FOG BASED SERVICE OHEENTED
IOT INFRASTRUCTURE

BRAC

UNIVERSITY
V

Inspiring Excellence

SUBMISSION DATE: DECEMBER 14, 2016

Tasnia Ashrafi Heya (13101200)
Department of Computer Science and Engineering

Sayed Erfan Arefin (13101223)
Department of Computer Science and Engineering

Kowshik Dipta Das Joy (13101206)
Deparment of Computer Science and Engineering

Md. Arshad Hossain (13101183)
Department of Computer Science and Engineering

Supervisor:

Amitabha Chakrabarty, Ph.D
Assistant Professor
Department of Computer Science and Engineering

Declaration

We, herebydeclare that this thesis is based on results we have found ourselves.

Materials of worlkirom researchers conducted by others are mentioned in references.

Signature of Supervisor Signature of Authors
Amitabha Chakrabarty, Ph.D Tasnia Ashrafi Heya
Assistant Professor (13101200)
Department of Compat Science and

Engineering

BRAC University

Sayed Erfan Arefin
(13101223)

Kowshik Dipta Das Joy
(13101206)

Md. Arshad Hossain
(13101183)

ABSTRACT

The Internet of Things(loT) can befthed as a network connectivity bridge between
people, systems and physical world. With the increasing number of 0T devices and
networks, dealing with enormous number of data efficiently is becoming more and
more challenging for the present infrastruetwhich is a very big matter of concern.

In this paper, we depicted the current infrastructure and proposed another model of
loT infrastructure to surpass the difficulties of the existing infrastructure, which will
be a coordinated effort of Fog computirgmalgamation with Machin®-
Machine(M2M) intelligent communication protocol followed by incorporation of
Service Oriented Architecture(SOA) and finally integration of Agent based SOA.
This model will have the capacity to exchange data by breaking dovemdizply

and methodically with low latency, less bandwidth, heterogeneity in less measure of

time maintaining the Quality of Service(QoS) precisely.

Acknowledgement

We would like to express our gratitude to the Almighty who gave us the opportunity,

detemination, strength and intelligence to complete our work.

A very big and humble thank you goes to our supervisor Dr. Amitabha Chakrabarty
who has constantlgelievedin us anchas been there for us through thick and thins
of the thesis and continuously sl us to complete our work in time. We are

fortunate and grateful to be able to work under his supervision.

Lastly, our gratitude goes to the faculty members of the Department of Computer
Science and Engineering, BRAC University from whom we gained tblkdge,

appreciation and help for the completion of our thesis work.

Table of Contents

Chapter 1 INTRODUCTION.ciiiiiiieeeee e ceeimmme e vnena e 1
I A 01 oY ¥ o 1o o P 1
i @ o 11 =Tox 1Y USSP 2
S T Y/ [0 1A VZ= 14 o o 3
1.4 ThesSiS OULIINE.......ccoo it 4.

Chapter 2LITERATURE REVIEW.........cooiii e 5
2.1 First Layer Of Fog Computing (M2m Communication)...................... 8.

2.1.1 Data StreamS. ot eeeme e 8.
2.1.2 Configuration of Resource Description ARL..........covvvvviiiiiiieeeeennnn. 9
2.1.3 Communication Between M2M............ccoeeeiiiiiiieeeiiciiee e 10

2.2 Second Layer Of Fog Computing (Service Oriented Architecture(SIQA))

2.2.1 10T Information MOdel............uuuueeeniiiiiiiireeeeeeee e 11
222 ENtity MOAEL......eiiiie e 12
2.2.3 ReSOUIrCe MOAEL........uuuuuiiiiiiiiii e 12
224 10T Service MOEel.........cooovieiiiiie e 13
2.2.5 1OT SEIVICES.....cciiiieeeeeeeeiiiiiiitimmme e e et et ettt e et eee ettt smnne e e eeeeeeeeeeeeeeaees 14
2.2.6 Service Composition Model..............uuuiiiiiiiiiccnieieeeeeiiiiiiie 15
2.3 Third Layer Of Fog Computing (Agent Baseda}.............ccccevvvvvviiinees 16
2.3.1 Component ManAQET.........ccoeuuuiieiiiiiicaeae e e et e eeei e e eeemmmee e 17
2.3.2 WOrKflOW Man@ger...........ccuviiiiiiiiiiiiimmme e 17
2.3.3 Trust ManagemMEeNL.........ooeuiiiiiii e eeeee e ere e 18

2.4 Fourth Layer Of Fog Computing (Generalized Cloud)..................... 19

24.1 Fog Nodesinthe Cloud.........ccccovviiiiiiiiiceen e, 19
242 The Cloud Platform..........ccccuuiiiiiiiiiieeeiiiie e 20
2.5 FOG COMPUTING APPLICATION FOR IOT.....coiiiiiiiieeeiiie e 20
Chapter 3PROPOSEDNFRASTRUCTURE AND IMPLEMENTATION......23
3.1 Proposed INfrastrUCTUIE...........uuuiieieiiieiieeme e 23
3.2 IMpPlementation.............coiii i 26
3.3 PSEUAOCOUE......coiiiiiiiee e 30
3.3.1 Pseudocode for Implementation Phase.l.........c.....cccoviiceeeeeeennn 30
3.3.2 Pseudocode for Implementation Phase2.............cccccevvveeeeennnnnnn. 36
3.3.3 Traditional Cloud COMPULING:.........ciiiiiiiiiiiiiiieer e 42
334 FIOWChAIS. ..o 44

3.4 Comparison between Traditional and Proposed Infrastructure algorithms:

47

341 LeSS LAteNCY e e 47
3.4.2 LoCaAl BACKUP:.....ciiiiiiieeeiiiiiit et 48
3.4.3 Less Bandwidth and Traffic:...........oooiiiiiiiiiii e 48
Chapter 4 RESULT ANALYSIS.....ooiiiiiiie it sreeeiee e smeees 49
4.1 Result Gaph in Individual VMS............coooiiiiiiiiii e 49
4.1.1 Result Graph Using DatadQg:...........ccceuvrviiiiiieeeiii e 50
4.1.2 Result Graph Using Azure VM Monitoring:...........cceevvvvvvvvvvemnnn.. 56
4.2 Efficiency of Our INfrastruCture............oeiiiiiiiiiiiecce e e 61
Chapter 5 CONCLUSION.....uuiiiiiiiiiiee et eneer e 63

5.1 FUTURE CHALLENGES..........oo e

REFERENCES

Vi

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.

List of Figures

loT infrastructure model with FOG implementation...................... 24
Traditional cloud computing model vs fog computing madel........ 19
Deployed virtual machines for test run of our infuastrre................ 27
Deployed VMs in Azure for traditional cloud computing infrastruct@re
SOA request and reSPANSEe........ccceeeeeeevvevimmmreeevviineeeeeeeensnnneeeennnn. 44
CheCKer AQENL... ..o e 45
Update AQENL.........oiiii i eeenn e e e e eennnnn e 2O
Mainserver request and reSPONSE.........ccvvveeeeeerevieemreeeeevvvnineeeennnnn A0
SCUSLIMIL... e rmmr e e e 50
SCUSL2MLL....coiiiieeeee e e e e 51
SCUSLIMLL...oiiiiiee e e e e e 52
N[O 185 It o 53
Conventional Infrastructure ResSUlL...............cvvviivimeeeiiiiiiieeeee, 54
Fog Model's Total Received Data..............ocoovvvvieemeevieeiiiiieeeee, 54
Fog Model's Total Sent Data...........ccoooeevviviiemmeeceiiiiie e e 55
Graphs of SCUSL1IM1 and SCUSLIM2..........cccccvvvvvvvvieemnnnnnnnee. 57
Graphs of SCUSL2M1 and SCUSL3ML..........ccoviiiviiiimiee e, 58
Graphs of TCUSMACHINE1 and TCMBCHINEZ2 59
Graphs of SCUSMAIN vs TCUSMAIN........ccooviiiiiiiiiiccceeeiie 60
Data Consumption vs. Requests Graph...........cccvvevvimmmreniinnnnnn.l 62

Vil

Chapter 1
INTRODUCTION

In introduction we will describabout the Internet of Things and the problennsay
face in thenearfuture. Wealsotalked about the infrastructures available and gave an
overview of what features we have in our infrastruetun later parts we have

described about our infrastructure.

1.1 Introduction

As per measurements in 2016 number of devices associated with Internet achievec
22.9 billion and it is evaluated that this sum will in any event twofold by 2080

view of thisdevelopment rate, this number will cross trillion sooner rather than later.
These devices will be in charge of creating more than quintillions of data which will
be transmitted through the network. Because of discrete development and imprecise
structure, @aking care of such measure of data will involve challenge for present

infrastructure.

loT does not take after a particular infrastructure yet as Internet of Things is a
developing field and numerous compositional models have been proposed by
analysts whih are very nearly getting actualized. These delivered effective results
within specific segments of 10T. In spite of that we still lack a complete functional
model by which we can effectuate in real world. M2M communication protocol, SOA
composition modelAgent based SOA, Fog computing these are some individual
design for various contextual connections of IoT. Yet, each of this architecture

independently lack behind on a few prospects on which other architecture can

1 Statisticahttp://www.statista.com/statistics/471264/aimberof-connecteetlevicesworldwide

perform better. Therefore, we can't thiof them as a complete and impeccably

workable infrastructure which IoT requires for such an enormous number of data.

In this paper, we are proposing an infrastructure which will be a combination of Fog
computing merging with modified Machirie-Machine(M2M) intelligent
communication protocol emanating integration of the service composition model and
Agent based composition which are built upon Service Oriented Architecture(SOA).
This model will be able to transfer data by analyzing reliably and systethatidth
low latency, less bandwidth, heterogeneity in less amount of time maintaining the

Quality of Service(QoS) appropriately.

1.2 Obijective

1 Optimizing the concept of cloud and create a more appropriate way to deliver
data through a geographical distried infrastructure.
Have a better integration and contr
Enhance the cloud model with Fog services for better data process.

1 To improve on latency and data access for@emces by bringing the data
computation ora middleware network instead of an endpoint.

1 Creating easy geographical distribution for faster data analytics antihmeal
data processing on a large scale.

1 Improving user and administration performance by creating adaptive services
for benefitting the ed-users.

1 To have a firm grasp to see what users are using and what services they use ¢

provide them with relevant and instant service in the future.

1 Implement the solution in such a way that every other business can integrate

and adopt with the system.

1.3 Motivation

Our main motivation throughout this thesis was to have a contribution in the
emerging sector of Internet of Things (loT). We wanted to implement a solution by
thinking a few years ahead of us about the rising of technology and the increasingly
amount of data that is to be processed in order to make the Internet of Things a reality.
The topic of Internet of Things (IoT) rose in our minds after we saw the recent
updates and innovations for making objects to sense and reply with the help of
sensorsand various 0T suites. We then realized the integration of these everyday
objects into the Internet is a huge step and this will surely have a big impact on the
net work as there will soon be millions
and thee we were convinced to do research and work for the distribution of data for
the Internet of Things so that we could lessen the huge volumes of data traffic for the

cloud to make a faster and reliable infrastructure.

1.4 Thesis Outline

Chapter 1 is the tnoduction of thesis. We have discussed our motivation and

objectives.

Chapter 2 is the background study that covers the literature review and all the
research work we have doaed projected the basic real life applications of Fog
computing

Chapter 3 isvhere we have proposed a new and better infrastructure for Internet of

Things which complements almost all the drawbacks of the traditional infrastructure.

Chapter 4is the implementation section where we described all the algorithms and
flowcharts we havduilt to prove the validity of our proposed infrastructure and

compared our algorithms with the traditional infrastructure.

Chapter 5is the results of our algorithms projected through graphs and result

comparison with the present cloud computing model.

Chapter 6contains conclusion and discussion about the future aspects of our thesis

and research.

Chapter 2
LITERATURE REVIEW

Consdering the aehoc network, mcreasing usage of network is making people
habituated of social communication applications with requmedacy controlling
opportunities. These applications are restricting users in a fixed networking area
combined with fixed components by communicating through nodes inside a
particular aehoc wireless network instead of communicating through centralrserve
[2]. This wireless aghoc network can be designated as an appropriate solution for
t he data traffic probl em of todayos
communication between different nodes in a particular network and resolving their
next destinabn network are confined within a specific group where the source may
not consist of any information about those groups. Dividing all nodes in two
categories, (i) small size with less popularity and (ii) with many social contacts and
more popularity and tdivide bandwidth in equal parts to utilize network resources
for better performance the traffic through each cell can be routed assuming three
different scenarios (i) Nodes in transmission mode, (ii) Nodes in relay mode and (iii)
Node is in receive modehgre each nodes transmit just one flow at a time and carries
traffic within maximum supportable traffic [2]. But processing these data and
application processing in cloud is very time consuming for large data, sending every
bit of data over cloud channetauses problem of bandwidth at remote places,
depending servers are located which causes slow response time and scalability
Whereas, location awareness with less bandwidth, low latency ardisgeloution

is one of the core requirement of IoT which i$ eotirely possible to handle through

traditional cloud computing by following this structure.

Cloud computing having a significant ramification, is a riotous technology. Despite

everything, it has a few issues in regards to setteicel agreements (SLAYith

security, protection and energy efficiency. Cloud uses three conveyance models
5

Software as a Service(SaaS), Platform as a Service(PaaS) and Infrastructure as
Service(laaS) with various level of security conditions [25]. In the event of Saas, it
cant be guaranteed about the availability of utilization in need [20]. PaaS is not
legitimately arranged for responses of harmful actors on new cloud framework which
prompts unverifiable reviewed application parts [17]. laaS is conveyed from
organization modewhich includes serious security issues. These security issues of
service models of cloud computing can be decreased noteworthy through applying
trust administration principle in the agent based SOA level (third level) of Fog

computing model of our proped infrastructure [10].

Moving all information from loT to the cloud for analysis would require
unfathomable measures of data transfer capacity. Today's cloud models are not
intended for the volume, assortment, and velocity of data that the 10T gen6tates |
as specified in the past passage. Fog computing is a model that empowers extensiv
variety of uses and services to the end clients by amplifying cloud computing model
towards the edge of network. Exchanging information over the network through
internetwithout humaAo-h u ma n ¢ o0 0 p e r a-to-mackin@ sssotiationh, u m«
Is the supremacy of IoT which incorporates elements, for example, versatility
support, extensive variety of gelistribution, availability of wireless accesses and
expansive number ofades make Fog computing, a superior stage for a particular

number of 10T services [18].

From the view of I0T, devices are being able to communicate with each other with
or without any human inference [9]. A wireless sensor network contains large number
of wireless devices considered as the endpoints of the network. Success of 10T is
strongly linked with the collaboration of the end points. Therefore, computation will
need to go beyond traditional mobile computing scenarios that use smart phones,
portables ad evolve into connecting existing objects and embedding systems into

our environment capable of collaborating among them and should be identified

6

having a welldefined functionality and connected to a network [21]. All these must
have their own identitiesphysical attributes and interfaces where they will
seamlessly be connected into the wireless network as active participants, sharing
information whenever and wherever it is needed [7]. Envisioning the practicality of
loT Machineto-Machine (M2M) communiations is an emerging communication
standard that provides pervasive connectivity between devices able to interact

autonomously.

The service oriented architecture is one of the most widely used architectures for
heterogeneous devices. In the other handigla-weighted distributed service

composition model can be used for data acquisition which will convert basic existing
heterogeneous devices into better software units along with complex functionality
added with corresponding QoS features following tHersal time restrictions by

the most appropriate sampling time of specific services. [21] Since this is a
lightweight model it can be used in the lower levels of the fog computing nodes as

they may have lower resources.

For the upper levels of the fog mputing nodes we can use agent based Service
Oriented Architecture. Agent technology suites complex systems based on
distributed computational and information systems. For implementation, we can use
Hydra as it targeted the development of a service odeAiehitecture based
middleware for intelligent networked embedded system which can be deployed on

both new and existing networks of distributed wireless and wired devices [2].

2.1 First Layer Of Fog Computing (M2m Communication)

Breaking down the FOG mod&h the lowest part, M2M devices become both
producer and consumer of data and from these devices will be able to learn and gair
information and knowledge directly with the data fed from things. All these devices
will create data and this huge number dbd#eeds to be send, received and processed
by our current infrastructure. As the number of users (in our case it is also Machine)
and network increases the software system that runs on small scale mockup may lost

their properties.

2.1.1 Data Streams
All the comected devices will transmit data throughout the network possibly

continuously. Some major characteristics of data streams [23],

1 Data objects may come continuously.
9 Stream size may be unbounded and
9 Disordered Distributed systems can change the routéhanefore unknown

data generation process.

In our study of 0T from a data perspective, from the beginning we have to keep in
mind that we have to work differently than normal Internet protocols as in the Internet
of Things, the main actors become the tkirihe ultimate goal is for these machines

to sense and react to the real world for humans. As of 2012 about 2.5 quintillion (2.5
x 1018) bytes of data are created daily [14]. Now, connecting all the things that are
connected would create much more datd #ms vast volume of data processing
become much more critical for existing technologies. Multiple data streams can be
generated at anywhere around the world and can be accessed globally via the Interne
if being made public. Therefore, a large numbetaif streams have to be processed
efficiently to provide reatime monitoring. For each device to be identified devices
stores their configuration in a local database. In case of a smart M2M devices it

8

locally saves a name, model number, hardware typd, uarsion, type and
timestamp to the sensor values which creates metadata for each device [4]. The
management of the M2M devices are done using gateway. Forsamashor legacy
device, the same is done using another gateway called intermediate gd@®ay
which is configured using a predefined model. This gateway makes the connection
between the devices. For better apprehension gateway is diverged into two parts
North and South [11]. The North interface of the gateway which implements an API
to providepush notification containing sensor measurements and assists in dynamic

device discovery where the South interface employs piroayd proxyout.

2.1.2 Configuration of Resource Description API

An initial configuration of the device and its endpoints candreedy XML or JSON

file containing the static description [12]. This API reads the configuration file using
GET request or the file can be pushed to it. The configuration of the device for the

API to be recognized has the attributes,

9 Location- It signifies t he type of deviceds | oc
using GPS cardinates, X and Y value.

1 Id - Unique identification of the device.

1 Name- Name of the device

1 Value- Gives the reading or value of the hardware.

9 Protocol- It provides information on thigpe of request.

1 Proxy-in - URI to which a device with sensor is connected.

1 Proxyout- URI to which a device with actuator is connected.
Then the configuration of the endpoint for the API to be recognized has the attributes,

1 Name- Name of the endpoint.

1 Password Unique password of the endpoint.

1 Tokeni non-cryptographic token for unique identification.

After this the initial configuration files are pushed to the gateway and are examined
by the configuration resource API. Then the device and endpointipiests are
extracted from those files by the API and stored in the local database. Then, when
the device sends a GET request to receive the details of the devices connected to th
gateway, the API responds with the full list of devices and their daesospt
Therefore, from this the devices are forwarded the data they require by the gateway.
This generates the data stream which needs to be transferred which is described ir

the communication segment.

2.1.3 Communication Between M2M
loT Promises to build the gibe where all the Objects around us will be connected to
the Internet and will communicate each other with bare minimum human

intervention. Standardization of communication has been already done

In this paper, we have conducted our work on smart objetitsskationary and nen

stationary.

2.1.3.1 Smart Objects:

In general, Smart Objects are those who can efficiently communicate with Human
or other Objects by following some specified protocols. Using smart object oriented
0T, generally means to use smart comroation orientation objects being reachable
and exploited [14]. But such huge heterogeneous network makes distributed network
and management very compl ex. I nt el | i

service and actions not embedded inside objects.

As described the four major parts of object oriented IoT are [14], the Application

| ayer encompasses applications based

10

infrastructures, the Middleware layer provides as set of mechanisms for the naming,
discovery, higp-level interaction and state management of SOs, the Internet layer
includes application, transport, and network protocols for supporting the

communication with SOs and among SOs, the Smart Object layer offers

programming frameworks and tools enablingdkesign and implementation of SOs.

Calling this narchitecture of Smart O
abstraction and promotes an ecosystem of smart objects based on the Internet. W
find an architecture consisting of sensing layer, appba layer and network layer

[28], which was later extended by cloud assistance [14].

We have a successful almost generic paradigm for smart devices [11]. These devices
store their configuration in the local database system. This paradigm also transmits

metadata. These metadata will be particularly helpful for analyzing data.

2.2 Second Layer Of Fog Computing
(Service Oriented Architecture(SOA))

The nodes that are not at the end of the fog computing architecture will have a
middleware in order to fulfillta di stri buted architectu
going to communicate is a challenging matter. We found some models and before

choosing any of them we would like to discuss the models and their development.

Here the main model i nl alcsensocsegutuators and 6 r

processors which are modeled as resources [8].

2.2.1 10T Information Model
AThi ngso of I nternet of Things can be

things, vehicles etc. Here t Ibyehumaasot i t)

11

agents and involves a device that <can
that gives information on the entity or controls that device possible which is called a
Oresour ceo. A s defined angl gtangardiaed @nidoe svhich w e
offers all required functionalities which will interact with the entities and related
process since the oO0resourceb6 is highl
expose the functionality of a device by accessing its resources. Othésviw
services can access these services in order to provide high level functionalities.
AAssociationo is the relation between
dynamic. The concepts need to be presented such a way that will provide

interoperableand automated human and machine readable representations.

OWL-DL (Ontology Language Description Logic) provides a platform that is formal
and machine processable structure in order to present data collected from different

sources.

2.2.2 Entity Model

An entity can have some properties such as, domain value, location and temporal
values. An entity can have several values for each of these properties. Location can
be Global location or Local location. For global location ontology uses a URI and for

local locationit can be detailed.

2.2.3 Resource Model

Resource model is the main part that represents an entity digitally. Resource model
has some properties of its own like, name, resource id and time zone. Resource als
has a functional location property and anotherhattd known as the resource type.
Which can be an instance of any kind of sensors, actuators or tag etc. The resource

interface is specified by Access Interface that is also interfaced by an Interface Type

12

which is a set of instances used in distributedhrietogies, for example, REST,
SOAP, RPC.

2.2.4 10T Service Model

In 10T service model resources are accessed by services where services provide
functionality. Functionality includes collecting information from entities they are
connected with or manipulate theihysical properties. As we can see the service
based approach is so far the best for IoT context, we would like to use the Service
Oriented Architecture (SOA).

A serviceoriented architecture (SOA) is an architectural pattern in computer
software designin which application components provide services to other
components via a communications protocol, typically over a network. The principles

of serviceorientation are independent of any vendor, product or technology [24].

For the nodes that are not a¢ tbnd but is in a lower level of the fog architecture we

will use the composite model based on the Service Oriented Architecture.

Classic old distributed software architecture doesn't support a network of
heterogeneous devices. So, the solution is to geamiddlevare layer application,

that can handle heterogeneous devices running different services on different
platforms, which provides a dynamic distributed system assuring flexibility and

interoperability along with improving robustness, reliabilitgyailability and

scalability if existing SOA lack proper settings of Almimctional requirements.

A high-level lightweighted distributed service composition model for improvised
data acquisition which will convert basic existing heterogeneous devicdsatter

software units along with complex functionality. This functionality is added with

13

corresponding QoS features following the gefil time restrictions by the most

appropriate sampling time of specific services.

The scalability of the system depksnon the combination of SOA middleware and
the service composition model which maintain the efficiency by ensuring the
rectification of this combination between services by formation instead of providing
the identification of the requesting service, gtining the required function ensures

a lightweight composition system.

2.2.5 10T Services

Services of 10T can be represented by -tiwple. We can show them with this
definition:

loTi Qi 0 "'©@&Q0Y i,"OjOId 0> (1)

Here,

‘O'@ Identification,

0 i= Purpose,

‘OrF Provided Interface,

‘OFE Required Interface,

0 &= Set of Attributes.

This equation charaaiees IoT services from rest of the services on the network [15].

Each 10T service needs to be identified uniquely with an Id or name and we can use
URN (Uniform Resource Name) a kind of URI (Uniform Resource Identifier) for
that. Services are going to peblicly available and accessible for any other IoT

service that requests them with along with a particular purpose.

14

The operation of an IoT service can be either simple or composite where simple
operation defines a service which does not depend onsgheces for transactions
because of having full resources. On the contrary, composite services can be
depended on other services. Moreover, I0T services can act as both provider anc
consumer using different interfaces creating a controlled as well akreyired
mechanism. Here operations are assigned to different ports. Services may use

parameters based on its configuration when it acts as a provider.

2.2.6 Service Composition Model

Composite operations which are the core of this model, can be definedequived
interface (Ir) of the service definition. A service composition map is defined by a set
of predefined services which is more likely to be a static approach. In a dynamic
approach, the service and the called operations are selected in runtinmseosamdgc
information. There is a misinterpretation between dynamic selection and dynamic
composition. Dynamic composition is very powerful that can determine dynamically,

which service can handle the request and increases the complexity in runtime.

Whenan operation is invoked, the requester knows its maximum execution time and
hence, the maximum time it has to wait to receive a response. This mechanism

ensures executing operations with softteak quality properties.

The service composition model wdsveloped using the Graph Theory. Here the
composite operations form the composite map. The relation between these operation:
Is basically the relation between invoker & requested. This composition map can be
seen as a composite graph. Each compositatipeop of a service S can be viewed

as a directed graph:

0 =(0 ,V(G) LG) EG) (2)

15

Where,

0 = the main vertex of the graph and it indicates to the origin service S of the
composite operatioé r).

V (G) = a =t of vertices from the graph that requires a service on which an operation

Is invoked from the composite operation.

L(G) = A set of labels where each label carries a requested operation in a required

service of V(G).

E(G) = A set of edges between the origertexv and a destination vertex in
V(G) which is labeled with an element from L(G). These edges are directed. Each
element here is defined by,

QQQL ,¢€n0) (3)
Here, 0 is the origin service anél 1) is the requested operation in the required

servicel , verifying E(G)P o x L(G)x V(G). [15]

2.3 Third Layer Of Fog Computing (Agent Based Soa)

For the nodes that are in the upper level we can use the agent based compositions t
make complex congsitions and since these nodes have very low chances of having

low resources, the model does not need to be lightweight.

There has been a rise of interest in ontologies as artefacts to represent humar
knowl edge. Whi ch | eads betweenagentd Heceagents t |
work as a glue and the backbone of the system. To make agent based compositior
effective the required three actors aseyvice provider, business process manager

and users.

16

This will make the autonomous agents work togethenake their goal fulfill. The
agents should be able to do some activities which can be listed as: build workflows,

compose the external web services and monitor execution.

An agent based framework (Multi Agent Service Environment) which overcomes the
limitations of JADE, allows dynamically composing Web services. This architecture

Is based on Society of Agents and mostly made up with two components:

2.3.1 Component Manager

Each component manager here is in charge of interacting with one or more web
services. Withthe use of WSIG JADE adon [22]. These can communicate with
web services by converting WSDL messages into ACL messages and vice versa. This
helps to provision flexible services which is based on some business rules maintained
by a rule engine and editaby some operator through an interface. This is titled

AOn the fl yo.

2.3.2 Workflow Manager

Goals:

9 Supporting users to build the workflows
1 Composing external web services

1 Monitoring their execution

This is a complex activity to accomplish and workflow manadees by two

alternative processes:

17

2.3.2.1 Predefined workflow

This helps users to select the most related or accurate workflow from a standard anc
common template used in previous communications. Here the workflow manager
works by matching services, which is pide because of common background

knowledge of the agents based on shared ontology.

2.3.2.2 Dynamic workflow

This creates a new workflow based on user requirements and compose available
atomic services, with the help of a planner. After its creation, it replaedailed or
deprecated or unavailable web services. This also allows users to manually build

workflows.

2.3.3 Trust Management

Local names and the certificates are the main building blocks for the Trust
Management Principles. These systems avoid completalyatized authority and
works as a distributed system which opens up the way to build largeogerer
networks where each node held responsible for its own security and also is in charge
of its own security. They will provide proper credentials to accessh e r nod

resources.

The authorization is very critical and important point for the trust management
because it helps building up the trusted peer to peer network without a centralized
control . Every system s houlRBAGodehisd y f
good abstraction of managing complex systems, large systems and systems like
corporate environments. RBAC follows three things: principle, permissions and

roles.

18

A many to many relationships incorporates with principals and roles whiclataey
associated with and also incorporates permissions with roles. This enables privilege
inheritance schemes among superior and subordinate roles towards other principals
To express properties of authenticable principals, a language has come to being
known as SAML which can associate public keys to local nhames and certify the
relation or links between different namespaces, as it happens in SDSI or SPKI
certificates. Delegation is particularly important as it activates intermediate agents

while acting betwen the human user and the pure service provider.

2.4 Fourth Layer Of Fog Computing (Generalized Cloud)

2.4.1 Fog Nodes in the Cloud

loT-enabled applications run for re@he control and analytics. Data transmission
between fog nodes and |oT devices can be dsimg @ny protocol in real time. This
ensures a very small response time. Fog nodes will have transient storage where dat

can be saved locally and periodically data summaries are sent to the cloud.

Traditional Cloud Computing Model FOG Computing Model

Data Center Data Center
I Cloud I Cloud
Speed of Light

Resiliency

Security

Data Grows Faster
than Bandwidth

Endpoint D Devices

Figure 1. Traditional cloud computing model vs fog computing model

19

2.4.2 The Cloud Platform

After receiving data from Fog nodes, summaries are collected, analyzed on loT data
and data from other sources to generate business insights and depending on thes

insights new application rules caa bonveyed to the fog nodes [9].

2.5 FOG COMPUTING APPLICATION FOR 10T

Billions of 0T devices adds up the number of new types of lIoT devices including
machines connected to a controller using industrial protocols instead of IP.
Continuous data generatiorgeeding the 10T devices should be analyzed rapidly [9].
This is the major reason for introducing Fog computing which is a significant
extension of cloud computing. Instead of utilizing the whole cloud computing
platform, Fog computing reproduces new amgilins and services that enhances

data management and analytics.

Fog Computing interrelates building blocks of cloud such as compute, storage, and
networking services with end devices virtually and traditional Cloud Computing Data
Centers, not necessarilgcated at the edge of network solely. Fog operates on
network edge instead of processing from a centralized cloud which is less time
consuming, every bit of data combining at particular access points rather than sending
over cloud channels results in lessmand for bandwidth and small servers known

as edge servers in visibility of users are established which establish faster response
time and scalability [18].

It should also be mentioned that the very lower end of the fog computing architecture,
data is aly transmitted by the connected objects via M2M communication is filtered

which eliminates the locally analyzable data and remaining data are transmitted to

20

the next layers. Handling the two Exabytes of data generated from the Internet of
Things regularlybecomes easier with Fog computing. Exploding data volume,
variety, and velocity ends up with some challenges which are solved by processing
data closer to requirement and adjacent to edge where produced. Fog computing
avoids necessity of costly bandwiddldditions by offloading gigabytes of network
traffic from the core network and also evades recursive visits to the cloud for data
analysis which results in reduced response time with awareness speed up based o
policy and send selected data to the cloudhistorical analysis and longégrm

storage inside company walls along with ensuring the privacy of sensitive |oT data.

For example, With the semiermanent storage at the highest level and momentary
storage at the lowest level FOG can be used to calattutilize smart grid data
locally and make redlme reports, transactional analytics and data visualization to
the higher level to make proper decisions and send commands to the device actuator
[18]. Moreover, Software Defined Networks (SDN) concepge©G will reveal and
improve vehicular network problems with connectivity, collusions and high packet

loss by increasing vehicle and infrastructure communication and control [21].

Fog enables low latency and context awareness as its nodes providetiooalora

the other hand Cloud provides global centralization. Both Fog localization, and Cloud
globalization are required for many applications, particularly for analytics and Big
Data. Fog collectors consumes the data generated by grid sensors andaddhiees
edge where some of this data are related with protection and control loops that require

reaktime processing [7].

In short, characteristics of Fog computing which make it surpass cloud computing
are edge location, location awareness, low latensypport endpoints with affluent
services at network terminals, geographical distribution with very large number of

nodes in demand of widely distributed deployments as sensor networks in general,

21

large-scale sensor networks to monitor the inherently idisted systems, requiring
distributed computing and storage resources, support for mobilitystimesal
interactions rather than batch processing, supremacy of wireless access,
heterogeneity, fog components must interoperate as well as services must be
fedeated across domains, focuses on the ingestion and processing of the data close

to source.

22

Chapter 3
PROPOSED INFRASTRUCTURE AND
IMPLEMENTATION

3.1 Proposed Infrastructure

Our proposed infrastructure is allotted into several levels of nodes, at the very lower
end, there are the devices or O0Thi ngs:¢
communication protocol. This protocol is particularly beneficial to a very high level
of communication messaging among the
layerthen communicates with the next two following layers which are addressed as
t he OMiddl e Wareb. This is based on t
designated as the O0regionds. The secol
Layer utilizesthe Service Composition model. It is based on Service Oriented
Architecture which is a novel solution in this context and is a very light weight model
that suites devices with lower resources. The third layer of Fog or upper portion of
the Middle Layer ulizes the Agent based composition. Which can compose complex
compositions depending on the available resources. The whole middle layer also
opens up a peer to peer communication network without any centralized control but
secured. This providesa betterti er operabi l ity for the 6
the Fog Computing Architecture. The M2M portion only sends the data which is
required to be sent in the higher levels or it just saves it locally. The local data in the
Higher and Lower Layers of theititlle Layer are also saved in the Fog Computing
Context.

23

loT Infrastructure

Figure 2. 10T infrastructure model with FOG implementation

But in our infrastructure instead of doing that, the Upper Layer of the Middle Layer
learns which service to ilmke in order to get the local data. Which is possible by
using the proper agent from the societyagients This opens up the support of
devices to be executed as the middle layer. The last or the Highest Layer of the

infrastructure is the main cloud sexgiwhere the data is ultimately sent or processed.

24

Our infrastructure tries to utilize every layer properly, which leads to the support for
a wide range of devices. For the security portion of the lower end, we have utilized

the 6Trust management 0

The exsting infrastructure that came into being from the discrete development of 0T
needs to be specifically modeled in order to be properly utilized, characterized and
also make commercially available so that everyone can cope up with that. We believe

that ourproposed model will definitely be able to fulfill these requirements.

In brief, in our proposed model, the first layer of the Fog is designed for Matthine
Machine (M2M) interaction which generally collects data from end devices. The
second layer worksdsed on the service composition model and third layer works
with the agent based composition. At all part of the Fog, the time scales of these
interactions range from seconds to minutes {tiea analytics), and even days
(transactional analytics). It nelés in, the Fog supporting several types of storage,
from shortlived at the lowest layer to sefpermanent at the highest layer. Wider
geographical coverage, and longer time scale can be obtained in higher layers. The
ultimate, global coverage is proviiéy the Cloud, which is used as repository for
data that has a permanence of months and years, and which is the bases for busine:

intelligence analytics [7].

25

3.2 Implementation

In our Experimental setup, end devices, SOA Architecture and Agent based
Architecture have been represented using Virtual Machines(VM). For this purpose,
we have chosen Microsoft Azure as an implementation strucimere datacenters

were situated in different geographical positions, this is really efficient and
convenient to pdorm some test runs. Initially we planned to use two different
geographical positions: North Central US, South Central US and Central US. The
VMs represented the SOA, Agent based SOA and machines which were in the same
geographically available data cerstefhe main cloud service could be deployed in

any region.

Figure 3 below shows the deployed infrastructure in Azure using VMs in different
layer. In the above figure, SCUSL1M1, SCUSL1IM2 and SCUSL1M3 are VMs
which represent the layer 1(M2M) in the Sc@ltral US region and NCUSL1M1
belongs to layer 1 in the North Central US region. Next, in the second layer(SOA),
SCUSL2M1 and SCUSL2M2 are in the So@bntral US region and NCUSL2M1
belongs to the North Central US region. In the third layer (Agent basdg, SO
SCUSL3M1 is in the Soutfentral US region and NCUSL3M1 is in the North
Central US region. Finally, CUSMAIN is the main cloud server.

26

CUSMAIMN

Figure 3. Deployed virtual machines for test run of our infrastructure

As mentioned beforan this paper, our infrastructure has four layers from M2m to
main cloud server. In case of implementation, communication between these layers
was established with different algorithm and pseudocodes as the structure and
mechanism of each layer followsfferent approaches. But the request of data
requested by any of the VM and response of that requested data replied by any serve
are represented through a json format. Request format is uniform for any request from

any layer and response format is alsdam for every reply in any layer.

Request JSON format:
{

"REQ" {
"authentication" :{
"USERID" :"user.name"
"password" :"password123"
¥
"token" :"2b2c5f9e6655ce42740584f4c25¢c85p6"
"service" :{
"n ame":"environment;
"components”:"temperature,humidity”

}
}

}

27

Response JSON format:

{
"RES" {
"Token" :"2b2c5f9e6655ce42740584f4c25¢c85p6"
"C.Service" {
"ServiceName":"environment’
"provider" :"metro"

}

Service" {
"ServiceName":[
“temperature”humidity”
1,
"value" :[
"32","65"
]

ptionalParameters" :{

“protocol” :[
"http","http"

1,

"url" [
"http://www.example.com/temperature”
"http://www.example.com/humidity"

1,

"t o
"500", "500"

1,

"timestamp" ;[

"2016-10-0808:26:27',"2016-:10-0808:26:27"

28

In our implementation process, we have defined services in two phases: Simple and
Complex. Complex services are combined with several basic or simple services. For
exampl e, from our Jjson format we <can

service which consists simple service:¢
can be many independent simple services as well which are not generalized in a
particular compx service. The main advantage of this generalization of simple

services as a specific complex service is, there can be plenty of simple services with
same name but different category or me
many categories sucls &nvironment, food, room, water and many more. So, if a

machine wants to request for environment temperature, it is easier to fetch the data
value from the server as a compl ex s

At emperatur eo.

To Implement our preosed infrastructureyf first, webuilt some algorithmgor layer

to layer communications for each layand applied them in datadog in order to
generate graphs to compare the resDid$adog provides monitoring as a service and
to use that we need totagrate datadog agents in azure VMs which sends metric of
the azure VMs to the datadog dashbo8&uat.datadog agents can have delay upto 2
minutes to send thelata to datadog dashboard whioly cause a bit delay in the
generated graph$herefore, we implemented our results in the second phase by VM
monitoring in Microsoft Azure with improved algorithmSo, two phases can be

observed in case of our implemented pseudocodes and results.

Though our proposed infrastructure worked for both of phasel and phase2
pseudocodes and generated proper ebult we implemented our infrastructure
twice to build more efficient algorithms and to get more appropriate results which
will help us to reserve the Quality of Service more precisely.

29

3.3 Pseudocode

3.3.1 Pseudocode formplementation Phase 1

3.3.1.1 Communication from M2M to SOA:

In our communication from M2M to SOA algorithm, SOA is always listening for
incoming requests from M2M devices. When a request for service is received its
saved as a String serviceName. Then getCompleics®alues(serviceName)
met hod iIis called where firstly, a que
database and return value which is saved in variable named result (mysql type). If
result is not null, then a set of basic service names are rdciegt, within a loop,

for each basic services the method getSimpleServiceValues(String
basicServiceName) is called to retrieve all the components or parameters of that
service from the fAsimple_ _serviceso tat
means the serviceName does not belongs to any complex service but it can be ar
independent simple service and therefore getSimpleServiceValues(String
basicServiceName) is called to retrieve data. Now, in the
getSimpleServiceValues(String basicServiceNanmethod, a query runs in

Asi mple serviceso table in database ar
and if the result is null, that means SOA layer does not consist this data, so, it will
send an http request to an Agent in next layer wisdhe third layer(Agent based
SOA) of our infrastructure. On the other hand, if result is not null, then within a loop,
all the parameters are retrieved with values and then the difference between requeste
timestamp and response timestamp to obserteeifttl has expired or not and it
exceeds the ttl then the request is sent again and an agent will update the table an
response is retrieved again after update in a different thread. The algorithm is given

below:

30

Algorithm1. ServiceBootstrap(Sevice sketomplexServiceValues(String
serviceName), getSimpleServiceValues(), ttiCount(String serviceName, Stri

timestamp)

/* SOA data fetch, wait for request from M2M, Received request */

String serviceName

Call getComplexServiceValues(serviceName)

Intialize Chject serviceResult [Map<String, String> valueresult.size()]

If (valueresult is not null) then

k=0

for (Object i: valueresult.keyset()) {

serviceResult[k] = new M2MReply(i.toString(), valueresult.get(i).toString())

k++

}

getComplexServiceValues(StringrsiceName):

result = query for searching all basic services of requested complex service
if (result is null) then

call getSimpleServiceValues(String serviceName)

else

for (every basic service)

call getSimpleServiceValues(String basicServiceName)

getSimpeServiceValues(String serviceName):

result = query for searching requested service and values from simple servi
table

if(result is null) then

send http request to agent based on that region

31

else

for(Object i: result.res.keySet()){

Map<String, String>itmestampresult.put(serviceName,timestamp)
Map<String, String> ttlresult.put(serviceName,ttl)

Map<String, String> valueresult.put(serviceName,value)
Map<String, String> urlresult.put(serviceName,url)

serttl = Call ttiCount(serviceName, timestamp)

If (ttl - serttl < 0) then

http request to url for latest value

return valueresult.put(serviceName, value)

ttiCount(String serviceName, String timestamp):
st = MiliSeconds(timestamp)

ct = currentTimelnMilis()

diff = ct1 st

return diff

3.3.1.2 Communication from SOA tdAgent based SOA:
We have divided our Agent based SOA in three parts, Reply Agent, Update Agent

and Fellow Agent.

Prioritizing the services based on how frequently they are requested, success rate an
up ti me, t he agents detcd dewhiash ane MmAIr
served at the first place. A Reply Agent always keeps listening requests sent from
layer two(SOA) and an Update Agent also keeps updating the simple services

through HTTP request based on priorities.

32

In our communication fromalyer two (SOA) to layer three (agent based SOA)
algorithm, a reply Agent of layer three is always listening for incoming requests from
layer two and an update Agent also continuously updates simple service values via
HTTP request based on priority wheraopty is fixed depending on request or
update counts which increased every time a service is requested. For the respons
sent by the agent based SOA executes getComplexServiceValues(String
serviceName) and getSimpleServiceValues(String basicServiceNdnud) works

the same way described in SOA to fet
database. But here if it receives a null value it requests fellow agents situated in its
own region for the service. If the service is still not found it requests timeseiver

for the service. After that increaseUpdateCount(serviceName) is called to increase
the Aupdate _counto of that service by
from the update agent is call edseéoviupe
table based on the HAupdate_ _count 0. T
observing the request rate of the services and if several services have the sam:

update_count, then it observes the most recent update timestamp.

The update agent ondlother hand continuously updates the simple service values.
For updating, it calls the updateTable() method in which all the complex services are
retrieved in priority based order and runs a loop to call updateComponents(String
serviceName) to retrieversple service URL and make an http request to the main
server through that URL and get fdfval uce
serviceName, String serviceVal ue, Str

Attl o of thamtsémwmwikaue itmabtlkrked dagabase

The fellow agent is called when an agent based SOA receives null after querying in
database. This agent also executes getComplexServiceValues(String serviceName
and getSimpleServiceValues(String basicServiceName) and respotidsthei

Avalueodo to its requested fellow agent.

33

Algorithm 2. ReplyAgent(Sevice s): getComplexServiceValues(String
serviceName), getSimpleServiceValues(String serviceName),

increaseUpdateCount(String serviceName)

[* Agent based SOA data fetch, wait for request from SOA, Received reque
String serviceName

updateAgent ua = new updateAgent();

Call getComplexServiceValues(serviceName)

Call increaseUpdateCount(serviceName);

Call ua.increasePriority(serviceName);

Intialize Object serviceResult [Map<String, String> valueresult.size()]
If(valueresult is not null) then

k=0

For(Object i: valueresult.keyset()) {

serviceResult[k] = new M2MReply(i.toString(), valueresult.get(i).toString())
k++

}
increaseUpdateCount(String seeName):

l ncrease and update fiupdate_count (

getComplexServiceValues(String serviceName) and getSimpleServiceValug

String serviceName) is same as explained in SOA

Algorithm 3. UpdateAgent(Sevice s): updateTablafpdateComponents(String
serviceName), updateValues(String serviceName,String serviceValue),

increasePriority(String serviceName), changePriority(String serviceName, ir

34

[* Update Agent always runs updateTable() in the background */
updateTable():

reault = query for all available complex service by priority
csname[number of received services]

foreach (i : for all values of csname()])

CallupdateComponents(csnameli])

UpdateComponents(serviceName):

result = query for simple service
Make threads ansend http request and get new value from that url

value = http response

Call updateValues(serviceName, value)

updateValues(String serviceName, String serviceValue):

Update simple service value to 0Ase
increasePriority(StringerviceName):

Get complex services with decreasing update_count

foreach(l : complex_services)

Call changePriority(complex_serviceName, i+1)

changePriority(String serviceName, int i):

Set and update priority to Ai o0 of

Algorithm 4. fellowAgent(Sevice s): getComplexServiceValues(String
serviceName), getSimpleServiceValues(String serviceName),

increaseUpdateCount(String serviceName)

[* Agent based SOA data fetch, wait for request from SOA, Received reque

35

Ip = ip addresses of atier agent based SOAs
getComplexServiceValues(String serviceName) and getSimpleServiceValug
String serviceName)

Is same as explained in SOA

increaseUpdateCount(String serviceName):

Is same as explained in agent based SOA

3.3.1.3 Communication from third hyer to main server:

When second and third layer is unable to fetch the requested service or data, ther
agent sends an http request to the main server. After getting the request from third
layer, the main server call the getComplexServiceValues(StringcsBiame)
method which follows exactly similar algorithm described in section |
(Communication from M2M to SOA) along with the getSimpleServiceValues(String
serviceName) using the main cloud server(main_server database) except the metho
named ttiCount(Sng s er vi ce Name, String timest

need to send any http request.

3.3.2 Pseudocodéor Implementation Phase2
LY GKS a8$02yR LKIaAaS 2F f3I2NRAIGKYS 2y
YR &/ 2YYdzyAOF GA2Y T NERHavefpdeh impraved lard thg (i

rest of the algorithms are the same as phasel.

36

3.3.2.1 Communicationfrom End Device to SOA

For communication within the end devices and SOA, a server is always running to
process any request that comes from the end devices. Any rélgaiebias been
received is saved as a String fAservic
upon which runs a query in fAicompl ex_s
returns mysql type variable definite as result. If the return value is not eull th
required set of basic services are recieved. If result is not null, then a set of basic
service names are received. Next, within a loop, for each basic services the methoc
get_Simple (String cs_id) is called to retrieve all the components or paramwieters
that service from the fAsi mple_services
that means the serviceName does not belongs to any complex service but it can be a
independent simple service and therefore get Simple(String cs_id) is called to
ree ri eve dat a. Now, in the get Simple |
table in database and stores all the parameters in the result variable and if the resul
Is null, that means SOA layer does not consist this data, so, it will send an T@&® Sock
request to an Agent in next layer which is the third layer (Agent based SOA) of our
infrastructure. On the other hand, if result is not null, then within a loop, all the
parameters are retrieved with values and then the difference between requestec
timestamp and response timestamp to observe if the TTL has expired or not and it
exceeds the ttl then the request is sent again and an agent will update the table an

response is retrieved again after update in a different thread.

37

The algorithm is given belv:

Algorithm1. SOA: M2M_Response search(), get_complex(),get_simple(Stril
csid), get_simple(), ttiCount(String serviceName, String timestamp)
Class SOA:

M2M_Response search():

if (cs_id !'= null) then get_simple(cs_id)
else then
get_simple()
if (response.B_Service.isEmpty()) then
return null

return response

String get_complex():
HashMap res = get_complex_services_from_db()
if ((res.get("csid")).isEmpty()) then return null
return res.get("csid")).get(0)

void get_simple(String csid):

HashMap res = select_from_simple_with_relation(csid)
rowLength = res.get('ss_name").size()

for (inti=0; i <rowLength; i++) {
Simple_Service ss = (new M2M_Response(}y.n&imple_Service()
$s.Ss_name = res.get("ss_name").get(i)

ss.ss_value =res.get("ss_value")).get(i)
response.B_Service.add(ss) }

void get_simple():

38

HashMap res = select_from_simple(SERVICE_NAME)
if (!(res.get("ss_name")).isEmpty()) then
int rowLength = res.get("ss_name")).size()
for (inti = 0; i < rowLength; i++) {
Simple_Service ss = (new M2M_Response()).new Simple_Servi
$s.Ss_name = rget("'ss_name").get(i)
ss.ss_value = res.get("ss_value").get(i)
response.B_Service.add(ss) }
ttiCount(String serviceName, String timestamp):
st = MiliSeconds(timestamp)
ct = currentTimelnMilis)
diff = ctT st

return diff

3.3.2.2 Communication from SOA to Agent based SOA

We havealreadymentioned about the three types of agents whichRaely Agent,
Update Agent and Fellow Agerih the second phase of our implementation only the
reply agent is improved as Checker agent and rest of the agent follows the phasel

algorithms.

For the response sent from agent to the second layer, always executes
Achecker Agent o i nner cl ass under t he
determines where tgo and how to get the result. There are two methods inside
AChecker Agent 06 which are get compl ex(
throughout its own database which works the same way described in SOA to fetch
t he values fr om 0 abgse.But iflit ceoekes@ null adiue & o

39

requests its fellow agents for the service. If the service is still not found it requests

the main server for the service.

One additional thing from SOA server is that, these two methods also increases the
Aupdcaadwnt 6 of that service by one and

called to update the pri orbletbasedoon the er
update_count.

Algorithm 2. AgentSociety: SOA_server compile(),CheckerAgent(String
serviceName)CheckerAgent(String serviceName, List a),
get_simple(),get_simple(String csid), increaseUpdateCount(String

serviceName)

Class AgentSociety:
final M2M_Request req;
AgentSociety(M2M_Request req):

this.req = req;

SOA _server compile():
CheckerAgent ca
if (req. COMPONENTS.isEmpty()) then ca = new
CheckerAgent(req.SERVICE_NAME)
else then ca = new CheckerAgent(req.SERVICE_NAME,
req. COMPONENTS)
if (ca.result '= null) then
call increaseUpdateCount(String SERVICE_NAME)
retum ca.result

return null

40

Class CheckerAgent:
SOA_server result = null
final mysqgl DB = mysq|l()
final String SERVICE_NAME
CheckerAgent(String serviceName):
this.SERVICE_NAME = serviceName
call get_complex()
if (getReslt() == null) then call get_simple()
else then call get_simple(result.C_Service.csid)
CheckerAgent(String serviceName, List a):
this.SERVICE_NAME = serviceName
call get_complex()

if (getResult() != null) then call get_singglesult.C_Service.csid, g

void get_complex():
HashMap res = select_from_complex_db(SERVICE_NAME)
if (!(res.get("csid")).isEmpty()) then
result = SOA_server()
Complex_Service cs = (new SOA_server()).new Complex_&S=jvi
add res.get(all cs values).get(0) to all cs column

result.C_Service = cs

void get_simple():
HashMap res = select_from_simple_db(SERVICE_NAME)
if ((res.get("ss_name")).isEmpty()) then

result = SOA_server()

41

Simple_Sevice ss = (SOA_server()).new Simple_Service()
add res.get(all ss values).get(0) to all ss collumn

result.B_Service.add(ss)

void get_simple(String csid):
HashMap res = select_from_simple_with_relation_db(csid))
rowLength = re.get("ss_name").size()
for (inti = 0; i <rowLength; i++) {
Simple_Service ss = (new SOA_server()).new Simple_Service()
add res.get(all ss values).get(i) to all ss collumn

result.B_Service.add(ss)

void get_simple(String csid, Arraysli optionalParam):
for (int ii = O; ii < optionalParam.size(); ii++) {
HashMap res =
select_from_simple_with_optional_param_db(csid,optionalParam.get(ii)
if (res.containsKey("ssid") && !(res.get("ssid")).iIsEmpty()) then
Simple_Sevice ss = (new SOA_server()).new Simple_Service()
add res.get(all ss values).get(0) to all ss column }

result.B_Service.add(ss)

increaseUpdateCount(String serviceName):

l ncrease apuatepdauat du dyliMmDdabase |

3.3.3 Traditional Cloud computing:

Figure 4 shows the deployed present infrastructure in Azure using VM. Among the

V Ms , I n the first | ayer end devices 0

42

and ATSCUSMACHI NE3 0 &auteCendral USu eegiom dand i n
ATNCUSMACHI NE10 is in the North Centra

the main cloud server.

TCUSMAIN

TSCUSMACHINE1 TSCUSMACHINE2 ISCUSMACHINES TNCUSMACHINE1

Figure4. Deployed VMs in Azure for traditional cloud computing infrastructure

In case of implementing present computing infrastmgstthe main server directly

gets the request from end devices in same json format described before. Afterwards
the main server fetch service from th
reply to the end devices through json response format. §kd algorithm is
described below:

Algorithm 5. serverCommunication(Service s):

Mysql result = query for searching service data from main server TCUSMA
Object [] serviceresult of result size

for(Object i: result.res.keySet()){

Map<String, String> valuesult.put(serviceName,value

serviceresult[k] = new endReply(i.toString(), valueresult.get(i).toString())
k++ }

43

3.3.4 Flowcharts

3.3.4.1 Reguest and Response of SOA

New M2M Request

Listening for New Parse Requested . Query Through
Request > JSON —»| Get Service Name) Database

Getall the Simple
Service Under This |4

Check if it a complex service

Complex
]
[¢]
£
= Query Database for
this Simple Service
Result
Optional Param Exists in Simple Service Found
Request
Prepare Response 3
JSON v B
5 g
8 22
o
o o
@]
2
Py Yes fall parameters No | »| Requestto Agent
:; exists in result q g

Reply to M2M and Wait for Agent Repl
_ ait for Agent Re
close Connection Agent Reply with servies ’ >

Update Self
Database

Figure 5. SOA request and response
44

3.34.2

Request

Prepare Response
JSON

A1day NSOr

Reply to SOA and
close Connection

Listening for New

Checker Agent

Parse Requested Get Service Name
and —3
JSON
REQtype
Reply Agent

Get all the Simple

Service Under This |«

Complex
Yes

sy

Optional Param Exists in
Request

SATAIAS
mm A1doyy yueSy

Update Self Database

A

GetReply |€ Rqu::‘t’ehr/[am

Check if it a complex service,

Query Database for
this Simple Service

nsay

Simple Service Found

NOSI
paisanbayy

Fellow Agent

w| Searchers for other

Request to Fellow

Agent

Result is not null

Figure 6. Checker Agent

Checker Agent

Y

Select an agent
with higher
Priority

ore Live Agen

SN

Forward Request

Get Agent Reply [

Wait for Reply

Demote
Agentt

A

45

3.3.4.3 Update Agent

Select best source
from Database

Get Simple Service
List

k4

o

Get Next Simple
Service

Yes Mo

+

Send update Reguest

Get Reply

b J

Update Self
Database

-

Service validity expired

Figure 7. Update Agent

46

3.3.4.4 Agentto Main Server Communication

. ..
/ \ Query Through
Listening for MNew .| Parse Reguested . uery Throug
(Request ,J' = JSON —» GetService Mame |—™ Database
~
; Yes
Get all the Simple ey
Service Under This [SlEL |f;"fa|rsw?:§nmplex
Complex
P Result No
e T W
\\ JOSN Reply (1
Reply and close | Prepare Response | Query Database for
(Connection ‘ JSON | this Simple Service
. -

Figure 8. Main server request and response

3.4 Comparison between Traditional and Proposed Infrastructue
algorithms:

3.4.1 Less Latency:

If we consider the worst case in our proposed infrastructure model, three end devices
inthesouttc ent r al US ASCUSL1IM10, ASCUSL1IM2
service. Both ASCUSL1M20 and #ASCaesL 1M
second layer without requesting for the same service to the main server which reduces
latency as it was saved in second and third layer while fetching for SCUSL1M1. On
the other hand, in traditional algorithm the main server will get request thre tim
for t he s ame service by ATSCUSMACHI
ATSCUSMACHI NE3o.

47

3.4.2 Local Backup:

If for any reason the main server is not available or get, the end devices can get
response from the second and third layer as they have stored the valeasawmh
databases. But for the traditional infrastructure if the main server is unavailable the

whole communication is halted.

3.4.3 Less Bandwidth and Traffic:

As in our proposed infrastructure can result in less latency than the present
infrastructure, it wil help to decrease the amount of bandwidth and data traffic
because all the requests are not necessarily going to the main server which is the
result of dividing the infrastructure in different layers with locally updated backup

data.

48

Chapter 4
RESULT ANALYSIS

4.1 Result Graph in Individual VMs

A smallscale experiment was performed to monitor the network usage of each of the
VMs for our proposed infrastructure by requesting and responding with JSON
amounting to a few hundred kilobytes. It is to be consideredfdhat largescale

deployment the request and response will exceed by millions and network will be

adjusted to cope up with delivering terabytes of data.

Table 1. VM Information

VM Name Layer Location
SCUSL1M1
SCUSL1M2 Layer 1
SCUSL1MB
South Central US

SCUSL2M1

Layer 2
SCUSL2M2
SCUSL3M1 Layer 3
NCUSL1M1 Layer 1
NCUSL2M1 Layer 2 North Central US

NCUSL3M1 Layer 3

49

4.1.1 Result Graph Using Datadog:

4.1.1.1 Result Graph of South Central US:
The graphs below show the network usage of VMs of South Céiiralhich were

involved with the test environment while the experiment was conducted.

4.1.1.2 South Central US Layer 1:
For a trial within the first layer, request for the same service was sent from every

devi c &SL1IMAGCS Ca t 2: 31: 4)0,a mh §EU JHLZIBKER0am, a t
ASCUSL1M30 at 2:36: 00am.

SULISLIBAT Show | G0M Oox1G, 13848 Oox1G, 2334M « | M
N
5
- 8
2 X
bt SCUSLT M1 oy 3gadroexuzlicip? bdoyrre. slinternal .cloudapponet
A | i | | i i I|I| LLEL B |II
Fod - A I 1 U ! i I |
I| I"h,'.". II) |"I 1l II'. [.II |I'. A III A, A |" i YA o .'ll- i, II. 1 |‘ f .II') Ifll I|I|| -"I|| ' |II |II IIl II| II'-]- A "' i1 'lII'
LSS B A AU, BT LIS AR L R S B s L S B B f'~|l./\a"x|l."-.-"l."..|'.a|.'|..|..| L L LR
0180 0145 B 02203 az:% 2:25 a2:15
Time

Figure 9. SCUSL1M1

50

4.1.1.3 South Central US Layer 2:
Il nitially, VM of the second | ayer naSC

have the service. So, r e quLe3sM1 oo fa tt h2e: 3

(Figure10) in the third layer.

SO 12NN Show | (TR The fast Hi 4| m
)]
o

—
41 Q b LSCUSL2MT . nogdgadroesuziicip2bdoyrre ja intesnal .Clowd app_nsl

| ' ‘ |
||| | It I
FT F |.| |||'-I JIIII| I' ' II II. . II. || [] Ill [I'I n I.I I' | 'l i Ill' III| I|I|| |I| A ||II| |II||'I'I|III I.II 'l IlIII II i I\ 'lllll Il i
RUWRIN w"'l'."nl "." LU AR AsA LA LA LA LI LA LA RABAR AA A KL _lw'.'
Time

Figure 10. SCUSL2M1

4.1.1.4 South Central US Layer 3:
When the service was not even found in the third layer it was sent to the main server

AOSMAI No at 2: 30).Ldtdr,&dom the maingsarveethe Xekult was

saved and sent back to the third layer and after that in the second layer.

51

SCUSLIMT show| (1h Toe Fast o - el *
o
i Q
=
w 8
X
|
FgEl BCUELIM T ncgIgadroesuzlicip2 oy rra. . internal Coudapp. iet
l‘ b | || | | [| | II' 1
w Kb | ||||'||II | ks & b A F A0k i 1| okl
2 | I | | Il | i A A I A4l | | Ll 1 I
"l"u'”':' I'. A Al Al J LY I". AL AN FLA. AR AR Y N "". LA | W" W | - Al .'“'.)| [N '\ll_L-.'I -

Time

Figure 11. SCUSL3M1

Wecanobsrve from ASCUSL2MOAd G(ECUSBEAIMLID
where only SCGWSuLelsM1 of rwoans Aisent but not
as the result was already saved in the second layer while processing for
ASCUSL2M10. Il n the main server, reque:
not sent from ASCUSL 1 M2 dorth GettraliUS @RIcBiE 1 M:
described below. So, ASCUSL1IM20 and 0S¢
the second & third layer.

4.1.1.5 Result Graph of North Central US

For ANCUSL1M1o0, the service needed t
through all the lag r s ANCUSL 2 M1o0, A ACAISEIMAI NN1I0O a
2:36:00am (Figure 14,)5since that was not previously requested by devices within

that region. It follows exactly the same procedure as South Central US.

52

ol | I EER] |
|i || ‘|l ||| '| | l‘l |i||| | |\| I‘I ‘ ||| | (|| ||| || \ |\| ||H ||‘ A |~ ~| “ || ||Ir ' (|’| \ \
LA | ||||||||| IIII\I 1 \",|| A G

'f,” LA ._|||."' Uil |,“| J"”U'l | |l||"'l‘,||.|r L MH," | |_.!"|h|t-m

Figure 12. NCUSL1M1

The figues show network usage in bytesajis) vs time (xaxis) graphs where its
clearly seen that in South Central US layer two VM has network usage of a size of

305bytes and layer one and layer three VMs with a usage of 249bytes.

4.1.1.6 Comparison between Traditiohn@nd Proposed Infrastructure
algorithms (Datadog)

As mentioned before, two experiments were conducted in two different test
environments. Among them, one represented our proposed infrastructure and the
other one represented the conventional infrastractor the sake of computing the
data transactions between the VMs and main cloud server and comparing our
proposed and present infrastructure, same service was requested from four end

devices of different regions as shown in the table 1.

53

system.net.bytes_rovd, system.net.byfes sent shew| G0m o 16 2300 - deris rasad < | s 70

Kilobytes

Figure 13. Conventional Infrastructure Result

After finishing the data processing, our result was projectedi¢in different graphs.
Figure 13 shows the results of the conventional infrastructure where four devices
have requested for the saneewsce in between 3:33:00am to 3:38:00am. If we notice

on the graph, we can observe that the total amount of data both received and sent

shows a constant data consumption.

Kilobytes

WV tn i (W

Time
Figure 14. Fog Model's Total Received Data
54

Kilobytes

A P Yy > ™ ' ot Y
ATETAATAV AR & S ot RTATA VA VA VAV Vi

Figure 15. Fog Model's Total Sent Data

On the contrary,Figurel4 (representing dtal received data) and Figufé
(representing total sent data) symbolizes our infrastructure where the same scenaric
was imposed, in between 2:31:00am t86200am. As indicated before, from the
kilobyte/time graph we can see that there is a big drop of data consumption in the
middle both while receiving and sending data. This data was recorded in at most 15
second interval, which gives this inconsistentwgtoof the graph. Now, comparing

the graphs we can distinctly comprehend that our proposed infrastructure has a very
low amount of network usage as it has a highest usage of 14kb to 11kb where as in

the conventional infrastructure it reaches 70kb to 60khinvthat time limit.

From these results of the described algorithms along with the comparison with

present infrastructure, it can be ensured that our proposed infrastructure surpasses th

55

traditional one in less traffic along with less bandwidth, rdligbthrough trust
management by providing token authentication and heterogeneity maintaining the
Quiality of Service(QoS).

4.1.2 Result Graph Using Azur&M Monitoring:

4.1.2.1 Graphs of Proposed Infrastructure

At the very beginning one of our end device SCUSL1Mlregst ed f or a
x06 at around 9: 30 am and we KOGUTgraphlofs e r \
SCUSL1M1 in figure 16vhich was received by SCUSL2M1 of layer two(SOA) at
the same time as a rise in NETWORK IN graph of SCUSL2Mfigure 17 Next,
becase of not having the service SCUSL2M1, it forwarded the service request (rise
in NETWORK OUT graph of SCUSL2M1 ifigure 17 to SCUSL3M1 which is
located in layer three (Agent Based SOA) as a checker agent (rise in NETWORK IN
graph of SCUSL3ML1 idigure 17. Later, when the service was not even found by
SCUSL3M1, it sent a request for the service to the fourth layer, the main server (rise
in NETWORK OUT graph of SCUSL3M1 in figure 1&nd rise in NETWORK IN
graph of CUSMAIN infigure 19. Finally, the respane of O&éser vi ce x
back to the end device SCUSL1ML1 via third and second layer which can be observed

through a rise in NETWORK IN graph of SCUSL1M1figure 16

56

Kilobytes

Time

Kilobytes

Time

Figure 16. Graphs of SCUSL1M1 and SCUSL1M2

From anotheperspective, we can observe that three service requests were sent by

SCUSL1M2 between 9:35am to 9:45am wher

and the | ast one was O6service yo (ris
figure 16 which were receively SCUSL2ML1 in second layer (rise in NETWORK

IN graph of SCUSL2M1 irfigure 17 at the same time. Now we can notice from
57

