  Serial.begin(115200); 

  NodeSerial.begin(4800); 

  WiFi.begin(WIFI_SSID, WIFI_PASSWORD); 

  Serial.println("connecting"); 

  while (WiFi.status() != WL_CONNECTED) { 

    Serial.print("."); 

    delay(500); 

  } 

  Serial.println(); 

  Serial.println("connected: "); 

  Serial.println(WiFi.localIP()); 

  Firebase.begin(FIREBASE_HOST, FIREBASE_AUTH); 

  pinMode(D2, INPUT); 

  pinMode(D3, OUTPUT); 

} 

 

 

/* 

In this loop whenever some data is available in the serial we take the data as a whole line till 

the “\n”. then we set the string to firebase with token “Letter” 

*/ 

void loop() { 

  if (NodeSerial.available()) { 

    String str = NodeSerial.readStringUntil('\n'); 

    Serial.println(str); 

    Firebase.setString("Letter", str); 



85 
 

    if (Firebase.failed()) { 

      Serial.print("pushing /logs failed:"); 

      Serial.println(Firebase.error()); 

      return; 

    } 

  } 

} 

Android application for Sign Language Converter. 

In our particular system, we have used two different applications. One is for learning sign 

language and another one is for message passing. Here we will discuss about both the 

applications in details with line-by-line code. 

LearningASL Android Application 

When user wears the glove on his hand and start LearningASL application first screen will pop 

up and it will take the user to the application with a welcoming message. By tapping on the 

screen it will take the user through the learning process. On the second screen letter A will 

show up. When the user taps on that screen an image will be displayed which is the sign gesture 

of letter A. Now user have to make that particular gesture with his hand. If the sign matches 

with the gesture an image of tick sign will be displayed to ensure the user that he is correct. 

Otherwise a cross sign representing wrong sign will be displayed. If it is correct and user taps 

on the screen the next letter B will be shown. But if the user is in wrong screen he/she will have 

to try letter A again. And this process will continue till Z. After successfully completing all the 

letters user will be taken to the third and last screen with congratulation message on it. 

Now we will discuss about the technology behind this application in details along with the 

code. 



86 
 

 
Fig.  10.1User interface of the application 

In this screen there is one image view and one text view. The image view is showing the BRAC 

University logo and text view is displaying welcome message. 

 
Fig.  10.2 Launcher activity of learning application. 

These are the codes for our launcher activity or welcome screen. Just an on click listener event 

is there which takes the user to next screen when the user taps on this screen. 



87 
 

 
Fig.  10.3 Application using 

Tapping on welcome screen user will be shifted to our main activity. Here within a text view 

with Letters appears. When the user taps on this screen, an on click listener event will execute 

and the text view will hide and an image view with the corresponding gesture of that letter will 

be displayed on the same screen. 

Now the user will have to perform the given gesture with his hand. By performing it, the glove’s 

sensor will collect the data and after classifying the data it will be sent to NodeMCU. With the 

help of NodeMCU the data will be sent to online server. After that user will get the data back 

in his android smartphone. This data will produce the result showing whether the gesture is 

right or wrong. 

Based on the result user will be provided with a right or wrong screen. If the gesture is correct, 

the image view will be replaced by tick symbol on it. On the other hand, if the gesture is not 

correct the gesture image view will be replaced with cross symbol. For the right gesture screen, 

user will be shown the next letter. If it is wrong user needs to perform previous later again. 

wrong.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                wrong.setVisibility(View.INVISIBLE); 

                linearLayout.setVisibility(View.VISIBLE); 

            } 

        }); 



88 
 

The crucial part of this application is to reduce size of the application and make it faster. 

Therefore, instead of making 54 different activities for 26 English Letters and 26 images of 

gestures and 2 right and wrong symbol we have done it in one activity. Within this one activity, 

letters and images are changing according to user’s activity.Now the question is how we have 

done it. 

right.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                if(n==26){ 

                    Intent intent = new Intent(getBaseContext(),LastActivity.class); 

                    startActivity(intent); 

                } 

                switch (n) { 

                    case 0: 

                        letter.setText("A"); 

                        break; 

                    case 1: 

                        letter.setText("B"); 

                        break; 

                    case 2: 

                        letter.setText("C"); 

                        break; 

                    case 3: 

                        letter.setText("D"); 

                        break; 

                    case 4: 

                        letter.setText("E"); 

                        break; 

                    case 5: 

                        letter.setText("F"); 

                        break; 

                    case 6: 



89 
 

                        letter.setText("G"); 

                        break; 

                    case 7: 

                        letter.setText("H"); 

                        break; 

                    case 8: 

                        letter.setText("I"); 

                        break; 

                    case 9: 

                        letter.setText("J"); 

                        break; 

                    case 10: 

                        letter.setText("K"); 

                        break; 

                    case 11: 

                        letter.setText("L"); 

                        break; 

                    case 12: 

                        letter.setText("M"); 

                        break; 

                    case 13: 

                        letter.setText("N"); 

                        break; 

                    case 14: 

                        letter.setText("O"); 

                        break; 

                    case 15: 

                        letter.setText("P"); 

                        break; 

                    case 16: 

                        letter.setText("Q"); 

                        break; 



90 
 

                    case 17: 

                        letter.setText("R"); 

                        break; 

                    case 18: 

                        letter.setText("S"); 

                        break; 

                    case 19: 

                        letter.setText("T"); 

                        break; 

                    case 20: 

                        letter.setText("U"); 

                        break; 

                    case 21: 

                        letter.setText("V"); 

                        break; 

                    case 22: 

                        letter.setText("W"); 

                        break; 

                    case 23: 

                        letter.setText("X"); 

                        break; 

                    case 24: 

                        letter.setText("Y"); 

                        break; 

                    case 25: 

                        letter.setText("Z"); 

                        break; 

                } 

 

                right.setVisibility(View.INVISIBLE); 

                linearLayout.setVisibility(View.VISIBLE); 

            } 



91 
 

        }); 

linearLayout.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

 

 

                incomingStremFlag = true; 

                switch (n) { 

                    case 0: 

                        imageView.setImageResource(R.drawable.a); 

                        break; 

                    case 1: 

                        imageView.setImageResource(R.drawable.b); 

                        break; 

                    case 2: 

                        imageView.setImageResource(R.drawable.c); 

                        break; 

                    case 3: 

                        imageView.setImageResource(R.drawable.d); 

                        break; 

                    case 4: 

                        imageView.setImageResource(R.drawable.e); 

                        break; 

                    case 5: 

                        imageView.setImageResource(R.drawable.f); 

                        break; 

                    case 6: 

                        imageView.setImageResource(R.drawable.g); 

                        break; 

                    case 7: 

                        imageView.setImageResource(R.drawable.h); 

                        break; 



92 
 

                    case 8: 

                        imageView.setImageResource(R.drawable.i); 

                        break; 

                    case 9: 

                        imageView.setImageResource(R.drawable.j); 

                        break; 

                    case 10: 

                        imageView.setImageResource(R.drawable.k); 

                        break; 

                    case 11: 

                        imageView.setImageResource(R.drawable.l); 

                        break; 

                    case 12: 

                        imageView.setImageResource(R.drawable.m); 

                        break; 

                    case 13: 

                        imageView.setImageResource(R.drawable.n); 

                        break; 

                    case 14: 

                        imageView.setImageResource(R.drawable.o); 

                        break; 

                    case 15: 

                        imageView.setImageResource(R.drawable.p); 

                        break; 

                    case 16: 

                        imageView.setImageResource(R.drawable.q); 

                        break; 

                    case 17: 

                        imageView.setImageResource(R.drawable.r); 

                        break; 

                    case 18: 

                        imageView.setImageResource(R.drawable.s); 



93 
 

                        break; 

                    case 19: 

                        imageView.setImageResource(R.drawable.t); 

                        break; 

                    case 20: 

                        imageView.setImageResource(R.drawable.u); 

                        break; 

                    case 21: 

                        imageView.setImageResource(R.drawable.v); 

                        break; 

                    case 22: 

                        imageView.setImageResource(R.drawable.w); 

                        break; 

                    case 23: 

                        imageView.setImageResource(R.drawable.x); 

                        break; 

                    case 24: 

                        imageView.setImageResource(R.drawable.y); 

                        break; 

                    case 25: 

                        imageView.setImageResource(R.drawable.z); 

                        break; 

                } 

                linearLayout.setVisibility(View.INVISIBLE); 

                imageView.setVisibility(View.VISIBLE); 

 

            } 

        }); 

 

    } 

With the help of the code given above the decision is taking place. Here we can see the code 

begins with N=0. In this case the screened letter will be A and its corresponding gesture will 



94 
 

be shown after that. If the user can perform the gesture correctly, the value of N will increase. 

With the new value of N, the next letter will be shown to user. In this case, the letter will be 

“B”. On the other hand, if the user unable to perform the gesture correctly the value of N will 

remain same and user will be given the previous letter again. 

 
Fig.  10.4 User interface of the application 

After performing all the gestures correctly user will be shifted to the last screen. Here with an 

image view alongside two text views user will be ensured that he has completed the learning 

of sign language. 

Code for Message Passing Android Application 

Message passing, reading and testing algorithm for Android 

This code snippet works more or less similar of reading_csv_testing_algorithm. Only 

difference is whenever we test any data it simply concatenates the predicted letterwith the 

previous letter. And this is how thisalgorithm makesa word. Another force sensor is used to 

send the data from the Arduino to the NodeMcu. 

NodeMcu Code forMessagePassing 

This algorithm works more or less similarly with NodeMcu finale. The only difference is it 

will receive a validword from the Arduino and itwill push and set the values under two different 



95 
 

token in Firebase. One of the token is “word” and another token is “sentence”. These are used 

in message passing Android application. 

Message PassingAndroid Application 

Them launching screen of this application is a page that has an image of BRAC University 

logo and a text view. If the layout is clicked once then the application will move to the next 

page. In this page there is a list view which shows the list of the words pushed in the firebase. 

If we long press on any list item, then the app will move to the next activity which shows the 

last added words. The sequence of words can represent a sentence. In firebase in the “word” 

tag the strings are being pushed and in the “sentence” tag the same strings are being set. The 

pushed values will be shown in the list view activity and in the message activity the strings 

retrieved from firebase is concat and the concat string is shown in the text view. While 

concating a space is also contacted in between the words. Thus, the sequential words look like 

sentence. 

 

 
Fig.  10.5 The first window of the Message Passing Application 

The main code of the main activity is given below: 

relativeLayout.setOnClickListener(new View.OnClickListener() { 

@Override 

public void onClick(View v) { 



96 
 

       Intent intent = new Intent(getBaseContext(),ListActivity.class); 

       startActivity(intent); 

   } 

}); 

 

Here, clicking on the relative layout the app will move forward to the next activity with the 

intent call. Therefore, the application will move to the List Activity. Inside the list activity there 

is list view which contains all the “word” retrieved from firebase.  

 
Fig.  10.6 ListActivity view 

 

public class ListActivity extends AppCompatActivity { 

   FirebaseDatabase database = FirebaseDatabase.getInstance(); 

   DatabaseReference myRef = database.getReference("word"); 

   ListView listView; 

   ArrayList<String>messageList = new ArrayList<String>(); 

   ArrayAdapter<String>adapter; 

   LinearLayout linearLayout; 

 



97 
 

Here, instance of the FirebaseDatabase and DatabaseReference is made. The 

DatabaseReference shows that it can retrieve and put value in firebase child “word”.We made 

an ArrayList and an ArrayAdapter. The ArrayList is put in the ArrayAdapter. 

 

myRef.addChildEventListener(new ChildEventListener() { 

@Override 

public void onChildAdded(DataSnapshot dataSnapshot, String s) { 

       String value = dataSnapshot.getValue(String.class); 

adapter.add(value); 

   } 

 

OnchildAdded method adds the child that already exists in the child of “word” and all the future 

childs added will be also added in the arrayAdapter. The ListView while Long pressed goes to 

the next activity which is MessageActivity. This is done by intent call. 

 

listView.setOnItemLongClickListener(new AdapterView.OnItemLongClickListener() { 

@Override 

public boolean onItemLongClick(AdapterView<?> parent, View view, int position, long id) { 

       Intent intent = new Intent(getBaseContext(), MessageActivity.class); 

       startActivity(intent); 

return false; 

   } 

}); 

 

Then comes the MessageActivity. Which has a textView  and a clear button. The textView 

shows the integrated message and the clear buttion clears the message. 

 



98 
 

 
Fig.  10.7 Message Activity 

public class MessageActivity extends AppCompatActivity { 

   RelativeLayout relativeLayout; 

   TextView textView; 

   FirebaseDatabase database = FirebaseDatabase.getInstance(); 

   DatabaseReference myRef = database.getReference("sentence"); 

   Button clear; 

   String msg; 

protected void onCreate(Bundle savedInstanceState) { 

super.onCreate(savedInstanceState); 

   setContentView(R.layout.activity_message); 

textView = (TextView)findViewById(R.id.txt); 

relativeLayout = (RelativeLayout) findViewById(R.id.message_activity_layout); 

clear = (Button) findViewById(R.id.clr_button); 

msg=""; 

myRef.addValueEventListener(new ValueEventListener() { 

@Override 

public void onDataChange(DataSnapshot dataSnapshot) { 

           String value = dataSnapshot.getValue(String.class); 

msg= msg + " " +value; 



99 
 

textView.setText(msg); 

       } 

The string msg is initialized to null string. Similar like previous activity the FirebaseDatabese 

and DatabaseReference is initialized. And here “sentence” child is used from firebase. In Value 

event listener the msg is caoncat which we get from the set value of “sentence” and msg is 

shown in the textview. 

 

clear.setOnClickListener(new View.OnClickListener() { 

@Override 

public void onClick(View v) { 

msg =""; 

textView.setText(msg); 

   } 

}); 

 

The clear button erases the msg string as well as the textView. If we long press the layout we 

will return to the previous activity by intent call. 

relativeLayout.setOnLongClickListener(new View.OnLongClickListener() { 

@Override 

public boolean onLongClick(View v) { 

       Intent intent = new Intent(getBaseContext(),ListActivity.class); 

       startActivity(intent); 

return false; 

   } 

}); 

  



100 
 

 


