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Abstract

Effective field theories have proven to be efficient tools for studying physics
at length scales longer than that which is typical. Chiral Perturbation The-
ory is one of these EFTs which physicists rely on heavily to study low energy
QCD processes. The primary objective of this thesis is to calculate the nucleon
self-energy which arises from the one-pion exchange. Chiral symmetries and
spontaneous symmetry breaking schemes are discussed along with the emer-
gence of pions as pseudo-Nambu-Goldstone bosons. Using the nonlinear σ-
model, a chiral effective pion-nucleon Lagrangian is derived, which contains
the necessary information to produce the nucleon self-energy diagram to the
lowest order. In this work, the nucleon self-energy is evaluated using a some-
what simplistic numerical implementation and compared with the result from
another source. It is seen that Σ(p) increases with momentum p, however,
with large deviations from what should be expected due to the rudimentary
computational methods used.
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Chapter 1

Introduction

1.1 The need for a quantum field theory in nuclear
physics

Nowadays, an increasing amount of attention is being given to quantum field
theory (QFT) by nuclear physicists. Nuclear physics aims at developing a con-
sistent understanding of the properties of nuclei that can be extended to the
domain of varying densities, temperatures and other such properties. It used
to be a field of physics where non-relativistic quantum mechanics and certain
many body approximations were used along with static potentials. However,
this picture was not without its problems. As Yukawa predicted the theory of
nuclear interaction via meson exchange in the 30’s, it became apparent that
at some larger length scales the previous approach would prove to be inade-
quate. Here, rather than working with the static potentials, the meson fields
become the relevant degrees of freedom [17]. Moreover, most of the contem-
porary experiments, even the medium energy ones, occur at the GeV energy
scales which require us to include the effects of special relativity. In order to
avoid problems regarding causality, the adoption of a field theoretic approach
becomes paramount. Therefore, the introduction of QFT becomes inevitable
when we want to combine two of the greatest discoveries of physics- quantum
mechanics and special relativity.

Moreover, in this particular work, the methods of thermal field theory (TFT) are
applied in conjunction with chiral perturbation theory (ChPT). While conven-
tional quantum field theory is formulated at zero temperature and has proved
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CHAPTER 1. INTRODUCTION 7

to be sufficient for calculations involving cross-sections and scattering ampli-
tudes in particle accelerators, there are phenomena which require the inclusion
of thermal backgrounds- examples of which include the study of quark-gluon
plasma, astrophysical objects with extremely high densities like neutron stars
or even the beginning of the universe[18][12]. At high energies, the strong
coupling constant αs is small and QCD is perturbative, leading to asymptotic
freedom. ChPT becomes an indispensable tool once we start to study the low-
energy dynamics of QCD (QCD becomes non-perturbative at low energy). This
fact is understood from the strong coupling constant

αs ≈
1

β0 ln(k2/Λ2)
(1.1)

which depends of the momentum transfer, becoming very large at low ener-
gies. In such low-energy regimes, the hadrons and mesons, rather than the
quarks, become the relevant degrees of freedom because the quarks and gluons
are confined together forming bound states [1]. The non-perturbative calcula-
tions at low energies are either done using lattice QCD or ChPT. Lattice QCD is
basically carried out using Monte Carlo simulations. ChPT, on the other hand,
is essentially an effective field theory which is constructed out Lagrangians in-
corporating all the necessary symmetries and degrees of freedom necessary for
such a study of non-perturbative QCD.

In this thesis, the nucleon self-energy arising from one-pion exchange is cal-
culated using TFT and ChPT for isospin-symmetric nuclear matter. Chapters
1 and 2 serve as introductions to relevant topics in QFT and TFT necessary
for this work. Chapter 3 contains the detailed calculations of the self-energy.
Here, the natural units are used where c = ħh= kB = 1 and the metric signature
is diag(+,−,−,−). When the Euclidean metric is used in thermal calculations,
diag(+,+,+,+). A 4-vector is, for example, aµ = (a0,a) and wherever the
Feynman slash notation is used, it implies /a = γµaµ.

Also, the Dirac representation for the gamma matrices is used.

γ0 =
�

12 0
0 −12

�

, γk =
�

0 σk

−σk 0

�

, γ5 =
�

0 12

12 0

�

12 are the 2× 2 identity matrix and σk are the Pauli matrices.
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1.2 Chiral Symmetry

Symmetries are of vast importance in physics- not only because they make
problems simpler to analyse, they also lead to conserved quantities called cur-
rents (enshrined in the famous Noether’s theorem). A symmetry transforma-
tion also leaves the Lagrangian invariant (δL = 0) which amounts to stating
that the equations of motion remain the same. Symmetries are also fascinating
because they can be broken (explicitly or spontaneously) leading to interesting
phenomena. Some symmetries are only approximate to certain theories. Since
ChPT is being used, chiral symmetry naturally enters into the fold. A transfor-
mation (or group of transformations) under which the left and right handed
components of the Dirac field transform independently is called a chiral sym-
metry of the Lagrangian. Explicit calculations show that chiral symmetry is
only an approximate symmetry for QCD since the finite masses of the quarks
tend to break the symmetry explicitly. Nevertheless, it can be used to a very
good degree of accuracy since the up and down quark masses are small com-
pared to the typical hadronic mass scales [13].

1.2.1 Massless fermion fields

The full Lagrangian for QCD is the following

LQC D = ψ̄i /Dψ− ψ̄Mψ−
1
4
G a
µν
G aµν (1.2)

whereD is the gauge covariant derivative,M is the mass matrix and G a
µν

is the
gluon field strength tensor. If we consider a quark field of only two flavours,
ψ= (u, d)T, the mass matrix takes the form

M =
�

mu 0
0 md

�

(1.3)

Chiral symmetry in the limit of vanishing quark masses can be studied, without
loss of generality, once we can root out some of the terms that do not contribute
to the chiral transformations, for example- terms like G a

µν
. To this end, the

gauge covariant derivative can also be replaced by the simple partial derivative.
Then, a much simpler QCD Lagrangian can be written (forM=0)

LQC D = iψ̄u /∂ψu + iψ̄d /∂ψd (1.4)
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Now, to include chiral symmetry in QCD, consider the following transforma-
tions

ψL −→ψ′L = e−i τ2 ·ΘLψL (1.5)

ψR −→ψ′R = e−i τ2 ·ΘRψR (1.6)

where ψL/R are left and right-handed components of the quark field and τ
are the Pauli isospin matrices. These two transformations leave L invariant,
forming the symmetry group SU(2)L × SU(2)R, in the limit of vanishing quark
masses and are chiral symmetries of QCD. The quark field under consideration
is a doublet and each of the u and d components have their own right and
left-handed components. Hence,

ψ̄i /∂ψi = ψ̄i
R /∂ψ

i
R + ψ̄

i
L /∂ψ

i
L

=
�

ūR /∂ uR + ūL /∂ uL

�

+
�

d̄R /∂ dR + d̄R /∂ dL

�

It can be easily shown from calculations that L remains invariant upto the
linear orders of ΘR/L. Therefore, it is expected that a conserved current exists
for the SU(2)R × SU(2)L symmetry group.

J iµ
R/L = ψ̄R/Lγ

µτi

2
ψR/L (1.7)

with the corresponding charges

Qi
R/L =

∫

d3 xJ i0
R/L (1.8)

However, a more interesting approach to study chiral symmetry is to consider
linear combinations of the conserved currents. There are two possible (real)
linear combinations of J iµ

R/L and they are defined as follows-

V µi = J iµ
R + J iµ

L (1.9)

Aµi = J iµ
R − J iµ

L (1.10)

V µi and Aµi are called vector and axial currents respectively because of how each
of them transform under parity transformations. The charges (Q i) can also be
similary combined that can produce its own Lie algebra of SU(2)R × SU(2)L
called chiral algebra. Computation of these linear combinations reveal-
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V µi = ψ̄γ
µτi

2
ψ (1.11)

Aµi = ψ̄γ
µγ5
τi

2
ψ (1.12)

Moreover, these conserved currents reveal the nature of the vector and axial
transformations which bring about these currents in the first place. The vector
transformation is described in the following way

ΛV : e−
i
2τ·Θ ≈ 1−

i
2
τ ·Θ (1.13)

In Eq. 1.13, τ are the isospin Pauli matrices and, hence, we work in the isospin
space. The fermion field can considered to be ψ = (u, d)T. To check whether
the Dirac Lagrangian remains invariant under ΛV , the field and its conjugate
are acted upon by the transformation and entered into the Lagrangian. Under
the action of ΛV , L becomes

iψ̄ /∂ψ −→ iψ̄ /∂ψ− iΘ ·
�

iψ̄ /∂
τ

2
ψ− iψ̄ /∂

τ

2
ψ
�

= iψ̄ /∂ψ (1.14)

ΛV is indeed a symmetry of the Lagrangian, leading to the conserved vector
current

V a
µ
= ψ̄γµ

τa

2
ψ (1.15)

One can arrive at the result by using the expression for the conserved current in
Noether’s theorem. The axial transformation is constructed in a similar manner

ΛA : exp
�

−
i
2
γ5τ ·Θ

�

≈ 1−
i
2
γ5τ ·Θ (1.16)

Showing that ΛA is a symmetry for massless fermions is done in a similar way
with the additional knowledge of the anti-commutation relations of some of
the gamma matrices. It is already known that {γ0,γ5} =

�

γµ,γ5

	

= 0. Then,
under the action of ΛA

iψ̄ /∂ψ −→ iψ̄ /∂ψ− iΘ ·
�

ψ̄i∂µγ
µγ5
τ

2
ψ+ ψ̄γ5

τ

2
i∂µγ

µψ
�

(1.17)

By virtue of the fact that γµγ5 = −γ5γµ, L remains invariant under the action
of ΛA, leading to a conserved axial current: Aa

µ
= ψ̄γµγ5

τa

2 ψ [9]. Hence, chiral
symmetry is an exact symmetry of QCD with vanishing quark masses. Indeed,
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chiral symmetry is used to a very good approximation in low energy QCD. The
typical hadronic mass scale is close to 1 GeV while the masses of the up and
down quarks are 2.5± 0.8 MeV and 5± 0.9 MeV respectively [13]. Therefore,
it is not a big leap to carry out calculations treating the fields massless. In the
next section, however, it will be shown that the quark masses explicitly breaks
this symmetry.

1.2.2 Massive fermion fields

In the case of massive fermion fields, we include an additional term to Eq. 1.4,
δL = −mψ̄ψ which is referred to as the mass term. For a massive fermion
field, we then have the following Lagrangian

L = iψ̄ /∂ψ−mψ̄ψ (1.18)

Comparing this with Eq. 1.14 and 1.17, it is immediately evident that the first
part of L remains invariant under the actions of both ΛV and ΛA[9]. It is the
mass term that breaks the symmetry explicitly. A symmetry is explicitly broken
when there is an additional term in the Lagrangian that removes the invariance
(as opposed to spontaneous symmetry breaking for which no such additional
terms are required). While the vector transformation is a symmetry, the ax-
ial transformation fails to remain so. Thus, it is also called axial-symmetry
breaking. To check this

mψ̄ψ −→ mψ̄ψ− 2iΘ ·
�

ψ̄
τ

2
γ5ψ

�

Although axial symmetry is explicitly broken, for all intents and purposes, ΛA

is treated as an approximate symmetry leading to a partially conserved axial
current (PCAC) as long as quark masses are small. Moreover, as long as the
symmetry breaking is small, the theory can be described perturbatively which
is the basis for ChPT.

1.3 Spontaneous Symmetry Breaking

As mentioned in the previous chapter, symmetries can be broken explicitly or
spontaneously. An example of explicit symmetry breaking can be explained by
the Hydrogen atom. In the absence of any external fields, the system possesses
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rotational invariance leading to degenerate states and the conservation of an-
gular momentum. But, if the atom is placed in an external magnetic field the
system loses its rotational invariance and picks up a preferred axis (in the direc-
tion of the B field). The action of the external B field also lifts the degeneracy
of the energy levels. This is the famous Zeeman effect. An analogous process
occurs in the presence of an external electric field which is called the Stark
effect. In a more mathematical language, in explicit breaking, [Qi,L1] 6= 0
where the Qis are the generators of certain transformations and L1 is the ex-
plicit breaking term.

Spontaneous symmetry breaking, on the otherhand, requires no such external
fields. A very good illustration is the ferromagnetic transition. Ferromagnets
posses permanent magnetism due to the alignment of magnetic dipoles in dif-
ferent magnetic domains. As the temperature reaches a certain critical temper-
ature TC , called the Curie temperature, a continuous phase transition occurs
at which point the material loses its magnetism and all the magnetic dipoles
become randomly oriented and the net dipole moment is effectively zero. TC

is around 1000 K for iron and above this temperature, the system is rotation-
ally invariant. Spontaneous symmetry breaking is also of utmost importance
in particle physics in the theory of weak interaction (Glashow-Salam-Weinberg
model) and explains the Higgs mechanism which is the result of the sponta-
neous breaking of the SU(2) × U(1) gauge symmetry [7]. Simply put, if the
Lagrangian is invariant under a transformation which the ground state of the
system fails to observe, the symmetry is spontaneously broken.

1.3.1 Spontaneously broken discrete symmetry

Spontaneous symmetry breaking can be very easily explained by considering
a simple scalar field with a quartic interaction with a Lagrangian of the form

L =
1
2
∂µ∂

µφ −
1
2
µ2φ2 −

1
4
λφ4 (1.19)

This, of course, is a classical system. Since the Lagrangian is independent of
any odd powers of φ, it is invariant under φ −→ −φ (parity invariant). Par-
ticularly, this symmetry is encoded by the Z2 group and Z−1φ(x)Z = −φ(x).
The φ4 is a self-interaction term in the Lagrangian with λ as a coupling. While
λ > 0 for all intents and purposes, there are two possible scenarios involving
µ.



CHAPTER 1. INTRODUCTION 13

(a) µ2 > 0 (b) µ2 < 0

Figure 1.1: The potential V (φ) for the two possible ranges of values of µ2

• Case 1: µ2 > 0

• Case 2: µ2 < 0

Case 1, represented by Fig. 1.1 (a), is not very interesting and of very lit-
tle importance. It simply describes a self-interacting scalar field of mass µ.
The vacuum state occurs at φ = 0 and obeys the reflection symmetry of the
Lagrangian [7]. When this theory is quantized, a unique ground state |0〉 is
associated with the minimum.

Case 2, however, is very interesting. There are now two minima as shown
in Fig. 1.1 (b). With V (φ) = 1

2µ
2φ2 + 1

4λφ
4, extremization of V for µ2 < 0

gives the values of φ at which these minima occur.

φ = ±v

where,

v =

√

√

−
µ2

λ
(1.20)

This is problematic because, where as the vacuum expectation value (VEV) for
case 1 is zero, it is not true for case 2

〈0|φ(x) |0〉= v 6= 0 (1.21)

This is indeed surprising since, from QFT, the VEV of all operators are supposed
to be zero because of the Fourier decomposition of operators into creation and
annihilation operators (this is because âp |φ〉 = 0) and also due to normal
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ordering [7][10]. φ(x) simply cannot be treated as a quantum field for the
case of µ2 < 0. The problem can be avoided by considering a quantum field
η(x) which can be expressed as a combination of creation and annihilation
operators (thus a VEV equal to zero) and adding it to v which is to be treated
as a quantum fluctuation. What we end up with is a newly defined quantum
field

φ(x) = v +η(x) (1.22)

Plugging this into Eq. 1.19,

L =
1
2
∂ µη∂µη−

1
2
(µ2 + 3λv2)η2 −λvη3 −

λ

4
η4

=
1
2
∂ µη∂µη−λv2η2 −λvη3 −

λ

4
η4 (1.23)

This new Lagrangian represents a field with µ2 = −λv2 and hence a mass ofp
2λv2. Of course, eqs. 1.19 and 1.23 represent the same system but we see

that the choice of the ground state φ = v breaks the parity invariance that the
system originally had (because of the presence of the η3 term). The same is
also true for the other ground state at φ = −v. Therefore, the symmetry has
been broken spontaneously as evident because of the lack of any other external
agents.

1.3.2 Spontaneously broken U(1) symmetry: The Goldstone
bosons

In the previous section, the spontaneous breaking of a discrete global sym-
metry was discussed. What is more interesting is when a continuous global
symmetry is spontaneously broken. A theory has global U(1) symmetry when
the transformationφ(x) −→ eiθφ(x) doesn’t change the Lagrangian. Consider
the complex scalar field theory-

L = (∂ µφ†)(∂µφ)−µ2φ†φ −λ(φ†φ)2 (1.24)

The φ in eq. 1.24 is a two-component scalar field usually of the form φ1+ iφ2.
It is clear that eq. 1.24 is invariant under the global U(1) symmetry. Now, like
before, we consider the case where µ2 < 0 and V (φ) = µ2φ†φ + λ(φ†φ)2 is
the potential term in the Lagrangian but, unlike eq. 1.19, there is an infinite
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Figure 1.2: The Mexican hat potential

number of minima all lying on the circle φ2
1 +φ

2
2 = v2 such that

v = ±

√

√

−
µ2

λ
(1.25)

The same conundrum arises yet again, i.e. the VEV of the ground state is non
zero and φ(x) cannot yet be considered as a quantum field. So, we add to φ
two other fields η(x) and ζ(x) such that

〈0|η(x) |0〉= 0 (1.26)

and,
〈0|ζ(x) |0〉= 0 (1.27)

Hence,

φ(x) =
1
p

2
(v +η(x) + iζ(x)) (1.28)

Once the original Lagrangian is rewritten in terms of the new fields. we obtain

L =
1
2
(∂ µζ)(∂µζ) +

1
2
(∂ µη)(∂µη) +µ

2η2 + const.+O (η3,ζ3,η4,ζ4) (1.29)

Eq. 1.29 reveals something extremely intriguing and yet beautiful. Other
than the kinetic terms of both η and ζ fields, the ζ field appears to have no
mass term. However, on examination of the potential it is easy to grasp the
fact that, while excitations along the radial direction cost energy, excitations
along the azimuthal one require no expenditure of energy giving rise to these
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massless particles known as Nambu-Goldstone bosons (or simply Goldstone
bosons) [10]. Any time a continuous global symmetry is spontaneously broken,
the result manifests itself in the production of massless Goldstone bosons. This
is the statement of the Goldstone theorem. To this, if we add a small explicit
symmetry breaking term, the Goldstone bosons that would have emerged as
massless excitations now acquire a small mass. This is exactly what happens
to the chiral symmetry in ChPT: it is explicitly broken since the quarks have a
finite mass and also broken spontaneously. The bosons that emerge and then
called the pseudo-Goldstone bosons [13][1], which are actually the pions in
this case that contribute to the nucleon self-energy. And more importantly, the
pions have a small mass of their own.

1.3.3 Spontaneously broken chiral symmetry

The fact that chiral symmetry is spontaneously broken is obtained experimen-
tally. As already seen in the previous chapters, the vector and axial currents
have conserved charges associated with them which are QV

i and QA
i . Evidence

that chiral symmetry is spontaneously broken comes from the hadron spec-
trum.

The behaviour of the vector and axial charges under parity transformation is
as follows

QV
i −→QV

i QA
i −→−QA

i (1.30)

Also, for a particular eigenstate |ψ〉, QV
i |ψ〉 and QA

i |ψ〉 have the same energy
but opposite parities. Hence, one could expect that for each positive parity
state there exists a negative parity state of equal mass and vice versa. However,
these parity doublets are not observed in the hadron spectrum. An example
of this is the ρ-meson, which is a vector meson of negative parity (J P = 1−).
The mass of the ρ-meson is 776 MeV. There is a vector meson, the a1, hav-
ing J P = 1+ but having a mass of 1230 MeV and hence cannot be thought of
being degenerate with the ρ-meson. There are also these light pseudoscalar
(J P = 0−) mesons, (π, K , η) which are considerably lighter than the scalar
(J P = 0+) counterparts [15].

The solution to this problem is provided by the Nambu-Goldstone realization
of chiral symmetry. The hadron spectrum manifests isospin invariance. On the
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other hand, axial symmetry is broken. As a consequence, the QCD vacuum is
invariant under vector transformations, i.e., QV

i |0〉 = 0 while QA
i |0〉 6= 0. The

chiral SU(2)R × SU(2)L symmetry of QCD is spontaneously broken down to
SU(2)V . Section 1.3.2 mentions that a spontaneously broken global symmetry
results in the formation of massless Nambu-Goldstone bosons. But since the
finite quark masses already breaks chiral symmetry explicitly, we end up with
the pseudo-Nambu-Goldstone bosons which have a small mass, which are the
pions.

1.4 Chiral effective Lagrangians

The study of low energy QCD using EFT consists of creating the most general
Lagrangian that incorporates the broken symmetries discussed in the previ-
ous chapter. Callan, Coleman, Wess and Zumino developed a theory (CCWZ
formalism) of non-linear realization of these symmetries with the feature that
whenever functions of the Goldstone bosons appear in the Lagrangian, they
are always accompanied with atleast one space-time derivative.

In this theory the relevant degrees of freedom are the pions (pseudo-Goldstone
bosons) and the nucleons. Also at zero momentum transfer and in the chiral
limit (mπ→ 0), the interactions of the pions must vanish. The low energy ex-
pansion of the Lagrangian is arranged in powers of derivatives and pion masses.
With the scale of chiral symmetry breaking being Λ ≈ 1 GeV, the expansion is
done in terms of powers of Q/Λ where Q is the momentum transfer. This is
what chiral perturbation theory is all about.

The most general effective Lagrangian is written as

Leff =Lππ +LπN + · · · (1.31)

where Lππ deals with the dynamics among the pions and LπN deals with the
interaction between pions and nucleons. After the first two, there are terms
which involve more pions and nucleons which are unimportant. The individ-
ual components of the effective Lagrangian themselves can be further broken
down depending on the number of derivatives they contain. These will be ad-
dressed in the next subsection where the concept of non-linear sigma model is
discussed.
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fΠ

Φ

V

(a) Linear σ model

fΠ
Φ

V

(b) Non-linear σ model

Figure 1.3: Transition from linear to non-linear

1.4.1 The non-linear sigma model

The sigma models (both the linear and non-linear) are physical models for
examining spontaneous symmetry breaking which use chirally invariant La-
grangians [9]. The models were first introduced by Gell-Mann and Lévy in
1960. In the linear sigma model, a potential of the form V (σ2 + π2) is used
and a problem arises due to the presence of the additional σ field, the ex-
citation of which is very small in the domain of low energy theories. In the
non-linear realization 1 of the theory, the σ field is integrated out- which is
done by taking the mass of the field to be infinity and, thus, removing it as a
dynamical variable. This process can by achieved by considering a very large
coupling for the field σ [9][4]. The profile of the potential from the linear
to the non-linear realization is depicted in Fig. 1.3. As a result of this, the
so called "Mexican hat" potential becomes infinitely steep in the σ direction,
putting a restriction on the dynamics and confining it within the chiral circle
describe by the equation

σ2 +π2 = f 2
π

(1.32)

This condition removes one degree of freedom and we are left with only
the pionic excitations. It also allows us to express the fields in the following
fashion:

σ(x) = fπ cos
�

Φ(x)
fπ

�

= fπ +O
�

Φ2
�

1First published in 1960 by Murray Gell-Mann and Maurice Lévy in their paper "The Axial
Vector Current in Beta Decay" [6]
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π(x) = fπΦ̂ sin
�

Φ(x)
fπ

�

= Φ(x) +O
�

Φ3
�

(1.33)

Now, the field Φ(x) can be identified with the pion field to the first order. This
ansatz does not violate the constraint condition in eq. 1.32. There exists,
however, a much more convenient and compact notation that incorporates the
fields. Constructing a unitary operator U(x) = exp

�

i τ·Φfπ

�

. Upon expansion in
terms of sines and cosines, we arrive at-

U(x) = cos
�

Φ(x)
fπ

�

+ iτ · Φ̂(x) sin
�

Φ(x)
fπ

�

=
1
fπ
(σ+ iτ ·π) (1.34)

The equation of constraint can be immediately recovered by computing the
trace of the product of U and its Hermitian conjugate. It is very easy to show
that

1
2

Tr
�

U†U
�

=
1
f 2
π

(σ2 +π2) = 1 (1.35)

For a chirally invariant L , U requires a particular transformation rule, i.e. U
must transform as a bidoublet such that U → gLU g†

R where gL and gR are
elements of SU(2)L and SU(2)R respectively [13]. Because chiral symmetry
involves rotations around the chiral circle, structures of the form

Tr
�

U†U
�

, Tr
�

∂µU†∂ µU
�

, · · · (1.36)

remain invariant. The Lagrangian for the non-linear sigma model is really a
modified rendition of the linear sigma Lagrangian. The modification becomes
necessary since we have redefined the pion field as Φ and removed σ as a
dynamical variable and parameterizing the unitary matrix U in terms of the
newly defined field. Then, it becomes a matter of expressing the linear sigma
model Lagrangian in terms of Φ and U . In the linear model, L has five terms-
nucleon, π andσ kinetic terms, a π−σ nucleon interaction term and the π−σ
potential.

LL.S = iψ̄N /∂ψN +
1
2
∂µπ · ∂ µπ+

1
2
∂µσ∂

µσ

− gπ
�

iψ̄Nγ5τψN ·π+ ψ̄NψNσ
�

−
λ

4
V
�

σ2 +π2
�

(1.37)
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1.4.2 Writing an effective Lagrangian

It is a matter of relatively simple calculations to show that the meson kinetic
terms in the Lagrangian hold the following form:

1
2
∂µσ∂

µσ+
1
2
∂µπ · ∂ µπ=

f 2
π

4
Tr
�

∂µU†∂ µU
�

(1.38)

Turning our attention to the pion-nucleon coupling term [16] and using the
fact that σ = cos

�

Φ
fπ

�

and π= Φ̂ sin
�

Φ
fπ

�

−gπ
�

iψ̄Nγ5τψN ·π+ ψ̄NψNσ
�

= −gπψ̄N fπ

�

cos
�

Φ

fπ

�

+ iγ5τ · Φ̂ sin
�

Φ

fπ

��

ψN

= −gπψ̄N

�

fπeiγ5
τ·Φ
fπ

�

ψN

= −gπ fπψ̄NΛΛψN (1.39)

and Λ= exp
�

iγ5
τ·Φ
fπ

�

Now, redifining the fields in the following way:

Ψ = ΛψN

Ψ̄ =ψ†
NΛ

†γ0 =ψ†
Nγ

0Λ= ψ̄NΛ (1.40)

This allows us to rewrite the meson-nucleon interaction terms as

− gπ fπψ̄NΛΛψN = −gπ fπΨ̄Ψ = −MN Ψ̄Ψ (1.41)

In terms of the newly defined field Ψ, this interaction terms has been reduced
to the nucleon mass term. Similarly, the nucleon kinetic term can be redefined.
Noting the fact that Λ is unitary-

ψ̄N i /∂ψN = ψ̄NΛΛ
†i /∂Λ†ΛψN

= Ψ̄Λ†i /∂Λ†Ψ (1.42)

Also, since
�

γµ,γ5

	

= 0,
Λ†i /∂Λ† = iγµΛ∂

µΛ† (1.43)

Now, defining a new auxiliary field

ξ= ei τ·Φ2 fπ such that U = ξξ (1.44)
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Λ can now be expressed in terms of the new auxiliary field.

Λ=
1
2

�

ξ+ ξ†
�

+
1
2
γ5

�

ξ− ξ†
�

Λ† =
1
2

�

ξ+ ξ†
�

−
1
2
γ5

�

ξ− ξ†
�

(1.45)

The above modifications will allow us to express eq. 1.42 in a more convenient
way, using combinations of ξ to define the vector and axial currents Vµ and Aµ.

Ψ̄Λ†i /∂Λ†Ψ = Ψ̄
�

i /∂ + γµVµ + γ
µγ5Aµ

�

Ψ (1.46)

Vµ and Aµ have been defined in the following way:

Vµ =
i
2

�

ξ†∂µξ+ ξ∂µξ
†
�

and Aµ =
i
2

�

ξ†∂µξ− ξ∂µξ†
�

(1.47)

The V (σ2+π2) potential does not require a transformation because in vanishes
on the chiral circle due to the constraint imposed. All the simplifications can
be put together to form the non-linear sigma model Lagrangian oftem termed
as the Weinberg Lagrangian. It reads-

LW = Ψ̄
�

i /∂ + γµVµ + γ
µγ5Aµ −MN

�

Ψ +
fπ
4

Tr
�

∂µU†∂ µU
�

(1.48)

This Lagrangian is non-linear on Φ. LW can be expanded for small fluctuations
around the ground state.

ξ'
�

1+ i
τ ·Φ
2 fπ

+
Φ2

8 f 2
π

�

ξ† '
�

1− i
τ ·Φ
2 fπ

+
Φ2

8 f 2
π

�

(1.49)

Then, the currents become

Vµ ' −
τ ·
�

Φ× ∂µΦ
�

4 f 2
π

Aµ ' −
τ · ∂µΦ

2 fπ
(1.50)
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To the leading order, the Weinberg Lagrangian (which is also L (1)πN ) now reads

L (1)πN ' Ψ̄
�

i /∂ −MN

�

Ψ +
1
2

�

∂µΦ
�2
+

1
2 fπ

�

Ψ̄γµγ5τΨ
�

· ∂ µΦ

−
1

4 f 2
π

�

Ψ̄γµτΨ
�

· (Φ× ∂ µΦ) (1.51)

In the above Lagrangian, Φ can be identified with the pion field. Unlike the
linear sigma model Lagrangian, σ field has vanished and the coupling between
nucleons and pions has been changed into a pseudovector one containing the
derivative of the pion field. The term proportional to 1/2 fπ is the axial-vector
coupling of one pion to the nucleon while the non-linear one proportional to
1/4 f 2

π
is known as the Weinberg-Tomozawa coupling. For the purposes of our

work, the Weinberg-Tomozawa coupling term will be ignored to give the final
leading order term

L (1)πN = Ψ̄
�

i /∂ −MN

�

Ψ +
1
2
(∂µΦ)

2 +
1

2 fπ

�

Ψ̄γµγ5τΨ
�

· ∂ µΦ (1.52)

The Lagrangian of the system can be stated asL =Lfree+L
(1)
πN +LNN . The last

term in the expression refers to the four-fermion interaction. The Lagrangian
will give rise to two distinct contributions that will be discussed in a later chap-
ter.



Chapter 2

Thermal Field Theory

Conventional quantum field theory allows us to compute amplitudes and cross
sections for systems at absolute zero. In real experiments however, one has to
contend with finite temperatures and, thus, a modification of quantum theo-
ries was in order. Thermal field theory has found its place in statistical physics,
the study of condensed matter and even in high energy physics- in the study of
systems where the assumption of zero temperature fails to hold. It has proved
a remarkable tool in computing thermal expectation values and is an indis-
pensable formalism in the study of phase transition, the physics of the early
universe, degenerate astrophysical objects and heavy-ion collisions. But per-
haps the most simple example is the study of thermal systems in equilibrium
[18]. This chapter is aimed at reviewing some of the important tools of thermal
field theory that will be used in the evaluation of self energy.

2.1 Imaginary time formalism

A statistical ensemble in equilibrium at a finite temperature of 1
β has a partition

function of the form
Z = Trρ = Tr e−βH (2.1)

where ρ is the density operator and H is the Hamiltonian. In the canonical
ensemble, H remains as it is but in the grand canonical case, where particle
exchange is allowed, H → H−µN . Much like quantum mechanics, expectation
values are calculated in statistical mechanics, with the difference being expec-
tation values are now ensemble averages. For any observable O , the ensemble

23
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Figure 2.1: Wick rotation involves a rotation of −π2 in the complex plane

average is defined as

〈O 〉β =
1
Z

TrρO (2.2)

The cyclic permutation property of the trace creates some interesting proper-
ties when a two-point function comes into consideration. Take for example
〈O1(t)O2(0)〉β . According to the cyclic property of traces,

Tr ABC = Tr CAB = Tr BCA

Then,

〈O1(t)O2(0)〉β =
1
Z

Tr e−βHO1(t)O2(0)

=
1
Z

TrO (t)e−βH eβHO (0)e−βH

=
1
Z

TrO (t)e−βH ei(−iβH)O (0)e−i(−iβH)

= 〈O (−iβ)O (t)〉β (2.3)

From eq. 2.3, it is evident that the imaginary temperature is in an equal footing
with time in finite temperature field theory. Now we carry out a procedure
called Wick rotation (Fig. 2.1) through the following-

τ= i t t = −iτ (2.4)

Hence, the two-point correlation function can be expressed more succinctly
as

〈O (τ)(0)〉β = 〈O (β)O (τ)〉β (2.5)

Eq. 2.5 is called the Kubo-Martin-Schwinger relation (or the KMS relation)
which generalizes to all statistical averages and plays a crucial role in the study
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of finite temperature field theory. It follows from the KMS relation that for a
field φ

φ(x, 0) = ±φ(x,β) (2.6)

The ± signifies whether the fields commute or anti-commute with each other,
i.e. whether the fields are bosonic or fermionic in nature. Moreover, the KMS
relation gives an indication of whether the fields are periodic or anti-periodic
with β . The time dimension in thermal field theory is no longer continuous
and, therefore, the fields are often represented using a Fourier expansion, sum-
ming over what are known as Matsubara frequencies [18][12].

φ(x,τ) =
∑

n

φ(x,ωn)e
iωnτ (2.7)

Due to the commuting/anti-commuting constraints over the interval [0,β]

ωn =
2πn
β

bosonic fields

ωn =
2π(n+ 1)

β
fermionic fields

2.2 Scalar propagators

In quantum mechanics and quantum field theory, when dealing with transi-
tions from one state to another, we are really talking about probability ampli-
tudes. Of utmost importance in quantum field theory, also in the path integral
approach in quantum mechanics, is the propagator. The propagator gives the
probability amplitude for a particle to travel from one point in spacetime to
another and are different for particles of different spin. There exists a more
subtle interpretation to what a propagator is in quantum field theory. There is
an interacting ground state |Ω〉 and a particle is created at the spacetime point
xµ. After interacting with the system and subsequently being annihilated at
yµ, does the system remain in the same ground state |Ω〉? If so, the amplitude

D(y, x) = 〈Ω| (Particle annihilated at yµ) (Particle created at xµ) |Ω〉

D(y, x) gives the probability amplitude that the system will remain in its ground
state after the creation, interaction and subsequent annihilation of the particle
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[11]. Propagator is really a fancy term for Green functions which are infact
the two-point functions mentioned in the previous chapter. We define the fol-
lowing propagators

D+(x , y) = 〈φ(x)φ(y)〉β (2.8)

D−(x , y) = 〈φ(y)φ(x)〉β = D+(x , y) (2.9)

In their definition, the± simply refer to their time-retarded (y0 < x0) and time-
advanced (x0 < y0) natures. Through some straight forward calculations, it
can be shown that

D+(x , y) =
1
Z

∑

n,m

e−βEn ei(pn−pm)(x−y)| 〈n|φ(0) |m〉 |2 (2.10)

which reveals that D+(x , y) is a function of (x − y). A close examination will
prove that, considering x i = y i = 0, D+(x , y) is defined for the interval β ≤
Im(x0 − y0)≤ 0. Moreover, its Fourier transformation turns out to be

D+(k) =

∫

d4 xeikx D+(x) =
1
Z

∑

n,m

e−βEn | 〈n|φ(0) |m〉 |2(2π)4δ(4)(k− pm − pn)

(2.11)
Since the propagators are two-point functions by nature, we can invoke the
KMS relation and find that

D+(t − iβ) = D−(t) (2.12)

This can be verified by using merely the x0 component of D+ and D−. Now, in
k-space

D+(k0) =

∫

d teik0 t D+(t) (2.13)

D−(k0) =

∫

d teik0 t D−(t) =

∫

d teik0 t D+(t − iβ) (2.14)

Using the substitution t → t − iβ in eq. 2.14, we can arrive at

D−(k0) = e−βk0
D+(k0) (2.15)

The two-point funcion may appear in various forms: imaginary time, real time,
advanced or retarded. However, all of these versions have a common entity
called the spectral density, ρ(k0). We define the spectral density as

ρ(k0) = D+(k0)− D−(k0) =
�

eβk0
− 1

�

D+(k0) (2.16)
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which leads to the following redefinitions

D+(k0) =
�

1+ nB(k
0)
�

ρ(k0) (2.17)

D−(k0) = nB(k
0)ρ(k0) (2.18)

where nB(k0) is the Bose-Einstein distribution.

nB(k
0) =

1
eβk0 − 1

(2.19)

Now, referring back to eqs. 2.8 and 2.9, where D± were defined, it can be
concluded that the spectral density in the time domain is merely the thermal
expectation of the commutator of fields.

D+(t)− D−(t) = 〈[φ(t),φ(0)]〉β (2.20)

We can avail the use of the Fourier space propagators to take the time derivative
of the eq. 2.20. Thus

d
d t

�

D+(t)− D−(t)
�

=
d
d t

∫

k0

2π
e−ik0 t

�

D+(k0)− D−(k0)
�

= −i

∫

dk0

2π
k0e−ik0 tρ(k0) (2.21)

Since the term D+− D− was found to be simply the thermal expectation of the
field commutator, eq. 2.21 can be further simplified by noting that
d
d t 〈[φ(t),φ(0)]〉β = −〈[φ(0),π(t)]〉β , making use of the fact that conjugate
momentum π(t) of the field φ(t) is simply its time derivative. The, with the
knowledge that the equal time commutator of a field and its conjugate mo-
mentum is [φ(t),π(t)] = i, in the limit of t → 0, eq. 2.21 reduces to-

∫

dk0

2π
k0ρ(k0) = 1 (2.22)

The fact that we are dealing with free scalar fields, it is possible to define a
spectral density for such fields. We, again, make use of eq. 2.20 in its definition.

ρ(k0) =
1
Z

∫

d teik0 t
∑

n

eβEn 〈n|φ(t)φ(0)−φ(0)φ(t) |n〉

=
π

Ek

�

δ(k0 − Ek)−δ(k0 + Ek)
�

= 2πε(k0)δ((k0)2 − E2
k) (2.23)
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Referring back to section 2.1, the imaginary time formalism was introduced-
in which all the calculations of thermal field theory are carried out. Hence, it
is rather obvious that these propagators should behave nicely in such a frame-
work. Indeed, the propagators used in thermal field theory employ the imag-
inary time formalism via the Wick rotation. It is relatively straightforward to
make such a transition: one simply requires the transformation t → iτ. Ev-
erything else falls into place naturally. Then, the Matsubara propagator and its
Fourier transform are defined thusly-

∆(τ) =
1
Z

∑

n

〈n| eβHφ(τ)φ(0) |n〉 (2.24)

and,

∆(iωn) =

∫ β

0

d teiωn∆(τ) (2.25)

A relationship exists between the imaginary and real time propagators. This
can be noted by some simple manipulations-

∆(τ) = D+(t = −iτ)

=

∫

dk0

2π
e−k0τ

�

1+ nB(k
0)
�

ρ(k0) (2.26)

from which we can find,

∆(iωn) =

∫ β

0

dτeiωnτ

∫

dk0

2π
e−ik0τ[1+ nB(k

0)]ρ(k0)

=

∫

dk0

2π

∫ β

0

dτe(iωn−k0)τ[1+ nB(k
0)]ρ(k0)

= −
∫

dk0

2π
ρ(k0)

iωn − k0
(2.27)

We can find the form of the Matsubara propagator by substituting eq. 2.23 into
the preceding equation. This gives us

∆(iωn) =
1

ω2
n + E2

k

(2.28)
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Eq. 2.28 represents the scalar propagator and, as the name suggests, governs
mechanics of scalar (spin 0) particles like the pions that appear in the sponta-
neous chiral symmetry breaking and the non-linear sigma model. The scalar
propagator in thermal field theory can be derived in a much simpler way just
by working with the scalar propagator in the real time formalism. However,
this chapter was aimed at a much more formal exposition. As such, there are
propagators for other particles with different spins but, for the purposes of this
thesis, only one other propagator will be required- that of the fermions- which
will be introduced in the following segment.

2.3 Electron propagator

The steps taken to derive the electron propagator are, not surprisingly, similar
to those involved in the derivation of the scalar propagator. However, there are
some obvious differences: the Fermi-Dirac distribution will make an appear-
ance, instead of the Bose-Einstein, since electrons are fermions. Moreover, the
anticommuting nature of the fermionic fields will place a slight modification
on the definition of the propagator.

The two-point functions for electrons are defined as follows [18][12]:

S+ab(x , y) = 〈ψa(x)ψ̄b(y)〉β (2.29)

S−ab(x , y) = −〈ψ̄b(y)ψa(x)〉β = −S−ab(y, x) (2.30)

As for bosons, the KMS relation yields a similar relation for electrons-

S+(t − iβ) = −S−(t) (2.31)

Similar to eq. 2.15,
S−ab(p

0) = −e−βp0
S+ab(p

0) (2.32)

The spectral density is defined in the same way, like most of the other compo-
nents in the derivation

ρab(p
0) = S+ab(p

0)− S−ab(p
0) (2.33)
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With the spectral density, it is possible to express the two correlators in terms
of the Fermi-Dirac distribution.

S+ab(p
0) = [1− nF(p

0)]ρab(p
0) (2.34)

S−ab(p
0) = −nF(p

0)ρab(p
0) (2.35)

Also, there exists a similar expression for the free spectral density for electrons,
albeit some differences. The free spectral density provides the means to express
the electron propagator in terms of ∆(iωn). For electrons-

Sab(p
0) = 2πε(p0)δ

�

(p0)2 − E2
p

�

�

/p+m
�

ab
(2.36)

Not unlike eq. 2.27, the electron propagator until now is exactly similar to the
scalar one.

S(ωn,p) = −
∫

dp0

2π
ρ(p0)

iωn − p0
(2.37)

Inserting eq. 2.36 in eq. 2.37,

S(iωn,p) = −
/p−m

ω2
n + E2

p

(2.38)

This is the electron propagator and. apart from the numerator, it is the scalar
propagator in its entirety. This propagator will serve well as the nucleon propa-
gator, with modifications, that will finally appear in the self energy calculations.

Chapters 1 and 2 were aimed at exploring the more crucial concepts that would
finally lead to the main objective of this thesis- calculating the pion contribu-
tion to the nucleon self energy. Although the subject in itself is vast, I feel the
topics discussed is sufficient to serve as an ntroduction, making way for the
calculations that are performed in the subsequent chapter.



Chapter 3

Pion contribution to the self energy

In the end section of the first chapter, the lowest order term in the chiral La-
grangian, L (1)πN , was derived (eq. 1.51). What was not discussed, however,
were the two distinct leading order contributions arising from the chiral La-
grangian (ignoring the Weinberg-Tomozawa coupling) [9][13]. The first of
the terms correspond to the non-interacting system while the second one de-
scribes the four-fermion interaction [2].

Fig. 3.1 encodes all the information of the L (1)πN required to evaluate the one-
pion contribution to the nucleon self-energy. The total Lagrangian consists of
a nucleon-nucleon term, giving rise to the four-fermion interaction, which will
not be considered. In evaluating the self-energy, the imaginary time formalism
will be used with the propagators that were developed earlier.

π

N N

Figure 3.1: One-pion contribution to the nucleon self-energy

31
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3.1 Self-energy as corrections to the propagator

Perturbative analysis of QFT allows us to write down the propagator as an
infinite series of one-loop corrections. Such a method is analogous to the tech-
niques used in the Born approximation used in the study of quantum mechan-
ical scattering where an incident particle goes through an increasing number
of scattering centres to give a better approximation of the underlying physical
process (the Dyson equation). The electron self-energy best serves as an illus-
tration since this remains the most prevalent example in the discussion.

As a rule, perturbation theory allows the following expansion of a generic two-
point function in momentum space G(p) = i

p2−m2 [5].

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + · · · (3.1)

This is a geometric series, and a closed expression for the sum exists

G(p) =
i

p2 −m2 −Σ(p)
(3.2)

The quantity Σ in the expansion is the self-energy. We see that there is a shift
in the mass term in the propagator- m2→ m2+Σwhich is a quantity measured
experimentally (renormalized mass).

An electron propagator 〈Ω| Tψ(x)ψ̄(y) |Ω〉 is, diagrammatically and upto the
leading order, a sum of the terms:

+

Figure 3.2: One-loop correction to electron propagator

The figure on the right represents the electron self-energy diagram that
arises due to the one-loop correction of the electron propagator. Using the
Feynman rules for QED, the electron self-energy can be easily calculated by
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taking note of the vertices and the propagators involved. One finds that

− iΣ(p) = (−ie)2
∫

d4

(2π)4
γµ

i(/k+m)
k2 −m2

i
(p− k)2 −µ2

(3.3)

where a small photon mass µ has been added to avoid divergences. The same
technique applies in the calculation of the pion contribution to nucleon self-
energy, however, with changes to the vertex contributions and the types of
propagators used.

p− k

p p

Figure 3.3: Electron self-energy

3.2 Leading order contribution

In section 2.2, the scalar propagator was derived to be

∆(iωn) =
1

ω2
n + E2

q

(3.4)

The propagator can be decomposed using the method of partial fractions into
the following:

∆(iωn) =
1

2Eq

�

1
iωn − Eq

−
1

iωn + Eq

�

In the imaginary time formalism, qµ = (q0,q) = (iωn,q). For notational con-
venience, E2

q →ω
2
q = q2 +m2

π
. In this notation, the scalar propagator is

∆(q) =
1

2ωq

�

1
iωn −ωq

−
1

iωn +ωq

�

(3.5)
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The nucleon propagator can be decomposed in a similar manner, albeit some
modifications. With a non-zero chemical potential (µ), the Hamiltonian of the
system changes from Ĥ to Ĥ−µQ̂ [8] , with Q̂ being a conserved charge. Also,
the zeroth component of the energy-momentum four vector must be adjusted.
In the presence of a non-zero chemical potential:

ikn→ ikn +µ=
(2n+ 1)π

β
i +µ (3.6)

Thus, the nucleon propagator takes the following form:

S(k) =
Λ+k γ0

ikn +µ− Ek
+

Λ−k γ0

ikn +µ+ Ek
(3.7)

Here kµ = (ikn,k) and Λ±k is a projection operator that projects the state into
positive and negative energy ones.

Λ±k =
1

2Ek
= [Ek ± (α · k+mγ0)] (3.8)

with the projection operators following the completeness relation

Λ+k +Λ
−
k = 1 (3.9)

where Ek = k2 +m2 and α = γ0γ. Now, with all the available information, we
can begin to write down the amplitude that is used to calculate the self-energy.
From quantum field theory, it is known that amplitudes are integrated over all
the four dimensions. Due to the fact that we are working with the imaginary
time formalism

∫

d4k
(2π)4

→
∑

ikn

∫

d3k
(2π)3

Hence, the complete expression for the nucleon self-energy reads:

Σ(p) = −
3g2

A

4 f 2
π
β

∫

d3k
(2π)3

∑

ikn

∆(p− k)γ5(/p− /k)S(k)γ5(/p− /k) (3.10)

The summation is carried out over the Matsubara frequencies, ikn =
2(n+1)π
β

where n ∈ Z. This means that there is an infinite number of poles along the
imaginary axis and the methods of calculus of residues need to be invoked to
perform said summation.
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3.2.1 An aside: summing over Matsubara frequencies

The purpose is to evaluate summations of the form

S =
1
β

∑

iωn

f (iωn) (3.11)

If f has no poles located on the imaginary axis, a suitable weight function is
required which has poles at the desired locations on the imaginary axis, i.e. at
iωn. Let the function be uη(z). The weight functions are different for bosons
and fermions, owing to the different nature of their Matsubara frequencies.
This allows us to express the infinite sum as a contour integral

S =
1
β

∑

iωn

f (iωn) =
1

2πiβ

∮

f (z)uη(z)dz (3.12)

As shown in fig. 3.2a, the weight function generates the poles indicated by
the red crosses. The contour can be further deformed as shown in fig. 3.2b to
enclose only the poles of the function f (z). The summation is calculated by

(a) Deformed contour 1 (b) Deformed contour 2

Figure 3.4: The process of deforming the contour

summing the residues of the function f (z)uη(z) over the poles of f (z) [14].
Then,

S =
1
β

∑

iωn

f (iωn) = −
1
β

∑

z0∈ f (z) poles

Res f (z0)uη(z0) (3.13)

The choices of the weight function with which the summation can be calculated
are relatively simple ones involving the nB and nF distributions. For bosons,
such a function is

uB(z) = βnB(z)
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and for fermions
uF(z) = −βnF(z)

Using the methods developed, the summation in eq. 3.10 can be carried out.
After carrying out the process, it will be seen that Σ(p) breaks up into two
components- a vacuum part independent of temperature and a genuinely ther-
mal part (dependent on β). The vacuum part will contain divergences that
are usual in quantum field theory, which are dealt with using the process of
renormalization. The temperature dependent part, though, will be completely
free from ultraviolet divergences. Finite temperature field theory does not in-
troduce additional ultraviolet divergences [3]. Nevertheless, for all intents and
purposes, only the finite temperature part of Σ(p) will be considered in all the
calculations.

Now, the actual sequence of calculations involved in the evaluation of the sum-
mation is extremely lengthy. Hence, a small portion of the calculation will
be explicitly worked out with the tacit understanding that the rest of them
are carried out in a similar fashion. It can be understood that once the term
∆(p − k)γ5(/p − /k)S0(k)γ5(/p − /k) is broken down, four other terms appear- of
which all of them need to be summed over the Matsubara frequencies. Then,

∆(p− k)γ5(/p− /k) =
1

2ωpk

�

γ5(/p− /k)
ipn − ikn −ωpk

−
γ5(/p− /k)

ipn − ikn +ωpk

�

S0(k)γ5(/p− /k) =
Λ+k γ0γ5(/p− /k)
ikn +µ− Ek

+
Λ−k γ0γ5(/p− /k)
ikn +µ+ Ek

From the two expressions above, it can be concluded that the first term under
consideration is

f1(z) =
γ5(/p− /k)Λ+k γ0γ5(/p− /k)
(ipn − z −ωpk)(z +µ− Ek)

(3.14)

f1(z) fails to be analytic at z = ipn − ωpk and at Ek − µ. These two points
are simple poles for the function f1(z). There will be two residues associated
with these two simple poles, the sum of which will produce the first sum, S1.
Using the formula derived in eq. 3.13, the first term can be summed over the
ipn’s and, since the Matsubara frequencies ipn are fermioninc, the appropriate
weight function considered is uF(z) = −βnF(z).
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Res
�

z0 = ipn −ωpk

�

=
γ5(/p− /k)Λ+k γ0γ5(/p− /k)

ipn −ωpk +µ− Ek

�

�

�

�

k0=ipn−ωpk

β(1+ nB(ωpk))

(3.15)
and,

Res(z0 = Ek −µ) = −
γ5(/p− /k)Λ+k γ0γ5(/p− /k)

ipn −ωpk +µ− Ek

�

�

�

�

k0=Ek−µ

βnF(Ek −µ) (3.16)

Eq. 3.12 composed entirely of the temperature dependent part while the other
contains a vacuum contribution in addition. Ultimately, summing these two
residues will produce the desired result for S1. However, the complete sum is

S =
4
∑

i=1

Si

and the other ’partial’ sums are carried out in the same manner. Once all the
residues have been calculated, the individual terms containing the β depen-
dence are added to produce the following expression for the self-energy:

ΣT (p) =
3g2

A

4 f 2
π

∫

d3k
(2π)3

1
2ωpk

�

1
ipn +µ− Ek −ωpk

−
1

ipn +µ− Ek +ωpk

�

γ5(/p− /k)Λ+k γ0γ5(/p− /k)
�

�

k0=Ek−µ
nF(Ek −µ)

−
�

1
ipn +µ+ Ek −ωpk

−
1

ipn +µ+ Ek +ωpk

�

γ5(/p− /k)Λ−k γ0γ5(/p− /k)
�

�

k0=−Ek−µ
nF(Ẽk)

− γ5(/p− /k)
�

Λ+k γ0

ipn +µ− Ek −ωpk
+

Λ−k γ0

pn +µ+ Ek −ωpk

�

γ5(/p− /k)
�

�

k0=ipn−ωpk
nB(ωpk)

− γ5(/p− /k)
�

Λ+k γ0

ipn +µ− Ek +ωpk
+

Λ−k γ0

ipn +µ+ Ek +ωpk

�

γ5(/p− /k)
�

�

k0=ipn+ωpk
nB(ωpk)

(3.17)

where Ẽk = Ek + µ and ωpk = (p− k)2 + m2
π
. Analytic continuation is used

to obtain the retarded self-energy, i.e. via ipn → p0 + i0+. At sufficiently low
temperatures, the occupation number of antiparticles is so low that their con-
tributions can be neglected. Moreover, we assume that at the temperature
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and density of interest, there is no macroscopic occupation of pionic modes in
nuclear matter [2][8]. Then, only the first term in eq. 3.17 remains

ΣT (P) =
3g2

A

4 f 2
π

∫

d3k
(2π)3

1
2ωpk

�

1
p0 − k0 −ωpk + i0+

−
1

p0 − k0 +ωpk + i0+

�

γ5(/p− /k)Λ+k γ0γ5(/p− /k)
�

�

k0=Ek−µ
nF(k0)

(3.18)

with k0 = Ek − µ. Eq. 3.18 can be further simplified by introducing a new set
of parameters- s and qµ. One of our goals is to express ΣT (p) in terms of the
Lorentz components:

Σ(p) = Σs(p) + γ5Σps(p) + γ
µΣµ(p) + γ5γ

µΣA
µ
(p) +σµνΣµν(p) (3.19)

the nature of each of the components being-

• Σs(p): scalar

• γ5Σ(p): pseudo-scalar

• γµΣµ(p): vector

• γ5γ
µΣA

µ
(p): pseudo-vector

• σµνΣµν(p): tensor

In reality, { 1,γ5,γµ,γµγ5,σµν} forms a basis set for any 4×4 matrix. Addition-
ally, it is required of the self-energy to be invariant under parity, translation,
rotation and time-reversal transformations. Once these symmetries are taken
into account, only the scalar and vector components of the self-energy remain.
Evidently, eq. 3.18 must take the following form:

ΣT (p) = Σs(p) + γ
µΣµ(p) (3.20)

In order to transform eq. 3.18 into its desired form interms of the Lorentz
components, we can recognize that γ5(/p−/k)Λ+k γ0γ5(/p−/k) can be decomposed
into a scalar and a vector term.

γ5(/p− /k)Λ+k γ0γ5(/p− /k) = γ5(/p− /k)
1

2Ek
(Ek +α · k+mγ0)γ0γ5(/p− /k)

Going term by term:
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1.

γ5(/p− /k)
mγ0

2Ek
γ0γ5(/p− /k) = −

m
2Ek
(/p− /k)2

= −
m

2Ek
(p− k)2 = s

Here we use the fact that (γ0)2 = (γ5)2 = 1 and { γ5,γµ} = 0.

2.

1
2
γ5(/p− /k)γ0γ5(/p− /k) =

1
2
/(p− /k)γ0(/p− /k)

= γ0

�

1
2
(p0 − k0)

2 +
1
2
(p− k)2

�

− γ · (p− k)(p0 − k0)

3.

1
2Ek

γ5(/p− /k)γ0γ · kγ0γ5(/p− /k) = −
1

2Ek
(γ0(p0 − k0)− γ · (p− k))γ · k

× (γ0(p0 − k0)− γ · (p− k))

=
1

2Ek
(p− k)2γ · k−

1
Ek
γ0(p0 − k0)k · (p− k)

−
1
Ek
(p− k) · kγ · (p− k)

Introducing a new variable qµ = (q0,q), where

q0 =
1
2
(p0 − k0)

2 +
1
2
(p− k)2 −

1
Ek
(p0 − k0)k · (p− k) (3.21)

q= −
1

2Ek

�

(p− k)2k+ 2(p− k) · k(p− k)
�

+ (p0 − k0)(p− k) (3.22)

As expected, the expression for self-energy has been decomposed into a scalar
and vector components so that the following can be written

ΣT (p) =
3g2

A

4 f 2
π

∫

d3k
(2π)3

1
2ωpk

�

1
p0 − k0 −ωpk + i0+

−
1

p0 − k0 +ωpk + i0+

�

(s+/q)nF(k0)

(3.23)
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Because of the introduction of the new parameters, ΣT (p) can be projected
onto the required bases.

Σs(p) = −
3g2

A

4 f 2
π

∫

d3k
(2π)3

1
2ωpk

�

1
p0 − k0 −ωpk + i0+

−
1

p0 − k0 +ωpk + i0+

�

× nF(k0)
m

2Ek
(p− k)2

Σ0(p) =
3g2

A

4 f 2
π

∫

d3k
(2π)3

1
2ωpk

�

1
p0 − k0 −ωpk + i0+

−
1

p0 − k0 +ωpk + i0+

�

nF(k0)

×
�

1
2
(p0 − k0)

2 +
1
2
(p− k)2 −

1
Ek
(p0 − k0)k · (p− k)

�

(3.24)

|p|Σv(p) =
3g2

A

4 f 2
π

∫

d3k
(2π)3

1
2ωpk

�

1
p0 − k0 −ωpk + i0+

−
1

p0 − k0 +ωpk + i0+

�

nF(k0)

× {
1

2Ek

�

(p− k)2k+ 2(p− k) · k(p− k)
�

+ (p0 − k0)(p− k)} · p̂

(3.25)

Eq. 3.23 - 3.25 give the final expressions for the one-pion exchange contri-
bution to the nucleon self-energy. As mentioned earlier, certain symmetry re-
quirements allowed for a reduction of the number of terms involved in the
calculation. However, for other processes or conditions the excluded terms
can be computed in a similar way if they play contributing roles.

3.3 Computational simplifications

The simplifications done here would be the most logical step if one tries to eval-
uate numerically the one-pion contribution to the nucleon self-energy. Nev-
ertheless, it is rather interesting to investigate the processes involved without
delving into the number crunching. Although the introduction of the term s+/q
in the self-energy went a long way to simplify the earlier, more tedious expres-
sion, the factor can be subjected to further simplifications and approximations.
We start with the following

2Ek/q = 2Ek (q0γ0 − q · γ) = µ
�

(p0 − k0)
2 + (p− k)2

�

γ0

+ 2(p− k) · k/p− (p2 − k2)/k− 2µ(p0 − k0)(p− k) · γ (3.26)
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With the added constraint of low temperature and the particular density of in-
terest, the dynamics of the nucleons will be contained within the Fermi surface.
The nucleons will posses a momentum equal to the Fermi momentum pF . The
total momentum vector, however, will contain a residual term

p= pF n̂+δp (3.27)

with |δp| << pF . Additionally, we introduce a relativity parameter x = pF
m

which depends on the number densities.

x ≈ 0.28
�

n
n0

�
1
3

(3.28)

Usually, n0 = 0.16 fm−3. Therefore, one can arrive at Ep ≈ m
�

1+ p2/2m2
�

and
µ≈ m

�

1+ p2
F/2m2

�

. From these two approximations-

p0 ≈
p2 − p2

F

2m
≈ x n̂ ·δp (3.29)

From eq. 3.27, it can be inferred that p0 is much smaller than p. Hence,
(p− k)2 ≈ −(p− k)2. With these approximations:

2Ek/q ≈ (p− k)2 [(p0 +µ)γ0 − p · γ] (3.30)

These approximations will allow for a significant reduction of calculation com-
plexity. Once eq. 3.30 has been substituted into the expression s+ /q-

s+ /q ≈
(p− k)2

2m
[m+ (p0 +µ)γ0 − γ · p] (3.31)

Nevertheless, said approximations, in no way, changes the structure of the self-
energy. As shown before, the self-energy decomposes into a scalar and vector
parts. This form holds true even after the approximation, yet the expression
has been hugely simplified and an analytical evaluation can be carried out.

3.4 Calculation results

Continuing from section 3.3, we can proceed to further simplify the expression
for Σ(p). From eq. 3.23, it is evident that Σ(p) consists of an integral times
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the factor (s+ /q)nF(k0). With the help of eq. 3.31,

Σ(p)≈ [m+ (p0 +µ)− γ · p] [σ+(p) +σ−(p)]
= [m+ (p0 +µ)− γ · p]σ(p) (3.32)

where,

σ±(p) = ±
3g2

A

8mf 2
π

∫

d3k
(2π)3

1
2ωpk

(p− k)2

p0 − k0 ∓ωpk + iη
nF(k0) (3.33)

is the reduced self-energy. In terms of this newly defined quantity, the Lorentz
components of Σ(p) are

Σs(p)≈ mσ(p)
Σ0(p)≈ (p0 +µ)σ(p)
Σv(p)≈ −σ(p) (3.34)

3.4.1 Evaluating σ(p)

σ+(p) =
3g2

A

8mf 2
π

∫

d3k
(2π)3

1
2ωpk

(p− k)2

p0 − k0 −ωpk + iη
nF(k0)

d3k= −2πk2d|k|d x x = cosθ

Then,

σ+(p) = −
3g2

A

32mπ2 f 2
π

∫ ∞

0

d|k|k2

2ωpk
nF(k0)

∫ 1

−1

(p− k2)d x
ωpk − (p0 − k0)− iη

Since, ω2
pk = p2 + k2 − 2|p||k|x +m2

π

d x
ωpk

= −
dωpk

|p||k|

σ+(p) =
3g2

A

32mπ2 f 2
π

∫ ∞

0

d|k|k2

2|p||k|
nF(k0)

∫

dωpk(p− k2)

ωpk − (p0 − k0)− iη

Using Sokhotski-Plemelj theorem, which states that:
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lim
ε→0+

∫ b

a

f (x)
x ± iε

d x = ∓iπ f (0) +P
∫ b

a

f (x)
x

d x

lim
η→0+

∫

dωpk(p− k2)

ωpk − (p0 − k0)− iη
= iπ (p− k)2

�

�

ωpk=p0−k0
+P

∫

dωpk(p− k2)

ωpk − (p0 − k0)

Re[σ+(p)] =
3g2

A

32mπ2 f 2
π

∫ ∞

0

d|k|k2

2|p||k|
nF(k0) P

∫

dωpk(p− k)2

ωpk − (p0 − k0)

= −
3g2

A

32mπ2 f 2
π

∫ ∞

0

d|k|k2

2|p||k|
nF(k0) P

∫ 1

−1

d x |p||k|(p− k)2

ω2
pk −ωpk(p0 − k0)

ω2
pk −ωpk(p0 − k0) = p2 + k2 − 2|p||k|x +m2

π
−ωpk(p0 − k0)

= −2|p||k|
�

x −
1

2|p||k|
�

p2 + k2 +m2
π
− (p0 − k0)

2
�

�

= −2|p||k| (x − x0)

Re[σ+(p)] =
3g2

A

32mπ2 f 2
π

∫ ∞

0

d|k|k2

2|p||k|
nF(k0) P

1
2

∫ 1

−1

d x(p− k)2

x − x0

Hence,

Re[σ(p)] = Re[σ+(p) +σ−(p)]

=
3g2

A

32mπ2 f 2
π

∫ ∞

0

d|k|k2

2|p||k|
nF(k0) P

∫ 1

−1

d x(p− k)2

x − x0
(3.35)

Eq. 3.35 is the full extent to which analytic calculations can be performed on
the self-energy. Any subsequent results need to be obtained through numerical
implementations.
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Figure 3.5: The result for |Reσ(p)| vs p, at T = 0, as obtained in [2]

Fig. 3.5 shows the actual dependence of |Reσ(p)| on the momentum trans-
fer. This result is obtained through solving eq. 3.35 iteratively until con-
vergence is obtained. To achieve the correct result through this process the
Schwinger-Dyson equation

S−1(p) = S−1
0 (p)−Σ(p) (3.36)

is used to determine the excitation spectrum p∗0 = E∗p − µ
∗ by solving detS−1.

The starred quantities are the renormalized equivalents. In practice, the pro-
cess is first carried out using the free variables to obtain the first iteration (pink
dotted line in fig. 3.5a). The process is repeated, using the renormalized quan-
tities, until convergence is reached (black solid line). For small densities, the
number of iterations required to achieve convergence is small. But for higher
densities, the number of iterations needed would be larger in comparison. [2].

However, the plot obtained for the purposes of this thesis (fig. 3.6) is a very
rudimentary one- one done without the use of the computational stages men-
tioned above. As a consequence, the result obtained has been far from ac-
curate. It is manifest from the comparison of the two graphs that the actual
variation of |Reσ(p)| was not obtained from the basic numerical implements
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Figure 3.6: The result for |Reσ(p)| vs p, at T = 0, obtained without imple-
menting the numerical methods of [2].

used. Although, for both graphs, the reduced self-energy increases with in-
crease in momentum transfer, the nature of the increase is vastly different.
Also, fig. 3.5b shows the reduced self-energy to be zero at zero momentum
transfer which is a major discrepancy.
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Conclusion

In this work, as a literature review of [2], the one-pion exchange contribution
to the nucleon self-energy has been calculated. The exposition of the thesis has
been mostly analytical. Starting off with chiral symmetries, we have been able
to write the effective Lagrangian L (1)πN which, in turn, generated the leading
order Feynman diagram needed for the calculation of Σ(p). Using the com-
putational conventions used in thermal field theory (chapter 2), we have been
able to show that Σ(p) decomposes into vacuum and finite temperature parts:
the latter of which further breaks down into scalar and vector components.
Further approximations lead to a reduced self-energy σ(p). The |Reσ| - p plot
generated shows a source of a great degree of variation once it has been com-
pared with the results in the reference material.

This, however, needs to be subject to more improvement. As a starting point,
better codes need to be written in order to be on equal footing with the results
obtained in [2]. Thus, the behaviour of nuclear systems where T > 0 can be
studied.

Extension of this work can be brought about by studying the ρ-meson con-
tribution to the nucleon self-energy. The calculations can be performed in a
similar manner. Another interesting point of investigation can be directed at
conditions where the Lorentz components self-energy that were discarded be-
come valid and contribute in the process. Examples of such cases that are
of current research interest are astrophysical objects like pulsars which have
very strong magnetic fields (∼ 100G). Symmetry considerations, in particular
time-reversal symmetry, were able to vastly reduce the complexity of the cal-

46
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culations that were performed. However, presence of external fields (strong B
fields) would mean that time-reversal is no longer a symmetry of the system
under consideration, introducing additional components of Σ(p).
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