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ABSTRACT 

 

Data mining approach with the help of best frequent pattern extracting algorithm can have a big 

impact in the field of marketing and sales. Frequent pattern mining is a widely researched field in 

data mining because of its importance in many real life applications. In this thesis, we used the 

three most popular algorithms in frequent pattern mining for market basket analysis – FP 

Growth, Apriori, and Eclat. The design and implementation of these three pattern mining 

algorithms were discussed in detail. All the three algorithms gave consistent output. We did 

performance comparison and analysis of these algorithms using three different datasets. 

Recommendations are provided to suggest the best algorithm to use in different contexts. 
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      1.  Introduction: 

       1.1 Motivation: 

 

In this modern era, marketing and sales has become a big issue in day to day life. Everyday 

huge number of transaction is happening all over the world. Every transaction and sell 

pattern is varying from culture to culture and also in different location too. Without the 

process of data mining it is impossible to predict and analyze a transaction pattern in a 

specific culture or location. This helps us to think how an organization or an entrepreneur 

can start a successful business with the help of previous sales data. If we go out for 

shopping we usually buy products that are being cross matched with each other but we do 

not realize that. Suppose, in Bangladesh if someone goes to shopping the percentage that 

person will buy rice and pulse at the same time is very high. But it is being overlooked most 

of the time. This is just one scenario. Like this there are many pattern of buying a customer 

regularly follows unconsciously. So if the owner can use this huge repository of past data 

and analyze them he will get a frequent item that are most likely followed by people of 

specific location. This idea encourages us the most. With the help of frequent pattern 

mining algorithm we can come to an inference that the more backward we look the more 

forward we will see.  

       1.2 Key Words 

 

 Data mining  

 Association Rule Mining 

 Market basket  

 Apriori, FP Growth, Eclat 
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    2. Literature review: 
We read some scientific papers related to our topic and got some informations from those 

papers. [1] Saurabh Malgaonkar, Sakshi Surve and Tejas Hirave describe a perfect method 

to extract the data from the huge sets of marketing datasets efficiently by using different 

techniques of Association Rule Mining(ARM). The systems satisfied the following objectives 

– to make more informed decision about product placement, pricing, promotion and 

profitability. Also [2] Mahmoud Houshmand and Mohammad Alishahi from Sharif University 

of Technology, Iran especially focused on customer behaviour. [3] Another paper written by 

Xiaohui Yu, Yang Liu, Jimmy Xiangji Huang, Aijun An find out which product should be cross-

sold. [1] Saurabh Malgaonkar, Sakshi Surve and Tejas Hirave also describe that their system 

identifies customer purchasing habits. It provides insight into the combination of products 

within a customer’s baskets. The term 'basket' normally applies to a single order. However, 

the analysis can be applied to other. We often compare all orders associated with a single 

customer. Ultimately, the purchasing insights provide the potential to create cross sell 

propositions.  Moreover [4] Julie Marcoux, and Sid-Ahmed Selouani put emphasize on sales 

forecasting. Sales forecasting is an important part of business management since it provides 

relevant information that can be used to make strategic business decisions. Forecasting can 

be divided in three categories: future forecasts, environmental forecasts and industry 

forecasts. Sales forecasting, considered as a company forecast, aims at assessing the 

performance of a given company regardless of its competitors. [20] Abbas, Ahmed, Zaini 

discussed in their paper that one of the problems regarding data mining is to search for 

meaningful relations in computer purchase data. They also discussed that how differently 

arranging products in shops decreased the sells of particular items. So they are using market 

basket analysis to identify purchasing pattern to help retailers to make a better 

arrangement of the products. 
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3. System Implementation & Design 

 
Numerous business enterprise store huge amount of data from their everyday operations. For 

example, at the checkout counter of a super shop a huge number of data is recorded or stored. 

Table 3.1 shows an example of market basket transaction. Every row of this table represents a 

transaction which contains a unique TID (Transaction ID) and items. Analyzing this data 

retailers want to find purchasing behavior of the customers. Such information is helpful for 

marketing advertising, catalogue management and customer relationship management [21].  

Table 3.1. An example of market basket transaction 

TID Items 

1 { Bread, Milk } 

2 { Bread, Diapers, Beer, Egg } 

3 { Milk, Diapers, Beer, Cola } 

4 { Bread, Milk, Diapers, Beer } 

5 { Bread, Milk, Diapers, Cola } 

 

With the help of association analysis we can discover exciting relationship concealed in large 

datasets. The revealed relationships can be used to represent in the form of association-rules or 

sets of frequent items. For rule can be extracted from the table 3.1: 

 {Diapers}→{Beer} 

The rule recommends there lies a strong sales relationship between diapers and beer because 

many customer who buy diapers also buy beer. Using this interesting results retailers can arrange 

their products in a way that increases their sale[21]. 

There are basically two major issues for applying association analysis to market basket data.   
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 At first, we need we need to discover patterns from a large transaction dataset. 

  Secondly some of the pattern that was found can be spurious because they can occur 

simply. 

At first we describe the fundamental ideas of association analysis and the algorithms that we 

used to mine the frequent patterns from a large dataset. Last of all we will talk about how we can 

prevent the results that are spurious [21].  

 

3.1   Problem Definition  

 

Some fundamental terminology that are used in association analysis and patterns a formal 

explanation of the task is. 

Binary Representation    We can store market basket data in a binary format shown in table3.2, 

where each row and column signifies a transaction and an item respectively. An item is 

considered a binary variable whose value is one when it is present in the transaction and zero if it 

is not present. Because we are more concerned about the presence of an item rather than it’s 

absence, an item is an asymmetric binary variable [21]. 

 

Table 3.2. A binary presentation of market basket data. 

  

TID Bread Milk Diapers Beer Eggs Cola 

1 1 1 0 0 0 0 

2 1 0 1 1 1 0 

3 0 1 1 1 0 1 

4 1 1 1 1 0 0 

5 1 1 1 0 0 1 
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This illustration is a very simple representation of market basket data because it is not concerned 

about important features of the data like how many copies was sold and the price of the item. 

 

Itemset and Support Count:     We consider I = {i1, i2, …………, id} as the set of all items in a  

market basket data and T ={t1, t2, …………, tN } is the set of all transactions. Each transaction ti 

has a subset of items chosen from I. In Association analysis, an itemset is a collection of zero or 

more items. If an itemset contains k items, it is called k-itemset. For example {Diapers, Bread, 

Milk} is an item of a 3-itemset. An itemset is considered as a  null (or empty) set if it has no item 

in it. 

The transaction width is calculated by the number of items present in a transaction. An important 

stuff of an itemset is support count, which refers to the number of transaction that contain a 

specific itemset. Mathematically, the support count, σ(X), for an itemset X can be started as 

follows:  

                       σ (X) = | {ti|X ⊆ ti , ti ∈ T } | 

In table 1.1 the support count for {Bread, Milk} is equal to three because they occurs in only 

three transaction. 

Association Rules     Association rule is an implication expression of form X → Y , where X 

and Y are disjoint itemsets, that is X ∩ Y = ∅. The strength of an association rule can be 

measured in terms of its support and confidence [21]. 

 Support determines how frequent a rule is appropriate to a given data set. 

 Confidence determines how frequently items in Y appear in transactions that contains X. 

The formal definition of these metrics are  

Support, s(X → Y) = 𝜎(𝑋 ∪ 𝑌 )

𝑁
                    (3.1) 

Confidence, c(X → Y) = 𝜎(𝑋 ∪ 𝑌 )

𝜎(𝑋)
               (3.2) 
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Example: Let us consider the rule {Milk, Diapers} → {Bear}. Since the support count for {Milk, 

Diapers, Beer} is 2 and total number of transaction is 5, the rule’s support is 0.4. 

Support, s ({Milk, Diapers} → {Bear}) = 𝜎(𝑀𝑖𝑙𝑘,𝐷𝑖𝑎𝑝𝑒𝑟𝑠,𝐵𝑒𝑒𝑟 )

𝑁
 = 2

5
  = 0.4 

The rules confidence is gained by dividing the support count for {Milk, Diapers, Beer} by the 

support count for {Milk, Diapers}. Since there are 3 transactions that contain milk and diapers 

the confidence is 0.67 [21]. 

Confidence, c ({Milk, Diapers} → {Bear}) = 𝜎(𝑀𝑖𝑙𝑘,𝐷𝑖𝑎𝑝𝑒𝑟𝑠,𝐵𝑒𝑎𝑟 )

𝜎(𝑀𝑖𝑙𝑘,𝐷𝑖𝑎𝑝𝑒𝑟𝑠)
 = 2

3
 = 0.67 

Why Use Support and Confidence?    Support is very essential measure as it indicates how 

frequent any item has purchased. A rule that has low support that may occur by chance. A low 

support rule is also likely to be uninteresting and irrelevant to business as it is not be profitable to 

promote items that customers seldom buy together. For these reasons, support is often used to 

eliminate uninteresting rules.  As will be shown in 3.2.1, support also has a desirable property 

that can be exploited for the efficient discovery of association rules. 

Whereas, confidence calculates the dependability of the inference made by a rule. For given X 

→ Y, the higher the confidence, the more likely it is for Y to be present in transaction that 

contain X. Confidence can also be considered as an estimation of the conditional probability of Y 

given X [21]. 

The result of the Association analysis should be inferred with cautiousness. Instead of implying 

causality, it suggests a strong co-occurrence relationship between items in the antecedent and 

consequent of the rule. On the other hand, causality needs knowledge and effect attributes in data 

[21].  

 

Formulation of Association Rule Mining Problem       The association rule mine problem can 

be formally stated as follows:  
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Definition 3.1 (Association Rule Discovery).    If a transaction T is given, we tends to find all 

the rules of which support ≥ minsup and confidence ≥ minconf, where minsup and min conf are 

the corresponding support and confidence thresholds [21].  

A brute-force approach for mining association rules can be done by computing the support and 

confidence for every possible rule. As there are exponentially many rules that can be extracted 

from a data set this approach is excessively expensive. Moreover from a dataset of d items can 

possible extract the following number of rules,  

R = 3d – 2d+1 +1.                             (3.3) 

Even for data set which is small shown in table 4.1, this approach requires us to compute support 

and confidence for 36 -27 +1 = 602 rules. As 80% of the rules are castoff if we apply minsup = 

20% and minconf = 50%, thus most of the calculation became wasted. If we can prune the rules 

early without computing their support and confidence, we can reduce the unnecessary 

computation  [21].  

By decoupling the support and confidence requirements initially, we can improve the association 

rule mining algorithms. From Equation 3.2, it can be inferred that the support of a rule X → Y is 

only dependent on the support of its corresponding itemset, X ∪ Y. For instance, support of the 

following rules is same because they contain items from the same itemset, {Beer, Diapers, 

Milk}: 

           {Beer, Diapers} → {Milk},         {Beer, Milk} → {Diapers}, 

           {Diapers, Milk} → {Bear},         {Beer} → {Diapers, Milk}, 

           {Milk} → {Beer, Diapers},         {Diapers} → {Beer, Milk}. 

We can prune all off the six candidate rules immediately without computing their confidence 

value if the itemset is infrequent.  

A common approach used by Association rule mining algorithms can be divided into two major 

subtasks:  
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1. Frequent Itemset Generation:  The objective of this is to find all the itemsets that 

satisfy minimum threshold. These itemsets are called frequent itemsets. 

2. Rule Generation:   Its objective is to extract all the high-confidence rules from the 

frequent itemsets found in the previous step. These rules are called strong rules. 

Frequent itemset generation is computationally expensive than those of rule generation. Efficient 

techniques for generating frequent itemsets and association rules are discussed in Section 3.2 and 

3.3 respectively [21]. 

   

 

Figure 3.1. An Itemset lattice 
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3.2     Frequent Itemset Generation  
 

A lattice structure can be used to compute the list of all possible item sets. Figure 4.1 shows an 

itemset lattice for I = {a, b, c, d, c, e}. A data set that that has k items can possibly generate up to 

2k – 1 frequent item sets, excluding the null set. Usually k is very large in many practical 

applications, therefor the search space of item sets can be exponentially large [21]. 

A brute-force approach for finding frequent itemsets is to determine in the support count for 

every candidate itemset in the lattice structure. We can complete this task by comparing each 

candidate against every transaction, a process that is shown in Figure 3.2. The occurrence of a 

candidate in a transaction will increment the support count. For example, the support for {Bread, 

Milk} is incremented to three as the itemset has occurred in transactions 1, 4, and 5. Such an 

approach can be very expensive because it requires o (N M w) comparisons where, 

 N is the number of transactions 

 M = 2k -1is the number of candidate itemsets, and  

 w is the maximum transaction width [21]. 

 

 

Figure 3.2.  Counting the support of candidate itemsets.  
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Computational complexity of frequent itemset generation can be reduced by the following 

mentioned task. 

1. Reduce the number of candidate itemsets (M):  With the help of Apriori principle 

described in the next section, without counting the support values of candidate 

itemsets we can eliminate some of them. 

2. Reduce the number of comparisons: We can decrease the number of comparisons 

with the help of more advanced data structures, either to store the candidate 

itemsets or to compress the data set instead of matching each candidate with each 

transaction. We will discuss these strategies in later sections [21]. 

3.2.1      The Apriori Principle  

 

Apriori principle reduces the number of candidate itemsets explored while generating frequent 

itemsets with the help of support measure. Pruning is done with the help of support which is 

guided by the following principle.   

Theorem (Apriori Principle):  If an itemset is frequent, then all of its subsets must also be 

frequent [21]. 

For understanding the Apriori principle, let us consider the itemset lattice shown in Figure 4.3. if  

{c, d, e} is a frequent itemset, then all subsets of {c, d}, {c, e}, {d, e}, {c}, {d} and {e}. As a result, if 

{c, d, e} is frequent, then all subsets of {c, d, e} must also be frequent. 
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Figure 3.3. An Illustration of Apriori that shows if {c, d, e} is frequent  

Then all of its subset is also frequent  

On the contrary, if any itemset such as {a, b} is infrequent then all of its supersets must be 

infrequent too. As shown in  figure 3.4, the entire subgraph containing the supersets of {a, b} can 

be pruned immediately once {a, b} is infrequent. This pruning technique of the exponential 

search space based on the support measure known as support-based pruning. Such a pruning 

strategy is made possible by a key property of the support measure, namely, that the support of 

an itemset can never exceed the support for its subsets. This property is also known as the anti-

monotone property of the support measure [21]. 

Definition (Monotonicity Property):  Let I be a set of items, and J = 2I be the power set of I. A 

measure f is monotone (or upward closed) if  

∀𝑿, 𝒀 ∈ 𝒋 ∶ (𝑿 ⊆ 𝒀) → 𝒇(𝑿) ≤ 𝒇(𝒀), 
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Figure 3.4 An illustration of support-based pruning. If {a, b} is infrequent, then all 

supersets of {a, b} are infrequent 

  

which means if X is a subset of Y, then f(Y) must not exceed f(X) [21]. 

In order to successfully prune the exponential growth of candidate itemsets, any measures that 

possesses an anti-monotone property can be amalgamated directly into the mining algorithms, as 

will be shown in the next section [21]. 

3.2.1.1   Frequent Itemset Generation in the Apriori Algorithm 

 

Apriori is the first association rule mining algorithm that pioneered the use of support-based 

pruning to systematically control the exponential growth of candidate itemsets. Figure 4.5 offers 
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a high-level illustrations of the frequent itemset generation part of the Apriori algorithm for the 

transaction shown in Table6.1. We assume that the support of threshold is 60%, which is 

equivalent to a minimum support count equal to 3 [21]. 

  

Figure 3.5 Illustration of frequent itemset generation using Apriori Algorithm 

Initially, every item is considered as a candidate 1-itemset. After that we count their supports and 

discarded the itemset which appear fewer than three transaction. As a result {Cola} and {Eggs} 

are discarded. In the following iteration, with the help of frequent 1-itenset candidate 2-itemset is 

generated because the Apriori principle guarantees that all supersets of the infrequent 1-itemsets 

must be infrequent. Because there are only four frequent 1-itemset, the number of candidate       

2-itemsets are generated by the algorithm is (4C2) = 6. 

The efficiency of the pruning strategy can be shown by counting the number of candidate 

itemsets generated. A brute-force strategy of enumerating al itemsets (up to size 3) as candidates 

will produce 41 candidates [21]. 

(6C1) + (6C2) + (6C3) = 6 + 15 + 20 = 41  
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Where the Apriori principle, this number decrease to 13.       

(6C1) + (4C2) + 1 = 6 + 6 + 1 = 13 

This shows a 68% reduction in the number of candidate itemsets even in a simple example [21]. 

The pseudo code for the frequent itemset generation part of the apriori algorithm shown in 

Algorithm 3.1 Let Ck denote the set of candidate k-itemsets and Fk denote the set of frequent k-

itemsets:  

Algorithm 3.1 Frequent itemset generation of the Apriori algorithm. 

1. K = 1. 

2. Fk = {𝑖 | 𝑖  ∈ 𝐼 ∧  𝜎({𝑖})  ≥  𝑁 × 𝑚𝑖𝑛𝑠𝑢𝑝 }.          {Find all frequent 1-itemsets} 

3. repeat 

4.     k = k+1. 

5.     Ck = apriori –gen (Fk-1). 

6.     for each transaction t ∈ T do  

7.          Ct = subset(Ck, t). 

8.          for each transaction candidate itemsets c ∈ T do  

9.               𝜎(𝑐) =  𝜎(𝑐) + 1 

10.          end for 

11.      end for 

12.      Fk = { c  | c ∈ Ck ∧  𝜎(𝑐) ≥ N × minsup } 

13. until Fk = ∅. 

14. Result = ∪ Fk 

3.2.1.2   Candidate Generation and Pruning 

 

Step 5 of Algorithm 3.1 the Apriori-gen function generates candidate itemsets by performing the 

following operations:  

1. Candidate Generation:  This operation generates new candidate k-itemsets based on 

the frequent (K -1) itemsets found in the previous iteration. 
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2. Candidate Pruning:  This operation eliminates some of the candidate k-itemsets using 

the support-based pruning strategy [21].  

 

3.2.1.3   Support Counting Using a hash Tree 

 

In the Apriori algorithm, candidate itemsets are separated into different buckets and stored in a 

hash tree. While counting the support of an itemset, itemsets contained in each transaction are 

hashed into their appropriate buckets. This helps to hash every transaction into the proper 

buckets. This reduces the comparison of each itemset in the transaction with every candidate 

itemsets, it is matched only against candidate itemsets that belong to the bucket [21], as shown in 

Figure 3.6  

 

Figure 3.6 Counting the support of itemsets using hash tree. 

 

Figure 3.7 shows an example of a hash tree structure. Each internal node of tree uses the 

following hash function, h(p) = p mod 3, to determine which branch of the current node should 

be followed next. For example 1, 4, 7 are hashed to the same branch (i.e., the left most branch) 

because they have the same remainder after dividing the number by 3. All candidate itemsets 

stored at the leaf nodes of the hash tree [21]. 
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Figure 3.7  Hashing a transaction at root node of a hash tree. 

 

 

  

 

 

3.2.2   FP-Growth Algorithm 

 

FP-growth is another algorithm to generate frequent itemsets. Fp-growth uses a tree structure 

called FP-tree and extracts frequent itemsets from the tree structure.  
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3.2.2.1 FP-Tree representation 

 

An FP-tree is a compresses the input data. To construct the FP-tree one transaction is read from 

the input data set and mapped to the path of the tree. Common items of different transaction have 

overlapping path in the FP-tree, this is how compression of data works. So the more overlapping 

paths the tree has the less memory is needed to store the input data. If the tree size is small 

enough to for the main to allocate space then does not need to access the hard dish repeatedly 

frequent pattern generation [21]. 

 

Figure 3.8 Construction of an FP-Tree 

The diagram shows a data set that contains transactions and five items. The structures of the FP-

tree after taking the first three transactions is also shown in the diagram above. Every node in the 

tree contains the label of an item and also a tracker which represents the number of transactions 

that took the given path. The ways in which the FP-tree is generated is shown below:  
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1. At first the data is scanned to generate the support value of each item. The items which 

are not frequent are avoided, on the other hand items are sorted in decreasing order which 

are frequent. The above figure shows that a is the most frequent item, after that b, then c, 

then d and finally e [21]. 

2. Then the algorithm traverse the data again for the construction of the FP-tree. After 

reading the first transaction {a, b}, the nodes a  and b are created. A path is then formed 

from root-> a -> b to represent the transaction in the tree. Now the count value of each 

node is one [21]. 

3. After that when the second transaction is traversed {b, c, d}, new nodes are created to 

represents b, c, and d. A path (root->b->c->d) is then formed by connecting the nodes b, c 

and d. Even though the initial two transaction contain b as common product but their 

route do not overlap because they have different predecessor [21]. 

4. Then the third transaction {a,c,d,e}, which have a common predecessor that is a  with the 

transaction at the beginning. As long as the predecessor of the item matches they keep 

overlapping the path [21]. 

5. Similar process continues until all the data is inserted in the FP-tree [21]. 
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Figure 3.9 An Fp-tree representation for the set shown in fig 3.9 with a different it 

ordering scheme 

3.2.2.2 Frequent itemset Generation in FP-Growth Algorithm 

 

FP-growth is an algorithm that generates frequent itemset from an FP-tree by traversing the FP-

tree in a bottom-up approach. In Figure 3.10, the algorithm looks for frequent itemsets that ends 

with e first, after that by d, c, b and finally a. As all transactions are inserted onto a path in the 

FP-tree, so we can simply derive the frequent itemsets ending with a certain product by 

examining only the paths containing that node. The paths are shown in the figure below [21]. 
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Figure 3.10 Decomposing the frequent itemset generation problem into multiple sub-

problems, where each sub problem involves finding frequent itemset ending in e, d, c, b and 

a. 

 

Table 3.3 The list of frequent itemsets ordered by their corresponding suffixes 

Suffix Frequent itemsets 

E {e}, {d,e}, {a,d,e}, {c,e}, {a,e} 

D {d},{c,d},{b,c,d}, {a,c,d}, {b,d},{a,b,d},{a,d} 

C {c}, {b,c},{a,b,c},{a,c} 

B {b}, {a,b} 

A {a} 
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Figure 3.11 Example of applying the FP-growth algorithm to find frequent itemsets ending 

in e 

 

For a more solid example about solving sub-problems, we are taking the case about finding 

itemset that ends with e. 

1. The initial step is to figure out all the route that include node e. These initial paths are 

known as prefix path and are shown in the above figure. 

2. The support value for e is calculated by adding the support values associated with node e. 

Lets say the support value of e is 5 and the minimum support value is 4 then e is frequent. 

3. As e is frequent now the algorithm has to solve the sub-problems of finding frequent 

itemsets ending in de, ce, be and ae. To solving these sub-problems, the algorithm need to 
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generate conditional FP-tree which is needed to find itemset ending with particular 

combination of items [21]. 

3.2.3 Eclat (Equivalence Class Clustering and Bottom Up Lattice Traversal) 

 
Eclat is a vertical database layout algorithm used for mining frequent itemsets. It is based on 

depth first search algorithm. In the first step the data is represented in a bit matrix form. If the 

item is bought in a particular transaction the bit is set to one else to zero. After that a prefix tree 

needs to be constructed. To find the first item for the prefix tree the algorithm uses the 

intersection of the first row with all other rows, and to create the second child the intersection of 

the second row is taken with the rows following it [10]. Other items of the tree is found in the 

similar way. The rows which are not frequent are not taken in calculating frequent pattern. Once 

the tree is constructed eclat then run depth first search algorithms to generate frequent itemsets. 

The frequent pattern generated through DFS are then stored in a bit matrix. Eclat consumes less 

memory as is uses prefix tree. 

 

Table 3.4 Horizontal data layout 

 

 

TID Items 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

A,B,E 

B,C,D 

C,E 

A,C,D 

A,B,C,D 

A,E 

A,B 

A,B,C 

A,C,D 

B 
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In the table 3.1 TID represents the transaction id and the alphabets in the capital letters represents 

the individual product name that are being bought by the customers. 

 

Table 3.5 Vertical data layout  

A B C D E 

1 1 2 2 1 

4 2 3 4 3 

5 6 4 5 6 

6 7 8 9  

7 8 9   

8 10    

9     

 

In this table 3.5 highlighted letters are representing unique individual products and the numbers 

are showing the transaction ids of those products that are purchased by the customers. 
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3.2.3.1 Implementation  

In the implementation we have used eclat algorithm along with a virtual transaction data of a 

super market called chess dataset. The input file contains around three thousand transaction and 

at first we arrange these data in a bit matrix and then run the eclat algorithm on it.  

A storage which contains data attempts to perform tracking using its existing architecture will 

most noticeably experience significant performance problem. Those performance problems may 

affect the data storage program to decrease the tracking system a bad fit for the existing program 

and therefore causing to abandon the system.  

We have performed the database connectivity with the input file source (chess.dat, 

chainstoreFIM.dat, contextPasquier99.dat, foodmartFIM.dat, retail.dat, test.dat) from which we 

have extracted transactional frequent pattern.  After that we can mention the specific conditions 

as per demand and check the transaction and figure out the best combination. There might be lots 

of transactions which contain the same itemset.   

On the other hand, itemset of many transaction might look different initially but after discarding 

the infrequent items those itemsets could be identical. Moreover, if there are transactions that do 

not contain any similar set of items still may have subset which are similar. Such transaction are 

grouped in the transaction tree. Once the full prefix tree is constructed it contains lots of identical 

sub trees and thus building a complete prefix tree is very expensive (memory) so the tree is 

reduced in size by sorting the information of the identical sub trees which helps to build an 

optimized tree.   

3.2.3.2 Implementation Procedure 

 

The procedure for the implementations are: 

i. We used vertical tid-list dataset format where we joined with each itemset a list of 

transactions in which it occurs.[1] 

ii. We show that all frequent itemset can be written sequentially in a text file via simple tid-

list intersection. [1] 

iii. ITable construction which contain all individually frequent items and the support of each 

item[1] 



 
 

33 

 

Figure 3.12 Frequent itemsets in eclat 

iv. TLink construction which indicates all the transaction of the database containing the 

frequent items. [1] 

 

 

 

 

 

Figure 3.13 Basic processing cycle[1] 

 

v. Entries in ITable and  Tlink are added or modified by scanning the database.[1] 

vi. Frequent items are figured out in the ITable with the help of of their support counts and 

the infrequent items are discarded from the TLink.[1] 

vii. The unnecessary transaction containing set of items whose support fall under the 

minimum support level are discarded at the beginning [1]. 

viii. At this stage all the data is trimmed as required and only now the required mining process 

starts and all the frequent itemset of two and more items are obtained [1]. 

Table construction Pruning Mining 
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ix. The database is traversed to search all 1-frequent items and stored in ITable. All contains 

in the ITable are sorted in the frequency of their ascending order and then the items are 

mapped to new identifiers that are the increasing sequence of integer values [1]. 

x. Using the results of above step, only one-frequent items are obtained from the 

database. They are then represented to the new item identifiers and the transactions 

are put into the reduced transaction tree. A pointer is maintained to the subset of each 

item set. This pointer helps to indicate the starting point to mine all frequent item sets 

corresponding to the paths ending at nodes of the corresponding subset [1]. 

xi. All the frequent item sets of two or more items are extracted in a recursive fashion [1]. 
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3.2.3.3 Actual mining flowchart: 

 
 

 
Figure 3.14 Mining workflow 
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4.Results and Data Analysis: 

 
Frequent pattern mining is the widely research field in data mining because of its importance in 

many real life applications. We used two most popular algorithms in the frequent pattern mining 

in our thesis for market basket analysis- FP Growth and Apriori along with Eclat. They all gave 

efficient output. Still we came across to know the performance analysis of these algorithms in 

different datasets. Our primary dataset was the accumulation of transactions of a supermarket of 

different item sets 

Apriori, FP Growth and Eclat – all these algorithms now used for frequent pattern mining but 

there lies some differences among them. Numerous techniques have been experimented for 

mining frequent pattern rules in the field of research studies. In the arena of frequent pattern rule 

mining Apriori algorithm is most extensively used that generates frequent patterns[5]. It mines 

frequent patterns by multiple scans of the database.  

Another achievement in the field of frequent pattern mining is the FP Growth algorithm. Han et 

al, introduced this algorithm which constructs a frequent pattern tree called FP tree. It overcomes 

two flaws of Apriori algorithm [4][5][7][8]. 

 

4.1 Analysis of Apriori: 

 

Now in phase of comparisons first we will talk about Apriori algorithm first in terms of its 

performance analysis. Apriori is the most classical and and important algorithm for mining item 

sets which are very frequent. It is initially introduced by Agrawal and Srikant. The main idea of 

Apriori algorithm is to make multiple passes over the datasets or database in which the 

transactions or data are saved.  

Apriori algorithm depend on Apriori property which states that – “All non empty item sets of a 

frequent item set must be frequent [8]. It also described a property which describes if the 

system cannot pass the minimum support test all of its supersets will fail to pass the test. 

Apriori algorithm uses breadth first search (BFS). 
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It also uses downward closure property (any super set of an infrequent item set is infrequent 

that is pruned ). It usually adopts horizontal layout to represent the transaction database. The 

frequency of the item set is computed by counting its occurrence in each transaction.  

 

 

 

Figure 4.1: Comparison of Apriori, FP Growth and Eclat Algorithm on datasets[10] 

 

Here in this figure, time vs support graph is plotted for Eclat, Apriori and FP Growth algorithm. 

It is evident from graph that Apriori is taking more time to execute rather FP Growth and Eclat. 

Eclat takes less time in comparison with those two algorithm. 
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4.2 Result analysis of Apriori: 

 

 

Figure 4.2.1: Performance of Apriori algorithm for different dataset 

 

 The figure given above is about analysis of performance of Apriori algorithm in different 

datasets. Chess.dat was our main datasets. To analyze that dataset and to result a frequent 

pattern from it Apriori took 350 mille seconds. Chess.dat has over three thousand recorded 

transaction and each transaction comprised with seventy five different items in each row. For 
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our thesis we use minimum support of 0.7(means a minimum support of two transaction). It 

stores data in arrays.  

For onlineStore it takes the lowest time as well as used least memory too (4.449 MB) and 

counted forty-eight thousands seven hundred and thirty-one frequent item sets.  

 

 

Figure 4.2.2: Runtime of Apriori algorithm  

 

 

 

 

Figure 4.2.3: Unique item set with their corresponding support count in Apriori 
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4.3 Analysis of FP Growth Algorithm: 

 

In terms of FP Growth (Frequent Pattern Growth) this algorithm uses divide and conquer 

strategy and uses FP data structure to to achieve a condensed representation of transactional 

database.  The idea was given by (han et al 2000) [comparing]. It needs no candidate frequent 

item sets.  Rather than frequent patterns are mined from the fp tree.  

 

In the initial step of fp growth, a list of regular item set is created and arranged in their 

decreasing support order. This list is represented by a structure called node. Every node in the 

fp tree, other than the root node, will contain the item name, support count, and a pointer to 

connect to a node in the tree that has a similar item name [6]. These nodes are utilized to make 

the fp tree.  

 

Common prefixes can be shared amid FP tree development. The ways from root to leaf node 

are organized in non increasing order of their support. Once the fp tree is built, at this point 

frequent patterns are extracted from the FP tree beginning from the leaf nodes. FP Growth 

takes least memory because of projected layout and is storage efficient [1][2][3]. It has two 

major steps.  

 

 Contrast a compact data structure called fp tree 

 Discover frequent items directly from fp tree.  
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4.4 Result of FP Growth algorithm 

 

We have performed FP Growth for different datasets. But the initial dataset was chess.dat. in 

this dataset the transaction count is three thousand one hundred and ninety-six. Maximum 

memory usage was 3.929 MB. Frequent item set generation count was forty-eight thousand 

seven hundred and thirty-one. Both the algorithm has given the same result yet in comparison 

fp growth is faster in performance. It outperforms Apriori both in memory and in time 

constraints.  

 

 

 

 

Figure 4.4.1: Performance statistics of FP Growth in chess.dat dataset 

 

 

In another dataset foodmartFim.dat fp counts four thousand and forty-one transactions from 

the database. It takes about 6.5 MB of memory and total time of one twenty-seven mille 

second. But interestingly there are no frequent item set generated in this huge transactional 

database.  
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Figure 4.4.2: FP Growth statistics for foodmartFim database 

 

 

 

Figure 4.4.3: Input configuration and minsup statistics of FP growth 

 

 

In this set of data, the transaction counted is over four thousand among fifteen hundred sixty 

items. The minimum support count is 80%. Still in this set there are no frequent item set is 

generated. Whereas, in another dataset there were less items and less transactions were 

recorded but item set that Apriori and FP Growth had found is huge and it generates the 

number ranging from one to 10 frequent item set generation that are being bought by the 

customer.Different dataset has different input and not all stores have the same amount of 

transaction that’s why it differs from store to store.  
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Figure 4.4.4: Performance comparison of FP Growth implementation in chess dataset 

 

 

 

Figure 4.4.5: Performance comparison of FP Growth implementation in retail dataset 
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Figure 4.4.6: retail.dataset result in FP Growth 

 The figure 4.4.6 shows the result of FP Growth in the retail dataset where total transaction is 

eight-eight thousand one hundred and sixty-two. To calculate among these datasets FP Growth 

took 620 mille second. 

 

 

Figure 4.4.7: Memory usage of FP Growth Algorithm in different datasets 
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Fp growth takes more time in retail and foodmartFIM dataset that it takes in chess dataset. 

However, only chess dataset generates frequent item sets and other two do not. But when it 

comes to run time than chess dataset takes much time than retail and foodmartFIM datasets. 

 

 

 

 

 

Figure 4.4.8: Runtime of FP Growth in different datasets 
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Figure 4.4.9: Frequent item set generation from FP Growth with minsup of 0.7 

 

4.5 Analysis of Eclat algorithm: 

 

Experiments are conducted for the analysis of the performances of ECLAT algorithm. The 

performance of the experiment is measured by comparing total execution time and total 

memory usage to execute the dataset in a proper manner. Eclat takes a depth first search 

approach (DFS). It uses a vertical database layout [8].  

In vertical layout each item is represented by a set of transaction IDs (tidset), whose transaction 

contain the item. The primary idea of Eclat algorithm is to use the tid set intersection to 

compute the support of each candidate item set and to avoid the generation of subset that 

does not exist in prefix tree.[2] 
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Using tid list has an advantage that there is no need for counting support. The support of the 

item set is the size of the tidset representing it[10]. To perform the Eclat algorithm database is 

scanned few times. Virtual memory is needed to perform the operation. Eclat takes less 

execution time and memory than other two algorithms.  

 

However, the main operation of Eclat is intersecting tidsets, thus the size of the tidset is one of 

the main factor that affect the running time and memory. While the tidset is large it takes more 

space to store the candidate set and it needs more time for intersecting tid sets. 

4.6 Result of Eclat Algorithm: 

 

Finally, we have performed Eclat algorithm for our initial dataset to mine the frequent pattern 

and predict the sales of a superstore. The initial dataset was large containing over three 

thousand transactions of seventy-five items containing in each transaction.  

 

As it is said earlier that Eclat gives good run time and takes least memory storage if the tid list is 

small or medium. However, in this case the dataset was large and it takes more time to mining 

through the primary dataset we have used. But Eclat counted more frequent item set than the 

other two. 
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Figure 4.6.1: Performance graph of Eclat 

 

 

 

 

 

 

Figure 4.6.2: Statistics of performance in chess.dat of Eclat algorithm 
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The figure shows the statistics and result of eclat performed upon chess.dat file. Previously, we 

got around forty eight thousands of frequent pattern from three thousand one hundred and 

ninety-six transactions. But here in eclat it gives us over six million frequent item sets of 

different size. As it is a large dataset and containing over six million item sets eclat took the 

most running time and memory in performing the execution. It took almost thirty minutes to 

produce the out put and consumes almost one gigabyte of memory. 

To get more efficient result we have performed Eclat on several datasets. Previously when we 

preform FP Growth and Apriori on different dataset those two algorithms gave same frequent 

pattern result in every dataset though they vary from memory and run time issues. But Eclat 

gives different result specially in retail dataset. Eclat counts two frequent item sets in this 

phase. Whereas, other two did not count any.  

 

 

 

 

Figure 4.6.3: Statistics of Eclat in retail dataset 
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Eclat nearly took six hundred MB of space and three minutes to generate this result and counts 

over eighty-eight thousand of transaction from this database.  

 

 

 

 

 

Figure 4.6.4: Statistics of eclat in foodmartFIM dataset 

While testing the performance of eclat in another dataset foodmartFIM, eclat did not extract 

any set of item which is frequent. But takes 10 MB of memory which is a little bit greater than 

fp growth. In this case fp growth takes 127 milliseconds while eclat took only 52 milleseconds. 
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Figure 4.6.5: Frequent itemsets in chess.dat datasets in eclat 

 

 

 

Figure 4.6.6: Memory Usage of eclat algorithm in different dataset 
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Figure 4.6.7: Runtime of eclat algorithm in different dataset 

 

4.7 Comparative Analysis: 

 

We have implemented all three algorithm– Apriori, FP Growth and Eclat in different dataset 

that contains transactional data of different supermarkets and predicted the most frequent 

item sets that the customers are buying regular basis. From this result the owner of the 

supermarkets can be benefitted. If they organize their product shelf according to the frequent 

pattern item set than sells will improve.  

 

All these three algorithm have given quite a significant good result but there are some 

differences too. For example: apriori is the vey first algorithm for mining frequent patterns. It 

uses Breadth First Search Technique (BFS). It takes more execution time than other two 
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algorithm because it scannes the whole database each time a candidate item set is generated. 

Apriori uses horizontal layout of a databases.FP Growth is a tree based frequent pattern 

generating algorithm which uses divide and conquer method. It is applied in projected type 

database [2][4][5]. It does not need any candidate item set. Fp growth uses horizontal layout of 

the databases. It takes less time in comparison to apriori.  

Eclat uses depth first search (DFS) for mining frequent patterns. The data is represented in bit 

matrix form in primary stage. It is faster than apriori and fp growth. It uses virtual memory to 

store data. Eclat does not scan database so frequently.  

In our thesis, eclat performs well in terms of finding frequent patterns of item sets than fp 

growth and  apriori.  But eclat always takes much time when the transactional entries are 

larger. But fore medium and small dataset eclat is faster than fp growth and apriori. 

 

 

Figure 4.7.1: Runtime vs Max Transaction size comparison[12] 
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In case of memory usage eclat again took much memory while executing chess dataset. It takes 

1.2 GB. While fp growth took 3.929 MB. In other dataset such as retail.dat 596 MB and 3625 

mille seconds. While fp growth took 57.67 MB and 620 mille seconds.  

 

Table 4.7.1 Memory Usage 

Dataset FpGrowth Eclat 

Chess.dat 1.2 GB 3.929 MB 

Retail.dat 596 MB 57.67MB 

foodmartFIM.dat 10.42 MB 6.50 MB 

 

 

 

 

Figure 4.7.2: Memory Usage comparison between eclat and fp growth for different database 

[11] 
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Figure 4.7.3: Memory Usage comparison among Eclat, FP Growth, Apriori in different dataset 

 

Eclat is better in extracting frequent patterns among Apriori and FP growth. It generates two 

item set from retail data set from over eighty-eight thousand transactional count whilst Apriori 

and FP Growth did not find any frequent item set in retail database.  In overall performance if 

we consider run time and storage as limit FP Growth is better. For large dataset with less 

support count Eclat outperform FP Growth and Apriori.  
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Following table[8] shows the theoretical differences among Apriori, FP Growth and Eclat 

algorithm. 

 Table 4.7.2: Table of comparison 

Evaluation Criteria 

 

Apriori FP Growth Eclat 

1. Techniques 

 

Breadth first search  Divide and Conquer Depth first search 

and intersection of 

transaction id. 

2. Database Scan 

 

Database is scanned 

each time a 

candidate item set is 

generated 

Database Id scanned 

two times only. 

Database is scanned 

few times. 

3. Advantages 

 

-Easy to implement. 

 

-Use large item set 

property. 

Database scanned 

two times only. 

No need to scan 

database each time. 

4. Disadvantages 

 

-Require large 

memory space. 

 

-Too many 

candidate item set 

FP tree is expensive 

to build consumes 

more memory. 

It requires virtual 

memory to perform 

the transaction. 

5. Data format 

 

Horizontal Horizontal Vertical 

6. Storage Format 

 

Array Tree (FP tree) Array 

7. Time 

 

More execution 

time 

Less time as 

compared to Apriori 

algorithm 

Execution time is 

less than Apriori 

algorithm. 
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4.8 Recommendation: 

 

After doing the result analysis we can come to the conclusion that for enormous dataset FP 

Growth performs better than Apriori and Eclat on the basis of time and memory usage. On the 

other hand, for small and medium dataset Eclat outperforms FP growth and Apriori on the basis 

of run time and memory space. So, we can recommend that a large organization which deals 

and maintain huge transaction database may use FP growth for accurate and fast result. 

Furthermore, organization which handles small or medium transaction database may use Eclat 

for improving their business strategy.  
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5.Conclusion: 

 
Taking everything into account, by summing up the entire, we think this framework will have an 

efficient effect on marketing and sales analysis that can be used to make strategic business 

decision. This application can be extended to other fields like – sales tracking, product tracking, 

discount and pricing calculation etc. In future this method can be applied to very large 

databases where memory space is valuable and requires optimization. It can be further tuned 

for better performance and efficiency.  

 

5.1: Limitations 

 

The limitation first of all and most importantly we face about getting real life dataset. We have 

gone to every single big super shops of Bangladesh for their transaction data to conduct our 

thesis but they refused to give us. So with the help of our supervisor sir we work with artificial 

dataset.  

 

5.2: Future work 

 

In future we will try to implement new and advanced mining algorithm along with apriori, fp 

growth and eclat for better performance and fast result for sparse dataset. We will also build a 

user friendly web application where the user will be able to select as many items they wish and 

will be able to see the corresponding support count on a bar chart. From this they will be able 

to visualize and realize the relationship among particular items. The organizer of a super shop 

may use this application to arrange their products in the shop to boost their sell. Beside market 

basket data association analysis can be applied in other fields such as bio informatics, medical 

diagnosis and scientific data analysis 
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