Time Delay Analysis of a Bio Signal Analyzer for
Designing a Closed Loop Controller

BRAC

UNIVERSITY

A thesis submitted in partial fulfillment of the requirements for the degree of
M.Sc. in Electrical and Electronic Engineeting
By
Marzia Alam
Supervisor

Dr. AKM Abdul Malek Azad
Associate Professor, EEE Department

Department of Electrical and Electronic Engineeting,
BRAC University

January, 2013

APPROVAL

Title: Time Delay Analysis of a Bio Signal Analyzer for Designing a Closed
Loop Controller

Author: Marzia Alam

Date: 24™ January, 2013

Do AKAL ABDUL MALEL AZAD j%

Supervisor Signature

R"ijDr S\S/(dﬁnau_cg MMG_O{ // .

Committee Member Signature
/ AT LAY M ”%Zg =
Committee Member Signature

Committee Member Signatur::

Il Bya e d falen AT

Chairperson Signature

DECLARATION

We do hereby declare that the thesis titled “Time Delay Analysis of a Bio Signal Analyzer for
Designing a Closed Loop Controller”, a thesis submitted to the Department of Electrical
and Electronics Engineering of BRAC University in partial fulfillment of the Masters of
Science in Electrical and Electronics Engineering. This is our original work and was not
submitted elsewhere for the award of any other degree or any other publication.

Date: ;277«\/22-71445&’ Q0/3

ﬁ%’/

Signature of the Supervisor

Dr. AKM Abdul Malek Azad

Associate Professor

Department of Electrical and Electronic Engineering
BRAC University

Marzia A Jam.
(Students Name)
Student ID: 1¢2.6 10 @ é’

-

. ~
Signature of Student

Abstract

Real time task for which timing must be guaranteed is most important requirement
in biomedical measurement systems. If the system fails to meet the deadline it can end up
with severe error for the measurement purpose. In this thesis, time delay is observed for an
open loop biomedical system under different operating systems. To guarantee the response
time of the biomedical data acquisition system hard real-time Linux operating system is
proposed. The system is implemented both in Red Hat Linux and in Windows. In case of
closed loop system this time delay degrades the performance of the system and cause the
stability problem. The research given in this thesis aims to analyze time delay for closed loop
Biosignal Analyzer, introduced by hardware and software in real time communication. Total
time delay is calculated both theoretically and practically and the results are found to be quite
similar. A controller needs to be designed to eliminate the stability problem caused by time
delay. The mathematical model of the closed loop control systems in this regard is also

developed for future work.

iii

Table of Contents

Abstract 11
List of Figures viii
List of Tables X
List of Abbreviations X
Acknowledgement xi
List of Publications xii
L IOt OAUCTION. et ee e et se s ssss s s st sss s sss s s s s sassassaesassaessesaas 1
1.1 Background and MotiVAHONcssssvisssmrarsnsmssasnvsnsses sossonsnnsmposvasasionssanss 1
1.2 Literatite ReVICW .. eueceeceeeiisssssossisssimssissssssossosisssosossosssssnsssssssvssssveesssse 2
BT @, 11CTer v IR —————— U 4
1.4 Systetii. OVeIVIE Wi cos s s ssvnmsmussnsnnsmmeessnessausvamemues s s s vons osasssssasvasssessvenss 4
1.5 Oveiview of CONTENntS: ;i caissnmsanmassnonsnansssiis o5 5 o5s0s0masmesisasasamamessssseiemve d
2. Overview of Signal Processing Systems (U8)..o e rwrnmmsmmmmsmssmsssonns 8
2.1 IDtFOAMCHON s s ssnmwmmssmunnes o5 s issee e P RE e HEs SEs RS 8
2.2 Opetating Systems PoelIONS snonsmmmnmmnsess 184 o5 somssammeosmsssssss i s 68868 4458 8
2.2.1 General Purpose OS...... ..o, 9
2.2.2 Soft Real-Time O S . ..ottt e e e e e e et 9
223 Hard Real-Time OS . ..ot e e e e e e e e 9
2.3 SCEOULING. . i cniicassiosnsinssioinsnssessiieisssess osninsssosuns S5ossis o8 456 Iassasdesoh GRrsoesasoTo 10
2.3.1 Scheduling in Real-Time System.............ccoiiiiiiiiiiiiii e 10
2.3.2 Scheduling in WAldows XP..ox: vos smmsmmsmmunnses s 5 55 13 45 S5ssmsmsyssmamsessnsss 11
24 The Linux Operating SySteifoesswsismmnsssssnssumesmnsasss snessnssanmasassensmoesnessss 12
2:4:1 Tinux and Real-THme: : commemns sosanissios 515555555 5 58 ounrmuaranag 5 £ § Seamuasmm 12
2.5 The RT-Linux SOIUtION i i 0500 i0ii00sssssssvonssssisinmenssesss s sspiosssasvisssassosessess 13
2.6 Petformance CharacCteriStiCS.ceeuuereeeerereeeeeesooccesssoscsssossssscccsssoscssssssssose 14

iv

2.6.1 Event Latency.cuuiuiieeuisioueniorssessnsnsenenranssnaaransstsnsstsncsasnsnssnss 14

2 B2 PeHOAIE THEBE. .o sossucmmosvams smnrnsnsnsmssssos sbisbis I SR RSSO SR PR A e 15
2.7. BioSigNalS..ccoiuiurrresrrererneresioruontenetceetcacasiasasssresusastosuststasasensacsan 16
2.8 Source and Characteristics of Different Biosignals..........ccccouiviiiiininiiinn. 17
2.9 Signals and SeNSOrS......coeiiiiiiiiiiiiiiiiiiiiiiiiiiiii s 18
2.10 Electrocardiogram (ECG) Signal Monitoring System..........ccccoeviiisiiunannnn 20

24071 BOG LEAAG o s 200 v o o e 5 sy s s s o0 s s s AT s 5 avieso 20
2.11 Pulse Oximeter Signal Monitoring System.....c.ceeiiiiiimieiiiiiiiiiiinnin 21

2.11.1 Principle of Pulse OXIMEttY. . .. ucesvsrisisnisssnmmessinss sbaseisds evivasasansasin 21
2.12 Blood Pressure Measurement Technique....cccceireniiieciciiiasnscansacsnsivesses 22
2.13 Temperature Measurement.....ouveereueererecarieireuesriorsnsrsrssrsssstossssasssnes 24
2.14 Respiratory Rate Measurement...oovovivreerrrirrersnsenrseatoarcitensisstamsesses 24
2.15 Biomedical Signal Acquisition System........cccociiiiiiiiiiiiiniiiinnsnioe. 25
2.16 Data Acquisition Board Fundamentals..........cccoooeiiiiiiiiniiiiiiii. 26

2:16.1 Hardwate OFEEVIEW, sassusmie st trsnis < s nivsm s s s vans o b5 sai shasesiin s 27

2162 USB-4716 Deviee IIAVER. . . ooussansis s sl ssavmassvas (o aksmiisvan svsnigionsesvameans 28
2.17 Interfacing Technique for Windows......ccoieieiieiineinninenincinrionsonsnrsncsnse 28
2.18 Interfacing Technique for Linux.....cccveeiiiiniciiiiiiiiiiiiiiiiiccenasssenans 29
2.19 Interfacing Technique for RT-Linux......ccoiviiiiiiiiiiiiiiiiiiiiiiin, 31
2.20 Experimental Results.. vivicicimainersessmmmisnismivaneoresos sovmmnsusavesnee 32
2.21 Time Measurement Technique for Windows........ccovvvirieriniirerinreenennenes 32
2.22 Time Measutement Technique for LINUX....ccivivsnscsocsvssssnsosesassannsnnsans 33
2.23 Comparison of Latency it 'T'wo OB csvmevisonsvsissvsissinssosssmsassine 34
2.24 Comparison of Time Delay in Windows, Linux and RT-Linux................. 36

2.25 Temperature Measurement Technique.......cceoeneneieiiiiiiiiiiiiiiiiiiiin 36

2.25.1 Test RESUILS. .. utteetiette ettt e 57
2.26 Data Deployment on Developed Software........coeeeeeieiiiiiiiiiiiiiiiiiine 39
2.27 Expetiments with ECG Sensor......ccceeveieieiiiiiiiiiiniiiiiiiiiiiiiiiii.. 40

3. Time Delay Analysis of Sampled Data System............cocooeiiniinnnnnnn. 42
3.1 INtOAUCHON o 44 s sussnmuswussnnersmunmonssrsvsess s 4o vanpspsesressrsseserasssesseasesosssss 42
3.2 Time Delay of Sampled Data System.......ccceeiereieinirancnrecronsacnseceseserens 43

3.2.1 Timing Diagram of the System..........ccoeiiiiiiiiiiiiiiiiiiiiiiiinn., 44

3.2.2 Time Delay of Definite Synchronous System...............ooooiiiiiiii 44

3.2.2.1 Titne Delay o Layet fusessmmmsmamsess ss 5500 53 593 sommmpamamaworss s s ress oo s 45
3.2.2.2 Example to Illustrate Definite Synchronous Model..................... 47
3.2.3 Possible Number of Delay in a Partial Synchronous System..............47
3251 FolEine Lavaltmmmmmemaeorvymmors oy« s v s v 51 somemcmm——— e o o x50 4 0 48
3.2.3.2 Example to Illustrate Partial Synchronous Model....................... 48
3.2.3.3 Maximum Time Delays for Partial Synchronous System 49
3.2.3.4 Example to Illustrate Time Delay for the Proposed System............ 49
3.3 Effect of Time Delay Sampled Data System.......ccccoveiiiiiiiiiiiniiiiiiiiaennn.. 53

331 JABOL: ¢ 5 5 s sunommarmmseos o5 55 87575543 SSEaPEE 08 X 8X 57§53 BRBARFHRAMRARATE £ 45355525504 8 vd 53

A 32 TrarStEtit BotBOT ... « o s cones o s = 00 o mormcnimctmmmmnk il §85 § 45 5 55 3 § § 5. 5/0B GBI A 6 KR A3 EH 05 54

4. Mathematical Model of Sampled Data Control System.......................... 56
4,1 InHOAUCHON cvx s« s ssonvsmmmesmmenmanuesenssarsassss csssossessosenssuauassanesasesssersssvyen 56
4.2 Automatic Heart Pump Sampled Data Control System..........ccceeevininninnnn. 57
4.3 Intersample Behavior of the System...scasmwsvinmsssssss o sssssvsmssmnpssnsmsmavons 61
4.4 Lifting Technique for Petiodic System......ccccoeervsrsnscssoreresssoosossncosnsasees 65

4.4 Discrete Time LIFRng. ;s s su summonassnemsremmmumenns v s 193 535 53 vwmmmenmnmmsvase 66
4.5 The Sttucture of Multi Rate System. . cc:a:sssssssmsmsumsssssesmnsusos s.ssssovossasves 68

5. Conclusion and Future Work........oveeeeeeeeeeeee e eeeeeeeeeeeesesesesesssseessenennn T

vi

G, R I OIICES. . ooeee oot e e e et e e et e e e e e e e e e aeeesaaa e ssaaeeseeraaaeeens 73

s IRITIDETUOIR. .. e om0 0055550 55 50355 5553 S50 A RS ARATR SSA535 76

Appendix A
A.1 Code for the GUI in windows
A.2 Code for time measurement in windows console
A.3 Code for time measurement in Linux Terminal
A.4 Code for time measurement in RT-Linux Terminal
A.5 MATLAB code for temperature sensor equation

A.6 MATLAB code for windows-Linux comparison

Appendix B
B.1 Sample data set for windows time measurement

B.2 Sample data set for Linux time measurement

Appendix C
C.1 Main Features of USB-4716 Data Acquisition Card

vii

List of Figures

Figure 1.1 System Overview

Figure 1.2 System Block Diagram

Figure 2.1 RT-Linux Kernels

Figure 2.2 Event Latency

Figure 2.3 Periodic Jitter

Figure 2.4 Conversion of Bio Signal to Electric Signal
Figure 2.5 Simulated Output of Biosignal

Figure 2.6 ECG Signal

Figure 2.7 Three Lead ECG

Figure 2.8 Spo, Sensor

Figure 2.9 Blood pressure signal processing

Figure 2.10 Temperature sensor

Figure2.11 Respiratory Rate Signal Conditioner

Figure 2.12 USB-4716 Data Acquisition Card

Figure 2.13 Procedures of Linux-DAQ communication
Figure 2.14 Procedures of Software-DAQ Communication
Figure 2.15 Time latency measurement steps in windows
Figure 2.16 Time latency measurement procedures in Linux
Figure 2.17 Windows and Linux time latency variation depending on running processes
Figure 2.18 Linux code for time latency measurement
Figure 2.19 The circuit of temperature sensor

Figure 2.20 Curve fitting for temperature equation

Figure 2.22 Temperature shown in GUI

Figure 2.23 Output of data logger

Figure 2.24 The Circuit of ECG Sensor and ECG output
Figure 2.25 ECG Signal Processing Circuit

Figure 3.1 System Block Diagram with Different Source of Delays

Figure 3.2 Timing Diagram of the System
Figure 3.3 Delays in a Definite Synchronous System with Two Layers

viii

Figure 3.4 Time Delay on layer i+1 when t;<h,,

Figure 3.5 Time Delay on layer i+1 when t,2h,,

Figure3.6 Random Access Delays for a partial synchronous system; (2) £=0, (iz) k=1, (iii) k=2
Figure 3.7 Digital Oscilloscope Output of Total Time Delay

Figure 4.1 Automatic Heart Pump Control Systems

Figure 4.2 Mathematical Representation of Automatic Heart Pump Control System

Figure 4.3 () Sampled-data controller components (b) Mathematical representation
Figure 4.4 Approaches for the design of a discrete-time controller for a continuous-time
process

Figure 4.5 A sample data tracking system

Figure 4.6 State space realization of sampled data system

Figure 4.7 Effect of Slow and Fast Sampling

Figure 4.8 Block diagram for discrete-time lifting

Figure 4.9 Fast discretization of SD system

Figure 4.10 Two rate discrete system with lifting

Figure 4.11 Single-rate lifted system

Figure 4.12 Multi-rate sampled-data system (periodic)

Figure 4.13 Single-rate LTI discrete system

List of Abbreviations

ASP: Analog Signal Processor

A/D Converter: Analog to Digital Converter
DAQ Card: Data Acquisition Card

DMA: Direct Memory Access

ECG: Electrocardiographic

EEG: Electroencephalographic

FIFO: First in first out

FD: Finite Dimensional

GUI: Graphical User Interface

LTI Linear Time Invariant

RT-Linux: Real-time Linux

List of Tables

Table 2.1 Different Types Signals and Sensors
Table 2.2 Dependency on Running Process
Table 2.3 Total time delay in Windows, Linux and RT-Linux

Table 2.4 Temperature and corresponding voltages

Acknowledgements

I would like to thank my supervisor Dr. AKM Abdul Malek Azad for his continuous
guidance and support for the completion of my thesis. I would like to acknowledge the EEE
Department of BRAC University for funding my work. Special thanks to MD. Arif Khan,
Lecturer, CSE Department, BRAC University, for his invaluable co-operation in understanding

coding required for my thesis.

xi

List of Publications

M. Alam, A. Azad “Developing a Bio Signal Analyzer in Hard Real-Time Linux Environment”,
proceedings of International IEEE Conference on Biomedical Engineering, (ICOBE’12),
February 27" 28" | 2012, Penang, Malaysia.

M. Alam, A. Azad, “Time Delay Analaysis of Biomedical Signal Analyzer in Hard Real-Time Linux
Environment”, Proceedings of International IEEE Conference on Intelligent and Advanced
System (ICIAS’2012), 12" -14™ June, 2012, kuala Lumpur, Malaysia.

M. Alam, A. Azad, “Tmplementation of 16 Channels Biosensor Based Animal Testing Data Acquisition
System in Hard Real-Time Operating System”, accepted to be appeared in International IEEE
Conference on Sensor Technology (ICST°2012), to be held on 18" -21% December. 2012,
Kolkata, India.

xii

Chapter 1

INTRODUCTION

1.1 Motivation and Background

Biomedical engineering is the application of engineering principles and techniques to
the medical field. The development of biomedical engineeting is responsible for improving
healthcare diagnosis, monitoring and therapy. It is a very sensitive field of engineering
measurement where delay of a second can cause someone life’s to death. So real time
computing has great importance in the field of biomedical engineering. There are always
sensitive cases where it needs to follow up the pulse rate, blood pressure etc for every single
moment. If one data is missed or cannot be processed in due time by the machine
(biomedical instrument) it may cause setious impact on the patient’s body. So real time
patient monitoring has great importance in healthcare.

Complexity arises when random delays arise into the control loop. System performance can
be adversely affected by the presence of random access delays in the loop. In fact small or
large delays and their associated phase lag provide unwanted oscillation in the system

response, which may even lead to instability.

1.2 Literature Review

In order to pursuit real-time requirement for biomedical system queued management
is proposed for several processes under multi tasking environment in paper [1]. Here a study
of queued system based upon an operating system is presented for soft real time case study.
To validate the proposed method two operating systems MAC and Linux is used. System
Modeling and timing requitement is met by proper manipulation of two entities: Queue
management and timing thread manipulation without modifying the operating scheduling
algorithm. Python and Java language platform is used since it offers concurrent queues
facility. The behavior of concurrent queue is evaluated in an application to monitor the
signal of a Doppler ultrasound instrument for the measurement of the blood flow.

To meet the hard real time constrain a pre run time scheduling algorithm approach is
implemented on Linux OS is proposed in this paper[2]. A method is presented for hard real-
time system scheduling considering dynamic voltage scaling, precedence and exclusion
relation. The system is modeled based on time petri nets in order to find a feasible schedule
using a pre run time scheduling approach for time critical biomedical system. The proposed
pre-runtime schedule synthesis is performed in two steps: preprocessing based on Yao’s
approach extended with discrete set of voltages. Proposed method was applied for
measuring level of oxygen in human blood and was implemented on Linux platform.

In DJ Christini paper [3], it reports a software driven hard real time control system
for electrophysiological optical mapping with a deterministic time delay <1 ms. Paper [4]
proposes a time delay estimation approach for a sensor-actuator set up by linearizing the
measurement equation in time which leads to an augmented system from which time delays
and system states can be jointly estimated. Response delay between the input voltage and the

pressure is measured for an automatic compression pump. The approach is based on a

linearization in time of the measurement equation that leads to extended Kalman filter for an
extended system.

A high resolution low power successive approximation ADC designing technique is
proposed for biomedical signal detecting system in paper [5]. In order to detect low
amplitude biomedical signal such as EEG, ECG high resolution circuit is designed and
simulated using HSPICE. Based on the characteristics of biomedical signal several methods
are used for improving ADC accuracy.

The acquisition system for physiologic signals in ICU (Intensive Care Unit)
environment has also been reported in recent research. Most of them used a portable device
that is connected to analog to digital board in a personal computer. In paper [6], Kevin et al
developed the continuous physiologic data acquisition system (PDAS) for clinical research in
the ICU environment.

An algorithm is proposed in paper [7] for stability analysis of a discrete time sampled
data system. Stability analysis algotithm is proposed by showing robustness of sampled data
system against perturbation caused by variation of sampling interval based on the small gain
framework. Some direction for reducing conservatism is also discussed. The proposed
algorithm measure the stability caused by the difference of sampling interval within the
system using Lypnouv function.

In paper [8] propose an approach for analyzing stability of linear system. Conditions
are derived to ensure asymptotic stability and to obtain an estimate of the convergence rate
of the solutions. Example is given to show the efficiency of the method. Similar work is
done to determine the stability criteria of asynchronous system in paper [9].

Many works have been done on biomedical data acquisition system so far. ADI

instrument, the biggest biomedical equipment provider developed their data acquisition

system on Windows and Mac platform but no such system is built keeping the hard real time
(HRT) constrain. Here the work proposes HRT Linux based USB 4716 DAQ system for
analyzing biomedical signal. Different model is built for this kind of system such as in paper
[10-13]. In this thesis, discrete time based modeling for analyzing biomedical sampled data
system is used.

1.3 Objectives

The prime objectives of this work are to analyze the time delay of the biomedical
signal processing system. To achieve this goal first the system will be designed as open loop
biomedical data acquisition system and it will be shown that computational delay can be
reduced by introducing hard real time operating system. Then the effect of time delay in case
of closed loop system will be evaluated which involves calculation of time delay both
theoretically and practically. As the time delay in case of closed loop cause the system to fail
to produce actuation signal and thus corrupts the system, therefore in close loop case only
switching to hard real time operating system cannot solve the problem. So the necessity of
designing controller arises. In this work the mathematical model for the closed loop system
will be developed with an example of automatic heart pump to remove the stability problem
caused by time delay.

1.4 System Overview

The system consists of biosensors and 16 channel data acquisition card which will
receive the analog biomedical signals from human/animal body through the biosensor and
these signals are sent to the computer. The signal processor (ASP) filter, amplify, and cancel
the noise of the analog signal processor (ASP) developed from the transducers of the
biosensors and send it to the data acquisition system (DAQ) for digital signal processing

(DSP). DAQ digitize the signal and convert it into digital numeric value so that it can be

manipulated by the computer. . Out of the 16 channels 5 channels data has been considered

for the time being. These channels will be used for measuring ECG signal, cardiac output,

blood pressure, respiratory rate, oxygen saturation, body temperature, heart rate. Overall

system block diagram of the system is shown in Fig.1.

Receptor Transducer

/1

Receptor Transducer

Signal Processing

tasenie

Signal Processing

Figurel. 1 System Overview

16 channels

Data Acquisition System c;)mputer

To understand the source of delay, block diagram representation of the above system is

given in Figure 1.2. Here the system is divided into different levels. The I/O part which

consists of sensor and actuator is considered as top level L, the controller is the lower level,

0 and the data acquisition part is the higher level, 1.

Top level, L

Continuous Plant

G,

.
s T e e PR

5 K]
R i SE— I :
: = N F, |
1 1
1 Pa
i | pac | | abc F——-»E
E A i Dara Eres
E o]«
: i 24
! Dada acguksiiio n = '

Higher level, 1

Figurel. 2 System Block Diagram

Lower level, O

Now one delay is coming between the sensor and the controller which is 7y , another delay

is coming between controller and actuator which is 7, . These two delays will be added with

the controller delay 7. and the bus delay T pus , thus giving the total delay of the system.

T =Tge T Tec T Th 7,

total

Any of these delays can affect the total delay of the system threatening the system
stability. In this thesis first the system is analyzed for the open loop case and it was found
that time delay in open loop system can be reduced to some extent by using hard real time
operating system. But if the closed loop controller for biosignal acquisition system is to be
designed, the effect of delay cannot simply handled by the use of hard real time operating
system. In close loop case delay can cause the stability problem which needs to be solved by
appropriate design of a controller. In chapter two, overview of the whole system along with
the experimental results done on open loop system is discussed. Chapter three represents the

time delay analysis of the closed loop system and chapter four build up the mathematical

modeling of the closed loop control systems required to reduce the time delay effect.

1.5 Overview of Contents

The rest of the dissertation is organized as follows:

Chapter 2: Overview of Biosignal Processing System

In this chapter, in section one, different operating systems and their characteristics are
presented. The Real-Time RT-Linux solution is proposed. Also the petformance
characteristics of RT Linux are discussed. Section two presents the source and characteristics
of different bio signals. Simulation output of the mentioned bio signals is shown. Section

three, Biomedical Signal Acquisition System of the proposed system is discussed. The

hardware structure of the data acquisition board, the device driver and the library functions
used for the proposed system is discussed. Finally this section concludes by describing the
interfacing technique between different operating systems. In experimental Results sections
results on temperature sensor and ECG sensor is given. The results on temperature sensor
are plotted in MATLAB and from the equation the algorithm was obtained to be used in
computer program. A comparative result for windows, Linux and RT-Linux is shown for

total delay calculation.
Chapter 3: Time Delay Analysis of Sampled Data System

The aim of this chapter is to study the time delay of the system. The considered biomedical
data acquisition system is a sampled data system where time delay arises due to sampling.
This chapter gives an overview of what are the sources of these delays and the effect of the
delay on the system. Time delay analysis of the bio signal processing system is done.
Probability of possible time delay is also discussed.

Chapter 4: Mathematical Model of Sampled Data System

To minimize the effect of time delay controller is needed. Before giving a complete form of
any sampled data system it is important to design the controller such a way that can meet the
system requirement. In this chapter the mathematical model of the controller is given with
an example of automatic heart pump control system.

Chapter 5: Conclusions and Future Work

In this last chapter the main results of this dissertation is summarized, and some concluding

remarks and identify potential directions for future research has been given.

Chapter 2

OVERVIEW OF BIO SIGNAL PROCESSING

SYSTEM

2.1 Introduction

In this chapter a clear overview of biosignal processing system is discussed. This
includes different types of operating systems that can be applied for implementing biosignal
processing system, a brief overview of biosignals, biomedical signal acquisition systems and
some experimental results done for implementing the system.

2.2 Operating Systems

Biomedical signal acquisition system can be either embedded or PC-based. In both
implementations, a piece of software is capable of being utilized, knows as the operating
system (OS). An operating system allows for numerous applications to be executed on a
single workstation, instead of just one customized application. However, there are a variety
of different types of operating systems that are available, each with their own strengths and

characteristics. There are three types of operating system available: general purpose OS, soft

real-time (SRT) OS and hard real-time (HRT) OS.

2.2.1 General Purpose OS

The most widely known operating system is the Personal Computer Operating System.
The main job of this operating system is to provide a good interface to user. Microsoft
Windows is the most widely known of this type of general purpose operating system which
is non real-time. Moreover, there are operating systems for embedded systems. These
operating systems do not provide the simple interface that PC operating system provide but,
instead, are concerned with deterministic control over multiple routines [14,15].

Another type of operating system is the real-time system. In the following subsection
two types of real-time OS-soft real-time OS (SRTOS) and hard real-time OS (HRTOS) will
be described.

2.2.2 Soft Real-Time OS

In these types of system, missing an occasional deadline is acceptable. For instance, an
example of a soft real-time system would be a live audio-video system. In this type of system,
violation of timing constraints can result in degradation of audio and video quality but the
system will still continue to operate. Example: Linux, UNIX.
2.2.3 Hard Real-Time OS

Another type of operating system is the hard real-time system. These systems ate
distinguished by having time as a key consideration. For instance, in control applications,
real-time computers have hard deadlines that must be met. For example, in an assembly line
at a car manufacturing plant, if a welding robot welds too late or too eatly then the car will
be ruined. Hence, if an action absolutely must occur at a certain moment within a certain
time interval, the system is deemed to be a hard real-time. Example: Real-Time Linux (RT-

Linux), QNX etc [16].

2.3 Scheduling

When a computer is multi programmed, it frequently has multiple processes that are
competing for the central processing unit (CPU) at the same time. If only one CPU is
available in a system, a choice has to be made regarding which process is to be run next. The
part of the operating system that makes the choice about which process is to be run is called
the scheduler. Furthermore, the algorithm that the scheduler uses is called the scheduling
algorithm. Information regarding scheduling procedure in two specific types of operating
systems can be seen in the following sections.

2.3.1 Scheduling in Real-Time Systems

Hard real-time systems are characterized by having deadlines that must be made while
soft real-time operating systems are characterized by having deadlines that should be met.
Moreover, process scheduling in real-time systems must be highly predictable and regular. In
real-time systems, priority scheduling is the type of scheduling algotithm that is implemented.

The basic idea of priority scheduling is that each process is assigned a priority. After a
process is assigned a priority, the process with the highest priority will be allowed to execute.
There are variations regarding how this priority scheduling algorithm is implemented. Most
real-time operating systems utilize a non-preemptive priotity scheduling algorithm. In this
scheduling algorithm, the highest priority process continually runs until it voluntarily releases
the CPU. Then, of the available processes, the process with the highest priority executes
when the CPU becomes available. In the case when two processes have the same priority,
one process is randomly scheduled to execute and other process has to wait for the process

to finish execution before it can run.

10

2.3.2 Scheduling in Windows XP

The Windows operating system is currently the most widely used general purpose
operating system. The Windows operating system does not have the same operational
criteria as real-time operating system. As a general operating system, Windows is not
predictable but instead attempts to allow for each available process to have a fair share of
CPU time.

The latest version of Microsoft’s operating system uses a preemptive thread based
priority scheduling algorithm. While a process is traditionally perceived to only have one
thread of execution, Windows allows for multiple threads to exist in the same process.
Consequently, Windows XP has 32 priority levels, with 0 being the lowest and 31 being the
highest. The highest 16 levels (15-31) are characterized as real-time levels. Although threads
at these levels are characterized as real-time, the name is misleading. Threads running on
these priority levels are not guaranteed to receive process time. On the contraty, threads
running on the highest priority may receive no processors cycles because the processor may
be busy handling hardware and software interrupts. Moreover, system level threads are not
running on these levels. Consequently, setting an application to a real-time level may block a
system task and cause system instability.

During execution, the difference between real-time levels and lower levels (called
dynamic levels) is that the scheduler will never change the priority of a thread running on a
real-time level. Processes running on lower levels will occasionally have their priorities
boosted by the operating system to avoid process starvation. Therefore, before a thread is
run on Windows XP, it must first wait for hardware and software interrupts to finish. After
the interrupts finished, the waiting thread is finally allowed to execute, whenever an

interrupts arrives or a higher priority thread becomes ready, the running process will become

11

preempted and have to wait for the other interrupts or threads to execute. Consequently, the
current kernel architecture for Windows XP is not ideal for high precision real-time
applications.

2.4 The Linux Operating System

To understand Real-Time Linux, and why and how it is used, it is important to
understand a little about the Linux Operating system. After all, RT-Linux is built, on or as an
extension to, the Linux OS.

2.4.1 Linux and Real-Time

Linux is a general purpose, fully featured, free operating system based on UNIX
(POSIX). Much of the supporting software is borrowed from UNIX, such as the graphical
desktop environment, known as X-Windows, compilers, editors, free software GNU tools,
etc. The Linux kernel is responsible for maintaining all the important abstractions of the
operating systems, including virtual memory and process management. System libraties
define standard functions which allow applications to interact with the kernel [17].

An important and useful feature of Linux is the ability to use Loadable Kernel Modules.
These modules are compiled object code, and can be loaded and unloaded into the kernel on
demand. This is an advantage for the reason that the kernel can be modified without the
need to be constructed carefully and with security in mind.

Importantly, the Linux Kernel is non preemptable, as interrupts are disabled during
its operation. So, kernel code cannot be interrupted while running. One consequence of this
is that there is no need to protect critical sections of kernel code, as they cannot be
interrupted.

Possible solution to enabling real-time performance in a Linux OS include, changing

the Linux kernel to include preempt ability, low interrupt processing latency, and perhaps

12

eliminating some of the functionality of the Linux kernel, that is, to strip it down and make it
“lighter”. Another alternative is to provide a real-time patch underneath the Linux kernel,
where Linux is run as a low-priority process in a small real-time kernel. The real-time kernel
takes over the real-time hardware from Linux and replaces it with software emulation. There
are two commonly known real-time operating systems (RTOSs) which conform to this
approach RT-Linux and Real-Time Application Interface (RTAI).

2.5 The RT-Linux Solution

RT-Linux is a patch for the standard Linux kernel. Due to it being available in a free
version, it is particularly useful for teaching exercises, laboratory equipment; PCs used for
instrumentation, and embedded systems. There are also commertcial versions which include
more features, and have, among other things, undergone more extensive treatment.

The following diagram illustrates (Figure 2.1) the structure of the real-time
operating system. The diagram shows that Linux itself is treated just as another task to
run, but with lowest priority. Linux in turn controls the running of its non real-time

processes, such as editors, browsers, consoles, viewers, utilities, etc.

HARDWARE s
INT
Lo
o INT RT-LINUX KERNEL
L H H~
RTTASK RT TASK LINUX OS
f 2
SYSTEM CALLS/POSIX
- Ny
LNUx | - LINUX LINUX
PROCESS PROCESS PROCESS

Figure 2.1: RT-Linux Kernel

13

The real-time requirements are met in RT-Linux by the real-time kernel capturing all
hardware interrupts. These are checked for their importance, that is, time-critical (real-time)
or non-time-critical (non-real-time). If an interrupt is time-critical and is destined for a real-
time service routine, the appropriate routine is launched, otherwise if it is not time-critical,
the real-time kernel forwards it to Linux in the form of a virtual interrupt (a software
emulation), which is held until such time as there are no further critical real-time task to run.
Real-time tasks run at the kernel privilege level, giving them direct access to the
computer resources, such as the CPU, memory, and hardware devices. Running at the kernel
privilege level also gives the ability to change task priority, engage inter process
communication (IPC), run user defined IPC handlers, and executes user defined scheduling
algorithms. With privilege however, responsibility comes, care must be taken when
constructing real-time programs so that the program does not make undesirable changes to
the system that would otherwise not be possible without the privilege. Not only the real-time
tasks run at the privilege level of the kernel, but they all exist and run within the same kernel
address space. One consequence of this, aside from the security issue mentioned, is that

switching between real-time tasks is made easier and quicker, and hence reducing latency.

2.6 Performance Characteristics

The fundamental criteria for evaluating performance of a real-time operating system
are event latency and periodic jitter. An event can be an interrupt generated by hardware
external to the CPU or it can be a signal internal to the operating system such as a
notification to start the next task on a ready-to-run queue.

2.6.1 Event Latency
Events can be either hardware-generated interrupts or operating system generated

software signals. Event latency is shown in Figure 2.2[17].

14

For an operating system generated event, the latency is the time from when the signal is
generated to when the first instruction of the task is executed. This latency can be measured
using the CPU’s clock counter register. This 64-bit register is incremented at the clock rate,
every 2 nanoseconds for a 500MHz CPU clock, and a sequence of its values can be stored in
memory for later analysis. This measurement technique is not affected by any delays due to
petipheral device bus accesses, because the counter register is internal to the CPU and is

always incremented every clock cycle.

Usefulness of Task After Deadline is Missed

100
80
kil
80
Uselfwlness =0
40
30
20
10

0 :
bl 2a 44 184 2562 =
Femane = et remsTome
General Purpose OS
Figure 2.2: Event Latency
2.6.2 Periodic Jitter

Periodic jitter as shown in Figure 2.3 [17] refers to the variations in time that a
repetitive task experiences as it executes.

The repetitive task is at the heart of sampled-data control of mechanical devices. The
models of the device to be controlled are calculated on the assumption that the sample time

is known and fixed. The control algorithm is, in turn, calculated from the device model,

15

reinforcing the dependence on a known and stable sample time. Any jitter in the sample time

leads to imprecision in the control-system performance.

Desired Lo

Loop Iteration
b wN =

R .

e A

Figure 2.3: Periodic Jitter

Based on the discussion above it can be concluded that the faster response time,
reduced jitter and multi tasking facility make the RT-Linux operating systems best suitable
for time critical application such as for biomedical experiments. As my thesis work is
concerned, the proposed system is the development of bio signal analyzer in hard real-time
environment. In the following section different types of bio signals and their corresponding
sensors required for the experiments will be discussed.

2.7 Biosignals

Biosignal is a summarizing term for all kinds of signals that can be (continually)
measured and monitored from biological beings. Bio signals are used primarily for extracting
information on a biological system under investigation. The process of extracting
information could be as simple as feeling the pulse of a person on the wrist or as complex as
analyzing the structure of internal soft tissues by an ultrasound scanner. In the following

section different types of biosignal and their corresponding sensors are discussed.

16

2.8 Source and Characteristics of Different Biosignals

Biomedical signals [18,19] originate from a variety of sources such as: bioelectric signal,
biomechanical signal, biochemical, biomagnetic, biooptical signal etc. Here brief ideas about
these signals are given below.

Bioelectric Signals: These are unique to the biomedical system. They are generated by nerve
cells and muscle cells. Their basic source is the cell membrane potential under which certain
conditions may be excited to generate an action potential. The electric field is generated by
the action of many cells constitutes the bio-electric signal. The most common examples of
bioelectric signals are the ECG (electrocardiographic) and EEG (electroencephalographic)
signals.

Biomechanical Signals: These signals originate from some mechanical function of the biological
system. They include all types of motion and displacement signals, pressure and flow signals
etc. The movement of the chest wall in accordance with the respiratory activity is an example
of this type of signal.

Biochemical Signals: The signals which are obtained as a result of chemical measurement from
the living tissue or from samples analyzed in the laboratory. The examples ate measurement
of partial pressure of carbon-dioxide (pco2), Partial pressure of oxygen (po2) and
concentration of various irons in blood.

Biomagnetic Signals: Extremely weak magnetic fields are produced by vatious organs such as
the brain, heart, and lungs. The measurement of these signals provides information which is
not available in other types of bio-signals such as bio-electric signals. A typical example is

that of magneto-encephalograph (MEG) signal from the brain.

17

2.9 Signals and Sensors

A biosensor [20, 21] consists of two elements: bio-element and sensor-element.
Bioreceptor is the bio-element and transducers are: the sensor-element. The bioreceptor is a
bimolecular object that recognizes the target analyte. It can be enzyme, antibody, tissue, etc.
and the transducer should be capable of converting the bio recognition event into a

measurable signal.

Electric

Biosensor T ducer .
senso || Transduce > Signal

Figure. 2.4: Conversion of bio signal to electric signal

TABLE 2.1 DIFFERENT TYPES SIGNALS AND SENSORS

Signals Sensors

Electrocardiogram ECG Electrodes

Oxygen Saturation Pulse Oximeter

Body Temperature Thermal Probe

Aortic Pressure Strain Gauge Sensor

Respiratory Rate Impedence Pneumography
Electrode

The output of different sensors for different biosignals is shown in Figure 2.5.

18

ECG output{mV)

Time

Respiratory rate{breaths/min)

DY gt
¢
[«]
] 20 40] a0 EL=] E$--] 140 15 120
Temperature
o0
Ao
0
L<]
(=] 5 =] s 20 25 20 =

Oxygen Saturation(%)

o3

92 [Tt 3
o e O .. T e s Sy
28 i esca
£
o 2 a s) 10 12

Figure 2.5: Simulated Output of Biosignal

For the time being five sensors are considered: ECG sensor to observe heart
condition, pulse oximeter sensor to measure the oxygen saturation, temperature sensot to
measure the body temperature and blood pressure monitoring sensor and respiratory rate to
measure the breathing rate per minute. Other channels will be kept reserved for future
implementation of more signals. Following section of the thesis give details about these five
signals and their corresponding sensor and next section discuss the sensors and their

corresponding signal conditioning circuit.

19

2.10 Electrocardiogram (ECG) Signal Monitoring System

Electrocardiogram (ECG) measures the electrical activity of the heart. Then heart is a
muscular organ that beats in rhythm to pump the blood through the body. The heart
muscles create electrical waves when they pump. These waves pass through the body and
can be measured at electrodes attached to the skin. ECG signal bandwidth is .05Hz to 150

Hz and amplitude range is up to 10mV [22].

QRS

; Complex l

PR
Segmeant
] PR Inverval

Figure 2.6: ECG Signal

QT lmerval

2.10.1 ECG Leads

ECG signal is measured from electrodes applied to the surface of the body. The
waveform of this signal is varied dependent on the placement of the electrodes. The term
lead is used to indicate a particular group of electrodes. Electrodes are placed on each arm
and leg, and six electrodes are placed at defined locations on the chest. These electrode leads
are placed at defined location on the chest. These are two basic types of ECG leads: bipolar
and unipolar. Bipolar leads utilize a single positive and a single negative electrode between

which electrical potentials are measured. Unipolar leads (augment leads and chest leads) have

20

single positive recording electrodes and utilize a combination of the other electrodes to serve
as a composite negative electrode. Depending on the placing of electrodes there are three

types of electrodes-Limb leads, Augmented leads, Chest leads.

Figure 2.7: Three leads ECG

2.11 Pulse Oximetry Signal Monitoring System

The measurement of the oxygen in the blood is very important to analyze a patient
medical condition. Pulse oximetry is used for this purpose. It is a non-invasive system to
monitor the percentage of hemoglobin which is saturated with oxygen. It consists of a probe
attached to the patient’s finger or ear lobe. Acceptable normal ranges are from 95 to 100
percent although values down to 90% are common. In case of critical patient there may be
risk of respiratory failure, so to know how well the arterial blood is oxygenated is very
important for the patients. Pulse oximetry is also being used in the monitoring of pulmonary
disease in adults and in the investigation of sleep disorders.

2.11.1 Principles of Pulse Oximetry

The principle of the pulse oximetry [23] is based on two physical principles. One is the
presence of a pulsatile signal generated by arterial blood, which is relatively independent of

non pulsatile arterial blood, venous and capillary blood and other tissues and the another one

2]

is the fact that oxy hemoglobin and reduced hemoglobin have different spectra. A Pulse

Oximeter is shown in Figure 2.8.

Figure 2.8: Spo, sensor

Pulse Oximeter is based on the red and infrared light absorption characteristics of
oxygenated and deoxygenated hemoglobin. The light is partly absorbed by hemoglobin by
amounts which differ depending on whether it is saturated or desaturated with oxygen. By
calculating the absorption at the two wavelengths the processor can compute the proportion
of hemoglobin which is oxygenated. Oxygenated hemoglobin absorbs more infrared light
and allows more red lights to pass through. Deoxygenated (or reduced) hemoglobin absorbs
more red light and allows more infrared light to pass through. Red light is in the 600-750 nm

wavelength light band. Infrared light is in the 850-1000 nm wavelength light band.
2.12 Blood Pressure Measurement Technique

Blood pressure is the most often measured and most intensively studied parameter in
medical and physiological practice [24]. All blood pressure measurements are made with

reference to the atmospheric pressure. The frequency range for aortic pressure measurement

22

signal is 0-60Hz. There are two basic methods for measuring blood pressure- direct and
indirect.

The indirect method consists of simple equipment and cause very little discomfort to
the subject but they are intermittent and less informative. They are based on the adjustment
of a known external pressure equal to the vascular pressure so that the vessel just collapses.
On the other hand, the direct method provides continuous and much more reliable
information about the absolute vascular pressure from probes or transducers inserted
directly into the blood stream. But the additional information is obtained at the cost of
increased disturbance to the patient and complexity of the equipment.

The direct method of blood pressure measurement is considered for this system. For
direct measurement a catheter tip probe can be used in which a sensor is mounted on the tip

of the probe and the pressure exerted on it is converted into electrical signals.

- Diaphtagm

Liguid —o] be— " Cutheter]
1 Ineremental
// Nleneth |
!
/o .v \
/ i i \
/ { \
/ | | \
/ | i \
R(_- Lt /R‘ Ix' * Rf Li’ I R& Ls. “

o i e ¢, &
T T 10T

Figure 2.9: Blood pressure signal processing
Strain gauge transducer is used for processing the arterial pressure. The electrical

signals corresponding to arterial pressure are amplified using an operational or carrier

amplifier.

23

2.13 Temperature Measurement

Body temperature indicates the measure of the body ability to generate and get rid of
heat. It is an indication of many types of illness. It can provide useful information about the
severity of the illness [25, 26,27]. The truest, accessible, core temperature is measurement of
the pulmonaty artery temperature with a thermistor. Thermistor is a type of resistor with
resistance varying according to its temperature. A thermistor temperature sensor is showed

in Figure 2.10.

Figure 2.10: Temperature sensor

In this thesis above thermistor probe has been used to collect the data for temperature.
It offers high precision thermistor elements, customizable probes and assemblies to provide
precise and reliable temperature measurement in the most demanding applications. There are
also some other type of temperature sensors such as catheter type thermistor, glass mercury

thermometer.

2.14 Respiratory Rate Measurement

One of the options to measure respiratory rate is impedance pneumography. The
objective of this technique is to measure the change of electrical impedance of the person’s
thorax caused by respiration. In this case oscillator output is applied to the two/four outer

electrodes. The electrode used for this case is same as ECG electrode. The measuring range

24

of the amplifier is .1 to 3 ohm with a frequency response of .2 to 3.0 Hz corresponding to

respiratory rate of 12 to 180 per minute [28,29].

s

==

A
; \ I“AvAl‘v 50% @
A'A'A'Ai oscil 5 o " AC Voo p a
Z A / DG backing f " f *
AN - A4 \
A B)\ Wllma hﬁ = 47 51 hot *3,‘ T 4T uF
50 kHz ! Demoditator Recordar
ampiifier A fiter fy C;‘} Ak | %
¥ o
<

Figure 2.11: Respiratory Rate Signal Conditioner

In both case (either two/four electrodes) a high frequency ac current is applied into
the tissue through the electrodes. The ac current produce a potential difference across the
two points of the drive electrodes. The potential difference is related to the resistivity of the
tissue between the voltage sensing electrodes.

In this section different bio signals and their corresponding sensors with their signal
conditioning circuit are presented. The circuitry for temperature and ECG measurement will
be discussed in the experimental result section. How these bio sensors are communicating
with the outer world will be presented in next section.

2.15 Biomedical Signal Acquisition System

In order to use these biomedical signals in their vatious applications, a system must
be available that can acquire, analyze, display these various signals. Although there are many
design options available for creating such a workstation, two of the most common
approaches are to either develop embedded or PC-based system. Here PC based biomedical
system is considered where a data acquisition board USB-4716 is used for interfacing

biosignals with computer.

25

2.16 Data Acquisition Board Fundamentals

A DAQ board is a basic A/D converter that is coupled with an interface that allows a
PC to control the action of the A/D and capture the digital output information from the
converter. A DAQ board is designed to plug directly into a personal computer’s bus, with all
the power required for the A /D converter and associated interface components being
directly obtained from the bus. Moreover, it should be noted that a DAQ board is more than
a simple A/D function on a board. A data acquisition may include discrete bi-directional
I/O lines, counter timers, and D/A converters for outputting analog signals for control
applications.

The purpose of a DAQ board is to convert analog data to digital data that a computer
is able to manipulate. There are three primary methods available to transfer digitized data
between the DAQ board and computer memory. These three methods for data transfer are
direct memory access (DMA), interrupt, and programmed I/O transfets. For programmed
I/0O transfers, data are transferred between the CPU and the PC whenever the CPU receives
a software code to either acquire or generate a single data point. Interrupt data transfer
occurs when the DAQ board sends an interrupt to the CPU. This interrupt causes the CPU
to either read acquired data from the DAQ board or write data to the DAQ board. DMA
transfers use a DMA controller instead of the CPU to move acquires data between the board
and computer memory. Even though high-speed data transfer can occur with interrupt and
programmed 1/O transfers, they require the use of the CPU to transfer data, Consequently,
DMA transfer are able to acquire data at high speeds and keep the CPU free for performing

other task at the same time [30].

26

2.16.1 Hardware Overview

The data acquisition boatd is been used for signal generation and communicating with
computer is 2a DAQ from Advantech Company model number USB-4716. The USB-4716 is
a true Plug & Play portable data acquisition device. USB-4716 has 16 single-ended/8
differential inputs with 16-bit resolution and a 200 kHz maximum sampling rate. Each
individual input channel is software selected. However while there are multiple analog input
channels the USB-4716 only contains one A/D converter. Consequently, when more than
one channel is being utilized to acquire data, the sampling rate for each channel is defined as:
(Sampling Frequency)/ (Number of Channel used). Hence, when all 16 differential analog

input channels are used, the maximum sampling rate for each channel is 12.5 kHz.

Figure 2.12: USB-4716 Data Acquisition Card

Acquired data are stored in a buffer located on the DAQ board. Data are then
transferred, using the USB bus of the computer, via the direct memory access (DMA). Data
are transferred from the FIFO to the computer once the amount of samples stored in the
buffer reaches a specific value, which is known as count value. The USB-4716 also has
additional functionality besides acquiring analog signals. The DAQ board contains two 16

bits analog output channels. Analog output is also stored in a buffer. Although digital input

27

and output signals are not used during the course of the thesis project, it should be noted

that the board contain 8 digital input/output channels.

2.16.2 USB-4716 Device Driver

The data acquisition card USB-4716 provides us a device driver that can give different
functionality of system. The device driver software named ActiveDAQ Pro gives us different
function for using the DAQ system and representing the data. The functions primarily
classified as two categories which are ActiveDAQ Pro device control and ActiveDAQ Pro
GUI control. The device control functions are used to manipulate the data coming through
the DAQ card. The device control functions were integrated to Graphical User Interface
(GUI) to control the data coming from the DAQ card. The device control functions are
ADvALdll (analog input control), ADvAO.dll (Analog output control), ADvDIO (Digital

input output control).

These are the .dll functions which are consist of several function that can control the
device for specific purpose for example to receive analog signal from the sensors the ADvAI
means analog input control .dll function needed to be integrated with our software. This
AdvAILdll consists of number of functions those are giving the ability of controlling the
analog input coming from the sensors those are used for interfacing between hardware and
software.

2.17 Interfacing Technique for Windows

Interfacing between the DAQ card and the software is most important part in the
project. The card receives the data from the sensors and sends the data to the computer. The

computer gets a digital data and software takes the responsibility for further processing of

28

the data and shows it in a specific manner. So at first the communication between the

software and the card is necessary [31].

Different properties and function of ADvALdIl is used for analog signal processing in
the software. First the device was selected by calling SelectDevice function. It makes sure
that the correct version of the product which is USB-4716 is in use. After that device name
and device number was selected by using DeviceName and DeviceNumber properties. Then
by using DataAnalog properties to control analog input data coming from the sensors. After
getting the analog input data software processes it as needed and then displays it to graphical
user interface. C# language was used for the graphical user interface and specified functions

in C# development environment wad added as reference.

2.18 Interfacing Technique for Linux

To interface the Linux with the hardware the driver named advdaq-1.09.0001-€14.1386
in Red Hat Linux4 (RHEL4) operating system needed to compile. By compiling the driver
file two modules insmod/ust/stc/adddrv_core ko and insmod/usb4716.ko were inserted in
a module for RHEL4. After this the process becomes a part of the Linux OS. Obtaining
analog data from USB-4716 is consisting of two parts or steps in Linux: step 1: binding the
hardware with the software, step 2: obtaining analog data from hardware. Step 1 makes a
hardware-hardware contract between DAQ system and Linux OS and step2 makes the
hardware-software contract with the DAQ system with the Linux software [32].

In step 1, after inserting the two modules a file is created automatically which is a
addrev file: /proc/device/addrev. Then the major type of the file was found. Using the
major type of the file a node was made of the USB hardware with the OS by using

mknod/dev/addrv.c254. After making the node the node of the OS to the hardware was

29

bound by using binding command advdevice_bind. After binding the device with the OS
hardware-hardware contact part is done. Now the Linux OS is ready for getting analog data

through the channels of the DAQ card. The binding process is shown in the flow chart

below.

—
Inserting module for REELS
=]Q_—' Insmeod/ vse/sec/addre_core ko I

P
AMaking a node in OS for the
Amod /dev adder.c234 I
Ld.evica

~
Binding the device node with
adrdewice_bind
the dewce
N

Figure 2.13: Procedures of Linux-DAQ communication

After making the communication between Linux and DAQ it needs to make
communication with the process of Linux to obtain analog data through the hardware
channels. For that it is necessary to communicate with the device node that was made within
the Linux OS.

For obtaining analog data as input several functions were used given by the DAQ card
manufacturer. First the device is opened to make it ready for starting data obtaining process.
There is a function named DRV_DeviceOpen which actually makes the device ready for
work. This function has two parameters where one is a utility of advdevice_bind and another
is a pointer. Calling up the function makes sure if the device is successfully opened ot not. If
it opens successfully, it will return output or otherwise will generate an etror.

After opening up the device, it is configured for obtaining the analog data correctly.
For obtaining the analog data specific channel and a gain code need to set up. This function

also has two parameters where both of them are pointers. One is retrieved from

30

DRV _DeviceOpen another is from PT_AIConfig. Last thing is to read analog data from the
sensors via the DAQ. For this purpose =~ DRV_Alvoltageln functions which have two
parameters where both are pointer have been used. One is retrieved from
DRV_DeviceOpen and another is from PT_AIConfig. List of functions used for this project
are DRV_DeviceOpen, DRV_GetErrorMessage, DRV_DeviceClose, DRV_AIConfig,
DRV_AIVoltageln. The software-hardware communication process flow charts are given

below.

‘ Opening up the device }7 DFV_DeviceOpen{Slename, &£}

Configuring for Analog Inpur . DFV_AIConfg(d, 8AIConfg)
T
l Reading Analog Input Dan I . | DRV_ATIVokageIn(fd, &-ATVoltmgeln)

Figure 2.14: Procedures of Software-DAQ Communication

2.19 Interfacing Technique for Real-Time Linux

Results were obtained for Windows and Linux but the real-time kernel for Linux was
not available. Therefore the interfacing could not be done between the RT-Linux and DAQ.
In case of RT-Linux on the availability of real-time kernel the inter process communication
is needed between the real-time kernel and non real-time GUI done. Real-time thread and
Linux program need to access the same piece of shared memory so have to connect up to
the same ‘tag’ by named mbuff.h header file. The mbuff_alloc and mbuff_free functions

calls are used as Linux system call function thus need to be called inside the init_module and

31

cleanup_module functions respectively, and not called within the thread code itself. To
implement shared memory in RT-Linux, the following code additions are made:
e volatile int *variable; //global declaration of shared variable in both the real

time module and Linux program

e variable=(volatile int*) mbuff_alloc(“tag name”, size); //assign space to the

pointer variable in both the real-time module and Linux program

e mbuff_free (“tag name”, (void¥)variable); //deallocate process from shared

memory space in both the real-time module and Linux program

In this section the brief overview of the data acquisiion system under different
operating systems used for the experiments is presented. The interfacing technique between
the DAQ card and operating system is shown. Next section is followed by the conducted

experiments and the test results.
2.20 Experimental Results

The expetiments done in this project, techniques used for the experiments and the
result or significance of the experiments are explained in the following section. For the
experiments, two operating systems Windows XP and Red Hat Linux4 are used where one is
a general purpose operating system and another is soft real time operating system. The
latency for signal processing was found out in both environments.

2.21 Time Measurement Technique for Windows

Measuring time in windows is necessary to find out the time latency of any specified
process. Windows has a performance counter within it which counts the clock frequency of

windows. If we want to find out the latency of any process we need to count the clock

32

frequency in start time and count the clock frequency in the end time. By subtracting start
time clock frequency from end time clock frequency the number of frequency needed for
the process is obtained. After getting the number of frequency we can easily calculate the
time needed for the process by using the formula time =1/frequency. For this purpose the
function QueryPerformanceCounter (&value) was used. Windows latency measurement

technique flow chart for temperature signal is given below.

Starr
pecformance .___{ QuesyPe formanceCounter| SStartalue) l
O TEL

Specific
procass .4__I Tempesanice signal reading proces: is roaning |
ruonning

Srop

pecfo e

counter

AiiQuezyPexfmmceC cuner{ S ady alue) I

oy 1——[Clock fraquency, F= Startvalue — Endwvalue l
frecpurency

i —

Calculate

Larency tms 1——|Etexx-::jr mme, t= 31;F l

Figure 2.15. Time latency measurement steps in windows
2.22 Time Measurement Technique for Linux

To measure time latency in Linux environment a function given by the Linux developer
is used. The function is gettimeofday which is used to obtain the time of the day. The time
data can be set to micro processor level. This process is simpler than windows because it
does not need to calculate time from frequency rather the time is obtained directly from the
function. To use the function gettimeofday we need to include a header file include

<sys/time.h>.

33

Read cucrent cime
t, when process

gerom eofdayr (&cStarcTime),

STArts MNTLL)

Temperacure signal obraning

process

gettimeofday (8 EndTime, NULL} l

C'zlculabe laten oy T.= g+ T |
mme T,

Figure2.16. Time latency measurement procedures in Linux

2.23 Comparison of Latency in Two OS
The latency time both for Windows and Linux was obtained and compared.

Biomedical temperature sensor for the signal processing purpose is used and 100 samples
wete taken for each unit of average data for both in windows and Linux. Process was run for

5 times that means 500 data were taken in windows and Linux. The average time latency for

both the systems is given below.

TABLE 2.2 DEPENDENCY ON RUNNING PROCESSES

Running processes Windows Linux (microsecond)
(microsecond)
No process running 379 332
5 processed running 406 346
10 processed running 434 410
15 processes running 526 469

From the Table 2.2 a decision about the time latency in Windows and Linux OS can be
made. It can be seen in the table that each unit which is average of 100 data taken in
windows and Linux are in a range. For windows the range is 379-526 microseconds and in
Linux 332-469 microseconds in a certain state of the processor. So the variation of signal

processing time is greater in Windows which is definitely a system drawback. Other than that

34

it was observed some time Windows take too much time which vatied from 3 second to 10
second to read a data which is in general at maximum 469 microseconds. That refers to the

uncertainty of Windows signal processing purpose.

Windows
550 T T T T T
500
450
400
e 15 2 25 3 35 4
Linusx

500 T T T T T
450 -
400 —
350 -
300 1 L i d !

1 1.5 2 25 3 35 4

Figure 2.17: Windows and Linux time latency vatiation depending on running processes

@ ApplicaticnsActions fih] @ thuDec 8 s20PM QY
bt - L frootThkine RISNGE CBarel LRKEBOMEd O stel s © et o wEE
Fle Edit View Seacch Tools Documenis Help

6 & W& 2] 4 @ B D

Save Print Undo Reswr | Cut Copy Paste Find Replace

i BioMed_CPandl.c |

// Calculate Towperature
/7Y = .082 * X + 2.2 ==>» From MATLAB
Temperature = (fiest)(voltage - #.7) /

/7 end time
gettineofday(&EndTime, NULL);

/¢ calculate time consumed
TinePassed = EndTime.tv_usec - StartTime.tv_usec:
TotalTime += TimePassed:

/7 show Tes
printe(“ie
printf(Co
usleep(1000UN);

", -Temperature};
o second\nin”, TimePassed):

)

// calculate average time
AvgTime = TotalTime / TOTAL_SAMPLE;

/7 show av
print£(

si 100", Avglime):

Ln 53, Col 34
ool loc alhost ~/Deskiop/BIOM| &, /rooyDesktonBioMed_CPanel L[]

Figure 2.18: Linux code for time latency measurement

35

2.24 Comparison of Time Delay in Windows, Linux and RT-Linux

To show the Comparison of task completion time in Windows, Linux and RT-Linux
under multitasking and without multitasking environment, the results were taken from the
robotic arm manipulator experiment done in our lab. In that experiment the total task
completion time is the time taken by the robotic arm to pick an object and pass it to the
conveyer belt and collect that object by another robotic arm. It can be seen (Table 2.3) [33]
in case of Windows task completion time under multitasking environment is 7.52s and
without multitasking 6.24s. For Linux task completion time with multitasking is 6.34s and
without multitasking it is 6.0s. But in case of RT-Linux task completion time is 4s. These
results give the verification that RT-Linux is better than Linux and much better than

Windows.

TABLE 2.3 TOTAL TIME DELAY IN WINDOWS, LINUX AND RT-LINUX

2.25 Temperature Measurement Technique

Temperature measurement can be done in some specific ways. Here a noninvasive
biomedical temperature sensor is used which will give some potential difference (p.d)
according to the body temperature. After the digitization of the taken p.d the temperature of

the human body is shown in a workstation which is in Windows and Linux environment.

36

The measurement of temperature will be accommodated with other measuring parameters of
animal body through the graphical user interface.

The circuit that was designed is consisting of a 22K resistor, 5V DC powetr, the temperature

sensor and the data acquisition card.

Temperature
5V | Senkor
l R1 +| |-
22K

Figure 2.20: Lab Setup

2.25.1 Test Results

The data table is obtained manually by changing the temperature and measuring the

changing voltage with respect to the temperature.

37

TABLE 2.4 TEMPERATURE AND CORRESPONDING VOLTAGES

Temperature | Respective Voltages
(degree)
25-46 3.66,3.62,3.58,3.54,3.50,3.45,3.38,3.31,3.29,3.24,3.18,3.14,3.10,3.07,2.98,2.93

2.87.2.83.2.81,2.78.2.74.2.70

By obtaining the temperature versus voltage table data were plotted in MATLAB and

using curve fitting method equation was obtained. The equation is needed to use in the

developed software and the equation is, y=0.042x+2.2 where y is voltage and x is

temperature.

—— Before curve fitting
y=0.042% +22 —— After curve fitting

Figure 2.21: Curve fitting for temperature equation

It was obtained that the temperature x= y-3.16/0.042. This equation was used in the

software to show temperature from the sensor. These data are also saved in a data logger so

that these information can be used for research purpose if offline mode.

38

P 03.05 12 7.30.45 _ Notepad

Fie Edit Format View ‘Help

TIME TMP ANALOG DATA
07:30:47.2968 62.74 0.603790283203125
07:30:47.4062 63.67 0.408935546875
07:30:47.5156 66.97 0.426788330078125
07:30:47.6250 61.45 0.550994873046875
07:30:47.7343 69.3 0.28411865234375
07:30:47.8437 65.06 0.348052978515625
07:30:47.9531 68.77 0.256500244140625
07:30:48.0625 63.06 0.43426513671875
07:30:48.1718 67.1 0.273284912109375

Figure 2.22: Output of Data Logger

2.26 Data Deployment on developed Software

After getting the equation x= y-3.16/0.042 where x= temperature and y=voltage, the
equation was used in our developed software to get voltage and temperature shown in
Graphical User Interface (GUI). Voltage and temperature is also shown in a graph. The
temperature graph shown in the GUI has been given below.

Figure 2.23: Temperature shown in GUI

39

2.27 Experiments with ECG Sensor

Electrocardiogram records the electrical activity of the heart. Signal is received from
human/animal object through ECG electrodes. Three leads ECG sensor is used. The
received signal is passed to the signal processing circuit to make necessary amplification and
noise removal. The ECG signals were generated from ECG simulator and the output is

displayed in digital oscilloscope (Figure 2.24).

RIGOL STOR @ SR ASEA mmrmend] F) 40 80U

[MEEEY 200nl Time 5.000ms o

Figure 2.24 The Circuit of ECG Sensor and ECG output

100R

Figure 2.25 ECG Signal Processing Circuit
The signal processing circuit consists of ADG624 amplifier. Diode protections were
added to the input of the amplifier (Figure 2.25). Finally for filtering high frequency signal, a

low pass filter is used.

40

In this chapter a details about biosignal processing system along with different
experimental results are presented. Time measurement technique along with the results is
shown in Windows and Linux environment. Latency time is calculated and compared.
Experiments on ECG are done and the result is displayed on digital oscilloscope. Next
chapter will discuss about the theoretical analysis of the time delay of sampled data

acquisition system.

41

Chapter 3

TIME DELAY ANALYSIS OF SAMPLED DATA

SYSTEM

3.1 Introduction

The increasing use of PC hardware is one of the most important developments in
high-end embedded system. In the real-time servo Biomedical System loop the controlled
variable is sampled (A/D) at a suitable constant based sampling rate and control algorithm
uses this information to compute a new control action which is reconstructed (D/A) at a
faster rate (integer multiple of based sampling rate) and applied to the continuous servo
plant (Figure 3.1). Complexity atises when time delays are introduced over a communication
control network, where the signal is sampled and then sent to the controller node. For an
example when the communication is considered over a field bus where the signal sampling
rate is higher than the sampling rate of the controller and the signal is sent to the controller
node. Due to the sampling and synchronization of the signals between the I/O device (ADC
and DAC) and the controller, a delay variation may occur, which affects the performance of

the system.

42

3.2 Time Delay of Sampled Data System

A sampled-data system is a control system in which continuous-time is controlled
with a digital device. Under periodic sampling, the sampled-data system is time-varying but
also periodic. Time delays are introduced over a communication control network, where the
signal is sampled and then sent to the controller node. This system is called sampled data
system. The system block diagram with different delays at different layer is given below. This
set up will give the system with varying time delays from sensors to the computet, i.e., the
variation of control delay which is the time from when the measurement signal is sampled till
it reaches the digital signal processor (DSP). These delay sources are combined together and
gives the total time delay for the system. It will be shown in the next topics how this delay at

each layer contributes to the system.

I/O device Controller

e] {7
To actuator Field-bus Aigorit..hm|

~t———|D/A | t—| 4 |— m3

From sensor

Figure 3.1 System Block Diagram with Different Source of Delays

In the data acquisiion module (Figure3.1), after sensor receiving the signal, the signal
is transferred to the ADC. One delay is coming when the signal is sampled in the ADC and
the sampled output is copied into memory m1. Here the delay is 5. After that the data is

transferred from m1 to the memory of the computer m2. During this transfer the field bus

delay is Ty, Then t¢ gives the computational delay. For the close loop case, the signal will
go to the actuator causing delay T , at DAC. Thus all source of delay can be accumulated as,

Tiom = Tsc TTce T Thus T Tca

total

43

This sampled data systems ate divided into different levels. The top level is considered in the
data acquisition part (ADC/DAC). Memory device and field buses are considered as higher
level and the controller is considered as lower level 0.
3.2.1 Timing Diagram of the System

Timing diagram of typical cycle in a partial synchronous loop is shown in the Figure

below. - Y I

Continuous tiime systenn

[e —

d.
AT OOrTY QrEer

) I D e C—

Field-bus

- i —

Contooeller

N I D N S

Field-bus

’ I A

H VA Converter <
Ta : Time{s)

Figure3.2 Timing Diagram of the System

In the diagram 1% the continuous time signal that is to be processed is shown. Then the
signal is A/D converted which is the value corresponding the value of memory m1 (Figure

3.1). Then the signal is sent to the DSP using field bus. One delay is there. After that the

signal will go to the DAC through the field bus. The total delay thus is ;.

3.2.2 Time Delay in Definite Synchronous System

For the simplicity two layers are considered and time delays are observed for three
different cases [34, 35, 36]. Here the 1% layer (in this case layer ‘0°) is doing the necessary
computation to produce output and another layer (layer 1’) is taking the sample from the
experimented object. In the first case the sampling time h,=h,, in the second case h,=h,

where the layer 0 sampling time is greater than layer 1 which cause reject sampling and finally

44

h,<h,, the sampling time in layer 0 is less than layer 1, which cause vacant sampling in layer 0.

Delays in a two layer system are presented below in the diagram.

ho

I Level O
L /W Nz
i TR Tevel 1
%‘ *ﬁf S Time
hy
ho
| — Lewvel O
oy Loy
o i I,-havel x

2 Time
7 P —
n,

o | Level O
ry . /«k pes —
Level 1
-
¥ = = Time
Vacant Sample - h, +

Figure 3.3 Delays in a Definite Synchronous System with Two Layers
3.2.2.1 Time Delay on Layer i

Following the example above it can be said that if any signal enters at any level at time
n.h;and leaves that level at ime njh; + kph;, total time delay for sampling is kh; where k;is a

positive integer. Therefore on layer L (bottom layer) the delay 1s 7=

Now two cases can be considered. First, the delay in layer i is less than the sampling interval

of layer i+1, 1,<h,,,. Now 1, is drifting in relation to h; ; due to the different sampling rates.
The possibilities that t; falls within a sampling period of layer i+1 is, (. =T, B [37; 39).

Thetefore the delay at layer i+1 is (b, ,-7;)/ h,,, This gives

hnl -7 .
In that case the delay at layer i+1 would be t;= hy,;................. @
Now let’s consider the second case where 1;= 2h, 4. a"

45

This occurs if and only if a sampling time in layer i+1 falls in the interval ;. Thus probability

of delay for this case is:

T

-

Level i+1

Time

Figure 3.4 Time Delay on layer i+1 when t,<h,,,.

Now a longer time delay where t;>h;,; then the delay is writtenas 7, =nh,,, +7,
and the delay at layer i+11is 7 =nh, +h, ... (iv)
nhiy - T
’ Level i
, F——
Level i+1

® ® ®

Time
(n+1h;4

Figure 3.5 Time Delay on layer i+1 when 1,2h,,

Analogously to (ii) and (iii) and replacing 1, by 7, gives,

ivl T Ty

P, =n+1)= —F

i+1

T
]

_ T —nhan :

i+l

P(k., =n+2)=

i+l

46

3.2.2.2 Example to Illustrate Definite Synchronous Model
Let’s consider the sampling time 1; =h; =264>h, =260 ms. From equation (iv) the
delay is found 520 or 780 ms. The probabilities for the two delays now can be calculated

from (v), and (vi).

P(ry =520)= % — 0846

P(r, =784)= {;—0 - 015

Now if we consider 7, =h, =260<h, =264ms, in that case the delay will be 264 ms or

528 ms. The probabilities for the two delays can now be calculated from equation (i) and

Pty =2640)= 2_23= 015
P(r, =528)= %:.9843

3.2.3 Possible Number of Delay in a Partial Synchronous System

The system where both input and output have the same sampling rate but do not
occur at the same time is defined as partial synchronous system. The system considered in
my wortk is a partial synchronous system. There is constant time difference in the partial
synchronous system which is called as phase difference. If the constant phase difference
between the inputs and outputs 8,; is introduced for the higher level, delays of the partially

synchronous systems are shown in Figure 3.6 below:

[#74 Gz GiD)

TN > Lower
Zevel L,
N Figher
T Level Ls
tin Loue@ LoueG) LoueGis)

Figure 3.6 Random Access Delays for a partial synchronous system; (7) £=0, (ii) k=, 1(iti) k=2

47

If a signal enters the layer i+1 at time t;, and the corresponding signals exist the layer

then the delay in layer i+1 is, T,y =k by F0, o "

t:()l;lt

Let’s consider the case where 1,<h, ;. Based on the idea of definite synchronous model the

probabilities of delay was found that,

9:’¢1 — T)‘

Py, 0= — 5 —
i+

2,00 — |Piar 7-_::

Pk, =1= e
I+

T, — 8,

Pl,, =2)= ’—h—#

For the case t>h,,; using the same idea in definite synchronous system the probability of

delay can be written as:

B0 — T;

Py, =n)= —'*—};—'(vu)

i+l

Bivi — [Fivr — Ty
Py, =n+1)= % e (uiid)

i+l

. — &,

Pk, =n+2)= —h—*‘~ R ¢ 3 |

i+l

3.2.3.1 Joining Levels
The possible delays on layer L, the bottom layer are given by k;h; +6;. The probability
for any one k is the additive conditional probabilities for all time delay in the layer above.

Thus the total probability is written as:

P(kit1 = n) = P(kiy1 = n'7i = 0i11)P (1 = 6i41)
+ P(kis1 = n 7 = hig1 + 0i41)P(7i = hit1 + 0it1)
+ P(kiy1 = 7 = 2hig1 + 6i41)P(i = 2hiy1 + 0ita)
-+ ...

3.2.3.2 Example to Illustrate Partial Synchronous Model

Let’s consider the sampling time h, =264>h, =260 ms, 6,.=160 ms and 6, =180 ms.
First layer 1 is considered. There are two possible time delays in layer 1, 6,and 6,+h,. From
equation (i"') the delay is found 160 or 424 ms. The probability from this delay can be

calculated from equation vii and viii.

48

P(r, =8)= P(s, =160)= 222 ~ 606

P(r, =6,+h)= P(1, =424)= %:3939

Now the possible time delay in layer 2 correspondent to 180 ms and 440 ms due to the first

value of 1, and 440ms and 700ms due to second value of 1, .Thus from (vii),(viif)and (ix) we

get,

180—160

— .0769=.606 = .0466
260 =

P(r, =180)=TP(k., =0 | =160)P(160)=
P(r, =440)=P(k,, =1 |5, =160)P(r,=160)+ P(lg., =1 |1, =422)P(,= 424)

:[260— |180— 160 |>< 606]+[260_ 1180 —4 24|

=x.3939 | =.5594+ .02424 = . 5832
260 260

P(ra =700)=P(k ., =2 | w=424)P(n=424= 223180 3030 3606

3.2.3.3 Maximum Time Delays for Partial Synchronous System

There is no time delay on layer 0, on layer 1 there are two possible time delays and on
layer 2 there are four possible time delay. Thus for each delay on a particular time delay there
are two possible time delays on the layer below. Thus for layer L there are 2"possible time
delay.

3.2.3.4 Example to Illustrate Time delay for the proposed System

e Probable Time Delay for ECG Signal

Let’s consider ECG signal. As we know the bandwidth for ECG signal is .05 Hz-150
Hz, the sampling frequency must be greater than twice the bandwidth according to Nyquist
criterion. Now if the sampling time taken by DAQ for the ECG signal (level 2) is h,= 3 ms
(Assuming sampling frequency 300 Hz) and the sampling time of computer is h;= 2 ms then
the delay (equation i' and i") will be 3ms or 6ms. The probabilities of this delay can be found

from equation ii and equation iii as,

49

P (1,=3 ms) =(i;2=l=.33

3
2
P (1,=6 ms) = 5= 66

Now if the sampling time of the computer (level 1) is 5 ms then the total delay can be found
from equation (iv) is 6 ms or 9 ms. The probabilities of this delay can be found from v and
vi as,

_(3-5+3) 1
3 2

P (t,=6 ms) =.33

P (t,=9 ms) = ? =56

Now let’s consider additional delays are inserted into the system which can be due to noise.
Let’s take 6,=1 ms and 6,=4 ms. Then the two possible time delays are 1 ms and 6 ms

(equation i"") and the probability of this delay is (vii and viit)
_ _1
P (1,=1 ms) —§=.2

P (1,=6 ms) =§;—1 =.8

Possible time delays in layer 2 corresponding to 2 ms and 7ms due to first value of 74 and 12

ms due to second value of 7,. From (vii,viii and ix) we get,

P (t1,=6 ms) = 43_1><.2=1><.2=.2
P (1,=7 ms) :[(3_|:—1|x.2+3_| §_6|x.8}=0+.26=.26
P (r,=12 ms) = 2=%x 8= .53

50

e Practical Time Delay Calculation

Practical Data was found by sending data to the computer via data acquisition card and
receiving the same data via DAC and then the total time delay was calculated.

Practically the delay was found as: 18.6-17.6+4.12 =3.12 ms.

s Stop ! : ; : u : ! Nons!eFiIter'm Altosat
3 : : : : TEO : : -
E i o oo | B 1600
: : : : : : ® 13.4ms
..... Y X § e n B ¥ % 5 % s s w T LR . 219.4ms
D} . | .
; P i [a00ms aontus)@ 000y
500 v)GEioomy 400us

Figure 3.7 Digital Oscilloscope Output of Total Time Delay

e Probable Time Delay for Oxygen Saturation Measurement Signal

Let’s consider oxygen saturation measurement using pulse oximeter. If the sampling
rate of ADC is h,=20 ms (sampling frequency 50 Hz) and the sampling time of computer is
h,=15 ms then the delay from equation i' and i" is either 15 ms or 30ms [24]. Then the

probabilities of delay can be found from equation ii and iii as,

= (20-15) ziz_zs

P (14=15 ms) % 50

P (x,=30 ms) = % =75

Now if the sampling time of computer is 25 ms then the delay will be 40 ms or 60 ms and
the probabilities for the delay can be found from v and vi as,

_20-25+20 15 _

=—=.75
20 20

P (1,=40 ms)

3

25-20_ 5 _ .

P (1,=60 ms) = 0 50"

Now let’s consider additional delays are inserted into the system which can be due to noise.
Let’s take 6,=10ms and 6,=15ms. Then the two possible time delays are 10 ms and 35ms

(equation 1) and the probability of this delay is (vii and viii)
10
P (r,=10 =—=4
(T4 ms) >

P (t,=35 ms) = 252—‘510 -6

Possible time delays in layer 2 corresponding to 15 ms and 35ms due to first value of 1, and

55 ms due to second value of 14 From (vii,viii and ix) we get,

P (14=15 ms) =%x.4=.lx.4:.04

(20-]12-10] , 20-|15-35]
20 20

P (1,=35 ms) =!:] =+36+0=.36

P (1,=55 ms) = %x.ﬁ 5

Similarly for all channels this delay can be calculated separately. For respiratory rate
and aortic pressure measurement the sampling frequency is 50 Hz and 60 Hz respectively.
This delay will be added with the computation delay where RT-Linux solution is proposed to
guarantee the hard real-time requirement.

Another thing need to be examined is the aliasing effect. Aliasing effect will occur if
the sampling time is less than the ADC conversion time. The ADC conversion time is

(1/clock frequency). For the USB-4716 DAQ catrd the clock frequency is 10 MHz. The

ADC conversion time is = ; iO = =.1us which is much less than the sampling time taken by
X

ECG (3 ms) and oxygen saturation (20 ms). So aliasing effect will not occur.

52

In the discussion above, time delays for the sampled data system is analyzed. It was
seen that the theoretical maximum occurs when the phase of the input and the output layers
all are synchronized. It can be seen that the maximum time delay is doubled the added value
of all layers other than the layer 0. A possible delay in layer O is then added which is the
computational delay. It was found that there is two possible time delay for the delay in layer
above. Example is shown for the time delay ECG and oxygen saturation signal and aliasing
effect is analyzed. . Now the question arises how the delay is affecting the system and how to

solve the problem?

3.3 Effect of Time Delay on Sampled Data System

System performance can be adversely affected by the presence of delays [34,35] in the
loop. In fact small or large delays and their associated phase lag provide unwanted oscillation
in the system response, which may even lead to instability. The reason for such delays can be
due to sensor characteristics, insufficient processing speed, or communication lags etc. Other
delays that can also be inherent in the process are neglected. The varying time delay in
computing and transmitting the control output and its negative effects on real-time control
systems are classified into delay and loss problems. The non zero time varying delay shorter
than the sampling interval yields the delay problem and the delay greater than the sampling
interval cause loss problem. Due to the time delay some errors occurs in the system such as
Jitter, transient errors which is discussed below.

3.3.1 Jitter

Jitter can be defined as time variations in actual start times of actions as opposed to
stipulated start times. Jitter depends on clock accuracy, scheduling algorithms and computer
hardware architecture. One related issue connected to scheduling is intentional changes in

sampling petiod. Typically the jitter change at each sampling interval. For a particular system

53

load, if the system is reasonably predictable, it should be possible to determine the values
that the sampling interval actually takes. If the jitter is known beforehand, its effect can be
analyzed and compensated.
3.3.2 Transient Errors

Transient errors occur due to loss or corruption of signals during communication. It
has increased data delay therefore time variations are introduced in the system. To recover
from such errors, one way is to detect loss of measurement (vacant sampling) and predict
the output of the process. Another serious error, a temporary blackout refers to transient
fault which cause the system to behave in an unpredicted way (for example, no action or
erroneous action) for some period of time. In safety issues it is important to consider these
problems and appropriate measures need to be taken.

Many research works have been done on the effect of time delay on the performance
of sampled data system. In paper [39] the stability and worst case petformance of network
embedded system is analyzed for sampled data control system. Analysis is done considering
both input and output jitter and for pure output jitter conservativeness of a previously
stability theorem for pure output jitter was reduced and stability criterion is developed based
on small gain theorem.

In other researches paper [40, 41] it is shown the effect of communication delay can
strongly affect the stability and performance and the network expetience higher level of data
drop out and corruption due to noise, interference etc. and the relationship between

performance degradation and feedback delay is shown.

In the paper [42] effect of computational delay on the performance of hybrid ACC is

shown. The computational delay effect the hybrid control system in terms of peak etror,

54

RMSE and control energy and a computational delay compensator was applied with the

controller.

This paper [43] proposes a scheme for real time feedback controller taking the effect
of deadline missing of the controller due to delay and uncertainity of the plant due to time

delay cause system failure.

Keeping this constraints in mind a controller need to be designhed to control the
stability of the system and. In next chapter mathematical modeling of the controller will be

shown with necessary example.

55

Chapter 4

MATHMATICAL MODEIL. OF SAMPLED DATA

CONTROL SYSTEM

41 Introduction
Sampled data systems are hybrid systems, involving both continuous time and
discrete time signals. Such a system operates in continuous time but some continuous time
signals are sampled at certain time instants (usually periodically), yielding discrete time
signals. Before designing any sophisticated sampled data system (such as automatic heart
pump for animal/human) it is important to design the controller which will take necessary
action to minimize the error of the system and maintain the stability of the system caused
by time delay. To design the controller the mathematical model need to be analyzed. As
discussed in previous chapters that the system proposed is having multiple input and
multiple output yielding MIMO system. In this chapter first single input system with two
rates is considered and then using lifting technique two rates is converted into single rate

and finally mutilate input output system is shown.

56

4.2 Automatic Heart Pump Sampled Data Control System

An example is given below to show the biomedical automatic heart pump control
system. Sensor receives the information about patient heart beat and sends this information
to controller. Based on the control, decision this signal is sent to the motor which then
rotates according to the set speed by the controller. The controller has another job of

maintaining the stability of the system by calculating the time delay.
Blood Flow

6y v ¥ u L, »

— . —» AD - v DA »| Motor _.'_._p
a6
o | |C ¢

Sensor

4

Figure 4.1 Automatic Heart Pump Control Systems

The mathematical representation of above biosignal processing system is below:

G,

i S L. YW K, |- Y. s H “

h 4

Figure 4.2 Mathematical Representation of Automatic Heart Pump Control System
Here, £ = signal to be controlled = »-d, in this case, w=r
r-d;,
y= measured signal input to the digital controller = | 8

9!

w= exogenous input consisting of reference commands such as from sensors, noise

57

#= control input= output of the digital controller

K,= controller

Y and » are input and output of the controller.

The continuous time plant Gce is defined as follows.

A B, B,
G (5} = Cx D W D Ty
CJ’c YW D_y‘u‘

H :i(Z)= L(R)u=Ho,u(h +1t) =v(k).0 <t <h
= . % (k) = y(kh)

S:L(R) = I(Z). ¥

xX(1)=Ax(t)+ B w(t)+ Bucuc(t)
Ye(t)=C, x(t)+D, (1)
z(1)= C:x(t)+Dmcuc(t)

For the sampled data controller problem the equivalent discrete time representation of the

plant dynamics and average measurement are as follows:
xk+1)= A%k)+w(k)+ Bi(k)

Fo(k)=Cx(k)
A sampled-data system can be decomposed into four components. These

components are shown in Figure 4.3 (a), are: the plant, which is to be controlled, the
the controller, and

analogue-to-digital (A/D) converter, the digital device that implements

the digital-to-analogue (D/A) converter.

Y lao | Y N Ky LY el a4 i
@)
Yl S ¥ W K, LY. A =

&)

Figure 4.3 (a): Sampled-data controller components (b) Mathematical representation

58

The plant in sampled-data control systems is the continuous-time device to be
controlled. The output of the plant, which it is to be controlled, is called the controlled
variable. A regulator is one type of sampled-data control system and its purpose is to
maintain the controlled variable at a preset value (animal heart rate, cardiac flow rate etc) or
the process at a constant value. This input is known as the reference or set point. The
second type of sampled-data system is a servomechanism whose purpose is to make the
controlled variable follow an input variable.

The analogue-to-digital (A/D) converter changes the sampled signal into a binary
number so that it can be used in calculations by the digital compensator. The word length
(number of bits of resolution) of the A/D converter limits the fundamental precision of the
control system as well as determines its maximum speed of operation. Typical word lengths
are 10-12 bits but greater precisions are available for some applications. For example, a 10-
bit A/D converter quantizes the analogue signal into 2" or 1024, discrete levels, which
approximately 0.1% resolution. The conversion of a continuously valued signal into one of
2" allowed values creates the equivalent of an additive noise called quantization noise. The
word length of the A/D and subsequent computations is selected to keep this noise to an
acceptable level. The A/D converter also sets the maximum speed of operation of sampled-
data control system since it takes some time, usually microseconds, to effect the conversion.
The Nyquist criterion requires that a system be sampled at greater than twice its maximum
frequency component to in order to propetly represent a signal. Since the A/D converter is
used to convert plant feedback signals, it is the dynamics of the plant, which determine the
minimum sampling rate and this is reflected in this section of the A/D converter conversion
speed. Typical practical sampling rates ate 8 to 10 times the maximum plant frequency. The

mathematical representation of the A/D converter is the ideal sampler, S (Figure 4.4). It

59

periodically samples y(7) to yield the discrete-time signaly/(k). Let h denote the sampling
period. Thus
w(k) := y(kh).In general, y(t) and y/(k) are both vectors, of the same dimension.

The digital controller shown in the typical sampled-data control system of Figure
7.1 takes the digitized value of the analogue feedback signals and combines them with the set
point or desired trajectory signals to compute a digital control signal to actuate the plant
through the D/A converter. A controller is used to modify the feedback signals in such a
way that the dynamic performance of the plant is improved relative to some performance
index. In Figure 4.2, K, is a finite-dimensional (FD), linear time-invariant (LTI), causal,
discrete-time system. Its input and output at time K are (k) and v(k).

Since a digital controller computes the control signal used to drive the plant, a
digital-to-analogue (D/A) converter must be used to change this binary number to an
analogue voltage. The mathematical representation of the D/A converter is the hold
operator, H (Figure 4.3). It converts the discrete-time signal v into the continuous-time
signal u(t) simply by holding it constant over the s@phng intervals. Thus, u(t)=v(k)
for kh<t<(k+1)h. S and H are synchronized, physically by a clock. They are ideal

system elements: S instantaneously samples its input; the output of H instantaneously
jumps at the sampling instants.

Sampled-data control systems are designed by first developing a mathematical model
for the plant or process to control. From this model, inherent capabilities can be computed
and performance deficiencies identified. A sampling rate can be selected and a controller
designed through well-established procedures in order to meet the desired performance

measure.

60

Cor2ti 2240245 — 22 &
Adfode!

| Comtiruous-time Jdesigrn _
. |- I =]

Dhirect SD
desigrz

L - Discrete-time design ki ‘2 ;‘ d
Driscrete-time
Controfier

Figure 4.4: Approaches for the design of a discrete-time controller for a continuous-time
process

Controllers can be designed (Figure 4.4) either through a direct digital approach
operating on sampled-data signals, or they can be designed as continuous systems and then
converted to sampled-data systems with some trial and error required in both cases to meet

the desired performance goals.

4.3 Inter sample Behavior of Sampled Data System

r b ¥
aO‘—X-‘-va;»H » G, +
Sampler
T ol

Figure 4.5: A Sampled Data Tracking System

1

Let’s consider the plant, G6.(s)= ——o————
(10s +1)25s +1)

and the reference input r is the unit step. The goal is that the plant output ‘y’ should track
input ‘’ optimally.

To design the controller the plant need to be discretized first. Let’s take the sampling
period h=1s which is much smaller than the time constants of the plant (10 and 25s). The

discretized plant has the transfer function:

61

12,0960 x107° A(1 +1.0478)
(1 -1.0408)(1 —1.1052)

G, (D)

0.8675 —0.0037 |0.9325
0.9325 0.9981 |0.4773
0 0.0040 l 0

And the discretized system is shown in figure .Here p=Sr,e=Se and y = 5y. Since
t is the continuous time unit step, p is the discrete time unit step, 1,. The optimal tracking
ptoblem is to design and LTI K, to achieve internal stability and minimize| g, . This
petformance criterion ignores intersample behavior: | &|, could be small and yet | e,

could be large. This is an important point and it will be analyzed later. The formula for K, is,

i-—d

The transfer function from p to € is 1-G,q
Thus 4(2)=[1- G, (DI ——

So g(A)=1+(1-2)q,(4),q,(1)

And then £(4) =t —fzél

where 7 (1) = % i,()=G,(1)

The time domain equation is & = (7, - 7,0,)@

where w is the unit impulse. The problem is in the standard form namely,

Tl =72] T ———
E I [] al

A

~ > Ql

Figure 4.6 State Space Realization of the System

62

Now bring in realization of T, and T,

& A

(4 = {—”’——B” }
Ctl Dll

AIZ B!Z

CtZ D12

The induced realization for

7~
G"”"z[o 0}

is

fz(/i) = |:

4, 0 B, 0
4| B, B, |5|_0 4, | 0 B,
Cl Dn Dlz Cn —C,2 Drl _D/Z
0 1 0 0 0 1 0
For the data at hand, the numbers are
0.8675 - 0.0037 0 0
3 0.9325 0.9981 0 0
B 0 0 0.8675 — 0.0037
0 0 0.9325 0.9981
0.9325 0
— 249 .5227 0
Bl = B2 =
0 0.9325
0 0.4773

c,=[0 -0.0040 0 -0.0040] p =1 D,=0

Since, D1>=0 But,

el = ool + el

If &denotes the state of G, then ¢ =C,& + D, 0
So £(0) = D,,»(0)

Hence o]l = [Pu@) +[el;

And an equivalent optimization problem is to minimize “5”2

For K >0we have

63

g=C/{¢
=C,A¢+CBjw+C,B,v

Thus the equivalent problem pertains to the generalized plant

In this case, the values are

C,A=[-0.0037 -0.0040 -0.0037 ~-0.0040]
C,B, = 0.9981
C,B, =-0.0019
M =(C,B,)'(C,B,)
=3.6451x10™° g

0.8675 -0.0037 0 0
o 0.9325 0.9981 0 0
A-B,M"'B,C|C,A =
~1.8219 -1.9500 -0.9544 -1.9538
~0.9325 -09981 0 0

The latter matrix is singular; the generalized eigen problem for the sympletic pair is,

X =04,
F=-(M +B,XB,)" (B,XA + B;C/C,A)
=[-1.9538 -2.0011 -1.9538 -2.0911]
F,=-(M + B,XB,) "' (B,XB, + B,C|C,B)
= 522.7759

From theorem,

O R

A+ B,F|B, + BZFO}
By back substitution the value of K, the optimal controller is,

Py =" 477 .1019 (A —1.1052)(A —1.0408)
g (A +1.0478 YA -1)

The plant K, contain the pole at A=1 required for step tracking. In addition it cancels all

the stable poles and zeros of & , - For this controller, the sampled error & is the impulse & = 5d . The

64

discretized system has a deadbeat response, the plant output ¢ requiring only one discrete time step (I s in real

time) to reach its final value. The simulated output of the given system is given in Figure 4.7.

Fast Sampler
iz # ad H H H
....... ’ L b .’ ! H
¢ ¢ ’ 1 ; /\
Fd
r X i _/ |
= K- H » G b = '
.5 H H :
Sampler : i Stow (51) discretization
T Hold i S S
o 2 & 6 8 o

Figure 4.7 Effect of Slow and Fast Sampling
As it can be seen from the graph from if the signal is sampled at the sampling
frequency of the sampler it shows ripple in the system. To solve this ripple problem signal
is sampled with a frequency faster than the frequency of the controller. And the new
controller can solve the ripple problem (as shown in graph). And the fast discretized

controller is,
—488 .85(A4 —1.1052)(A —1.0408)

(A +1.3955)(A-1)

ky(4) =

But it causes the multi rate in the system and the presence of multi rate in the system
which makes the system time variant. Moreover multi rate in the system cause
synchronization problem among input, output and controller and thus affect the system
performance. To solve this problem lifting technique is used which converts the multi rate
system into single rate and make the system time variant.

4.4 Lifting Techniques for Periodic Systems

The notion of lifting consists of the transformation of a periodic system to an
equivalent discrete-time shift invariant one. That in turn enables the use of the tools of linear
time-invariant systems theory for the analysis of periodic systems. The lifting technique is a

very important developmental tool. There are two types of lifting, discrete-time and

65

continuous-time. Here the system analysis is done in discrete time. Therefore discrete time
lifting technique is applicable [44].
4.4.1 Discrete-time lifting

Discrete-time lifting is commonly used in multi-rate signal processing . By using lifting
one can convert a multi-rate periodic system to a single-rate system. Lifting can be done in
two ways: either slow rate sampling can be transferred into fast rate or fast rate sampling can

be transferred into slow rate. Here, the signal Vis considered with its fast sampling period
h/ N, and so the lifted associate V can be referred to period 4. Thus the dimension of the
lifted signal v is N times that of V. There exists the inverse of lifting which is causal but

time-varying and is defined below.

Lifting : Inverse Lifting :

Figure 4.8 Block diagram for discrete-time lifting

Now if the plant input and output are discretized using fast discretization (as slow

discretization cause inter sample ripple in the system), it can be shown in Figure 4.7.

g z w 7}

G,

y— S SRR o Kd R H ‘

Figure 4.9 Fast discretization of SD system

66

Figure 4.9 displays a multi-rate SD system and the generalized plant G, is continuous-time

fast discretized linear time invariant (FDLTT) system with

A B, B,
Gc(s) = Cz D w D Zu,
C.Vc D)’cw Yelle

and the controller K} is discrete-time FDLTI. Samplers § and Sy, are periodic of Periods 4
and /N, respectively, and synchronized with them correspondingly are hold device H and
H,. This is an example of N-periodic systems for which the output shifts by N samples if
the input does. Similar to the pure sampled-data case, discrete lifting can be used to associate
an LTI system to this periodic system. First absorb the samplers and holds into the plant G,

and then introduce the discrete-time lifting operator and its inverse in this setup to get the

setup in Figure 4.10. The system from @ to ¢ is a single rate system.

2

£ ¢ @
€ --| L |e---- o] L5 L

- - - P Kd _____

Figure 4.10 Two rate discrete system with lifting

Absorbing the lifting and its inverse into P as in Figure 4.11 where
L L’
P = P :
I I

Vi

L o w| K Lol

Figure 4.11 Single-rate lifted system

67

4.5 The Structure of Multi-Rate System

A general MRSD feedback system, 2[G,, HK,S] to be considered in this section is
shown in Figure 4.11. The plant G, is FDLTI continuous-time system and the multi-rate
sampled-data controller HK,S is linear and causal, where K} is the discrete-time controller. It
is synchronized with § and H such that it inputs a value from the 7th channel at times /L)
and outputs a value to the j-th channel at K. A real number 4 is a basic sampling intetval, /is
the least common multiple and L, K; are positive integers with § and H the multi-rate
sampler and hold (zero-order) respectively.

S

diag [S, ns Spn--- Syl y=S8y:y9() =y, (Lp), i=12...1 and

H :

[l

diag [Hoppr Hppooo Ho) 0= Hot: a(BKY))= afk), 0<t<Kh, j=12... j'

— T . — X .
Here, output vector, y,= [y, ...,/ and input vectot, #, = [u, ..., u,]" are continuous-time

signals and output vector, y = [y,,... yjf and input vector # = [u, ..., u,]' are discrete-time
signals.
z - - w
1 Ve 1 ot P

|— 17 Sz [* < Hi: [T

I z Gc é l

| >» Yep “awl Y |

I ;!

= 2 - - |

_— o K, Eo==="1

Figure 4.12: Multi-rate sampled-data system (periodic)

The continuous-time plant G, of Figure 4.12 is supposed to have the following partition,
z G:W G:uc w
Ve B Gycw G)'c“c U,

68

Assume that the transfer matrix from #, to y, is strictly proper which guarantees the existence

of closed-loop transfer matrix. Then the state-space description of G, with Dycuc =0 is,

x(1) A B, B, x(1)
z(t) | =] C, D, D, ||w()
y. (1) C¢;, D, 0 u, (1)

where, x(1) e R", w(t)eR", u(t)e R" and z(1) € R are the state vector, disturbance

input, control signal input and controlled output respectively. In general, the state space

realization of G, is, 4 B, B_ |
(9= |C. D. D. |
Cl‘f Dﬁ‘v"‘* }}i‘r‘c .E

Let L, be the continuous-time lifting operator (where ¢=/h) mapping a continuous signal
to a discrete sequence taking values in /, /0, ¢). If L, the p fold and L, the 7 fold discrete-time

lifting operator.
NwsBdraate Sasamgprler:
S = diag [S an. S pom- Spnl
»y =58, :»,)= >, (UL A).i=1.2 .7
T deirare Fiolds
H e diag [FE pun H 50> H,_,j‘,]
W, = FI, ceeg (il) + 1) = 1 (k)0 <t <k h.j= _l,?__y_]‘
Laftingg Ol oxatonns

Ly:=diag {Lyg,...... L

]

i
Lps = diag { L;l e L;'j- >

fifeed Phasse:
I
< = I:L° e |
Lopes P

Thus, the multi-rate system of Figure 4.12 is equivalent to single-rate system in Figure 4.13.

s
b
¥
b
i
*
3
+
H
¥
#
*
*
*
*

[T T T T s
LIEERRERRE 2222

Figure 4.12 Single-rate LTI discrete system

69

In this chapter the mathematical model of the sampled data system is presented and
the mathematical equation for plant was found. Based on the equation the controller for the

system can be designed.

70

Chapter5

Conclusion and Future Work

In this thesis time delay analysis of biomedical data acquisition sampled data system is
presented. Experiment on sensor is done and after proper interfacing with the USB-4716
data acquisition card the signal was shown in the developed GUI. Time delay of an open
loop system is observed under multi tasking environment. It has been observed that the time
delay in hard real-time Linux reduces compared to windows and soft real-time Linux. As in
case of open loop case stability is not a major problem. So for open loop case time delay can
be minimized to some extent by using hard real-time operating system. Although outputs

from two channels are shown, for future work, more channels will be added.

The effect of time delay was analyzed for closed loop biomedical system. The total
delay of the sampled data system was found both theoretically and practically for ECG and
temperature measurement and it was found that delay in both cases were quite alike. It was
found that in case of closed loop system time delay cause the stability problem and
performance degradation of the system. To minimize the effect of time delay the controller
was needed. A mathematical modeling of the controller was developed. Discrete time

analysis of the plant is done and Lifting technique was used to convert the multi rate signal

into single rate.

71

Possible future works include designing the controller for the system. As the example
given in the system such as automatic heart pump, this sort of highly sophisticated
biomedical system’s controller designing is a very challenging task. The controller will not

only control the intervened signal sent to human body but also take care of the stability of

the system.

72

(1

(2)

(3]

(4]

5]

(6]

(8]

(10]

(11

(12]

References

Cardenas-Flores F, Benitez-Perez H, Garcia Nocetti F, “Study of Concurrent Queued
System For Soft Real-Time Purpose: Bioengineeting Case Study”, Procedings of 4*
IEEE Congress of Electronics, Robotics and Automotive Mechanics, 25® -28" Sep,
2007, pp. 68-73.

E, Tavares, P. Maciel, B. Silva, “Modelling and Scheduling Hard Real-Time Biomedical
System with Time and Energy Constraints”, IEEE Electronic Letter, 2007, vol. 43, no
19. pp.1015-1017.

Shahriar Iravanian and David J. Christini “Optical Mapping System with Real-Time
Control Capability”, American Journal of Physiology- Heart and Circulatory Physiology,
2007, pp. H2605-H2611

John-Olof Nilsson, Issac Skog and Peter Handel, “ Joint State and Measurement Time
Delay Estimation of Non Linear State Space System”, Procedings of 10" International
Conference on Information AScience, Signal Processing and their Application (ISSPA
2010), pp. 324-328.

Hwang-Cheng Chow, Wan-Tin Lin, “High Resolution Sucessive Approximation ADC
for Low Power Biomedical Applications”, Procedngs of International Conference on
Advances Science and Contemporary Engineering (ICASCE 2012), 2012, vol. 50, pp.
275-283.

K. Vinecore, et al , “Design and Implementation of a Portable Physiologic Data
Acquisition System,” Pediatric Critical Care Medicine, vol. 8, 2007, pp. 563-569.
Hisaya Fujioka, “A Discrete-Time Approach to Stability Analysis of Systems with

Apetiodic Sample and Hold Devices, “Procedings of IEEE Transaction on Automatic
Control, October 2009, vol. 54, pp 2440-2445.

Alexandre Seuret, “Stability Analysis for Sampled Data System with a time varying
petiod”, Procedings of 48" IEEE Conference on Decision and Control, Shanghai,
China, December 16-18, 2009, pp. 8130-8135.

A.M. Azad, “Multi Rate Sampled Data System with Decentralized Control Structure”,
Procedings of The IET China Ireland International Conference on Information and
Communication Technologies, CIICT 2007, pp. 129-136.

Mehnaz Akhter Khan, “ Development of a Low Cost Microcontroller and PC Based
Patient Monitoring System for Intensive Care Unit of Hospitals”, a thesis submitted to
the Department of Electrical and Electronic Engineering of BUET in partial fulfilment
of the Requirements for the degree of M. Sc, 2008.

Data Display, Acquisition and Feedback System for Biomedical Experiments”, A Major
Qualifying Project Report Submitted to the Faculty of the Worcester Polytechnique
Institute, in partial fulfillment of the requirement for the Degree of Bachelor of Science
by Patrick J. Bonneau, 2006.

A. D. Dorval, D. J. Christini and J. A. White, “Real-Time linux dynamic clamp: A fast
and flexible way to construct virtual ion channel in living cells,” Annals of Biomedical
Engineering, 2001,vol. 29, pp. 897-907.

73

(13]

(14]

[15)

[16]

17

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

(27)

(28]

[29]

[30]

[31]

[32]

33]

W. C. Kao, W. H. Chen, C. K. Yu, C. M. Hong, and S. Y. Lin, “ A real time system for
portable homecare applications,” in Proc. 9* Int. Symp.Consum. Electron. (ISCE 2005),
vol. 14, pp. 369-374.

Xiang Feng, “Towards Real-Time Enabled Microsoft Windows” Procedings of the i
ACM International Conference on Embedded Software, 2005, pp. 142-146.

http://support.microsoft.com

“Introduction to Linux for Real-Time Control”, Introductrory Guidelines and
References for Control Engineers and Managers by National Institute of Standards and
Technology.

J. W. S. Liu, Real-Time Systems. Englewood Cliffs, NJ: Prentice-Hall, 2000.

L. Cromwell, Weibel, and Pfeiffer, Biomedical Instrumentation and Measurements.
Pearson Education, 1980.

G. L. Cote, M. Lec, M. V. Pishko, “ Emerging Biomedical Sensing Technologies and
Their Applications”, procedings of IEEE Sensors Journal, 2003, vol. 3, pp. 251-266.

The Biomedical Engineering Handbook, edited by J. D. Bronzino, Boc Raton, Fl: CRC,
1995.

http://www.adinstruments.com

Kao and T.L.J. Hwang, eds., “Computer Analysys of the Electrocardiograms from ECG
Paper Recordings”, Procedings of IEEE Conference on Engineering in Medicine and
Biology Society, 2001, vol.4.

Documentation on “Precision Signal Conditioning in Portable Pulse Oximeter
Application”, by National Semiconductor.

R. S. Khandpur (2003), “Handbook of Biomedical Instrumentation”, Tata Mcgraw Hill,
New Delhi.

K. Cronin, “Temperature taking in the ICU: which route is best?” Australian Critical
Care, 2000, vol. 13, pp. 59-64.

http: /www.temperatures.com /sensors.html.

Joseph J. Carr , John M Brown, “Introduction to Biomedical Equipment Technology”,
4™ Edition, Pearson Education.

Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, “Biomedical Instrumentation and
Measurements”, 2" Edition.

Amit K Gupta, Application Report on “Respiration Rate Measurement Using
Impedance Pneumography”, February, 2011

User Manual of USB-4716 (Enhanced Multi-Lab Card) by Advantech (Automation with
PCs)

J. Hossain, K. Razin, M. Hasan, “ Data Processing Through Biosensors and
Development of Simulation Software in Windown and RT-Linux”, A thesis submitted to
Electrical and Electronic Engineering Department, BRAC University.

M. B. Yehuda, “Introduction to Linux Device Drivers”. IBM Hafia Research Labs and
Haifux, January, 2005.

A. A. Moshi, S. S. Cynthia, E. Islam, R. Rahman and A. M. Azad, “Performance Analysis
of Robotic Arm Manipulators Control System Under Multitasking Environment”.
Procedings of IEEE 18" International Conference on Industrial Engineering and
Engineering Management (IE&EM), 3 -5® September, 2011, pp. 613-617.

74

(34]

3]

(36]

(37)

[38]

[39]

40

(41]

[42]

[43]

(44]

Karl J. Astrom, Bjorn Wittenmark, “Computer Control Systems: Theory and Design”,
3" Edition, Prentice Hall.

Nilsson, J.(1998): Real-Time Control Systems with Delays. PhD thesis ISRN
LUTFD2/TFRT—1049—SE, Department of Automatic Control, Lund Institute of
Tchnology, Lund Sweden.

Bjorn Wittenmark , Ben Bastian , Johan Nilsson, “Analysis of Time Delays in
Synchronous and Asynchronous Loops”, Procedings of 37" IEEE Conference on
Decision and Control.

Sheldon M. Ross, “Introduction to Probablity Models” 10" Edition, Elsevier

Sheldon M. Ross, “ Probablity and Statistics for Engineers and Scientists”, 4™ Edition,
Elsevier

Anton Cervin, “Stability and Worst Case Performance Analysis of Sampled Data Control
System with Input and Output Jitter”, Procedings of American Control Conference
(ACC), 27" 29" June, 2012, pp. 3760 — 3765.

Li, Pengfei ,Wang, Yannian , Zhou, Wei, “Performance Analysis of Hybrid Selection and
Closed-loop Transmit Diversity Systems in the Presence of Feedback Delay”, Procedings
of IET Conference on Wireless, Mobile and Sensor Networks, 12*-14" December, 2012,
pp-1051-1054.

Seuret, A, Simon, D. “ Robust Control Under Weakened Real-Time Contraints”,
Procedings of 50" International Conference on Decision and Control, 12* -15"
December, 2011, pp. 2016-2021.

Junmin Wang, Raul G. Longria “Effect of Computational Delay on the performance of
a Hybrid Adaptive Cruise Control System”, SAE World Congress o April, 2006.

Kawka, P.A. “ Stability and Performance of Packet Based Feedback Control Over a
Markov Channel”, Procedings of American Control Conference, 2006, 14" -16™ June,
2006.

T. Chen and B. Francis, “Optimal Sampled-Data Control Systems, Springer”, 1995.

19

Appendices

Appendix A

A.1 Code for the GUI in Windows

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.IO;

namespace Biomed_Control_Panel_v2

{

public partial class MainForm : Form
{
intx =0,y =0;
ptivate bool isStop = false;
Bitmap bmp = new Bitmap(1024, 768);
private FileStream fs;
private StreamWriter file;
GraphForm gf;

public MainForm()
{

InitializeComponent();

}

private void cmdSelectDevice_Click(object sender, EventArgs e)

{

// selecting between the different model of usb daq devic (imp)
axAdvAIl.SelectDevice();

axAdvAIl.SetValueRange(0, -10, +10);

txtDeviceName.Text = axAdvAIl.DeviceName;

}

private void cmdRead_Click(object sender, EventArgs €)
{

}

txtAIValue. Text = (axAdvAIl.DataAnalog). ToString();

76

private void timer1_Tick(object sender, EventAtrgs €)

{

// read analog value

double Temperature = - Math.Round((axAdvAIl.DataAnalog - 3.16) / 0.042, 2);

//double Temperature = axAdvAll.DataAnalog;

// show graph

if (x >= pictureBox1.ClientSize.Width) { x = 0; bmp = new
Bitmap (pictureBox1.ClientSize. Width, pictureBox1.ClientSize.Height); }

/ /bmp.SetPixel(x, pictureBox1.ClientSize.Height - (int)(Temperature * 0),
Color.Blue);

/ /bmp.SetPixel(x, pictureBox1.ClientSize.Height - (int)(Temperature * 6 + 1),
Color.Blue);

//bmp.SetPixel(x, pictureBox1.ClientSize. Height - (int)(Temperature * 6 + 2),
Color.Blue);

//bmp.SetPixel(x++, pictureBox1.ClientSize.Height - (int)(Temperature * 6 + 3),
Color.Blue);

//pictureBox1.Image = bmp;

// Show Temperature and Voltage

txtAIValue. Text = Temperature. ToString() + "° C";

textBox1.Text = axAdvAIl.DataAnalog. ToString() + " V";

this. file. WriteLine(DateTime.Now. ToString("hh:mm:ss. ffff") + "\t" +
Temperature. ToString() + "\t" + axAdvAIl.DataAnalog. ToString());

gf.setData(Temperature);

}

private void btnStart_Click(object sender, EventArgs €)

{
if (Ithis.isStop)

this.isStop = true;
this.btnStart. Text = "Stop";

this.file = new StreamWriter("logs\\"+DateTime.Now.ToString("dd-MM-yy H-
mm-ss") + ".txt", true);
this.file. WriteLine("TIME\t\t TMP\tANALOG DATA");

gf = new GraphForm();
gf.Show();

timerl.Enabled = true;
timer1.Start();

}

else

77

this.isStop = false;
this.btnStart. Text = "Start";
timer1.Stop();

this.file. Flush();
this.file.Close();

}
}

private void pictureBox1_Click(object sender, EventArgs €)

{

}
}
}
Graph form.cs

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using ZedGraph;

namespace Biomed_Control_Panel_v2

{
public partial class GraphForm : Form

d
private Timer tm;
ptivate PointPairList list;
private int totallnGraph = 30;
private GraphPane myPanel;
private GraphPane myPane2;

public GraphForm()

InitializeComponent();

}

private void GraphForm_Load(object sender, EventArgs e)
{

// Get a reference to the GraphPane instance in the ZedGraphControl
myPanel = zg1.GraphPane;
myPane2 = zg2.GraphPane;

78

// Set the titles and axis labels

myPanel.Title. Text = "Temperature";
myPanel.XAxis. Title. Text = "Time, Second";
myPanel.YAxis. Title. Text = "Temperature";

// /***myPane.Y2Axis.Title. Text = "Parameter B";

// Set the titles and axis labels2

myPane2.Title. Text = "Demonstration of Dual Y Graph 2"
myPane2.XAxis. Title. Text = "Time, Second";
myPane2.YAxis.Title. Text = "ECG";

// Make up some data points based on the Sine function
this.list = new PointPairList();
// /***PointPairList list2 = new PointPairList();
/* for (inti = 0;1 < this.totallnGraph; i++)
{
double x = (double)i * 5.0;
double y = Math.Sin((double)i * Math.PI / 15.0) * 16.0;
///***double y2 = y * 13.5;
list. Add(x, y);
// /***list2.Add(%, y2);
}
*

**/

// Generate a red curve with diamond symbols, and "Alpha" in the legend
Lineltem myCurve = myPanel.AddCurve("Alpha",
list, Color.Red, SymbolType.Diamond);
// Fill the symbols with white
myCurve.Symbol.Fill = new Fill(Color.White);

Lineltem myCurve2 = myPane2. AddCurve("Gamma", list, Color.Blue,
SymbolType.Square);
myCurve2.Symbol.Fill = new Fill(Color.White);

///***// Generate a blue curve with circle symbols, and "Beta" in the legend
///**myCurve = myPane.AddCurve("Beta",

// /***list2, Colot.Blue, SymbolType.Citcle);

// Fill the symbols with white

// /**myCutve.Symbol.Fill = new Fill(Color.White);

// Associate this curve with the Y2 axis

// /***myCurve.IsY2Axis = true;

// Show the x axis grid

myPanel. XAxis.MajorGrid.IsVisible = true;
myPane2.XAxis.MajorGrid.IsVisible = true;
// Make the Y axis scale red

79

myPanel.YAxis.Scale.FontSpec.FontColor = Color.Red;
myPanel.YAxis. Title. FontSpec.FontColor = Color.Red;
myPane2.YAxis.Scale.FontSpec.FontColor = Color.Red,;
myPane2.YAxis.Title. FontSpec.FontColor = Color.Red;

///***// turn off the opposite tics so the Y tics don't show up on the Y2 axis
// /***myPane.YAxis.MajorTic.IsOpposite = false;
// /**myPane.Y Axis.MinorTic.IsOpposite = false;
// Don't display the Y zero line
myPanel.YAxis.MajorGrid.IsZeroLine = false;
myPane2.YAxis.MajorGrid.IsZeroLine = false;

// Align the Y axis labels so they are flush to the axis
myPanel.YAxis.Scale.Align = AlignP.Inside;
myPane2. Y Axis.Scale.Align = AlignP.Inside;

// Manually set the axis range
myPanel.YAxis.Scale. Min = 20;// -10;// -2;// 0;
myPanel.YAxis.Scale.Max = 45;// 10;// 2;// 120,
myPane2.YAxis.Scale.Min = -.02;//-2;// 0;
myPane2.YAxis.Scale.Max = .02;//2;// 120,
myPanel. XAxis.Scale.Min = 0,
myPanel.XAxis.Scale. Max = 20;// 60;
myPane2. X Axis.Scale.Min = 0;
myPane2.XAxis.Scale.Max = 20;// 60;

///***// Enable the Y2 axis display

// /***myPane.Y2Axis.IsVisible = true;

///***// Make the Y2 axis scale blue

// /***myPane.Y2Axis.Scale.FontSpec.FontColor = Color.Blue;
// /***myPane.Y2Axis.Title. FontSpec.FontColor = Color.Blue;
// tutn off the opposite tics so the Y2 tics don't show up on the Y axis
// /***myPane.Y2Axis.MajorTic.IsOpposite = false;

// /**myPane.Y2Axis.MinorTic.IsOpposite = false;

///***// Display the Y2 axis grid lines

// /***myPane.Y2Axis.MajorGrid.IsVisible = true;

///***// Align the Y2 axis labels so they ate flush to the axis
// /***myPane.Y2Axis.Scale. Align = AlignP.Inside;

// Fill the axis background with a gradient
myPanel.Chart.Fill = new Fill(Color.White, Color.LightGray, 45.0f);
myPane2.Chart.Fill = new Fill(Color.White, Color.LightGray, 45.0f);

// Add a text box with instructions
TextObj text = new TextOb;j(
"Zoom: left mouse & drag\nPan: middle mouse & drag\nContext Menu: right
mouse",
0.05f, 0.95f, CoordType.ChartFraction, AlignH.Left, AlignV.Bottom);
text.FontSpec.StringAlignment = StringAlighment.Near;
myPanel.GraphObjList. Add(text);

80

myPane2.GraphObijList. Add(text);

// Enable scrollbars if needed
zg1.IsShowHScrollBar = true;
zg1.IsShowVScrollBar = true;
zgl.IsAutoScrollRange = true;
zg2.IsShowHScrollBar = true;
zg2.IsShowVScrollBar = true;
zg2.IsAutoScrollRange = true;
// /***zg1.IsScrollY2 = true;

// OPTIONAL: Show tooltips when the mouse hovers over a point
zg1.IsShowPointValues = true;
zg1.PointValueEvent += new
ZedGraphControl.PointValueHandler(MyPointValueHandler) 2
zg2.IsShowPointValues = true;
zg2.PointValueEvent += new
ZedGraphControl. PointValueHandler(MyPointValueHandler);

// OPTIONAL: Add a custom context menu item
zgl.ContextMenuBuilder += new
ZedGraphControl.ContextMenuBuilderEventHandler(
MyContextMenuBuilder);
zg2.ContextMenuBuilder += new
ZedGraphControl.ContextMenuBuﬂderEventHandler(
MyContextMenuBuilder);

// OPTIONAL: Handle the Zoom Event
zg1l.ZoomEvent += new ZedGraphControl.ZoomEventHandler(MyZoomEvent);
zg2.ZoomEvent += new ZedGraphControl.ZoomEventHandler(MyZoomEvent);

// Size the control to fit the window
SetSize();

// Tell ZedGraph to calculate the axis ranges

// Note that you MUST call this after enabling IsAutoScrollRange, since
AxisChange() sets

// up the proper scrolling parameters

zg1.AxisChange();

zg2.AxisChange();

// Make sure the Graph gets redrawn

zg1.Invalidate();

zg2.Invalidate();

[117111711177111117

tm = new Timer();

tm.Interval = 1000;

tm.Tick += new EventHandler(Timer_Tick);

81

// tm.Start();
/1177111171111711171
}
private void Timer_Tick(object sender, EventArgs eAtgs)
{
for (inti = 1; 1 < list. Count; i++)
list[i - 1] = new PointPair(list[i - 1].X, list[i].Y);
zg1.Invalidate();
zg2.Invalidate();

}

/// <summary>

/// On resize action, resize the ZedGraphControl to fill most of the Form, with a
small

/// matgin around the outside

/// </summary>

ptivate void Form1_Resize(object sender, EventArgs)

{

SetSize();

}

private void SetSize()
{
zgl.Location = new Point(10, 10);
// Leave a small margin around the outside of the control
zg1.Size = new Size(this.ClientRectangle.Width - 20,
(this.ClientRectangle.Height - 30) / 2);

zg2.Location = new Point(10, (this.ClientRectangle.Height - 30) / 2 + 20);
// Leave a small margin around the outside of the control
zg2.Size = new Size(this.ClientRectangle. Width - 20,
(this.ClientRectangle.Height - 30) / 2);
}

public void setData(double y)

{
if (list.Count < this.totallnGraph)

{
list. Add((double)list.Count, y);

else

{
for (int1= 1;1 < list. Count; i++)
listfi - 1] = new PointPair(list[i]. X, list[i].Y);
list[list. Count-1]=new PointPair((double)(list[list. Count-2].X)+1.0, y);

myPanel. XAxis.Scale. Min++;
myPanel.XAxis.Scale. Max++;

82

myPane2. XAxis.Scale.Min++;
myPane2. X Axis.Scale. Max++;

h
zg1.Invalidate();

zg2 Invalidate();
}

/// <summary>

/// Display customized tooltips when the mouse hovers over a point

/// </summary>

private string MyPointValueHandler(ZedGraphControl control, GraphPane pane,
Curveltem cutrve, int iPt)

{

// Get the PointPair that is under the mouse
PointPair pt = curve[iPt];

return curve.Label. Text + " is " + pt.Y.ToString("f2") + " units at " +
pt.X. ToString("f1") + " days";

/// <summary>

/// Customize the context menu by adding a new item to the end of the menu

/// </summary>

private void MyContextMenuBuilder(ZedGraphControl control, ContextMenuStrip
menuStrip,

{

Point mousePt, ZedGraphControl.ContextMenuObjectState objState)

ToolStripMenultem item = new ToolStripMenultem();
item.Name = "add-beta";

item.Tag = "add-beta";

item.Text = "Add a new Beta Point";

item.Click += new System.EventHandler(AddBetaPoint);

menuStrip.Items.Add(item);

}

/// <summary>
/// Handle the "Add New Beta Point" context menu item. This finds the curve with
/// the Curveltem.Label = "Beta", and adds a new point to it.
/// </summary>
private void AddBetaPoint(object sender, EventArgs args)
{
// Get a reference to the "Beta" curve IPointListEdit
IPointListEdit ip = zgl.GraphPane.CurveList["Beta"].Points as IPointListEdit;
if (ip != null)

83

double x = ip.Count * 5.0;
double y = Math.Sin(ip.Count * Math.PT / 15.0) * 16.0 * 13.5;
ip.Add(x, y);
zg1.AxisChange();
zg1 Refresh();
}
}

// Respond to a Zoom Event
private void MyZoomEvent(ZedGraphControl control, ZoomState oldState,
ZoomState newState)

{
}

// Here we get notification everytime the user zooms

A.2 Code for Time Measurement in Windows Console

#include <windows.h>
#include <windef.h>
#include <stdio.h>
#include <conio.h>
#include "include\driver.h"

// define total number of sample
const int TOTAL_SAMPLE = 100;

/******************************

* Local function declaration *
******************************/

void ErrorHandler(DWORD dwErrCde);
void ErrorStop(long*, DWORD);

// titme stamp
LARGE_INTEGER StartValue;
LARGE_INTEGER EndValue;
LARGE_INTEGER Frequency;
LARGE_INTEGER Interval;
double TempTime;

unsigned long TotalTime;
unsigned long ConsumedTime;

int main(int argc, char *argv(])

{

84

DWORD dwErrCde;
ULONG 1DevNum;
long 1DriverHandle;
USHORT usChan;
float fVoltage;
PT_AlIVoltageln ptAIVoltageln;
PT_AIConfig ptAIConfig;
int 1;
float Temperature;
long TotalTime;
long AvgTime;

//Step 1: Show Message

printf("\n\n\nStart: BioMed Control Panel\n");
printf("File: /dev/advdaq0\n");
ptintf("Channel: 0\n");

printf("Range: -+10 V\n\n");

Sleep(1);

//Step 2: Input parameters
IDevNum = 0;
usChan = 0;

//Step 3: Open device
dwErrCde = DRV_DeviceOpen(IDevNum, &lDriverHandle);
if (dwErtCde != SUCCESS) {return 0;}

//Step 4: Config device

ptAIConfig.DasChan = usChan;

ptAIConfig.DasGain = 4;

dwErrCde = DRV_AIConfig(IDriverHandle, &ptAIConfig);

if (dwErrCde != SUCCESS) {DRV_DeviceClose(&lDriverHandle); return 0;}

// reset TotalTime
TotalTime = 0,

for(i = 0;1 < TOTAL_SAMPLE; i++)

{
// start Time
QueryPerformanceCounter(&StartValue);

// Step 5: Read one data

ptAIVoltageln.chan = usChan; // input channel

ptAIVoltageln.gain = ptAIConfig.DasGain; // gain code: refer to menual
for voltage range

ptAIVoltageln. TrigMode = 0, // 0:internal trigger, 1: external
trigger

ptAIVoltageln.voltage = &fVoltage; // Voltage retrieved

85

dwErrCde = DRV_AIVoltageln(IDriverHandle, &ptAIVoltageln);
if (dwErrCde != SUCCESS) {DRV_DeviceClose(&IDriverHandle); return 0;}

// Calculate Temperature
//Y =.042 * X + 2.2 ==>> From MATLAB graph
Temperature = (fVoltage — 2.2) / 0.042;

// end time
QueryPerformanceCounter(&EndValue);
QueryPerformanceFrequency(&Frequency);

// calculate time consumed

Interval. QuadPart = EndValue.QuadPart - StartValue.QuadPart;
TempTime = (double)Interval. QuadPart / (double)Frequency.QuadPatt;
ConsumedTime = TempTime * 1000000,

TotalTime += ConsumedTime;

// show Temperature and Time

printf("Temperature: %.2f C\n", -Temperature);

printf("Voltage: %f V\n", fVoltage);

printf("Consumed Time: %lu micro second\n\n", ConsumedTime);
Sleep(100);

}

// Step 7: Close device
dwErrCde = DRV_DeviceClose(&lDriverHandle);
if (dwErrCde != SUCCESS){return 0;}

// calculate average time
AvgTime = TotalTime / TOTAL_SAMPLE;

// show average time

printf("\n\nNumber of Samples: %i\n", TOTAL_SAMPLE);
printf("Consumed Time(Average): %lu micro second\n\n", AvgTime);
return 0,

}//main

A.3 Code for Time Measurement in Linux Terminal

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>

86

#include <fcntl.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <string.h>

#include <sys/mman.h>

#include <termios.h>

#include <signal.h>

#include <Advantech/advdevice.h>
#include <sys/time.h>

// define total number of sample
int TOTAL_SAMPLE = 100;

// time stamp
struct imeval StartTime;
struct timeval EndTime;

int main(int argc, char *argv(])

{
PT_AIConfig AIConfig;
PT_AIBinaryln AlBinaryln;
PT_AlIVoltageln AlVoltageln;
PT_AIScale AlScale;
unsigned short wdata;
unsigned short channel;
unsigned short gain;
unsigned int buffer;
float voltage = 0;
char *filename = NULL,
char err_msg[100];
int ret;
int fd;
int i
float Temperature;
ulong TimePassed,;
ulong TotalTime;
ulong AvgTime;

// initial settings
filename = "/dev/advdaq0";
channel = 0;

gain = 4;

// show message

printf("\n\n\nStart: BioMed Control Panel\n");
printf("File: /dev/advdaq0\n");
printf("Channel: 0\n");

87

printf("Range: -+10 V\n\n");
sleep(1);

/* Step 1: Open Device */

ret = DRV_DeviceOpen(filename, &fd);

if (ret) {
DRV _GetErrorMessage(ret, err_msg);
printf("err msg: %os\n", err_msg);
return -1;

}

memset(&AIConfig, 0, sizeof(PT_AIConfig));
memset(&AIBinaryln, 0, sizeof(PT_AIBinaryIn));
memset(&AIVoltageln, 0, sizeof(PT_AIVoltageln));

/* Step 3: Set Single-end or Differential */
buffer = 0x0000; /* 0: single-end */
ret = DRV_DeviceSetProperty(fd, CFG_AiChanConfig, &buffer, sizeof(unsigned
int));
if (ret) {
DRV_GetErrorMessage(ret, err_msg);
printf("err msg: %os\n", err_msg);

DRV_DeviceClose(&fd);
return -1;

}

/* Step 2: Config Al Setting */
AlConfig.DasChan = channel;
AlConfig.DasGain = gain;

ret = DRV_AIConfig(fd, &AIConfig);

if (ret) {
DRV_GetErrorMessage(ret, err_msg);
printf("etr msg: %s\n", ert_msg);

DRV _DeviceClose(&fd);
return -1;

L
// reset TotalTime

TotalTime = 0;

/* Step 3: Start Single-channel AI */
for(i = 0;1 < TOTAL_SAMPLE; i++)
{

88

// massure start Time
gettimeofday(&StartTime, NULL);

/* Voltage In*/
AlVoltageln.chan = channel,
AlVoltageln.gain = gain;
AlVoltageln. TrigMode = 0;
AlVoltageln.voltage = &voltage;

ret = DRV_AIVoltageln(fd, &AIVoltageln);
if (ret) {
DRV _GetErrorMessage(ret, err_msg);
printf("err msg: %s\n", err_msg);

DRV _DeviceClose(&fd);
return -1;

}

// Calculate Temperature
// Y =.042 *X + 2.2 ==>> From MATLAB graph
Temperature = (voltage —2.2) / 0.042;

// end time
gettimeofday(&EndTime, NULL);

// calculate time consumed
TimePassed = EndTime.tv_usec - StartTime.tv_usec;
TotalTime += TimePassed;

// show Temperature and Time

printf("Temperature: %.2f C\n", -Temperature);
printf("Voltage: %f V\n", voltage);

printf("Consumed Time: %olu micro second\n\n", TimePassed);
usleep(100000);

}

// calculate average time
AvgTime = TotalTime / TOTAL_SAMPLE;

// show average time
printf("\n\nNumber of Samples: %i\n", TOTAL_SAMPLE);
printf(""Consumed Time(Average): %lu micro second\n\n", AvgTime);

/* Step 4: Close Device */
DRV _DeviceClose(&fd); return 0;

89

A.6 MatLab Code for Windows-Linux Compatrison

s=[1,2,3,4];

1L.=[379,406,434,520];
figure(1)

subplot(2,1,1);

plot(s,L, 'linewidth', 2);
%stem(s,L, linewidth', 3)
title("Windows')
S=[1,2,3,4];
L=[332,346,410,469];
figure(1)

subplot(2,1,2);

plot(s,L, 'linewidth', 2)
%stem(s,L, 'linewidth', 3)
title('Linux’)

Appendix B

B.1 Sample Data Set for Windows Time Measurement

Voltage: 1.418762 V
Consumed Time: 432 micro second

Temperature: 21.34 C
Voltage: 1.431885 V
Consumed Time: 428 micro second

Temperature: 21.69 C
Voltage: 1.419067 V
Consumed Time: 432 micro second

Temperature: 21.32 C
Voltage: 1.432495 V
Consumed Time: 433 micro second

Temperature: 21.67 C

Voltage: 1.419983 V

Consumed Time: 418 micro second
Temperature: 21.31 C

Voltage: 1.432800 V

Consumed Time: 437 micro second

Temperature: 21.65 C

90

Voltage: 1.420593 V
Consumed Time: 424 micro second

Temperature: 21.29 C
Voltage: 1.433411'V

Consumed Time: 437 micro second

B.2 Sample Data Set for Linux Time Measurement

Start: BioMed Control Panel
File: /dev/advdaq0
Channel: 0

Range: -+10V

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 371 micro second

Temperature: 26.39 C
Voltage: 1.249962 V
Consumed Time: 337 micro second

Temperature: 26.39 C
Voltage: 1.249962 V

Consumed Time: 338 micro second

Temperature: 26.39 C
Voltage: 1.249962 V

Consumed Time: 340 micro second
Temperature: 26.39 C
Voltage: 1.249962 V

Consumed Time: 342 micro second

Temperature: 26.39
Voltage: 1.249962 VConsumed Time: 343 micro second

91

Appendix C

C.1 Main Features of USB-4716 Data Acquisition Card

200 kS/s, 16-bit Multifunction USB Module

Introduction

Feaiures

= Supporte LSB 2.0

= Porpble

Bus-poversd

15 anclog neutcharnels

13-il resulution Al

Sampling rate 1y tn 200 kSis

821800, 2 AD and | 32-)it counter (USB-47 16Lwo AC)
Wirrg brmiral or Modules

Suitabde for dincran mountiog

Locsable LISD cab e for rigid cornection

The USE-4700 saries consiste of true Flug & Play daby sccuisiton devices. No more opening up your compiier chassiz to install bosrds-jus: plug in tvemaduls, then ge: the data.
I's easy and eff-ciznt. USB2770 ofters 16SE/@DIH inpats with 15-bit resolulion, up to 200 k&/s throagipat, 15 digtal LD lines and 1 user coancer, avd 16-bit analog ovtpate.
Refable andruggzd erough for ‘ndustrial applications, yetinexpensiva erough for home prajects, the I32-471€ is the perfect way t add measureman and contol cepebility to any
US3 capable compiter The USD-47°6 is hully USD Plug & May and essy tc use. [tobtains al iequitec pawer from the JEB port, sc no extarmal powsr connedticn is ever ‘ecuired.

Specifications

Analog Input

s Channels & single-endedy Bcifferential (SW programmeble)
* Resolstion & his

* Max sampling Rate™ 200 kS/3 max. [For USB2.0)

+ FIFO Size ~(024 samples

= Overvellage Protection 20Vp-¢

* Input Impedance Off: 100 K£3/10 pF, O 100 MQA00 oF

St 1

Sampling Modos

. onaoard proge pacer, of cxdarral

* Input Range (V, soliware programmahie)

Bipolar [z10 | =5 | =25 =25 | =2 |
Recuracy (3o of FSR +1LSB} o5 [o [ooa| oos | oo |
~Nots.

The sy pling rate and th-oughp:t depeds on the computer hardware archiledue
erd softwere erviconmert. Tha rates may vary du2 t pregramming lanjuags. sode
rifisicncy, CPU ulilizaton ane ather faclors.

Analog Output

+ Channels 2

* Resoletion 6 bin

* Qutput Rake Stetic update

* Outpul Range {\, software programmahie}

o] R Unipolar I 0-5.0~10 |
. Bipalar | EXr |

+ Slew Rate 0.15 /s

* Driving Capability 2mh

+ Ouipul Impedance 0.1 €2 maz.

+ Dperation Made Sirgla cotput

* Accuracy Relatve =1 53

Digital lmput

+ Channels 3

« Cormpalibility A3WBWTL

+ Input Voltage _ogic & C.BV mx.
_ogie 1. 2.0V min.

Digital Dutput

* Channels 3

+ Corspatibility YT

+ Ouipet Voltage _egic & C.4V max.
_ogie 1 2.4V min.

+ Outpet Capabiity Sink: 4 m& sink’

Scurse: 4 mA iscurcs)
Event Counter
* Channels 1
+ Campatibility A3NANT
* Max. Input Frequensy 2."~11whilx using FALD,1-10% while usirg SWA

General

* BasType JSBVZ.O

* Y0 Connecter 2r boad screw rminal
+ Dimeasioas (L x W x H} 132 x 80 <22 mm

+ Peswer Comsumplion Tyasical 45 W & 24C mA

Max.: +5 ¥ @ 44D mA
Operating Temperatare 0~ €0° C (52 - "58°F) {refer to 1=0 63-2-1,2)
Siing Temperature 20 - 85 G4 - 15 F)
Operating Humidity 3 ~ €5% RH non-cendensincirefer to IEC 031, -2, -3}
Storage Humidity 3 - 5% RH non-condensing {refer o [EC €8-1,-2, -3}

-

Ordering Information

+ USB-4T16 200 kSis, 16-Lit Multtunciion USB Module, GO
manual andora 1.6 m LSR £ Dashla incnded

92

