

DESIGN OF

HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR

FOR BANGLA

A Thesis

Submitted to the Department of Computer Science and

Engineering

of

BRAC University

by

Nafid Haque

Student ID: 02201098

In Partial Fulfillment of the

Requirements for the Degree

of

Bachelor of Science in Computer Science and Engineering

Fall 2006

BRAC University, Dhaka, Bangladesh

DECLARATION

I hereby declare that this thesis is based on the results found by myself and my team

members. Materials of work found by other researcher are mentioned by reference. This

thesis, neither in whole nor in part, has been previously submitted for any degree.

------------------------------- -------------------------------

Signature of Supervisor Signature of Author

 3

ACKNOWLEDGMENTS

Special thanks to my supervisor Mumit Khan without whom this work would have been

very difficult. Thanks to Naira Khan for providing all the linguistic knowledge that was

required for this work. Also special thanks to Dr. Emily Bender, who has managed to

take out some time from her busy schedule to give feedback about the implementation of

this work all the way from Washington.

 4

ABSTRACT

A considerable amount of work is being done in recent years in the arena of

Computational Linguistics. However, little has been done in developing a generic

computational grammar for the Bangla language that could be used for advanced

language processing. Context Free Grammar (CFG) has been attempted for English, and

it has been realized that this does not have the descriptive power required to model a

natural language. The chief reason behind this is the large number of rules that are

needed in order to capture the vast array of natural language phenomenon. Our target is

to try and implement a Head-driven Phrase Structure Grammar (HPSG) for Bangla. We

would like to find out a pattern behind the various phenomenon of the language and try

to capture these in the form of generalizations for the different entities of the language.

We would also like to explore the underlying patterns governing the successful

unification of feature structures. Eventually, we want to end up with a small scale

working implementation of a Bangla HPSG that can recognize and generate a set of

representative sentences from the Bangla language, accurately capturing relevant

linguistic phenomenon.

 5

To the martyrs of The Language Movement of 1952…thank you

 6

Table of Contents

DECLARATION ..2
ACKNOWLEDGMENTS ..3
ABSTRACT...4
Introduction...9
Background..10
Section 1: Generalized Overview ..11
1.1 Grammar ...12
1.2 Syntactic category...12
1.2.1Noun [������������������������

] ..13
1.2.1.1 Proper Noun [���	�
����	�
����	�
����	�
�] ...13
1.2.1.2 Common Noun [���	�
����	�
����	�
����	�
�] ...13
1.2.1.3 Material Noun [�	�
�	�	�
�	�	�
�	�	�
�]...14
1.2.1.4 Collective Noun [���	�
����	�
����	�
����	�
�] ...14
1.2.1.5 Verbal Noun [��		�
���		�
���		�
���		�
�] ...14
1.2.1.6 Abstract Noun [�� �	�
��� �	�
��� �	�
��� �	�
�] ...14
1.2.2Pronoun [�	�����	�����	�����	����] ...14
1.2.2.1 Personal Pronouns ..14
1.2.2.2 Subjective Personal Pronouns [���� ��	�
����� ��	�
����� ��	�
����� ��	�
�]..15
1.2.2.3 Objective Personal Pronouns [�� ��	�
��� ��	�
��� ��	�
��� ��	�
�] ...15
1.2.2.4 Possessive Personal Pronouns [��	�
���	�
���	�
���	�
�]...15
1.2.2.5 Demonstrative Pronouns [��� �	�
���� �	�
���� �	�
���� �	�
�] ...15
1.2.2.6 Interrogative Pronouns [!"	�
�!"	�
�!"	�
�!"	�
�] ..15
1.2.2.7 Relative Pronouns [�#$%��&����#$%��&����#$%��&����#$%��&���] ..15
1.2.2.8 Indefinite Pronouns ['��� ���&���'��� ���&���'��� ���&���'��� ���&���]...15
1.2.2.9 Intensive Pronouns [��(�	��(�	��(�	��(�����]..16
1.2.3Verb [)*�)*�)*�)*�] ...16
1.2.3.1 Finite Verb [������������������������ +,-.+,-.+,-.+,-.]...16
1.2.3.2 Non-finite Verb [/01.+23./01.+23./01.+23./01.+23. 4567456745674567]..16
1.2.3.3 Transitive verb [89:;989:;989:;989:;9 <=>?<=>?<=>?<=>?]..17
1.2.3.4 Intransitive verb [@ABCA@ABCA@ABCA@ABCA DEFGDEFGDEFGDEFG] ...17
1.2.4Adjective [DHIJK LDHIJK LDHIJK LDHIJK L] ...17
1.2.5Conjunction [MHNFMHNFMHNFMHNF]..17
1.2.6Case ..17
1.2.6.1 Nominative (OPQ R OGSOOPQ R OGSOOPQ R OGSOOPQ R OGSO): ..18
1.2.6.2 Accusative (OTROGSOOTROGSOOTROGSOOTROGSO):..18
1.2.6.3 Dative (UVWGXOGSOUVWGXOGSOUVWGXOGSOUVWGXOGSO):...18
1.2.6.4 Locative (MDYOSLOGSOMDYOSLOGSOMDYOSLOGSOMDYOSLOGSO): ..19
1.2.6.5 Ablative (MZGWGXOGSOMZGWGXOGSOMZGWGXOGSOMZGWGXOGSO): ...19
1.2.6.6 Genitive (U[\U[\U[\U[\ZWZWZWZW): ...19
Section 2: More into Linguistics ..20
2.1 Phrase...21
2.2 Phrase Structure Grammar ...22
2.3 Conventional CFG ..22
2.4 Later Techniques ..25
2.5 Finally HPSG ..25
2.5.1Feature Structure ...26

 7

2.5.2Attribute Value Matrix (AVM) ...26
2.5.3Unification Rule ..27
2.5.4Head Features ...29
Section 3: Analysis of the Bangla Language...30
3.1 Basic Word Order...31
3.2 Pronouns ..32
3.3 The rest of the Noun Phrase (NP)..34
3.4 Agreement..35
3.5 Case ..36
3.6 Negation ...38
3.7 Matrix yes-no questions..39
3.8 Imperatives ..40
3.9 Embedded clauses (declarative, negative) ..40
Section 4: Implementation..42
4.1 More about LKB ...43
4.2 Type Description Language ...43
4.3 Implementation of the Bangla Grammar..43
4.3.1The type system...44
4.3.2Start structure ...44
4.3.3Lexical entries ...44
4.3.4Grammar rules..45
4.4 Our approach towards implementation in LKB ..45
4.4.1UWashington Linguistics567 Lab 1 ..46
4.4.2UWashington Linguistics567 Lab 2 ..46
4.4.3UWashington Linguistics567 Lab 3 ..46
4.4.4UWashington Linguistics567 Lab 4 ..46
4.4.5UWashington Linguistics567 Lab 5 ..48
4.5 The Bangla Grammar in LKB ...50
Conclusion ...58
References: ..59
Appendices...60
Appendix A ..61
Appendix B ..68

 8

List of Figures

Figure 1 Family Tree of Syntactic Theories ...21
Figure 2 The Phrase Structure Schema..22
Figure 3 An AVM ...26
Figure 4 Feature Structure ..28
Figure 5 Parse Tree ..50
Figure 6 Parse Chart ..51
Figure 7 Parse Tree ..51
Figure 8 Parse Chart ..52
Figure 9 Generated Sentences ...52
Figure 10 Elementary Dependencies...53
Figure 11 TFS 1...54
Figure 12 TFS 2...55
Figure 13 TFS 3...56

 9

Introduction

Bangla is the language of nearly 210 million people, and the 4th most widely spoken

language in the world. It is the primary language of the people of Bangladesh and that of

the Indian State of West Bengal. It belongs to the Aryan family of languages and is

written in the Brahmi-derived Bangla script. Bangla underwent a period of vigorous

Sanskritization that started in the 12th century and continued throughout the middle ages

[13]. Bangla lexicon today consists of tatsama (Sanskrit words that have changed

pronunciation, but have retained the original spelling), tadbhava (Sanskrit words that

have changed at least twice in the process of becoming Bangla), and a fairly large

number of “loan-words” from Persian, Arabic, Portugese, English and other languages.

There are also a large number of words of unknown etymology. Despite this wide usage

and rich diversity of words in the Bangla language, Bangla is yet in its infant stage at

least as far as work in the area of computational linguistics is concerned. While

languages like English and even Hindi are rapidly progressing in terms of work done in

processing by computers, Bangla lags behind in crucial areas of research like parts-of-

speech tagging, text summarization and categorization, information retrieval and most

importantly in the area of computational grammar.

The computational grammar for a language has a wide variety of applications. It can be

used to implement a grammar checker in word processing software, like Microsoft word

currently has for English. It can also be used as a platform upon which to try and develop

text summarization and information extraction tools. These types of tools can greatly

benefit from knowledge of what constituents of a language can co-occur and where the

most important information in a sentence is usually encoded. In future, computational

grammars can also be a big help in the design of software that will be able to edit natural

language written by humans, as envisioned by Google. On a similar note, a

computational grammar can also be useful in work involving machine translation. In

such cases, a grammar could be used to check whether or not the sentences generated by

the translation mechanism should be considered well-formed for the language.

 10

Background

As already mentioned, little or no work has been done for a computational grammar for

the Bangla language. In a course conducted by Dr. Emily Bender at the University of

Washington, students have to pick a language and design a Head-driven Phrase

Structure Grammar for it (HPSG). Last Spring, one of the graduate students in the class,

Jeremy Kahn, designed an HPSG for Hindi, which is a language that has several

similarities with Bangla. We also tried to implement a context-free grammar (CFG) for

the Bangla language as the project for a course on Natural Language Processing.

However, continuing work with CFG did not seem feasible due to reasons we will

discuss later in this text. So, we moved to working on an HPSG for Bangla, about which

we will have more to say in the later sections.

 11

Section 1: Generalized Overview

Primary contribution

by

Ayesha Binte Mosaddeque

 12

Section 1: Generalized Overview

1.1 Grammar

The mental system of rules and categories that allows humans to form and interpret the

words and sentences of their language is called a grammar [2]. The sounds and sound

patterns, the basic units of meaning, such as words, and the rules to combine them to

form new sentences constitute the grammar of a language. We use the term “grammar”

with a systematic ambiguity. On one hand, the term refers to the explicit theory

constructed by a linguist and proposed as a description of the speaker’s competence. On

the other hand, it refers to this competence itself [1]. A grammar that seeks to describe

human linguistic ability and knowledge and not to prescribe one system in preference to

another is called a descriptive grammar. A prescriptive grammar, on the other hand, aims

to state the linguistic facts in terms of how they should be.

Grammars are used to:

• Categorize speaker’s social and economic class and also their stage of learning

• Recognize the level of formality of a particular usage

• Understand how people construct and comprehend language

• Identify resemblance and divergence across speeches

• Gauge the progress of language technologies

1.2 Syntactic category

Syntactic category is the grouping into which a component is located depending on the

type of the meaning that it conveys, the type of affixes it can take and the type of

formation in which it can occur. An elementary fact about words in all human language

is that they can be assembled together into a relatively small number of classes, called

syntactic categories. This classification reflects a variety of factors, including those

mentioned above about their meaning, affixes and where they can or cannot occur.

 13

Table 1 provides examples of the word-level categories that are most central to the study

of syntax.

Table 1

Lexical categories Examples

Noun ����/c ele, ����/aj a

Pronoun ��/ e, 	
	�/t ̪ ̪ini

Verb ���/b la,

Adjective ����/b alo, ���/brid̼d̼ʱo

Non lexical categories Examples

Determiner ��/ei, ���/eta, 	�/ti

Qualifier �����/ b omoj, ���
�/h jt ̪o

Conjunction ���/ebo , ����/ t ̪ oba, 	���/kint ̪u

The syntactic categories of Bangla grammar are explained below.

1.2.1 Noun [িবেশষ� িবেশষ� িবেশষ� িবেশষ�]

A lexical category that typically names entities; can usually be inflected for number and

possession, and functions as the head of a noun phrase. The noun class is further divided

into the following subclasses [5]-

1.2.1.1 Proper Noun [নামবাচকনামবাচকনামবাচকনামবাচক]

Proper noun is a noun that names a person, a geographical place or definition and books.

For example, �	��/rohim, ����/d aka etc.

1.2.1.2 Common Noun [জািতবাচকজািতবাচকজািতবাচকজািতবাচক]

A common noun is a noun referring to a person, place, or thing in a general sense. A

common noun is the opposite of a proper noun. For example, ���/nod̪i, ��� !/manu etc.

 14

1.2.1.3 Material Noun [ব�বাচকব�বাচকব�বাচকব�বাচক]

A concrete noun is a noun which names any entity that we can perceive through our

physical senses: touch, sight, taste, hearing, or smell. For example, ��/boi, "�	�/pani etc.

1.2.1.4 Collective Noun [সমি�বাচকসমি�বাচকসমি�বাচকসমি�বাচক]

A collective noun is a noun naming a group of things, animals, or persons. We can count

the individual members of the group, but we usually think of the group as one unit. For

example, ��/d̪ l, �	�	
/ miti etc.

1.2.1.5 Verbal Noun [ভাববাচকভাববাচকভাববাচকভাববাচক]

A noun that expresses any work being done is named as a Verbal Noun. For example,

#�$��/ aoja (to go), ��%�/d̪�k a (to see) etc.

1.2.1.6 Abstract Noun [�ণবাচক�ণবাচক�ণবাচক�ণবাচক]

An abstract noun is a noun which names anything which we can not perceive through the

five physical senses. For example, & %/ uk , ���'/birot̪t ̪o etc.

1.2.2 Pronoun [সব�নামসব�নামসব�নামসব�নাম]

Pronoun is a lexical category whose members can replace a noun phrase and look to

another element for their interpretation. The latter element is known as the antecedent of

the pronoun. The pronoun class is further divided into the following subclasses –

1.2.2.1 Personal Pronouns

A personal pronoun refers to a specific person or thing and changes its form to indicate

person, number, gender, and case. Divisions of personal pronouns are as follows-

 15

1.2.2.2 Subjective Personal Pronouns [সামীপ�বাচকসামীপ�বাচকসামীপ�বাচকসামীপ�বাচক]

A subjective personal pronoun indicates that the pronoun is acting as the subject of the

sentence For example, �	�/ami,
���/t ̪ara etc.

1.2.2.3 Objective Personal Pronouns [দর�বাচকদর�বাচকদর�বাচকদর�বাচকূূূূ]

An objective personal pronoun indicates that the pronoun is acting as an object of a verb,

compound verb, preposition, or infinitive phrase. For example,
���/t ̪ake,
��/t ̪ar etc.

1.2.2.4 Possessive Personal Pronouns [আ�বাচকআ�বাচকআ�বাচকআ�বাচক]

A possessive pronoun indicates that the pronoun is acting as a marker of possession and

defines who owns a particular object or person. For example, (��/ jo , �%��/k od̪ etc.

1.2.2.5 Demonstrative Pronouns [সাকর�বাচকসাকর�বাচকসাকর�বাচকসাকর�বাচক]

A demonstrative pronoun points to and identifies a noun or a pronoun. For example,

��/ b , ���/ kol etc.

1.2.2.6 Interrogative Pronouns [� বাচ� বাচ� বাচ� বাচকককক]

An interrogative pronoun is used to ask questions. For example, ��/ke, ���/kar etc.

1.2.2.7 Relative Pronouns [সংেযাগ$াপকসংেযাগ$াপকসংেযাগ$াপকসংেযাগ$াপক]

We use a relative pronoun to link one phrase or clause to another phrase or clause. For

example, �#/ e, #���/ ara etc.

1.2.2.8 Indefinite Pronouns [অিনিদ� �তা$াপকঅিনিদ� �তা$াপকঅিনিদ� �তা$াপকঅিনিদ� �তা$াপক]

An indefinite pronoun is a pronoun referring to an identifiable but not specified person

or thing. An indefinite pronoun conveys the idea of all, any, none, or some. For example,

��)/keu, 	��� /kic u etc.

 16

1.2.2.9 Intensive Pronouns [ব�িতহাব�িতহাব�িতহাব�িতহারররর]

An intensive pronoun is a pronoun used to emphasize its antecedent. Intensive pronouns

are identical in form to reflexive pronouns. For example, 	��*/nije 	��*/ni e,

�"���"	�/apnapni etc.

1.2.3 Verb [ি'য়াি'য়াি'য়াি'য়া]

A lexical category that typically designates actions, sensations, and states; can usually be

inflected for tense; and functions as the head of a verb phrase. The verb class is divided

into the following subclasses with regard to the meaning expressed.

1.2.3.1 Finite Verb [সমািপকা ি'য়াসমািপকা ি'য়াসমািপকা ি'য়াসমািপকা ি'য়া]

A finite verb is a verb that is inflected for person and for tense according to the rules and

categories of the language in which it occurs. Finite verbs can form independent clauses,

which can stand by their own as complete sentences. For example, ��	+�/nap id ̪ ��/boi

"�,/p e.

1.2.3.2 Non-finite Verb [অসমািপকা ি'য়াঅসমািপকা ি'য়াঅসমািপকা ি'য়াঅসমািপকা ি'য়া]

In linguistics, a non-finite verb (or a verbal) is a verb form that is not limited by a

subject; and more generally is not fully inflected by categories that are marked

inflectionally in language, such as tense, aspect, mood, number, gender, and person. As a

result, a non-finite verb cannot generally serve as the main verb in an independent

clause; rather, it heads a non-finite clause. For example, ����/amra �%��
/k elt̪e, here the

verb “�%��
/k elt̪e” does not complete the sentence. It requires some other word to make

a complete sense of the sentence. For example, if we rewrite the sentence as, ����/amra

�%��
/k elt̪e �-���/gelam. Now this sentence has a complete meaning. Depending on

whether a verb takes an object or not the verb class has the following subclasses.

 17

1.2.3.3 Transitive verb [সকম�ক ি'য়াসকম�ক ি'য়াসকম�ক ি'য়াসকম�ক ি'য়া]

In syntax, a transitive verb is a verb that requires both a subject and one or more objects.

For example, ��	+�/nap id̪ ��/boi "�,/p e. Here the transitive verb “"�,/p e” has object

“��/boi”. Another example, ����/baba �����/amake ���/k lom 	������/dijec en. Here the

verb “	������/dijec en” takes two objects- “���/k lom” is the direct object and

“�����/amake” is the indirect object. Transitive verbs that are able to take both a direct

object and an indirect object are called ditransitive verbs.

1.2.3.4 Intransitive verb [অকম�ক ি'য়াঅকম�ক ি'য়াঅকম�ক ি'য়াঅকম�ক ি'য়া]

An intransitive verb is a verb that has only one argument, that is, a verb with valency

equal to one. In more familiar terms, an intransitive verb has a subject but does not have

an object. For example, .����/g umaj, ����/ha e etc.

1.2.4 Adjective [িবেশষণিবেশষণিবেশষণিবেশষণ]

A lexical category that typically designates a property that is applicable to the entities

named by nouns, can often take comparative and superlative endings, and functions as

the head of an adjective phrase. For example, ���/lal +� �/p ul.

1.2.5 Conjunction [অব�য়অব�য়অব�য়অব�য়]

Conjunction is the syntactic category that joins two parts of a sentence. For example,

���/ebo , 	���/kint ̪u etc.

1.2.6 Case

Case is usually manifested through inflection on the nouns and pronouns. Since case

provides a way to mark the roles played by elements in a sentence, languages with a rich

case system have relatively free word order. Bangla would be a good example. For

instance,

“��	+�/nap id̪ ��/��/hammad̪-��/ke ��/boi ���/dej”

and

 18

“��/��/hammad̪-��/ke ��	+�/nap id̪ ��/boi ���/dej”

convey the same sense, since the roles played by the nouns (napid̪ and hammad̪) are

indicated by the case affixes that they take and do not rely on the ordering of the words.

In Bangla grammar, there are six different cases:

1.2.6.1 Nominative (কত� কারককত� কারককত� কারককত� কারকৃৃৃৃ):

The nominative case is the usual, natural form of certain parts of speech, such as nouns,

adjectives, pronouns and less frequently numerals and participles, and sometimes does

not indicate any special relationship with other parts of speech. Therefore, in some

languages the nominative case is unmarked, that is, the nominative word is the base form

or stem, with no inflection; alternatively, it may be said to have been marked by a zero

morpheme. Moreover, in most languages with a nominative case, the nominative form is

the lemma; that is, it is the one used to cite a word, to list it as a dictionary entry, etc.

Possible case markers are- +0, ��/ke, 0���/d̪ara, �/r, �◌/e , �/j, �
/t ̪e.

1.2.6.2 Accusative (কম�কারককম�কারককম�কারককম�কারক):

The accusative case of a noun is the grammatical case used to mark the direct object of a

transitive verb. The same case is used in many languages for the objects of (some or all)

prepositions.

Possible case markers are- +0, ��/ke, ��/re, �/r, �◌/e

1.2.6.3 Dative (স*দানকারকস*দানকারকস*দানকারকস*দানকারক):

The dative case is a grammatical case generally used to indicate the noun to whom

something is given. The dative generally marks the indirect object of a verb, although in

some instances the dative is used for the direct object of a verb pertaining directly to an

act of giving something.

Possible case markers are- ��/ke, �◌/e

 19

1.2.6.4 Locative (অিধকরণকারকঅিধকরণকারকঅিধকরণকারকঅিধকরণকারক):

Locative is a case which indicates a location. It corresponds vaguely to the English

prepositions "in", "on", "at", and "by". The case is often used to distinguish between

describing a place and going there.

Possible case markers are- +0, 	���/dije, ����/t ̪ eke, �
/t ̪e, �◌/e

Instrumental Locative (��2 ����):

Possible case markers are- +0, 0���/d̪ara, 	���/d̪ija, �◌/e , �/j, �
/t ̪e

1.2.6.5 Ablative (অপাদানকারকঅপাদানকারকঅপাদানকারকঅপাদানকারক):

In linguistics, ablative case is the name given to the case in various languages whose

common thread is that they mark motion away from something, though the details in

each language may differ. The name "ablative" is derived from a Latin verb meaning "to

carry away".

Possible case markers are- +0, ��/ke, ��/er, �◌/e, �/j

1.2.6.6 Genitive (স,-স,-স,-স,-পদপদপদপদ):

In grammar, the genitive case or possessive case is the case that marks a noun as being

the possessor of another noun. The genitive case typically has other uses as well, which

can vary from language to language: it can typically indicate various relationships other

than possession; certain verbs may take arguments in the genitive case; and it may have

adverbial uses.

Possible case marker is - �/r.

 20

Section 2: More into Linguistics

Primary contribution

by

Ayesha Binte Mosaddeque

 21

Section 2: More into Linguistics

Writings on grammar started at least 3000 years ago. Until 200 years ago, almost all of it

was prescriptive. Until 50 years back, most linguistic works were about sound systems

(phonology), word structure (morphology), and the historical relationships among

languages. Noam Chomsky’s work in the 1950s drastically changed linguistics, making

syntax the central component of grammar. Chomsky has been the leading figure in

linguistics ever since. The hierarchy of the syntactic theories is shown in Figure 1 [8].

Figure 1 Family Tree of Syntactic Theories

2.1 Phrase

A phrase is a unit of syntactic structure that is built by combining words together so that

the phrase consists of a head and an optional specifier and/or complement. A phrase or a

constituent is made up of one or more words. Sentences have a hierarchical design in

which words are grouped together into successively larger structural units. These

structural units are called the ‘Phrase Structure’. These phrases are built around the

largest unit of syntactic analysis which is the sentence (S).

Head is the lexical category around which a phrasal category is built. A head of a phrase

is the driving word of that phrase. A noun phrase can be thought of to be revolving

around a head, the central noun in the noun phrase [3]. So a head is a noun in the case of

 22

noun phrases, a verb in the case of verb phrases, and so on. Although phrases usually

consist of two or more words, a head may form a phrase all by itself. For example, books

(NP), eat (VP) etc. This traditional analysis assumes that S is special in not having an

internal structure like other phrases.

2.2 Phrase Structure Grammar

A grammar that is driven by the phrase structure rules is called a phrase structure

grammar. One or more words that make up a syntactic unit are called a constituent.

Phrase structure rules specify how a syntactic constituent is formed out of other smaller

syntactic constituents. In many languages, groups of consecutive words act as a group or

a constituent, which can be modeled by Phrase Structure Grammar.

The XP rule:

XP -> (Specifier) X (Complement), where X stands for N, V, A, or P

Figure 2 The Phrase Structure Schema

A specifier is a word that makes the meaning of the head more precise. The complement

is one or more words that convey more information about the entities and location of the

head of a phrase. In a phrase structure grammar the specifier and complement are

optional but the head is mandatory.

2.3 Conventional CFG

The most commonly used and mathematical system for modeling constituent structure in

natural languages is the Context-Free Grammar, or CFG. Context-free grammars are also

called Phrase Structure Grammars. A context-free grammar (CFG) is a set of recursive

rewriting rules called productions used to generate string patterns. A CFG has four

components. They are 1) a set of terminal symbols that are characters that appear in the

strings generated by the grammar, 2) a set of non-terminal symbols that are placeholders

 23

for patterns of terminal symbols that can be generated by the non-terminal symbols, 3) a

set of productions that are used to replace the non-terminals with other non-terminals or

terminals and 4) a start symbol for the grammar [7]. A formal language is context-free if

there is a context-free grammar that generates it. For example, the following productions

expresses that an NP (or Noun Phrase), can be composed of an NP followed by a Verb

Phrase (VP) or a Pronoun followed by a NP or just a Noun. A VP is composed of a Verb.

NP -> NP VP

NP -> Pronoun NP | Noun

VP -> Verb

Context-free rules can be hierarchically embedded, so we have to combine the previous

rules with others like these which express facts about the lexicon:

Noun -> �
/bʱat

Pronoun -> �	�/ami

Verb -> %��/kʱai

The symbols that are used in a CFG are divided into two classes. The symbols that

correspond to words in the language are called terminal symbols. The lexicon is the set

of rules that introduce these terminal symbols. The symbols that express clusters or

generalizations of these are called non terminals.

A parse tree for a grammar is a tree where the root of is the start symbol for the

grammar, the interior nodes are the non-terminals of the grammar, the leaf nodes are the

terminals of the grammar and the children of a node starting from the left to the right

correspond to the symbols on the right hand side of some production for the node in the

grammar. Every valid parse tree represents a string generated by the grammar [6].

Parsing is a method where a parser algorithm is used to determine whether a given input

string is grammatical or not for a given grammar.

A CFG is thought of in two ways: as device for generating sentences, or as a device for

assigning a structure to a given sentence. While designing our Bangla grammar using

 24

CFG, we found some shortcomings of CFG. (These problems have been discussed in the

“background” section.) Below is a brief description of the problem.

Let us consider the above grammar. This grammar can parse the sentence “�	�/ami

�
/bʱat %��/kʱai”. If we want to increase the coverage of the grammar, we might want to

parse a few more sentences. Look at the following sentences:

� 	�/tumi �
/bʱat %�$/kʱao

��/ʃe �
/bʱat %��/kʱaj

To parse these sentences first we need to provide the lexicon support.

Pronoun -> �	�/ami |
� 	�/tumi | ��/ʃe

Verb -> %��/kʱai | %�$/kʱao | %��/kʱaj

However this would still not be sufficient because in Bangla the verb changes its form

according to the person of the noun. The example grammar will parse sentences like

*
� 	�/tumi �
/bʱat %��/kʱai. So we have to put in additional constraints. In CFG the only

way to do it is by adding more rules. So for this example grammar we can modify the

grammar as follows.

NP1 -> Pronoun1 NP| Noun

NP2 -> Pronoun2 NP| Noun

NP3 -> Pronoun3 NP| Noun

VP1 -> Verb1

VP2 -> Verb2

VP3 -> Verb3

NP1 -> NP1 VP1

NP2 -> NP2 VP2

NP3 -> NP3 VP3

We now need to provide lexicon support to parse the two other sentences.

Pronoun1 -> �	�/ami

Pronoun2 ->
� 	�/t ̪umi

 25

Pronoun3 -> ��/ʃe

Verb1 -> %��/kʱai

Verb2 -> %�$/kʱao

Verb3 -> ���/kʱaj

So we find out that the number of rules increases tremendously. There are simpler, more

elegant solutions that take us out of the CFG framework. We will use feature structures

and the constraint-based unification formalism.

2.4 Later Techniques

Generalized phrase structure grammar (GPSG) is a framework for describing the syntax

and semantics of natural languages. GPSG was initially developed in the late 1970s by

Gerald Gazdar. Other contributors include Ewan Klein, Ivan Sag, and Geoffrey Pullum.

Their book, Generalized Phrase Structure Grammar, published in 1985, is the main

monograph on GPSG. One of the chief goals of GPSG is to show that the syntax of

natural languages can be described by context-free grammars, with some suitable

conventions intended to make writing such grammars easier for syntacticians. Among

these conventions are a sophisticated feature structure system and so-called "meta-rules",

which are rules generating the productions of a context-free grammar. GPSG further

augments syntactic descriptions with semantic annotations that can be used to compute

the compositional meaning of a sentence from its syntactic derivation tree. However, it

has been argued that these extensions require parsing algorithms of a higher order of

computational complexity than those used for basic CFG. Most of the syntactic

innovations of GPSG were subsequently incorporated into head-driven phrase structure

grammar [9].

2.5 Finally HPSG

HPSG is a constraint-based, lexicalist approach to grammatical theory that seeks to

model human languages as a system of constraints. Typed feature structures play a

central role in this modeling. The Head-driven phrase structure grammar (HPSG) is a

non-derivational generative grammar theory developed by Carl Pollard and Ivan Sag

 26

(1985). It is the immediate successor to Generalized Phrase Structure Grammar. HPSG

draws from other fields such as computer science (data type theory and knowledge

representation) and uses the notion of sign (Ferdinand de Saussure). It uses a uniform

formalism and is organized in a modular way which makes it attractive for natural

language processing.

Few Basics about HPSG:

2.5.1 Feature Structure

In phrase structure grammars, such as generalized phrase structure grammar, head-driven

phrase structure grammar and lexical functional grammar, a feature structure is

essentially a set of attribute-value pairs. We can encode these properties by associating

what are called Feature Structures with grammatical constituents.

A feature structure can be represented as a directed acyclic graph (DAG), with the nodes

corresponding to the variable values and the paths to the variable names. Operations

defined on feature structures, e.g. unification, are used extensively in phrase structure

grammars. In most theories (e.g. HPSG), operations are, strictly speaking, defined over

equations describing feature structures and not over the feature structures themselves,

though feature structures are usually used for the sake of informal exposition.

2.5.2 Attribute Value Matrix (AVM)

Often, feature structures are written as shown Figure 3. This particular notation is called

attribute value matrix (AVM). An attribute value matrix is a descriptive device

employed in HPSG to display the grammatical properties of the class of feature

structures meeting that description, consisting of a column of feature name on the left

and the value- possibly complex values taking the form of AVMs themselves – on the

right [10].

Figure 3 An AVM

 27

Here we have the two features category and agreement. Category has the value noun

phrase whereas the value of agreement is indicated by another feature structure with the

features number and person being singular and third.

The matrix has two columns - one for the feature names and the other for the values. In

this sense a feature structure is a list of key-value pairs. The value might be atomic or

another feature structure.

2.5.3 Unification Rule

Unification is an operation that allows us to-

• Check the compatibility of two structures

• Merge the information in two structures

Merging two feature structures produces a new feature structure that is more specific

(has more information) than, or is identical to, each of the input feature structures. We

say two feature structures can be unified if the component features that make them up

are compatible. Structures are compatible if they contain no features that are

incompatible. If successful, unification returns the union of all feature/value pairs. For

example, let us consider the feature structures of the words “�	�/ami”, “�����/amake”,

and “�	�/boli”.

 28

Figure 4 Feature Structure

The following constraints use the “Agreement” feature to make the unification.

S -> NP VP

(NP Agreement) = (VP Agreement)

Now, if we want to unify “�	�/ami” with “�	�/boli” then it unifies, because all the

attributes of “�	�/ami” match with the attributes of “�	�/boli”. But if we try to unify

“�����/amake” with “�	�/boli” then the unification fails because the given constraint

does not hold in that the feature “case” is not compatible for “�����/amake” and

“�	�/boli”.

�	�/ami

Agreement

Number

Person

Case

Sg

3rd

Nominative

NP

�����/amake

Agreement

Number

Person

Case

Sg

3rd

Accusative

NP

�	�/boli

Agreement

Number

Person

Case

Sg

3rd

Nominative

VP

 29

2.5.4 Head Features

The features for most grammatical categories are copied from one of the children to the

parent. The child that provides the features is called the head of the phrase, and the

features copied are referred to as head features. For example, the agreement of NP will

be copied from its head Noun.

NP -> Noun NP

(NP Agreement) = (Noun Agreement)

 30

Section 3: Analysis of the Bangla Language

Primary contribution

by

M. Hammad Ali

 31

Section 3: Analysis of the Bangla Language

Every language has it own grammatical phenomenon that describes the correct usage of

the language. We have studied the important grammatical phenomenon of Bangla. Here

you will be presented with the phenomenon we came across along with sets of correct

and incorrect examples for each one of them.

3.1 Basic Word Order

For a language with subject, verb and object, there can be six possible ways in which

these elements can be ordered. These possibilities are: (Subject, Verb, Object), (Subject,

Object, Verb), (Verb, Subject, Object), (Verb, Object, Subject), (Object, Subject, Verb)

and lastly (Object, Verb, Subject). Bangla is essentially a language with free word order,

meaning that every possible ordering carries similar sense, and none of these can be

dismissed as being practically impossible. This situation can be slightly controlled if we

consider only formal written Bangla, but even then some flexibility still remains.

However, in order to use the LKB platform we would have to decide on one basic word

ordering. As such, we chose the order (Subject, Object, Verb), since this is the ordering

most commonly used in writing and everyday verbal use of the language. Due to this

limiting choice, we had to settle for doing away with some possible re-arrangements of

the ordering that are often made in order to provide added emphasis.

Some correct examples using the SOV ordering are:

�	�/ami �
/bʱat %��/kʱai

� 	�/t ̪umi ��/boi ",/pɔɾo

Some incorrect examples of the other possible word orderings are:

�	�/ami %��/kʱai �
/bʱat (SVO)

%��/kʱai �	�/ami �
/bʱat (VSO)

�
/bʱat �	�/ami %��/kʱai (OSV)

�
/bʱat %��/kʱai �	�/ami (OVS)

 32

%��/kʱai �
/bʱat �	�/ami (VOS)

It should be mentioned here that some of the “incorrect” example are incorrect only in

the sense that they are not considered well-formed by the grammar that we intend to

design. In actual Bangla, they might carry a certain amount of information which would

be perfectly intelligible, and would be considered meaningful by a native speaker of the

language.

3.2 Pronouns

For a formal discussion about pronouns, their types and the roles they play in general,

refer to [Section 2]. Pronouns are an integral part of any language. Bangla has two

number features: singular and plural, three persons: first, second and third, and three

honorifics for each non-first person: pejorative, non-honorific and honorific. As such, the

language depends largely on the use of pronouns.

In this part of the lab, we were asked to find out which properties of the subject can

cause the pronoun to change form. We report our findings below:

Bangla pronouns do vary by person. This means that there are three different sets of

pronouns for each of the three different persons allowed in the language. A listing of the

different persons and their corresponding pronouns are given later in the section.

Bangla pronouns also change form depending on the number property of the subject.

Bangla has just two number variations: singular and plural. A listing of the number

variations is provided later in this section.

Bangla pronouns do not vary with respect to gender. This means that other properties

being equal, the pronoun for the masculine gender would be the same as that for the

feminine gender. This is unlike the case of Hindi, which has separate pronouns for the

different genders.

 33

Next, we consider the distribution that pronouns have in our language. This means

whether or not a pronoun can completely replace any noun phrase and still preserve the

complete meaning of the sentence. Let us consider some examples, with a sentence first

being presented with a full noun phrase and then with a pronoun to take its place.

��)/Keu 	�/ki ����/amar �%5*/kʱoj ���
/kort̪e ���	��/eʃecʱilo?

6��/klas ��/er ��	�/ekti ����/cʱele ���	��/eʃecɦ ilo.

��/ʃe 	��7 /kicʱu �����/bolecɦ e?

�����/bolecɦ e "��/pɔre ����/abar ����/aʃbe.

In the example outlined above, in line 2 the noun phrase “6��/klas ��/er ��	�/ekti

����/cʱele” could not be replaced with a pronoun right away without losing information.

However, this case depends on the discourse structure and would not be enough to make

a conclusive decision. Let us consider another example:

�����/amake �
����/t ̪omar ��/bʱai �+��/pʱone ���	��/korecɦ ilo.

�����/amake ��/ʃe �+��/pʱone ���	��/korecɦ ilo.

Again, both of these sentences would be considered grammatically well-formed and

would be deemed acceptable by a native speaker of Bangla, but the problem remains that

the latter cannot completely replace the former, unless the order of discourse makes sure

that no vagueness or ambiguity in meaning will be introduced in the process. With this is

mind, we conclude that pronouns do not have the same distribution as noun phrases,

since this decision will depend on the context, something that is as yet beyond the scope

of our work.

 34

The person and number distinctions for the language are given below:

Person distinction

First person – �	�/ami, �����/amake, ��������/amad̪erke, 	��*��/niɟeke,

	��*�����/niɟed̪erke
Second person –
� 	�/t ̪umi, �
�����/t ̪omake, �
��������/t ̪omad̪erke, �"	�/apni,

�"����/apnake, �"�������/apnad̪erke

Third person – ��/ʃ, 	
	�/t ̪ini,
������/t ̪ad̪erke,
���/t ̪ake

Table 2 Number Distinction

Singular Plural

�	�/ami,
� 	�/t ̪umi, ��/ʃe,

�"	�/apni, 	
	�/t ̪ini ����/amra, �
����/t ̪omra,

5��/t ̪ara, $����/onara

3.3 The rest of the Noun Phrase (NP)

This section addresses the obligations that a noun phrase (NP) in Bangla must satisfy.

Some examples of such obligations could be rules regarding the use of determiners, such

as how nouns must or must not pair up with certain determiners. Determiner-noun issues

would include whether determiners are optional or mandatory, which type of nouns can

take determiners and which cannot take determiners and the relative order of the

determiner with respect to the noun. Another aspect of this part would be to find out

whether determiners are mandatory, optional or always missing for each class of noun.

In Bangla, determiners as independent words are optional. There are no nouns in Bangla

that always require a mandatory determiner. Proper nouns and pronouns never take

determiners, whether before or after the noun. Common nouns can take determiners

either before or after the noun that it qualifies. In some instances, common nouns may

not take determiners, but then the meaning of the sentence is changed. “�� �� �/kukur

8����/dakcɦ e” (dogs are barking) and “�� �� �/kukur-��/ta 8����/dakcɦ e”(the dog is barking)

 35

are two different sentences that illustrate this fact. Furthermore, in some cases one of the

sentences may not carry any meaning at all, and will not be considered well-formed. For

instance, “��� !/manuʃ-��/ta �9:/bӕst̪o” (the man is busy) makes sense, but “��� !/manuʃ
�9:/bӕst̪o” (man is busy) does not seem to convey any useful information. Considering

this, we might say that common nouns always need determiners, since omitting the

determiner results in changing the meaning of the sentence, which is not something we

want. In Bangla determiners are not just independent adverbs. Some determiners can

also occur as affixes after the noun it modifies. This class of determiners displays some

variation depending on the number property of the noun it qualifies, for instance in the

case ����/cʱele-	�/ti (the boy) VS ����/cʱele-;���/gulo (the boys). Notice that the noun

itself does not change form with the change in number property. It is the determiner that

manifests this change in number property, and hence in the meaning of the sentence.

Some correct and incorrect examples of determiner-noun relations are given below:

Correct examples:

��/��/hammad̪ ��/boi ",��/poɾcʱe.

��	+�/napɦ id̪ �+��/pʱone-�◌/e ���/kot̪ɦ a ����/bolcɦ e.

Wrong examples:

��/��/hammad̪ -;���/gulo �����/baire #���/ɟabe.

��	+�/napɦ id̪ -��/ta .����</gʱumaccɦe.

3.4 Agreement

Agreement is co-variation in form between multiple terms (typically a head and a

dependent) of a sentence. Either the head or the dependent changes form, depending on

the properties of the head. Languages vary greatly in terms of how much agreement they

display. There are two ways to categorize agreement systems for any language: Elements

that are involved in the agreement relation. The typical cases are subject and verb, object

and verb, determiner and noun and lastly, adjective and noun. Features that are involved.

Typical cases are person, number, case and gender.

 36

For Bangla, the elements involved in the agreement are subject and verb. This means

that usually, the verb has to change form depending on change in form of the subject. In

addition, adjectives and nouns in Bangla display a certain degree of agreement in

connection to gender. The latter case is mostly because in Bangla, most adjectives have

different forms for the masculine and feminine gender. An example is given below:

Masculine: “��	����/bud̪d̪ʱiman ����/cʱele” – Intelligent boy

Feminine: “��	��	
/bud̪d̪ʱimoti ����/meje” – Intelligent girl

So if the gender of the noun were to change, the adjective would also have to change

form accordingly, in order for the sentence to remain well-formed. However, it should be

mentioned here that this form of agreement is not grammatical but based on semantics.

Implementing it in the grammar would not require semantic knowledge though, since it

could be done through incorporating a person property with the noun and the adjective

qualifying the noun. The person property of the noun and the adjective would then take

care that the right form of the adjective occurs with the noun.

For Bangla, there is no gender agreement like there is in the case of Hindi. Both

masculine and feminine genders use the same form of a verb. There is no number

agreement in Bangla either, meaning that the verb does not change form depending on

whether the subject of the sentence is singular or plural. There is person agreement,

examples of which are given below:

First person – �	�/ami �����/bollam

Second person –
� 	�/t ̪umi ����/bolle

Third person – ��/ʃe ���/bollo

3.5 Case

Case is a category that encodes information about the grammatical role played by an

element in a sentence. The element can be subject, direct object or any other component

of the sentence. An alternative way of denoting grammatical roles is by use of word

 37

ordering, which is something that English does. This is why languages with strong case

features can be relatively free ordered, since changes in order will not in anyway affect

the roles played by the different constituents of the sentence. Bangla has a moderately

strong case system, which is why it is more free order than most other languages. In

Bangla, case marking is mostly done with the use of inflection on nouns. For more

general discussion about cases, refer to [Ayesha]. The general discussion found in that

section is basically what we were asked to determine about our language. We will

discuss some more on that later in this section. Some correct and incorrect examples are

given below. Two things should be mentioned here: we are assuming a SOV word order,

and by convention, incorrect examples are preceded with the asterisk (*) sign.

Noun-nom intransvrb: ��	+�/napɦ id̪ .����/gʱumaj

*noun-acc intransvrb: ��	+���/ napɦ id̪ke .����/gʱumaj

Noun-nom noun-acc transvrb: ��	+�/napɦ id̪ ��/����/hammad̪ke ����/mare

*noun-acc transvrb: ��	+���/ napɦ id̪ke ��/����/hammad̪ke ����/mare

*noun-nom noun-nom transvrb: ��	+�/napɦ id̪ ��/��/hammad̪ ����/mare

noun-nom noun-acc2 noun-acc1 ditransvrb: ��	+�/napɦ id̪ ��/����/hammad̪ke ��/boi

���/d̪ej

noun-acc1 noun-nom noun-acc2 ditransvrb: ����/boita ��	+�/napɦ id̪ ��/����/ hammad̪ke

	��/d̪ilo

*noun-acc1 noun-acc2 noun-nom ditransvrb: ����/biota ��/����/hammad̪ke ��	+�/nafid̪

	��/d̪ilo

noun-acc2 noun-nom noun-acc1 ditransvrb: ��/����/hammad̪ke ��	+�/napɦ id̪ ��/boita

	��/d̪ilo

*noun-acc2 noun-acc1 noun-nom ditransvrb: ��/����/hammad̪ke ��/boita ��	+�/napɦ id̪

	��/d̪ilo

 38

Something that can be inferred from the list of sentences above is that the elements in

noun-acc1 and noun-acc2 are freely ordered to some extent.

Table 3 Set of case markers

Case Case Marker

Nominative +0

Dative-Accusative +0, ��

Locative �◌, ', �', �

Instrumental Locative �◌, � + post-positives

Ablative �+ post-positives

Genitive �

3.6 Negation

Negation, or more formally sentential negation, refers to how the meaning of sentences

can be changed from positive to negative. To be more specific, this refers to what change

needs to be made to a sentence structure so that the sentence now means the opposite of

what it originally did. In most languages, there are two ways of doing this – through the

use of inflection on some component of the sentence, usually the verb, or through the use

of separate adverbs. In Bangla, both are relevant to some extent. Inflection on verbs is

manifested in cases such as “�	���/korina” to mean “I do not”, whereas “�	�/kori” would

mean “I do”. However, we again had to pick one and thus we chose the independent

adverb “��/na”, which when appended to the end of a sentence, negates its meaning. In

future, we might be able to try and incorporate both the use of independent adverbs and

affixes that occur with verbs. Below, we provide some examples of how this

independent adverb can perform negation on a sentence, as well as some examples of

incorrect constructs.

Correct

�	�/ami �
/bʱat̪ %��/kʱai ��/na. (I do not eat rice)

 39

Incorrect

�	�/ami �
/bʱat̪ ��/na %��/kʱai

�	�/ami ��/na �
/bʱat̪ %��/kʱai

��/na �	�/ami �
/bʱat̪ %��/kʱai

3.7 Matrix yes-no questions

As is evident from the title, this part of the work deals with questions that can be

answered by a simple affirmative or negative response. The clause matrix simply means

that the question is not embedded (more on that later in this section). In this phase, we

were to determine how questions are phrased in Bangla. Now, in Bangla, questions are

phrased in multiple ways, such as change of intonation and re-ordering of the words in a

declarative sentence. For example. “$���/arnab �2/boi ��3/pɔɾe”, which is normally a

declarative sentence, can be phrased as a question by changing intonation patterns. In

verbal communication, this change in intonation would be enough to turn the sentence

into a question, without the inclusion of any other words or affixes. However, intonation

by itself would not always be enough to pose a question, although in this case it works

fine. Since we are mostly working with written language, some rearrangement of the

words, or addition of words, would still have to be done. For the purpose of our

implementation, we chose to use the independent question adverb “��/ki”, appended to

the end of the sentence, to phrase questions. Of course, there are also cases where the

adverb “��/ki” could be placed elsewhere in the sentence but would still pose a valid yes-

no question.

For the purpose of this rudimentary grammar, we did not take these cases into

consideration. This would not be a problem, since any question that can be formed by

placing the question article elsewhere could also be formed by placing it at the end of the

sentence. The latter form would probably be considered more “literary” by a native

speaker, but no meaning would be lost. Below, we give a sentence, the way it is

converted into a question by using the question particle and how the question particle

can occur at some position other than the end of the sentence.

 40

���॔/arnab ��/boi "�,/pɔɾe (Arnab reads books)

���॔/arnab ��/boi "�,/pɔɾe 	�/ki? (Does Arnab read books?)

���॔/arnab 	�/ki ��/boi "�,/pɔɾe? (Does Arnab read books?)

Through the examples shown above, we can see one more thing – the latter way of

phrasing a question can lead to ambiguity, since the exact same ordering is also used to

express the wh-question “What books does Arnab read?” Thus, through our choice of the

first method, we are also avoiding this problem.

3.8 Imperatives

Imperatives are sentences that are meant to specify orders or directions. In English,

imperatives are achieved through the use of intonation. Often, subjects in English

imperatives can be dropped. In general, imperatives can be indicated through the use of

word order variation, use of a special particle or by morphologically marking the verb.

Bangla uses this last strategy – morphologically marking the verb. The subject of the

imperative is optional. The strategy remains the same in case of negative imperatives.

3.9 Embedded clauses (declarative, negative)

Embedded clauses are sentences that have a clause, and another complete sentence

embedded within itself through use of this clause. Bangla embedded declarative clauses

are marked through use of the special complementizer “�#/ɟe”. Bangla does not mark the

clauses morphologically. The word order for matrix and embedded clauses is the same,

namely, SOV. For embedded interrogative clauses, we also use a clause-final “kina” in

addition to the basic complementizer “�#/ɟe”.

Examples

Embedded declarative clauses

�	�/ami *�	�/ɟani �#/ɟe
� 	�/t ̪umi ����/dʱaka #���/ɟabe

��/ʃe ���/bollo �#/ɟe �*��/aɟke
��/t ̪ar ���/ʃomoj ���/hɔbe ��/na

 41

Embedded interrogative clauses

�	�/ami
���/t ̪ake >?/proʃno �����/korlam �#/ɟe ��/ʃe ��*��/kaɟta ����/korbe

	���/kina?

��/ʃe �����/amake *�����/ɟanabe �#/ɟe 	
	�/t ̪ini �����/aʃben 	���/kina?

 42

Section 4: Implementation

Primary contribution

by

Nafid Haque

 43

Section 4: Implementation

After detailed analysis of the grammatical phenomenon of our language, Bangla, we

need to implement them to check the effectiveness of our grammar. Linguistic

Knowledge Builder (LKB) is a grammar and lexicon development environment

developed by DELPH-IN [15], a collaborative effort of several computational linguists.

LKB has been developed using LISP and is available for free. Thus we chose LKB to be

the environment where we test our grammar.

4.1 More about LKB

Linguistic Knowledge Builder (LKB) is an open source tool to model grammars [11].

Different versions are available for different platforms. We have used the Linux version

of LKB for our convenience. The install script given with the Linux version is sufficient

to install all the associated packages required with LKB. For the Windows platform,

each of those associated packages need to be installed individually and then linked

together. Emacs is a well-known editor and is very useful for debugging while working

with LKB.

4.2 Type Description Language

TDL is a typed feature-based representation language and inference system, specifically

designed to support highly lexicalized grammar theories like HPSG. Type definitions in

TDL consist of type and feature constraints over the Boolean connectives. TDL supports

open- and closed-world reasoning over types and allows for partitions and incompatible

types. Working with partially as well as with fully expanded types is possible. [12]

4.3 Implementation of the Bangla Grammar

To implement a grammar we need four things:

• The type system

• Start structure

• Lexical entries

 44

• Grammar rules

In this section, we offer a more detailed discussion of each of these four constituents and

provide relevant examples for each.

4.3.1 The type system

It acts as the defining framework for the grammar. The type system determines the

structures that are mutually compatible and allows inheritance of types. [14].

Example:

;;;Types

syn-struc := *top* & [CATEG cat].

4.3.2 Start structure

It is the starting point and is very similar to the start symbol of a standard Context Free

Grammar.

Example:

;;;Start

start := phrase & [CATEG s].

4.3.3 Lexical entries

These are the information about the words of the language being used in the grammar.

Lexical entries define relationship between a string representing the characters in a word

and some linguistic description of the word [14].

Example:

;;;Lexicon

cat := word & [ORTH “cat”, CATEG n].

 45

4.3.4 Grammar rules

These are the typed feature structures that describe how to combine lexical entries and

phrases to make further phrases.

Example:

;;;Grammar

np_rule := phrase & [CATEG np,

ARGS [FIRST [CATEG det],

REST [FIRST [CATEG n],

REST *null*]]].

All of these must be declared in two different TDL files to be used by LKB. They are the

lexicon.tdl file and the grammar.tdl file. In the lexicon.tdl [Appendix B] file, only the

lexical entries are stored. All the other rules must be stated in another TDL file and for

our case it is the bangla.tdl [Appendix A] file.

4.4 Our approach towards implementation in LKB

Dr. Emily Bender conducts a graduate level course in linguistics at the University of

Washington [details], where students have to pick one language and develop an HPSG

for it as the lab project for the course. In order to get started on our work, we decided to

follow the structure of the lab for this course, with Bangla as our language of choice. We

went through from Lab 1 to Lab 5, limited initially by our lack of understanding of the

more linguistic aspect of the work. Throughout these labs, we had to do a lot of

linguistic analysis, find out information about properties of the Bangla language and

determine where Bangla stands in terms of how certain linguistic properties are

manifested in the language. We have already provided our findings in the previous

sections. Here we state the requirements of each of the Lab work and how we

implemented that in LKB.

 46

4.4.1 UWashington Linguistics567 Lab 1

This lab was not really very integral to the work of developing a grammar for the chosen

language. The main objective of this lab was to get familiar with the LKB environment.

We were given a starter grammar for English, with several redundant entries in the

lexicon and type files. First we were asked to try parsing a few sentences and check how

they are being parsed, if at all. Then we were asked to rewrite these portions in a manner

so as to remove this redundancy and use the inheritance property of TDL optimally.

After having done this, we were asked to check the same set of sentences again to ensure

that we had not lost any coverage in the process of trying to optimize code. This lab was

thus intended to let us experiment with LKB and writing TDL code, as well as teaching

us some of the basics of how work on a grammar should be done.

4.4.2 UWashington Linguistics567 Lab 2

In this lab, we were given a list of grammatical phenomena that we would be expected to

do some background work on as part of the design process. Our task was basically to

find out which of these phenomena are relevant for our language and which are not. For

the ones that are relevant, we would have to do detailed analysis of how these

phenomena are manifested, what properties and quirks they display for Bangla, and how

they can be summarized into a small set of general rules which can then be used to

generate a grammar that supports these properties. We were provided with a list of

thirteen phenomena. All of them have been discussed in Section 3.

4.4.3 UWashington Linguistics567 Lab 3

In this lab, we continued working with the list of phenomena given to us during Lab 2.

4.4.4 UWashington Linguistics567 Lab 4

After having completed the knowledge-gathering phase for the phenomenon mentioned

above, we had to fill out a customization form that would give us a lead by generating a

starter grammar for our language. This customization page was available along with the

specifications given for lab 4. Below, we give a quick review of the choices we made

while filling out this form.

 47

Before we move on to what choices we made, however, some points should be

emphasized. We would need to input some lexical entries that the starter grammar would

be able to work with. As per the lab instructions, these entries would have to be entered

in their full form. What this means is that to mean “boy” we would have to input

“chele”, and to incorporate “boys” our input would have to be “chele-gulo”, that is, the

fully inflected form. This is because the rudimentary grammar does not have any lexical

rules that would enable us to provide the root word and the number property and end up

with the plural form of the root word. Also, while some of the questions are mandatory

and some answer had to be selected (even if only an approximation), certain other

sections may not be very relevant or simple for our language and we had the liberty to

skip over them if we wanted to do so. That being said, we now highlight our answers to

the questions asked in the customization page.

Language name – Bangla

Word order – SOV. Bangla does have determiners as independent words, and the order

with respect to nouns is Determiner-noun.

Sentential Negation – this is achieved through use of an adverb. This adverb is an

independent modifier of S and appears to the right of it. Since we chose only adverbial

negation, the later parts of the section is not relevant to us.

Coordination – Monosyndeton best describes our language. We chose to skip over the

later sections, and this would be an area that we would want to come back to and brush

up a little.

Matrix yes-no questions – this is done through use of a separate question particle, written

“ki” and occurring as a sentence final.

Once these questions were done, we had to enter a few lexicon entries. Some of the

lexical types were not relevant for our grammar so we skipped those sections. Finally,

we had to input two test sentences using only the lexical entries input in the previous

 48

step. For details about the lexicon entries, refer to Section 4.3.3. After filling out this

form we were able to download the starter grammar for Bangla, with the lexical entries

we specified and ability to parse the sentences that we entered.

At this point, we were asked to setup a testsuite database that would enable us to

automatically test our grammar. After having a lot of difficulty with this, we decided to

do without it. The only functionality we lost in the process is that we had to test the

sentences manually, but this was not a very big inconvenience. For details about the

coverage of the grammar at this stage, refer to Section 4.5.

4.4.5 UWashington Linguistics567 Lab 5

At this stage, we were expected to implement some more “packages” from a list

available in the specifications page for this lab. The students for the course got to choose

a subset of all the packages mentioned, but we decided to implement the packages one

by one and see how far we got.

The first package we started working on was pronouns, person and number distinctions.

The instructions in this portion of the lab are very specific, even to the point of giving

the exact code that will need to be implemented for the particular case evident in our

language. The main reason behind this is that at this stage, we were expected to spend

more time on the linguistic analysis and finding out details about the Bangla language.

Once we had this information, we would simply have to choose the code that would best

serve our needs and that phase of the work would be done.

As part of the first package, we had to find out the relation between nouns and

determiners in Bangla. To be more specific, we would need to find out the determiners

in Bangla and how they are used along with each of common nouns, proper nouns and

pronouns. There are three possibilities as to how determiners and nouns can relate to

each other: the determiner can be mandatory, always missing or optional. We report out

findings below.

 49

In Bangla, as in all other languages, the proper noun never takes a determiner. Similarly,

pronouns do not take a determiner either. Common nouns can optionally take a

determiner, but they do not have to take one. Knowing this, we simply had to find the

code for this particular case and add it to our grammar. This then enabled us to parse

some more sentences, about which more discussion is given in Section 4.5. Before these

sentences could be parsed, however, we needed to add in the relevant lexicon entries.

For adding in determiner entries, we had to find out more information about determiners

in Bangla, and found out that Bangla has determiners in two forms, as shown below:

Independent adverbs – ei, shei, oi

Affixes – ti, ta, gulo

In the examples above, “ei” and “shei” are proximal determiners while “oi” is a distal

determiner. Among the affixes, “ti” and “ta” are used in conjunction with nouns in

singular form, while “gulo” and “guli” are used with nouns in the plural form. At this

point, we were ready to parse a new class of sentences with the changes made in the

grammar.

Next, we moved on to the part about implementing the case system for Bangla. Initially,

we were supposed to work on case system being implemented through the use of

inflection. This is the point where we got stuck again, since this was basically the first

time we had to write an AVM starting from scratch. All the types we had created up until

this point were basically done through re-using code that was already provided in the

starter grammar. We had to take a look at the syntax for the Hindi grammar we got from

our supervisor, and through help from it eventually managed to get the case system

implementation right. At this point though, the nouns still have to be input in their fully

inflected form, so that the root word “ami” in accusative case would have to be added to

the lexicon as the word “amake”. The next logical step in our work would be to try and

design lexical rules such that given a root word and the desired case property we would

be able to generate the inflected form of the word. This is as far we got in lab 5, and thus

as far as we got with out work on this Head-Driven Phrase Structure Grammar for

Bangla.

 50

4.5 The Bangla Grammar in LKB

After working with the UWashington Linguistics567 Labs, we got a working grammar

that could show some basic structure of the Bangla grammar. In this section some

features of LKB is shown with respect to the Bangla grammar we have prepared.

Sentence: nafid boi pore

The parse tree generated by the LKB is shown below. On clicking the terminals and non-

terminals of the parse tree the entire feature structure of that particular constituent can be

viewed.

Figure 5 Parse Tree

 51

A parse chart for the same sentence is shown below. The parse chart shows the raw head

types and how they have been inherited.

Figure 6 Parse Chart

Sentence: amaderke boi dao

The parse tree for the above sentence is shown below. This sentence highlights the

implementation of the accusative case.

Figure 7 Parse Tree

 52

A parse chart for the sentence is shown below.

Figure 8 Parse Chart

Some sentences generated by the LKB is shown below. It can be seen that among the

sentences that have been generated, some are grammatically incorrect. Here “over-

generation” took place. This could have been avoided by adding more constraints with

the associated head-types.

Figure 9 Generated Sentences

 53

An elementary dependency chart is shown below. This chart highlights the dependencies

of the head-types.

Figure 10 Elementary Dependencies

 54

Some feature structures generated by the LKB for the Bangla Grammar is shown below.

Figure 11 TFS 1

 55

Figure 12 TFS 2

 56

Figure 13 TFS 3

 57

Future Work

In this paper, we discussed the background of the Bangla grammar, the linguistic

analysis done by us and a rudimentary implementation of the grammar. In terms of

coverage and amount of linguistic knowledge, this grammar is of course at a very basic

stage. In the future, we would like to increase the coverage of this grammar through

experimentation and through background analysis of some more linguistic phenomena.

We would also like to try a more generic approach towards incorporating more sentences

in our list of coverage. At present, we start with some sentence in mind and then add in

the features that would be necessary to be able to parse this sentence. In future, we

would like to be able to start from a more abstract level and then arrive at a whole class

of sentences instead of just one or two sentences. Lastly, we would also like to try and

add semantic knowledge to go with our grammar and also maybe use a corpus in order to

implement a probabilistic parser.

 58

Conclusion

In this paper, we gave a considerable amount of background information of the Bangla

language and its different linguistic components. We also discussed how CFG has been

attempted to capture the Bangla language and the reasons why it fails to perform

adequately for Bangla or for that matter any other natural language rich in agreement

issues. We provided some background information of the different entities of Bangla

language and that of natural languages in general, and discussed the knowledge base

behind our decision to use a head-driven grammar for our purpose. Then we discussed

the basics of HPSG, and presented an analysis of a list of different phenomena for

Bangla. Lastly, we presented a sample implementation of the grammar, built upon an

auto-generated grammar and with certain other features added in the course of our work.

The grammar theory and implementation is at a basic stage, but it is designed in a way so

that it should be easy to build upon this grammar and capture a host of other linguistic

components. Another important product of our work would be this documentation itself,

highlighting the basics of Bangla language and a summary of a good number of linguistic

issues and how they are manifested. With this basic implementation to work with in the

future and a good documentation that can serve as a good starter resource, we trust that

our work will be able to make a positive difference in the efforts of anyone willing to

continue work on the design of a computational grammar for Bangla.

 59

References:

1. N. Chomsky and M. Halle, The Sound Pattern of English.

2. Grady et Al, Contemporary Linguistics.

3. Daniel Jurafsky and James H. Martin, Chap-9, Speech and Language Processing

4. Bangla Bhashar Bekoron

5. Online notes collected from: http://www.arts.uottawa.ca/writcent/hypergrammar

6. Lecture Note CSC173, available online at

http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/parsetrees.html

7. Lecture Note CSC173, available online at

http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html

8. Lecture Note Linguistics 120, Autumn 2003, collected from the Internet

9. Wikipedia entry of GPSG, available online at http://en.wikipedia.org/wiki/GPSG

10. Robert D. Levine, Encyclopedia of Cognitive Science – Head Driven Phrase

Structure Grammar.

11. Online notes collected from: http://en.wikipedia.org/wiki/LKB

12. Online notes collected from: http://www.ims.uni-

stuttgart.de/ftp/pub/Users/jochen/Esslli95/tdl_flyer.html

13. Naushad UzZaman, Undergraduate Thesis, Spring 2005. Phonetic Encoding for

Bangla and its application to spelling checker, transliteration, cross language

information retrieval and name searching.

14. Ann Copestake. 2002. Implementing Typed Feature Structure Grammars. CSLI

Publications, Stanford.

15. DELPH-IN website.

 60

Appendices

 61

Appendix A

The bangla.tdl file

 62

1. bangla.tdl file

;;; -*- Mode: TDL; Package: LKB -*-
;;;
;;; Language-specific types and constraints for Ban gla

;;; Type addenda adding constraints to head types

;;; This grammar includes head-modifier rules. To k eep
;;; out extraneous parses, constrain the value of M OD on
;;; various subtypes of head. This may need to be l oosened later.
;;; This constraint says that only adverbs, adjecti ves,
;;; and adpositions can be modifiers.

+nvcdmo :+ [MOD < >].

;;; Types for values of additional features.

;;; Phrase structure rule types

;;; Types for SOV word order.

comp-head-phrase := basic-head-1st-comp-phrase & he ad-final.
subj-head-phrase := basic-head-subj-phrase & head-f inal &
[HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS < >].

;;; Rules for building NPs. Note that the Matrix us es SPR for
;;; the specifier of nouns and SUBJ for the subject (specifier) of
verbs.

spec-head-phrase := basic-head-spec-phrase & head-f inal.

;;; Bare NP phrase. Consider modifying the PRED val ue of the quantifier
relation
;;; introduced to match the semantic effect of bare NPs in your
language.

;;;bare-np-phrase := basic-bare-np-phrase &
;;;[C-CONT.RELS <! [PRED "unspec_q_rel"] !>].

 63

new-bare-np-phrase := basic-bare-np-phrase &
[HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED #pred] ! >] >,
C-CONT.RELS < ! [PRED #pred & quantifier_rel] ! >].
;;; Lexical types

;;; Nouns

noun-lex := basic-noun-lex & basic-one-arg &
[SYNSEM.LOCAL [CAT.VAL [SPR < #spr & [LOCAL.CAT .HEAD det] >,
COMPS < >,
SUBJ < >,
SPEC < >]],
ARG-ST < #spr >].

;;;just added to test
pronoun-lex := noun-lex &
[SYNSEM [LOCAL.CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED pronoun_q_rel] ! >] >,
LKEYS.KEYREL.PRED 'pronoun_n_rel]].

common-noun-lex := noun-lex &
[SYNSEM.LOCAL [CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED reg_quant_rel] ! >] >,
CONT.HOOK.INDEX.PNG [PER third]]].

proper-noun-lex := noun-lex &
[SYNSEM.LOCAL [CAT.VAL.SPR
< [LOCAL.CONT.RELS < ! [PRED proper_q_rel] ! >] > ,
CONT.HOOK.INDEX.PNG [PER third]]].

no-spr-noun-lex := noun-lex &
[SYNSEM.LOCAL.CAT.VAL.SPR < [OPT +] >].

;;; Verbs

verb-lex := basic-verb-lex &
[SYNSEM.LOCAL [CAT [VAL [SPR < >,
SPEC < >,
SUBJ < #subj >]],
CONT.HOOK.XARG #xarg],

 64

ARG-ST < #subj &
[LOCAL [CAT [HEAD noun,
VAL [SPR < >,
COMPS < >]],
CONT.HOOK.INDEX #xarg]], ... >].

intransitive-verb-lex := verb-lex & intransitive-le x-item &
[SYNSEM.LOCAL.CAT.VAL.COMPS < >].

transitive-verb-lex := verb-lex & transitive-lex-it em &
[SYNSEM.LOCAL.CAT.VAL.COMPS < #comps >,
ARG-ST < [],
#comps &
[LOCAL.CAT [VAL [SPR < >,
COMPS < >],
HEAD noun]] >].

;;; Case-marking adpositions
;;; Case marking adpositions are constrained not to
;;; be modifiers.

case-marker-p-lex := basic-one-arg & raise-sem-lex- item &
[SYNSEM.LOCAL.CAT [HEAD adp & [MOD < >],
VAL [SPR < >,
SUBJ < >,
COMPS < #comps >,
SPEC < >]],
ARG-ST < #comps & [LOCAL.CAT [HEAD noun,
VAL.SPR < >]] >].

;;; Determiners
;;; SPEC is non-empty, and already specified by bas ic-determiner-lex.

determiner-lex := basic-determiner-lex & basic-zero -arg &
[SYNSEM.LOCAL.CAT.VAL [SPR < >,
COMPS < >,
SUBJ < >]].

;;; Adverbs

;;; Negative adverb

 65

neg-adv-lex := basic-scopal-adverb-lex &
[SYNSEM.LOCAL.CAT [POSTHEAD +,
VAL [SPR < >,
COMPS < >,
SUBJ < >],
HEAD.MOD < [LOCAL.CAT [HEAD verb,
VAL [SUBJ cons,
COMPS null]]] >]].

qpart-le := basic-scopal-adverb-lex &
[SYNSEM [LOCAL.CAT [HEAD.MOD < [LOCAL.CAT [HEA D verb,
VAL [SUBJ < >,
COMPS < >]]]>,
VAL [SUBJ < >,
SPR < >,
COMPS < >],
POSTHEAD +],
LKEYS.KEYREL.PRED question_m_rel]].

;;; Coordination

n1-top-coord-rule := basic-n-top-coord-rule & monop oly-top-coord-rule &
[SYNSEM.LOCAL.COORD-STRAT "1"].
n1-mid-coord-rule := basic-n-mid-coord-rule & monop oly-mid-coord-rule &
[SYNSEM.LOCAL.COORD-STRAT "1"].
n1-bottom-coord-rule := conj-last-bottom-coord-rule & n-bottom-coord-
phrase &
[SYNSEM.LOCAL.COORD-STRAT "1"].

np1-top-coord-rule := basic-np-top-coord-rule & mon opoly-top-coord-rule
&
[SYNSEM.LOCAL.COORD-STRAT "1"].
np1-mid-coord-rule := basic-np-mid-coord-rule & mon opoly-mid-coord-rule
&
[SYNSEM.LOCAL.COORD-STRAT "1"].
np1-bottom-coord-rule := conj-last-bottom-coord-rul e & np-bottom-coord-
phrase &
[SYNSEM.LOCAL.COORD-STRAT "1"].

vp1-top-coord-rule := basic-vp-top-coord-rule & mon opoly-top-coord-rule
&
[SYNSEM.LOCAL.COORD-STRAT "1"].
vp1-mid-coord-rule := basic-vp-mid-coord-rule & mon opoly-mid-coord-rule
&
[SYNSEM.LOCAL.COORD-STRAT "1"].

 66

vp1-bottom-coord-rule := conj-last-bottom-coord-rul e & vp-bottom-coord-
phrase &
[SYNSEM.LOCAL.COORD-STRAT "1"].

s1-top-coord-rule := basic-s-top-coord-rule & monop oly-top-coord-rule &
[SYNSEM.LOCAL.COORD-STRAT "1"].
s1-mid-coord-rule := basic-s-mid-coord-rule & monop oly-mid-coord-rule &
[SYNSEM.LOCAL.COORD-STRAT "1"].
s1-bottom-coord-rule := conj-last-bottom-coord-rule & s-bottom-coord-
phrase &
[SYNSEM.LOCAL.COORD-STRAT "1"].

;;; This part added on 16th September.
;;; Lab 5 Number Distinction

png :+ [PER person,
NUM number].

person := *top*.
first := person.
second := person.
third := person.

number := *top*.
sg := number.
non-sg := number. ; use this one if your language o nly has sg-pl
dual := non-sg. ; at these two if your language has sg-du-pl
pl := non-sg.

;;; This part added on 8th October.
;;; Lab 5 Pronouns cover-det-rule

quantifier_rel := predsort.
pronoun_q_rel := quantifier_rel.
proper_q_rel := quantifier_rel.
reg_quant_rel := quantifier_rel.

;;; Lab 5 Determiners

demonstrative_q_rel := reg_quant_rel.
non+demonstrative_q_rel := reg_quant_rel.
proximal+dem_q_rel := demonstrative_q_rel. ; close to speaker
distal+dem_q_rel := demonstrative_q_rel. ; away fro m speaker

 67

remote+dem_q_rel := distal+dem_q_rel. ; away from s peaker and hearer
hearer+dem_q_rel := distal+dem_q_rel. ; near hearer
def_q_rel := non+demonstrative_q_rel. ; definite
indef_q_rel := non+demonstrative_q_rel. ; indefinit e

;;; Lab 5 Case Inflection (17th November)
noun :+ [CASE case].

case := *top*.

nom := case.
acc := case.

trans-verb-lex := basic-verb-lex & transitive-lex-i tem &
[SYNSEM.LOCAL [CAT [HEAD verb,
VAL [SPR < >,
SUBJ < #subj & synsem
& [LOCAL.CAT [HEAD noun &
[CASE nom],
VAL.SPR <>]] >,
COMPS < #comps
& [LOCAL.CAT [HEAD noun &
[CASE acc],
VAL.SPR <>]]>,
SPEC < >]]],
ARG-S < #subj, #comps >].

;;; Lab 5 Case Inflection (2nd December)

;;;adp :+ [CASE case].
+np :+ [CASE case].

 68

Appendix B

The lexicon.tdl file

 69

2. lexicon.tdl file
;;; -*- Mode: TDL; Package: LKB -*-

;;; Nouns

nafid := no-spr-noun-lex &
[STEM < "nafid" >,
SYNSEM.LKEYS.KEYREL.PRED "_nafid_n_rel"].

boi := noun-lex &
[STEM < "boi" >,
SYNSEM.LKEYS.KEYREL.PRED "_boi_n_rel"].

gyan := noun-lex &
[STEM < "gyan" >,
SYNSEM.LKEYS.KEYREL.PRED "_gyan_n_rel"].

;;;just adding to test 12th October
hammad := no-spr-noun-lex &
[STEM < "hammad" >,
SYNSEM.LKEYS.KEYREL.PRED "_hammad_n_rel"].

paper := noun-lex &
[STEM < "paper" >,
SYNSEM.LKEYS.KEYREL.PRED "_paper_n_rel"].

;;; Verbs

ghumay := intransitive-verb-lex &
[STEM < "ghumay" >,
SYNSEM.LKEYS.KEYREL.PRED "_ghumay_v_rel"].

pore := transitive-verb-lex &
[STEM < "pore" >,
SYNSEM.LKEYS.KEYREL.PRED "_pore_v_rel"].

orjon := transitive-verb-lex &
[STEM < "orjon" >,
SYNSEM.LKEYS.KEYREL.PRED "_orjon_v_rel"].

 70

kore := transitive-verb-lex &
[STEM < "kore" >,
SYNSEM.LKEYS.KEYREL.PRED "_kore_v_rel"].

;;;added on 25th november
dey := transitive-verb-lex &
[STEM < "dey" >,
SYNSEM.LKEYS.KEYREL.PRED "_dey_v_rel"].

dao := transitive-verb-lex &
[STEM < "dao" >,
SYNSEM.LKEYS.KEYREL.PRED "_dey_v_rel"].

;;;added to test 12th oct
pori := transitive-verb-lex &
[STEM < "pori" >,
SYNSEM.LKEYS.KEYREL.PRED "_pori_v_rel"].

poro := transitive-verb-lex &
[STEM < "poro" >,
SYNSEM.LKEYS.KEYREL.PRED "_poro_v_rel"].

;;; Other

;;; Case-marking adpositions

subj-marker := case-marker-p-lex &
[STEM < "Ayesha" >].

;;; Determiners

ei := determiner-lex &
[STEM < "ei" >,
SYNSEM.LKEYS.KEYREL.PRED proximal+dem_q_rel].

shei := determiner-lex &
[STEM < "shei" >,
SYNSEM.LKEYS.KEYREL.PRED proximal+dem_q_rel].

 71

oi := determiner-lex &
[STEM < "oi" >,
SYNSEM.LKEYS.KEYREL.PRED distal+dem_q_rel].

;;;era := determiner-lex &
;;;[STEM < "era" >,
;;;SYNSEM.LKEYS.KEYREL.PRED "_ei_q_rel"].

na := neg-adv-lex &
[STEM < "na" >,
SYNSEM.LKEYS.KEYREL.PRED "_neg_r_rel"].

ki := qpart-le &
[STEM < "ki" >].

;;;ke := qpart-le &
;;;[STEM < "ke" >].

ebong_1 := conj-lex &
[STEM < "ebong" >,
SYNSEM.LKEYS.KEYREL.PRED "_and_coord_rel",
CFORM "1"].

;;; Pronouns added on 8th october2006

amra := pronoun-lex &
[STEM <"amra">,
SYNSEM.LOCAL.CONT.HOOK.INDEX.PNG [PER first,
NUM non-sg]].

;;;Case Inflection added on 11th November
amra := pronoun-lex &
[STEM < "amra" >,
SYNSEM.LOCAL [CAT.HEAD.CASE nom,
CONT.HOOK.INDEX.PNG [PER first,
NUM non-sg]]].

amaderke := pronoun-lex &
[STEM < "amaderke" >,
SYNSEM.LOCAL [CAT.HEAD.CASE acc,
CONT.HOOK.INDEX.PNG [PER first,

 72

NUM non-sg]]].
;;;added to test case inflection on 25th november
ke := noun-lex &
[STEM < "ke" >,
SYNSEM.LOCAL [CAT.HEAD.CASE acc,
CONT.HOOK.INDEX.PNG [PER first,
NUM non-sg]]].

;;;adposition
hote := case-marker-adp &
[STEM < "hote" >,
SYNSEM.LOCAL.CAT.HEAD.CASE []].

