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Outlines

The thesis outline consists of six chapters in all and is outlined below. Each

chapter consists of at least one or more sections that describe a specific part of

that individual chapter. A detailed description of each of these sections is also

outlined below.

1. Chapter 1

Details of the purpose, aim, and motivation for the development of this

thesis. It has three sections - introduction, motivation, and objective.

(a) The Introduction section describes the purpose and aims for the de-

velopment.

(b) The Motivation section describes the motivation behind the whole

development.

(c) The Objective section describes our objectives.

2. Chapter 2

It has three sections - problem description and fully convolutional neural

network

(a) Problem description section describes the work.

(b) Fully convolutional neural network section describes how fully convo-

lutional neural network actually works.



3. Chapter 3

Details of the classification network and how it is used in segmentation

architecture. It has three sections - classification network as segmentation

architecture, transfer learning, classifier and feature map and architecture

for feature extraction.

(a) The classification network as segmentation architecture section de-

scribes how we built our fully convolutional neural network, which

additional layers are included and which layers are excluded.

(b) The transfer learning section describes how we had set up the image

to image learning settings. The process of how we adjusted the batch

size and the learning rate.

(c) The Classifier and feature map section describes how per-pixel softmax

loss is calculated and how mIOU is validated with the background and

mean of all classes ignoring pixels that are masked out in the ground

truth.

(d) The Architecture for feature extraction section describes the segmen-

tation architecture. How the image is upsampled and how the images

are fed into the neural network.

4. Chapter 4

The procedure and the result of our work are described here. It has two

sections, experiment process, and experimental results.

(a) The experiment processes describe how we used to transfer learning

for weight loading and performed fine tuning with additional data.

v



How training was performed is also explained.

(b) The experiment result describes the result with plotted graphs.

5. Chapter 5

The result of our thesis is described here. It consists of four sections, they

are Metrics and Evaluation, Validation results, Hyperparameter tuning,

and test results.

(a) The Metrics and Evaluation part describes the metrics used for our

model to determine the scores and the four metrics used are shown.

(b) The validation results section describes the result of our model’s score

against the score of other models.

(c) The hyperparameter tuning shows the hyperparameter tuning results

for the first stage of the training in tabular format as well as the result

of the second stage of the training.

(d) The test result section displays the list of test results of mean inter-

section over union of all models compared to our model in a tabular

format.

6. Chapter 6

This chapter describes the conclusion along with the problems faced, lim-

itations and our future work.

(a) The section limitations describe the problems we faced while training

big class datasets due to memory limitations.
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(b) The section future work describes the details about the features that

are to be added in future with the system.
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Abstract

Classification of images has been a widely regarded challenge for the past

decade, but a new type of object recognition problem which deals with pixel-

level segmentation is posing a more complex task for both computer vision

enthusiasts and researcher alike. The convolutional neural network has become

a staple for any recognition task, but a new type of ConvNet which is Fully

convolutional in architecture has yielded more fine features and proponents.

We propose a neural net where we take VGG19 [20], a well-known classification

CNN, make it fully convolutional for extracting deeper features and lastly use

skip-architectures[15] for getting finer output. This yields better result than

the pre-existing FCN segmentation architecture [15, 25, 6]. Training was done

on augmented VOC12 [4] with SBD [6]training data and validation set was

used from reduced VOC12 validation dataset. The model scored mIOU of 68.1

percent in PASCAL VOC 2012 Segmentation challenge.
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Chapter 1

Introduction

1.1 Problem Definition

Predicting dense object is one of the foremost challenges for any

instance segmentation task. But to get finer features neural nets

have to explore deeper and extract those features. For that, we

have to classify every pixel of an image to a certain class [7, 19, 9,

10]. Fully Convolutional neural nets [15] have shown advances in

pixel level segmentation for finer feature extractions and paved the

way for even further exploration of deep features. Moreover, end-

to-end supervised training [15] without any pre or post processing

of images [5, 6] yielded better results. On the contrary, small con-

volutional neural networks without supervised training [5, 6, 17]

has been used before but didn’t achieve any state-of-the-art results
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in segmentation tasks. In recent works, many neural nets have

strived to find global features over local features by using multi-

scale contexts, more skip architectures and successive pooling [11,

20]. Moreover, we have also seen dilated convolution being used

for getting wider receptive field [23, 14]. Furthermore, plugging

higher order conditional random fields [1] and using CRF as recur-

rent neural networks [25], also tend to enhance the accuracy and

give finer feature maps if applied to already existing segmentation

architecture. The model was made using VGG-19, a well-known

classification neural net [11, 20, 21] which got state-of-art results

in classification task, and converted the architecture to a fully con-

volutional neural net and added skip architecture as done in [15].

The final output was upsampled to get the original size of the input

image which serves as the output of the semantic classification.

1.2 Motivation

The task of recognition has always been easy for human beings

where for the machine it is one of the sophisticated things to do.

To us, vision appears to be simple, yet actually, we are processing

around 60 images in every second with millions of pixels in each
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image. The truth is, a big part of our brain is busy doing this

processing which makes it clear that this processing is a very hard

thing to do for our brain. Moreover, teaching a machine to see like

we do is an extremely difficult errand, not just because it is difficult

to make a machine understand all the technical stuff, but since we

do not know actually how it happens as the entire process is done

by the central nervous system. When we see an object reflection

of light from that object enters our retina and after doing some el-

ementary analysis it is passed to the brain where the visual cortex

analyses the image in a more detailed manner. This process hap-

pens in a fraction of a tiny second almost subconsciously. Though

all the difficulties we human being have managed to developed a

lot in the field of computer vision and we have been able to teach

machines the way to seeing a thing. Nowadays machines can clas-

sify objects near to human level which can solve many problems

we face in our day to day life. With the help of computer vision,

it is possible to do image search via search engines like google, we

can now do facial recognition and can recognize humans which are

vastly used on facebook, through gesture recognition we can detect

robbery and so on. Moreover, we can now make autonomous cars,
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intelligent robots and we can also do sophisticated operations with

the help of machines so accurately which was previously impossible

for humans to do. The more we can increase the accuracy of object

recognition in the field of computer vision the more we will be able

to accurately solve the above-mentioned problems and so on and it

will be a huge improvement in the field of artificial intelligence and

human beings. Our thesis is dedicated to increasing the accuracy

in segmentation task where machines reach above human level as

done in classification within real time. Moreover, as classification

task is saturated in its entirety, the only valid option for deep learn-

ing enthusiasts to pursue segmentation and object detection with

supervised learning. So, we chose segmentation with supervised

learning as our primary task.

1.3 Objective

In computer vision, image segmentation is the way of segmenting

a digital image into multiple sets of pixels called super pixel. The

main objective of image segmentation is to simplify the image into

something which is meaningful and easier to analyze. Objects and

boundaries such as line, curve etc are located by image segmenta-
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tion. A label is assigned to each pixel so that the pixels having the

same label share certain characteristics. The result of semantic seg-

mentation is set of segments which cover the image entirely. With

respect to same characteristics or computed property such as color,

intensity or texture each of the pixel in a region are similar. The

region which is adjacent is different with respect to same charac-

teristics. Our research is based on pixel level image segmentation.

The convolutional neural network has become popular for recogni-

tion tasks. We created a model where we took the VGG-19 neural

network which is a popular classification convolutional neural net-

work. We turned it into a fully convolutional neural network with

more fine features for extracting deep features and we used skip

architecture to get a better output. Our training was performed

in pascal VOC2012 dataset with SBD training data and validation

set was used from reduced pascal VOC validation dataset.
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Chapter 2

Literature Review

2.1 Early Works

Convolutional networks can learn from an extensive amount of im-

age and video [11, 20] data. Large public image repositories like

ImageNet, SBD dataset with increasing amount computing power,

especially GPUs are making this learning process high-yielding [20].

With the help of convolutional network above many other meth-

ods, it is possible to reach human-like accuracy in visual ability

[11]. Zeiler et al. [24] enhanced the design of Krizhevsky et al. [11]

and use relatively smaller receptive window size and stride for the

starting convolutional layer [20].
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2.2 Fully Convolutional Neural Network

With the advancement of transfer learning [3], it is very convenient

for us to use pre-trained ConvNet without using datasets of ade-

quate size while saving a huge amount of time. Starting from a

couple of visual recognition tasks [15, 3, 24] the recent advances in

this field lets us create such nets and fine-tune them so that they

can dense prediction of semantic segmentation [15].

Fully convolutional networks can be redesigned specially to learn

for image data discarding irrelevant parameters and making the

network more productive. In fully convolutional networks thoughts

of developing the convnets to take variable sized inputs was prob-

ably was first seen [15] in Matan et al. [16] which used the LeNet

[12] to recognize strings of digits but it could only handle one-

dimensional input string [16, 15]. Later another revolutionary at-

tempt by Wolf and Platt modified the convolutional network out-

puts to two-dimensional maps of detection scored for the four cor-

ners of postal address blocks [22].

Ronneberger et al. adjusted the design of the fully convolutional

network so it could work with very few training images yet yielding

7



more exact segmentation [18]. They made it happen by shrinking

the network by successive layers while substituting the polling op-

erator by upsampling operators.
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Chapter 3

Architecture

3.1 Classification network as Segmentation Architecture

We built our network especially based on the VGG architecture

which performed very well in the ILSVRC14 [15]. This network

was the first to utilize significantly smaller 3 × 3 filters in each

convolutional layers and furthermore joined them as a sequence

of convolutions. In any case, the immense preferred standpoint

of VGG is the understanding that various 3 × 3 convolutions in

succession can imitate the impact of larger receptive fields like 5×5

or 7× 7. We followed the VGG 19-layer network where along with

other changes we removed the final classifier network and turned

all the fully connected layers to convolutions also done by Evan

Shelhamer et al. [15].
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Recognition networks like LeNet [12], AlexNet [11] apparently

could take the input of fixed size and could produce non-spatial

outputs [15]. The fully connected layers that these have fixed sizes

and they discards away the spatial coordinates [15].

3.2 Transfer Learning

If we want to tune the FCN network properly we need to give

proper attention to an image to image learning setting. This setting

includes setting a good batch size. We skipped normalizing the loss

so that each and every pixel has the same weight paying a little

attention to the dimension of the image and the batch [15]. We

encounter that it is very hard to do segmentation task if we keep

the batch size at a high dimension and for that, we had to decrease

the learning rate according to the batch size. Keeping batch size

minimal was not the only thing we did for optimization, we also

used a higher momentum which added an extra weight on recent

gradients as mentioned in Evan Shelhamer et al. [15].
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3.3 Classifier and Feature Map

In our training process, we will be calculating per-pixel softmax

loss and will be validating mean pixel intersection over union with

the background and mean of all classes ignoring pixels that are

masked out in the ground truth [15, 4].

The softmax function with loss [2] is a used which crushes a N-

dimensional vector x of random real values to an N-dimensional

vector (x) of real values in the range from 0 to 1 that will sum up

to 1. The function is as follows:

σ(x)j =
ezj∑K
k=1 e

zk
here j=1,2,...,k

For our model which is made for testing on VOC2012 data [4], the

output feature map will be for 21 classes (including background).

In the 3D output feature map the pixels belonging to the predicted

class will be 1 and for that same pixel, other classes will contain

0. As the output feature map is the same size as the input feature

map the 0.
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3.4 Architecture for Feature Extraction

Here the image is fed sequentially into (Conv1_1, Conv2_2) to

(Conv2_1, Conv2_2). In CONV1 and CONV2 we have 3x3 kernels

so CONV1 have 2 convolutions. Therefore the first one has recep-

tive field 3 and the second one has receptive field 5. Then passed to

(Conv3_1, Conv3_2, Conv3_3) to (Conv_1, Conv4_2, Conv4_3,

Conv4_4) to (Conv5_1, Conv5_2, Conv5_3, Conv5_4). For these

three we have 4 Conv so we have 3x3,5x5,7x7,9x9 receptive field.

Then finally we pass it through FC6 and FC7. The last layer we

have is the score layer which is first upsampled to make it equal to

the size of Conv4 and then concatenated. The concatenated result

is upsampled to make it equal to the size of Conv3 and it is again

concatenated. Finally, the last score layer map is upsampled and

it is made equal to the size of the input image.
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Figure 3.1: Our Deep Convnet Architecture

In our network, we are using a padding of hundred at the be-

ginning while we are taking an image as an input as mentioned

by Evan Shelhamer et al. [15] keeping hundred pixels as an input

padding guarantees balanced alignment to the output to the input

for any size of input from the given datasets.
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Chapter 4

Experiments

4.1 Experimental Process

We used transfer learning to load weights from vgg-19 and then

fine-tuned with additional data. Backpropagation [12] was used

to fine tune all the layers end-to-end. As we follow the method

described in [15] and adopt the 3 layer skip architecture in fcn-

8s-all-at-once, the training time was slashed less than half by the

scale layers usage. It took us 10 hours to train the whole network

to get the best mIOU using a single GPU solution. For the first

stage of training, we used Pascal VOC 2012 training images which

sum up to 1464 images. After validating on the reduced VOC2012

validation set of 346 images as described in [25] we get 58.5 mIOU.

Additional data were used to enhance the accuracy and mIOU of
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the model for which we trained on SBD datasets [6] which consist

of 8498 training images and 2857 validation images. We select all

the images for training which sums up to 11355 images. If we take

out the common images in the validation set of Pascal VOC 2012,

we find the reduced set of 346 images of the total 1449 images. The

optimum mIOU we find is 66.2 percent.

Figure 4.1: Tensors Changes with FCN.

4.2 Experimental Results

The experimental result is for validation data of 346 images. We

have tried to visualize the loss against different metrics across a

range of tests. As our training was done in stages, the loss map

would go down and then spike again after the start of the 2nd stage.

This is because we use data of [4] and then in the 2nd stage we use

data of [6]. The size of data increases drastically 10 times and so

does the loss. But due to VOC and SBD data are quite similar the

15



prediction becomes much accurate for the similarity.

If we plot a graph for a number of iteration vs. mean accu-

racy then we can see that with every iteration the mean accuracy

increase rapidly for the first 100,000 iterations. And afterward,

it increases steadily and quite slowly. The final mean accuracy

reaches 78.6 percent after 400,000 iterations.

Figure 4.2: A graph to show the increase in mean accuracy per iterations

If we plot a graph of iteration vs loss then plot seems to have

many upward and downward slopes and it gradually drops down

after 320,000 iterations. We also see that after 60,000 iterations

16



the loss seems to go down quite low, but our 2nd stage starts from

100,000 iterations and loss spikes pretty high afterward.

Figure 4.3: A graph showing the decrease in loss after each iteration.

Notice after 100,000 iterations the loss increases significantly and

then goes down. This is happening because of the two stage train-

ing, where we first train on VOC12 training data then after 100,000

iterations we train on VOC augmented data.

As for PASCAL VOC 2012 Segmentation Challenge [4], our main

objective was to find the best mean intersection over union. And

the following graph portrays how it was achieved over 400,000 itera-

17



tions scoring 66.2 mean IOU for VOC12 validation dataset. Though

mean IOU is preferred over pixel accuracy, due to most pixel con-

taining background pixels (only 0), sometimes mean IOU doesn’t

reflect the obtained result in test cases. For more finer features

local context seems to be important over global contexts.

Figure 4.4: A graph showing the increase in mean intersection over union after each iteration.

Overall accuracy is used for predicting each pixel and the corre-

sponding class. For our validation test, the overall accuracy reaches

nearly 91.5 percent. But as mentioned before the overall accuracy

is not a preferred method for semantic segmentation task but tried

18



to portray over each iteration.

Figure 4.5: A graph showing the increase in pixel accuracy after each iteration.

Frequency weighted accuracy is another metric we show our it-

erations against. This metric is much reliable instead of pixel accu-

racy to portray how much the pixels belonging to the corresponding

class more precisely. Out of 4 metrics that has been mentioned, the

mean IOU and frequency weighted accuracy seems to be more self-

explanatory and precise for measuring the experiments with the

validation sets that we have carried out.
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Figure 4.6: Showing the frequency weighted accuracy increasing after each iteration.

Table 4.1: Below is the chart of results we found after validating on the reduced set of
VOC2012 data.

Models MeanIOU Percentage (Trained on augmented
VOC2012 images and Validated on reduced VOC2012)

FCN-8s 63.9
FCN-8s-all-at-once 63.8

FCN-8s and CRFDisconnected [14] 63.7
Our model 66.2
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Chapter 5

Results

5.1 Metrics and Evaluation

The metrics used for our model to determine the scores were done

through four metrics given below. Pixel Accuracy is not preferred in

segmentation tasks, as background counts as the majority pixels.

Instead, mean intersection over union is preferred for this scene

parsing and semantic segmentation tasks.

Pixel Accuracy: ∑
i

Pii/
∑
i

∑
j

Pij

Mean Accuracy:

(1/Pclass)
∑
i

Pii/
∑
j

Pij
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Mean IU:

(1/Pclass)
∑
i

Pii/(
∑
j

Pij +
∑
j

Pji − Pii)

Frequency Weighted IU:

(
∑
k

∑
j

Pkj)
−1

∑
i

∑
j

PijPii(
∑
j

Pij +
∑
j

Pji − Pii)

Pij = the number of pixels of class i predicted to belong to class j

Pclass = different classes∑
j

Pij = total number of pixels of class i.

For our model we didn’t use any post processing or augmenta-

tion of the data before or after the training. All the images and

supporting labels as it was provided by [4] and [6].

5.2 Validation Results

The test results show our model’s scores against other similar mod-

els. FCN-8-at-once and FCN-8s were proposed in [15], which uses

vgg-16 classification net [4] and uses upsampled layers to get the

feature map. The difference is quite visible as we tried to take
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weights from VGG-19 neural net which has more convolutional

layers and use similar data from [6] and [4] and we used the skip

architectures similar to [15] for getting finer features from bottom

pool layer, pool4, and pool3.

Table 5.1: Below is our Pixel Accuracy, Mean Accuracy, MeanIOU and FW Accuracy com-
pared with other models. As seen, most of the scores generate better outcome than the
previous models for each metric.

Models Pixel
Accuracy

Mean
Accuracy

Mean Intersection
Over Union

Frequency Weighted
Accuracy

FCN-8s-at-once 90.8 77.4 63.8 84

FCN-8s 90.9 76.6 63.9 84

Our model 91.5 78.6 66.2 85

The validation scores for different metrics shows a slope against

different test and validation cases, (i.e data) and the loss goes down-

ward with iterations. So all the metrics can be defined by propor-

tional to iteration numbers and the loss can be defined by inverse

proportional to iteration numbers.
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Figure 5.1: Comparative metrics and loss graph against iterations of the total validation
process.

5.3 Hyper-parameter Tuning

For hyperparameter tuning, we choose a learning rate of 10e-10and

a weight decay of 5e-4. With a momentum as high as 0.99 the

training starts with a good chance of high oscillation and then it

becomes stable. For our first stage, the training was done for 1464

images and the step size is 100,000 iteration. But we find a good

mIOU within 80,000 iterations. We can check the mIOU for every

5,000 iterations and compare it with the next one to see if the learn-
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ing rate is appropriate or not. As weights were transferred along

with hyperparameters from VGG19 [20], the weight initializers are

not needed, but for any custom convolutional layers, Gaussian or

Xavier Initializers can be used to initialize weights. And for de-

convolutional layers, we use bilinear interpolation as described in

[15].

Table 5.2: Comparative metrics and loss graph against iterations of the total validation
process.

Hyperparameters Values
Step size (iterations) 100,000

Learning Rate 10e-10
Test size 346

Weight decay 0.0005
Momentum 0.99

Weight initializers Gaussian/Xavier (Convolutional layers),
Bilinear interpolation (Deconvolutional layers)

Training dataset 1464 images (VOC2012 training data)

For the second stage of training, we choose a learning rate of 10e-

13and a step size of 300,000 while the weight decay stays the same.

No weight initializers are used and we use 11,355 images from [6]

which consists of both validation and training data. Moreover, the

momentum remains the same as 0.99. We can also check the mIOU

spikes with the help of snapshot of every 5,000 iterations.
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Table 5.3: Hyperparameter tuning for 2nd stage of training
Hyperparameters Values

Step size (iterations) 300,000
Learning Rate 10e-13

Test size 346
Weight decay 0.0005
Momentum 0.99

Weight initializers Not needed
Training dataset 11355 images (Union of SBD training and validation data)

5.4 Test Results

After testing on Pascal VOC 2012 in the evaluation server we scored

68.1 percent mIOU, scoring better than many other models. FCN8s

and FCN8s heavy both used VGG-16 [20] as for primary weights

whereas Deeplab used modified VGG-16 [2] whereas CRF_RNN

used VGG-16 same as FCN8s. All the models used similar data for

training the net. Below is a list of test results of MeanIOU for all

these models compared with ours.

Table 5.4: A chart showing different model’s test result in VOC2012 segmentation challenge.

Models MeanIOU (VOC2012 test results trained on only
VOC2012 training or VOC2012 augmentated data)

FCN-8s-heavy 67.2
FCN-8s 62.2

CRF_RNN 65.2
DeepLab-CRF 66.4

DeepLab-CRF-MSc 67.1
VGG19_FCN (our) 68.1
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Figure 5.2: FCN-8 Heavy Figure 5.3: FCN-8 At Once Figure 5.4: VGG19 FCN

Figure 5.5: Ground Truth Figure 5.6: Original Image

27



Chapter 6

Discussion

6.1 Conclusion

Convolutional neural networks is a cornerstone for any recogni-

tion task nowadays ranging from classification, object-detection to

segmentation. Moreover, Fully convolutional neural networks are

better feature-extractors than their fully connected layer consisting

counterparts. Furthermore, the deeper the architecture the better

the feature extraction process although not always. Our novel idea

was to show that with a deeper model than a traditional FCN, with

similar training data and hyperparameter the results obtained can

beat other base models with similar settings.
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6.2 Limitations

The limitation that was faced for training was due to having smaller

GPU memory. As for our training and simultaneous testing, the

memory required was nearly 5 GB of GPU memory. For using any

other proponent or using deeper net the memory needed is much

more. The slack can be cut off if only training is conducted and

testing is conducted separately. If training was done with CPU the

time required would be 10 fold. For our training, we needed 72

hours of continuous training but if conducted with CPU it would

increase more. For using data of different origin the labeling need

to be done image by image basis. New scripts needed to be written

to label the images according to VOC2012 labeling. Training for

bigger class datasets like Siftflow or Pascal Context dataset was

not possible due to memory issue. As it requires quite a large

GPU memory, which we didn’t possess. The snapshot of models

was nearly 500mb, so HDD memory is another big issue if every

5000 iteration snapshot is being saved for 400,000 iterations then

it stacks up to 40GB. So we have to carry out simultaneous testing

with training while saving the info in the log file.
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6.3 Future Works

As for future works, we plan to use much more larger dataset from

Microsoft COCO challenge [13] which consists of nearly 60,000 +

images. Though the labeling is quite sparse and less fine than

pascal dataset we hope to work with this in our future for getting

better mean IOU and segmentation.

We have also experimented with dilated convolution [23] in our

model, which seems to save up to 20 percent of memory usage

but the segmentation result was poorer than our model without

dilation. We plan to use dilated model in a way which would help

us to get better results.

Conditional random fields can be used as recurrent neural nets as

proposed in [25], which we plan to incorporate in our model to get

a more finer feature. As tested in various cases it has increased the

mean IOU significantly. We wanted to use it in our current model

but due to memory shortage, it was not possible for to incorporate.
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