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Abstract

Eikonal Approximation deals with incidence where scattering of very high
energy from a potential with a finite range a, where V' is strongly suppressed
for r larger than a. E > |V| where E = energy of the incoming particles
and k > é, meaning A < a where, l,,,, ~ ka > 1. The main contribution
to the scattering amplitude therefore comes from partial waves with larger
angular quantum number [ and A is restricted to small scattering angle.

The main advantage the Eikonal approximation offers is that the
equations reduce to a differential equation with single variable. This re-
duction to single variable is due to the straight line approximation or the
Eikonal approximation which allows choosing the straight line as a distinct
direction. Recent Applications portrays that the approximation is still rel-
evant in studying the features of particle physics interactions and optical
problems.
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Chapter 1

Introduction

Eikonal Approximation is derived from EIKON, the Greek word for image.
The approximation originated in Optics. Before the formulation of Maxwells
electromagnetic theory, studies of reflection and refraction were done under a
branch of physics called Ray Optics where it was assumed that light travelled
in straight lines. This assumption holds as long as the size of the obstacle is
large compared to the wavelength of light. “Image ” is formed by light only
in the straight line approximation.

Light scattered from an obstacle is related to its physical properties
and hence in principle it is possible to obtain information about the scattering
source from an analysis of the scattered light. Thus for many years, the light
scattering technique has been used for inferring the size, shape and refractive
index of particles in various scientific disciplines. Present areas of interest
include bio particles, colloids, macromolecules, optical fibres, plasma diag-
nostics, atmospheric and astrophysical particles. Because of its simplicity,
many instruments have been developed based on this technique for routine
measurements in industry. Unfortunately the problems involving the scatter-
ing of light by optical scattering source are so complex that exact solutions
are unknown except in the simplest and most idealised cases. Even in such
cases the solutions are usually complicated and computationally tedious and
it has long been desirable to obtain simple approximate formulae that also
provide a physical insight into the scattering process. A considerable amount
of work has been done in various disciplines towards assessing the usefulness
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of a new approximation referred to in the literature either as the eikonal
approximation or as the high-energy approximation. The purpose of this
paper is to provide a much needed review of this work and discuss the recent
applications.

There are times when we can treat a wave as “traveling in a straight
with “limited scattering. ” The eikonal approximation provides the
wave equations when this holds as well as the conditions under which we
should expect this to hold. The simplest picture is ray optics: although light
is a wave, the scattering off of objects large compared to the wavelength
of light can be treated as a perturbation. The Born approximation is the
equivalent version in scattering of quantum mechanical waves.

)

line ’

Historically the eikonal approximation was born in optics where
the term eikonal was introduced by Bruns in 18958.[9] Motivated by optical
analogies, this approximation was then widely studied and used in potential
and nuclear scattering where it found a number of applications. Its use in
quantum field theory enabled one to sum up the high-energy behaviour of a
very interesting set of Feynman graphs in a compact and useful manner. In
the context of potential scattering the important feature of this approxima-
tion is that it was found to be valid in a domain where none of the existing
approximations, namely the Born and the WKB, were valid.

The chapters in this dissertation contain summarized descriptions of
approximations used in scattering problems namely - Partial wave expansion,
Born approximation and WKB approximations, Eikonal approximation and
the some recent applications of this approximation of Eikonal calculating
final states of deep inelastic scattering from deuteron, Coulomb correction for
quasi-elastic scattering, Diamagnetic field plasma, Two-dimensional fermions
with long range current-current interaction and atom surface scattering .



Chapter 2

Approximation Used in
Scattering

Scattering of one object from another is perhaps our best way of observing
and learning about the microscopic world. Indeed it is the scattering of light
from objects and the subsequent detection of the scattered light with our
eyes that gives us the best information about the macroscopic world. We
can learn the shapes of objects as well as some colour properties simply by
observing scattered light.

There is a limit to what we can learn with visible light. In Quan-
tum mechanics we know that we cannot discern details of microscopic sys-
tems (like atoms) that are smaller than the wavelength of the particle we are
scattering. Since the minimum wavelength of visible light is about 0.40 mi-
crons, we cannot see atoms or anything smaller even with the use of optical
microscopes. The physics of atoms, nuclei, subatomic particles, and the fun-
damental particles and interactions in nature must be studied by scattering
particles of higher energy than the photons of visible light. In experiments on
the scattering of a beam of particles, one measures the number of scattered
particles falling per unit time on an area dS placed at a distance r from
the scattering atoms. Example- A particle with an energy E and impact
parameter b, and it immerges at scattering angle



Scattering Center

Figure 2.1: Scattering angle center

Ordinarily, the smaller the impact parameter, the greater the scat-
tering angle.In quantum theory we imagine an incident plane wave, 1, =
Ae** travelling in z direction, which encounters a scattering potential, pro-
ducing an outgoing spherical wave

ezkr

Yo =~ A{e™ + f(0)—1}, forlargerr (2.1)

r

The wave number k is related to the energy of the incident particle

7~

Il
)
3
[

(2.2)

Scattering amplitude f(#) gives the probability of scattering in a
given direction and is related to the cross section.
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Figure 2.2: Impact parameter

Figure 2.3: scattering Amplitude

The scattering amplitude is obtained by solving the Schrdinger
equation.

2.1 Partial Wave Expansion

[7] The closest we can have to an exact result of the scattering problems is
the result obtained by the method of partial wave expansion. The method
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breaks down the initial wave function in to infinite sum over angular momen-
tum components labelled by the quantum number /. Each quantum number
contributes to the scattering amplitude and is calculated separately. The
complete scattering amplitude is then obtained by the summing over all the
partial wave scattering amplitudes.

In situation where the semi classical approximation can be applied
for given wave number k and scattering angle #, the sum over [ is dominated
by values close to the spherical ly. As it turns out that for most of the
potentials (those without adequate initial energy) the contributions from I
terms are very much higher the ka diminishes very rapidly, and thus can be
neglected. Meaning, only the beams with the sufficient initial energy and
those that pass through the scattering length of the potential are deflected.
But to look at all possible scattering angles, one needs in general to include
all the possible angular momenta and impact parameters and all the values
the each [ contributes. The situation is further complicated where quantum
effects are important, since for a given wave number k and scattering angle 6,
a wider range of values of [ can give significant contributions. The scattering
amplitude defining the differential and total cross section is given for a central
problem by infinite sum over partial waves

fo="> (21 +1)fP(cosb) (2.3)

The partial amplitudes f; are related to the phase shift d; displayed by the
redial wave function X, in the presence of the potential as compared to the
free wave function Xy = r7;(kr) (in absence of potential)
1

fe - ﬂ
The determination of the phase shift §; and partial amplitudes f; requires
solving the redial Schrdinger equation. To understand which values of [
would make a significant contribution, we have to consider a finite range ‘a‘
beyond which it is strongly suppressed and below which it is significant where
lmaz can be given by

(e¥0r — 1) = Ee“”sm& (2.4)

Lz == ka (2.5)

In case of semiclasscal approximation, this corresponds; if [ > ka then impact
parameter b > a and the particle cannot be significantly deflected because
it never passes the distance r within the range of the potential. For example
WKB Approximation.



2.2 WKB Approximation

[3] WKB approximation developed by Wentzel, Keller and Brillouin is a
semi classical method to solve Schrdinger equation that does not require the
potential to be perturbative to solve a problem. If a potential is considered
perturbative add an additional “perturbing ” Hamiltonian is added to the
calculation representing a weak disturbance to the system. If the disturbance
is not too large, the various physical quantities associated with the perturbed
system (e.g. its energy levels and eigenstates) can, from considerations of
continuity, be expressed as “corrections ” to those of the simple system.

In WKB approximation, it only assumes that certain classical quan-
tities having the dimension of action (energy z time) are much larger than
Planks constant.

A particle of energy E moving through a region where the potential

V(x) is constant, if £ >V
Yy = Aeth® (2.6)
The basic idea of WKB approximation, identifies two different x dependence

: rapid oscillation and gradual variation in amplitude and wavelength.

The most difficult aspect of the WKB approximation is in the im-
mediate vicinity of a classical turning point. (where £~V A\ — o)

_

b | .

| Region 11

a |

(0,0)

|
Region 1 | ‘ Region 11

Figure 2.4: WKB turning points
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The Schrdinger equation

—h2 d2w d21/1 _p2
———+ Vi =FEYp—"r = — 2.
2m dx? V¥ wdﬁ h? (2.7)
where p(z) = \/2m[E — V()]
classically, the particle is confined to a range of x
px) = A)e ™) (2.8)
@ _ (A" +iAg)e™ (2.9)
dx
plugging in we get,
" /\2 P2
A= M@ - (2.10)
(A%2¢)? =0 (2.11)
A% = C? (2.12)

C'is a real constant, we assume that the amplitude A varies slowly
so that A term is negligible

(@) =% (2.13)
1
p) = j:ﬁ/P(a:)da: (2.14)

For slowly varying V' (z) the first order and the zeroth order approximation
gives almost same result

|%kz(m)| < |k ()] (2.15)

The WKB approximation breaks down when E approaches V' (clas-
sical turning points) in which case the wave vector k(x) approaches 0 but
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the derivative does not and there in fact the argument of the approximation
does not hold.

Under these circumstances the connection formulas must be applied
to tie the regions together on each side of the turning points. For a reasonably
smooth potential it may be an adequate approximation to treat a turning
point region as one where the potential is increasing linearly with distance
over a sufficient range that beyond this point the WKB approximation can
be used in both directions.

The solution of Schrdingers equation for a linearly increasing or
decreasing potential is well known, it is the Airy function, the solution of the
differential equation plotted here at the left-hand turning point

d*y
— +x2y=0 2.16
T2 Ty (2.16)

Figure 2.5: WKB solution- left hand

The strategy is to evaluate this function for large x, both positive
and negative, so that we can join together the two WKB solutions, valid in
the far regions, in a quantitative fashion.

Following Mathews and Walker, the differential equation is most
simply solved by taking its Fourier transform. If

o) = [yl (2.17)

[e.e]
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then

d 3
—w?g(w) + i = 0, sog(w) = Ae's (2.18)
dw
Therefore
* dw w3
— A Lexplifwr - 2.1
) =4 [ G explitwn = %) (2.19)

2.3 Born Approximation and Weak Coupling
Scattering

In cases where the potential is considered to be very small and thus the
scattering angle is also small. The effect of the potential can be taken into
account in perturbative way. For a small potential the redial functionyr) in
the presence of a potential differs very little from the radial wave function

X, = i (kr)

The two differential equations satisfying the asymptotic momentum

b+ = D) = 2 ) (2.20)
)+ 12 = e o (2:21)

Taking the limit of the total derivative

2m

lim o) = (1] = 55 [ Ve @22
XP(r) ~ %sin(k’r — %‘) (2.23)

i (r) = %expi‘sl sin(kr — %T + &) (2.24)

tima e XX ) X ()] = 7 sindy = — (2.25)
=2 e (2:26)

0
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In case where, the effect of the potential on the radial wave function
X1 is very small. Born approximation allows to take x; ~ xP(r) = rj;(kr)
(since the effect of the potential is really small)

2m +o00
—fi= = i V(r)[rgi(kr))?dr (2.27)

An approximation result of phase shift can also be found since | f;| <
1, which implies §; < 1. Therefore, an approximate relation §;k f; can give
the following expression

5, ~ Qh_’j ;OO V() o) 2 (2.28)

F(0) = (20 +1) fiPi(cosb) (2.29)
m [T i

- VO DLk Aeost)rdr (2.30)

=0

Therefore, momentum that is transferred from the potential is as
below

— —

7= ksea — kinc (2.31)

Modulus of the momentum of the particle is same before and after scatter-
ing, since the potential tends to zero at infinity. Modulus is related to the
scattering angle.

q2 = k?ca + kfnc - 2Esca : Einc (232)
= 2k*(1 — cosb) (2.33)

0
q = 2ksin(;) (2.34)

For a plane wave €7 = gtksca™ _ gikineT
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Z (20 + 1) [1(k7)]* Py(cosh) = sinlar)
qr
1=0
2m, sin(qr) ,
fla) = — ;V(T) i
174 fuj'FdS—-‘:4 Vv S’m(qr) 2d
since / (r)e T WZ (r) =

Therefore scattering amplitude in Born Approximation

m

S V(r)e_iﬁd?’F

fa=

Differential cross section
4@? 312
b= (gl [ Vi)

4k? )
Otot = (5d
tot = kz/o q

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

f(q) is real in the first order expression, the imaginary part only
arises at the second order in the perturbative theory corresponding to the
leading effect in d;; is quadratic in potential. The Born approximation does
not satisfy the optical theorem but rather is an approximate perturbative
way. The first order expression for féis real and an imaginary part can arise
only at second order in perturbation theory, corresponding to the fact that

the leading effect in d;; is quadratic in the potential.
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Chapter 3

Eikonal Approximation

The simplification deals with incidence where scattering of very high energy
from a potential with a finite range a, where V is strongly suppressed for
r larger than a. F > |V| where E = energy of the incoming particles and
k> %, meaning A < a where l,,,,, = ka >> 1. The main contribution to the
scattering amplitude therefore comes from partial waves with larger angular
quantum number [ and is restricted to small scattering angle.

The main advantage the Eikonal approximation offers is that the
equations reduce to a differential equation with single variable. This re-
duction to single variable is due to the straight line approximation or the
Eikonal approximation which allows choosing the straight line as a distinct
direction.[8]The early steps involved in Eikonal approximation are similar to
that of WKB approximation.

In Eikonal approximation we may assume [ > 1 and < 1. This
implies that the radial part of the problem is semi classical but the angular
part of the problem is dominated by quantum effects.

The semi classical approximation for the phase shift, which is valid

forl>1
[2 oo [2
0 ~ / k2 — —V - ﬁdr — / k2 — ﬁdr (3.1)
To
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The turning point r, is dominantly determined by the centrifugal barrier and
can be approximately given by r, ~ <

Expanding the power of V(r),

m & l2 1
6l >~ ﬁ V(T)[ k2 — ﬁ] 2dr (3 2)
] 2
~ M _Toy—3
~oor | VL= (3.3)

Rewriting r = /12 + 22,2 = /12 — 12, dz = —~
g 0 ) 0 /2

V(2 + 55)dz (3.4)

—m

2h2k

5 =
(3.5)

In the very high energy scattering the situation is not really semi classical but
we may still, in a meaningful way use the semi classical formula where phase
of the wave function is given by S/, where S is evaluated on a trajectory that
is a straight line with fixed impact parameter b and z going from —ooto 4 0o
corresponding to the fact that the scattering angle must be very small

Sy ~ / \/kQ——V (V22 + b2)dz 2/ kdz (3.6)

VW) (3.7)

th

Taking b ~ roand ~

|~

(5[ ~ (5(, (38)

The approximate behaviour of Legendre polynomials for small angle < 1
and large angular momenta [ > 1 is used to derive an approximate expression
for scattering amplitude

Py(cost) ~ Jy(10) (3.9)
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In terms of zeroth order Bessel function J,(z)

1
o

2m
Jo(2) / exp sV doy (3.10)
0
Substituting b ~ £, & = §b) and J,(16) = J,(k6b). k is then treated as a

large quantity and approximate the infinite sum as an integral over b where
db ~ 1
k

I & .
f(0) ~ %k Z(Ql + 1)(e*® — 1) Py(cosh) (3.11)
g >1
J N
~ o > (€ = 1)Jy(160)1 (3.12)
g >1
~ ik / (€% — 1).Jo(kOb)bdb (3.13)
k ’ 00 2 ) )
£(0) ~ = / / (€2 — 1)e=th0eost pib (3.14)
271 0 0

In terms of momentum —q

k ) o
fl) = 5 / (e2°0) — 1)~ q2p (3.15)

The above equation shows the Eikonal approximation of the scattering am-
plitude. A(b) phase is semi classical in nature. The approximation satisfies
optical theorem exactly.

Thus

Stor ™ %Im £(0) ~ 4 / sin®8,d*b (3.16)
In this paper we are going to review the usefulness of the age-old Eikonal
approximation. Revisit different applications addressed through this conve-
nient tool. Discuss the achievements and limitations of the approximation.
Below are the examples of scattering amplitude found through using Eikonal
approximation.
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3.1 Example

3.1.1 Barrier potential

Barrier potential is defines as

V() = %4 %f r ?s greater than a
if r is less than a

Where vb2 + 22 = r? thus integrating z from 0 to v/r? — b, We get
() =—v1—1¢2 (3.17)

1, [ =
:a;ka/ tdtJo(tkat)[e~*oEVITF _ 1]
0
(3.18)
Tocatt _ g [ tatsin?lia o/ T— P 3.19
a2 S sm[aE — 12 (3.19)

The figure below is ds.q4 versus ka% graph with comparison between the
partial wave method and the obtained Eikonal approximation. Using eqn for
ka = 50, we have the region of validity to be 1 < ka% < 7, and for ka = 750,
we have the region of validity to be 1 <« ka% & 27. These estimates for
the valid region are in agreement with the curves obtained through Eikonal
approximation and partial wave method.
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2.5
- - - partial wave (ko = 50}
it — pikonal

i i i 1-;
ka—
28 T ) ) 200 B

Figure 3.1: Results of partial wave and eikonal approximation k=50

Trat.
wo?
i8¢
- - - partial wave (ka = T50)
i — pikonal

28 a8 (2] BS 100

Figure 3.2: Results of partial wave and eikonal approximation k=750
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3.1.2 Yukawa Potential

Considering Yukawa potential of

Vir) = V"

. (3.20)
Where V = % and b? + 2% =12
— t2+u2 00
m i dfe=tsm? = K (t) (3.21)
Where K,(t) is modified Bessel function of order 0
1
f(0) =a-ka

. / bt Jo(thab) [ ERo0) _ 1]
l 0

(3.22)
The contribution to J,(tkaf) dies off very fast. Therefore the non-zero con-
tribution to the integral for tkaf < 1. The limit ¢t < 1 the modified Bessel
function is

2
Ky(t) ~ lng —

(3.23)
Where v = 0.577is the Eulers constant. Further we observe that

one of the terms in the above equation contributes only at # = 0 and thus is
a delta function. Overall after substituting y = ka#

£(0) = ikas(6) —

eika%(ln 2+1n(kab)—v) 1

— dxJi (x)a:l_ik“%
k62 /O 0

(3.24)
In terms of the gamma functions we have
o0 o . 142+
/ diJ, (z) 2+ = 22w+1w (3.25)
0 () —ia
1 2 7(1 - Zk Z)
£ (0)lo0 = - (3.26)
P ok kaf (1 - i)
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Where %ka% = ;—Z using V' = % and hk = p = mv . The result is

observed to be similar to the scattering amplitude due to a Coulomb potential
for small scattering angles using the approximation sin 6 = 6.
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Chapter 4

Some Recent Applications of
Eikonal Approximation

4.1 Final-state interactions in inclusive deep-
inelastic scattering from the deuteron (2013)[2]

Deuterons are composed of a proton and a neutron, is a stable particle.
As an atom, it is called deuterium and as an isotope of hydrogen it has
an abundance of 1.5 x 1074 compared to 0.99985 for ordinary hydrogen.
The stability of deuterons is remarkable since the free neutron is unstable,
undergoing beta decay with a half-life of 10.3 minutes. The measured binding
energy of the deuteron is 2.2MeV .

In 2013, W. Cosyn, Department of Physics and Astronomy, Ghent
University, W. Melnitchouk, Jefferson Lab and M. Sargsian, Department of
Physics, Florida International University uses the optical theorem and the
properties of high-energy diffractive rescattering, and obtains a general result
derived within the generalized eikonal approximation for the final state in-
teraction (FSI) contribution to the inclusive deep inelastic scattering (DIS)
deuteron cross section. Building on the knowledge gained from the semi-
inclusive analyses, the paper extends the approach to inclusive DIS from the
deuteron, over a similar range of Q% and W that was covered in the SIDIS
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kinematics. The observation from the SIDIS studies that the FSI structure is
consistent with diffractive scattering allows the generalized eikonal approxi-
mation (GEA) model to be extended to the inclusive DIS reaction through
the optical theorem, relating the inclusive cross section to the imaginary part
of the forward the imaginary part of the forward v*D Compton scattering
amplitude. The paper concludes that at y > 0.6 and Q* < 10GeV'2 the FSI
effects can contribute to the deuteron F3 structure function at the level of
25, and should be considered in extractions of the neutron structure function
from inclusive deuteron data at low Q2. At larger Q? values (Q*and10GeV?)
in the deep-inelastic region the FSI effects are found to be negligible.

4.2 Coulomb corrections for quasielastic (e, ¢)
scattering (2004)][1]

The inclusive quasielastic scattering process (e, e) -where only the scattered
electron is observed in a knockout reaction where the nucleons are hit by
the virtual photon emitted by the scattered electron. Inclusive scattering
provides information on a number of interesting nuclear properties:

e The width of the quasielastic peak allows a dynamical measurement of
the nuclear Fermi momentum.

e The tail of the quasielastic peak at low energy loss and large momentum
transfer gives information on high-momentum components in nuclear
wave functions

e The integral strength of quasielastic scattering, when compared to sum
rules, tells us about the reaction mechanism and eventual modifications
of nucleon form factors in the nuclear medium.

e The scaling properties of the quasielastic response allow to study the
reaction mechanism.

e Extrapolation of the quasielastic response to A = provides us with a
very valuable observable for infinite nuclear matter.
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For heavier nuclei, these questions obviously can only be addressed once the
Coulomb distortion of the electron waves is properly dealt with.

“Coulomb Corrections for Quasielastic (e,e) Scattering: Eikonal Ap-
proximation ”(2004)- a paper by Andreas Aste, Kai Hencken, Jrg Jourdan,
Ingo Sick and Dirk Trautmann, an approximate treatment of electron CC for
inclusive quasi- elastic (e, e) reactions modeled as a nucleon knockout process.
In the plane-wave Born approximation (PWBA), the electrons are described
as plane Dirac waves, which is a poor approximation for heavy nuclei with
strong Coulomb fields. In a better approach, called eikonal distorted wave
Born approximation (eDWBA), we use electron waves which are distorted
by an additional phase and a change in the amplitude. This phase shift
and the modification of the amplitude account for the enhanced momentum
and a focusing effect which occurs when the electron approaches the strongly
attractive nucleus.

A reliable treatment of Coulomb distortion is needed in particular
for a determination of the longitudinal response function and for an extrap-
olation of nuclear responses to infinite nuclear matter. The eikonal approx-
imation is more transparent and numerically easier to deal with than the
exact treatments (solution of the full Dirac equation). At the same time, the
eikonal approximation is much more realistic than the effective momentum
approximation often employed in the absence of results from exact calcula-
tions. The eikonal results for the Coulomb distortion are very close to the
results of exact calculations.

4.3 Diamagnetic field-plasma interaction (2007) [4]

O. Keller in his paper Photon wave mechanics in the eikonal limit: Diamag-
netic field-plasma interaction(2007) shows microscopic eikonal theory can be
established on the basis of photon wave mechanics, i.e. the first-quantized
theory of the photon. The papers starting point is the century-old obser-
vation of Hamilton that the theory of classical mechanics in the Hamilton-
Jacobi formulation shows a formal analogy to the eikonal theory, the basis
of geometrical optics.
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The diamagnetic field-plasma interaction is of crucial importance
for the new eikonal theory, because this interaction dominates at high fre-
quencies. The diamagnetic interaction allows identifying a massive transverse
photon (quasi-particle) as “the particle ” of the microscopic eikonal theory.

Microscopic Eikonal formed is identical to the one known in macro-
scopic electrodynamics, without replacing the microscopic field by its macro-
scopic (locally averaged) value. Macroscopic Electrodynamics incorporates
the nonlocal response of matter to first order only (electric plus magnetic
dipole response). High-order multi pole responses usually are important in
the microscopic theory, and the resulting local-field effects manifest them-
selves in near-field electrodynamics.

4.4 'Two dimensional fermions with long range
current-current interaction [5]

D.V Khveshchenko and P.C.E Stamp studied the behaviour of response func-
tion of two- dimensional fermions interacting via a long range transverse
gauge field in the eikonal approximation in 1994. They observed that an
exponentially vanishing wave function renormalization prevents divergences
in the density-density correlation function and the pairing susceptibility.

Y
1)

Figure 4.1: Fermion self energy correction

At € ~ ¢~ Sthis power law behaviour turns into the exponential
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asymptotic of the equation below
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It may seem that the exponential behaviour of the one-particle Green Func-
tion in the vicinity of the Fermi surface is an artifact caused by a gauge
non-invariance of the object. However the paper goes onto showing that the
trace of exponentially decaying Z factor does appear in both gauge invariant
and non- invariant response functions which typically receive thei8r singular
contributions from momenta close to the Fermi surface. Due to this fact real
divergence of susceptibility in both particleparticle and particle-hole chan-
nels, which would demonstrate a tendency towards pairing or a formation
of charge density wave are not found. The behaviour of one particle Green
function is reflected in the experiment conducted, which are sensitive to the
behaviour of Fermions near the Fermi energy and thus leading to a dramatic
suppression of oscillations in the orbital magnetization in a weak external
magnetic field.

The physicists also show that to recover the results of the eikonal
approximation, capturing the most relevant features of the long-wavelength
dynamics, one has to use the effective bosonic Lagrangian which is purely one
dimensional. Using the representation provided by the document, restoration
of non-Fermi liquid like properties of the low energy particle-hole subspace
of the entire Hilbert space is possible. An example of the application pro-
vided - The spectrum of the bosonic collective mode governing particle-hole
dynamics, and its contribution to specific heat.

4.5 Atom Surface scattering- Effects of a cor-
rugated attractive well (2000)[6]

The eikonal approximation, which is an extremely useful method of calculat-
ing intensities for the scattering of atomic beams from surfaces, is extended to
include a periodic corrugation of the leading edge of an attractive square-well
potential placed in front of the hard repulsive wall. This provides a method
for estimating small effects of corrugation of the attractive physisorption po-
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tential on the diffraction spectra. Calculations by J. R. Manson and K.-H.
Rieder indicate that the relative phase of the attractive well corrugations,
with respect to those of the hard repulsive wall, has a distinctive and char-
acteristic effect on the diffraction intensities.

In this paper the eikonal approximation as applied to elastic atom-
surface scattering has been reformulated in terms of the theory of scattering
by a phase grating as commonly applied in sound wave or optical wave scat-
tering. This formulation of the eikonal approximation has been used to solve
for the diffraction intensities generated by a monoenergetic incident beam
of atoms scattering from a hard corrugated wall having an attractive square
adsorption well with a corrugated leading edge. This solution is used as a
model for estimating the effects of corrugation within the attractive adsorp-
tion well and to compare effects of the well corrugation with those of the
corrugation of the repulsive part of the potential.

Such a corrugated square-well model is expected to overestimate the
effects on the intensity of a more realistic corrugated well potential with the
correct z% behaviour of the long-range Van der Waals attraction. However,
because of the simplicity of this formalism and the ease of calculations it is
expected that this solution will be useful for predicting physical trends, just
as the ordinary eikonal approximation is still very useful for obtaining crude
theoretical estimates. An even simpler formalism, expressed entirely in terms
of Bessel functions, results in the case of purely sinusoidal corrugations for
the repulsive wall and leading edge of the well. Several example calculations
were carried out, which demonstrate that the corrugation of the leading edge
of the square well has an effect on the diffraction intensities that is about
5 percent as strong as that of an equally large corrugation of the repulsive
wall. An interesting question that can be answered with this formulation
concerns the effect of a well corrugation that is in or out of phase with the
corrugation of the repulsive wall. The present calculations show that there
is a very characteristic signature of the relative phase of the well corrugation
with respect to the corrugation of the repulsive wall. If, when compared to
a calculation with an uncorrugated well, the addition of corrugation to the
well increases (or decreases) the intensity of a particular diffraction peak, then
changing the phase of the well corrugation by 180 will reduce (or increase)
the intensity of that same peak.
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Chapter 5

Conclusion

The recent applications mentioned earlier projects that eikonal approxima-
tion is still relevant today in studying the features of particle physics inter-
actions and optical problems. As seen above eikonal approximation provides
with similar results for Coulombs correction for quasielastic (e, €) scattering
(2004). Added advantage of eikonal is that even though it has similarities
WKB approximation but unlike WKB approximation its variable is not de-
scribed by the trajectory of the particle; which in general is complicated.
Once a special direction can be established for a potential, eikonal approxi-
mation can give a very close results to that of manually calculated. A large
class of potentials, and for all momentum transfers, each term of the eikonal
multiple-scattering series gives the asymptotic value (for large incident wave
numbers) of the corresponding term in the Born series. This property, to-
gether with the requirement of unitarity, implies that in weak-coupling situ-
ations the eikonal approximation is consistently worse than the second Born
approximation. For intermediate couplings we find that the eikonal method
is remarkably good at all angles for potentials of the Yukawa type. For the
case of strong coupling (|Vy| > E) we find that for all potentials studied there
is good agreement between exact and eikonal results at small angles.
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