
1

FOG BASED SERVICE ORIENTED

IOT INFRASTRUCTURE

Tasnia Ashrafi Heya (13101200)

Department of Computer Science and Engineering

Sayed Erfan Arefin (13101223)

Department of Computer Science and Engineering

Kowshik Dipta Das Joy (13101206)

Department of Computer Science and Engineering

Md. Arshad Hossain (13101183)

Department of Computer Science and Engineering

Supervisor:

Amitabha Chakrabarty, Ph.D

Assistant Professor

Department of Computer Science and Engineering

SUBMISSION DATE: DECEMBER 14, 2016

i

Declaration

We, hereby declare that this thesis is based on results we have found ourselves.

Materials of work from researchers conducted by others are mentioned in references.

Signature of Supervisor

Amitabha Chakrabarty, Ph.D

Assistant Professor

Department of Computer Science and

Engineering

BRAC University

 Signature of Authors

Tasnia Ashrafi Heya

(13101200)

Sayed Erfan Arefin

(13101223)

Kowshik Dipta Das Joy

(13101206)

Md. Arshad Hossain

(13101183)

ii

ABSTRACT

The Internet of Things(IoT) can be defined as a network connectivity bridge between

people, systems and physical world. With the increasing number of IoT devices and

networks, dealing with enormous number of data efficiently is becoming more and

more challenging for the present infrastructure which is a very big matter of concern.

In this paper, we depicted the current infrastructure and proposed another model of

IoT infrastructure to surpass the difficulties of the existing infrastructure, which will

be a coordinated effort of Fog computing amalgamation with Machine-to-

Machine(M2M) intelligent communication protocol followed by incorporation of

Service Oriented Architecture(SOA) and finally integration of Agent based SOA.

This model will have the capacity to exchange data by breaking down dependably

and methodically with low latency, less bandwidth, heterogeneity in less measure of

time maintaining the Quality of Service(QoS) precisely.

iii

Acknowledgement

We would like to express our gratitude to the Almighty who gave us the opportunity,

determination, strength and intelligence to complete our work.

A very big and humble thank you goes to our supervisor Dr. Amitabha Chakrabarty

who has constantly believed in us and has been there for us through thick and thins

of the thesis and continuously pushed us to complete our work in time. We are

fortunate and grateful to be able to work under his supervision.

Lastly, our gratitude goes to the faculty members of the Department of Computer

Science and Engineering, BRAC University from whom we gained the knowledge,

appreciation and help for the completion of our thesis work.

iv

Table of Contents

Chapter 1 INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Objective ... 2

1.3 Motivation ... 3

1.4 Thesis Outline ... 4

Chapter 2 LITERATURE REVIEW .. 5

2.1 First Layer Of Fog Computing (M2m Communication) 8

 Data Streams ... 8

 Configuration of Resource Description API... 9

 Communication Between M2M.. 10

2.2 Second Layer Of Fog Computing (Service Oriented Architecture(SOA)) 11

 IoT Information Model ... 11

 Entity Model ... 12

 Resource Model .. 12

 IoT Service Model .. 13

 IoT Services .. 14

 Service Composition Model ... 15

2.3 Third Layer Of Fog Computing (Agent Based Soa) 16

 Component Manager ... 17

 Workflow Manager ... 17

 Trust Management .. 18

v

2.4 Fourth Layer Of Fog Computing (Generalized Cloud) 19

 Fog Nodes in the Cloud .. 19

 The Cloud Platform... 20

2.5 FOG COMPUTING APPLICATION FOR IOT .. 20

Chapter 3 PROPOSED INFRASTRUCTURE AND IMPLEMENTATION........ 23

3.1 Proposed Infrastructure ... 23

3.2 Implementation.. 26

3.3 Pseudocode .. 30

 Pseudocode for Implementation Phase 1 .. 30

 Pseudocode for Implementation Phase2 ... 36

 Traditional Cloud computing: ... 42

 Flowcharts ... 44

3.4 Comparison between Traditional and Proposed Infrastructure algorithms:

 47

 Less Latency: .. 47

 Local Backup: ... 48

 Less Bandwidth and Traffic: ... 48

Chapter 4 RESULT ANALYSIS ... 49

4.1 Result Graph in Individual VMs ... 49

 Result Graph Using Datadog: ... 50

 Result Graph Using Azure VM Monitoring: .. 56

4.2 Efficiency of Our Infrastructure .. 61

Chapter 5 CONCLUSION ... 63

vi

5.1 FUTURE CHALLENGES .. 64

REFERENCES .. 65

vii

List of Figures

Figure 1. IoT infrastructure model with FOG implementation 24

Figure 2. Traditional cloud computing model vs fog computing model 19

Figure 3. Deployed virtual machines for test run of our infrastructure 27

Figure 4. Deployed VMs in Azure for traditional cloud computing infrastructure 43

Figure 5. SOA request and response .. 44

Figure 6. Checker Agent .. 45

Figure 7. Update Agent .. 46

Figure 8. Main server request and response .. 47

Figure 9. SCUSL1M1 .. 50

Figure 10. SCUSL2M1 .. 51

Figure 11. SCUSL3M1 .. 52

Figure 12. NCUSL1M1 ... 53

Figure 13. Conventional Infrastructure Result .. 54

Figure 14. Fog Model's Total Received Data .. 54

Figure 15. Fog Model's Total Sent Data .. 55

Figure 16. Graphs of SCUSL1M1 and SCUSL1M2 ... 57

Figure 17. Graphs of SCUSL2M1 and SCUSL3M1 ... 58

Figure 18. Graphs of TCUSMACHINE1 and TCUSMACHINE2 59

Figure 19. Graphs of SCUSMAIN vs TCUSMAIN .. 60

Figure 20. Data Consumption vs. Requests Graph .. 62

1

 Chapter 1

INTRODUCTION

In introduction we will describe about the Internet of Things and the problems it may

face in the near future. We also talked about the infrastructures available and gave an

overview of what features we have in our infrastructure. In later parts we have

described about our infrastructure.

1.1 Introduction

As per measurements in 2016 number of devices associated with Internet achieved

22.9 billion and it is evaluated that this sum will in any event twofold by 20201. In

view of this development rate, this number will cross trillion sooner rather than later.

These devices will be in charge of creating more than quintillions of data which will

be transmitted through the network. Because of discrete development and imprecise

structure, taking care of such measure of data will involve challenge for present

infrastructure.

 IoT does not take after a particular infrastructure yet as Internet of Things is a

developing field and numerous compositional models have been proposed by

analysts which are very nearly getting actualized. These delivered effective results

within specific segments of IoT. In spite of that we still lack a complete functional

model by which we can effectuate in real world. M2M communication protocol, SOA

composition model, Agent based SOA, Fog computing these are some individual

design for various contextual connections of IoT. Yet, each of this architecture

independently lack behind on a few prospects on which other architecture can

1 Statistica, http://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide

2

perform better. Therefore, we can't think of them as a complete and impeccably

workable infrastructure which IoT requires for such an enormous number of data.

In this paper, we are proposing an infrastructure which will be a combination of Fog

computing merging with modified Machine-to-Machine(M2M) intelligent

communication protocol emanating integration of the service composition model and

Agent based composition which are built upon Service Oriented Architecture(SOA).

This model will be able to transfer data by analyzing reliably and systematically with

low latency, less bandwidth, heterogeneity in less amount of time maintaining the

Quality of Service(QoS) appropriately.

1.2 Objective

¶ Optimizing the concept of cloud and create a more appropriate way to deliver

data through a geographical distributed infrastructure.

¶ Have a better integration and contribution in the óInternet of Thingsô (IoT).

¶ Enhance the cloud model with Fog services for better data process.

¶ To improve on latency and data access for end-devices by bringing the data

computation on a middleware network instead of an endpoint.

¶ Creating easy geographical distribution for faster data analytics and real-time

data processing on a large scale.

¶ Improving user and administration performance by creating adaptive services

for benefitting the end-users.

¶ To have a firm grasp to see what users are using and what services they use to

provide them with relevant and instant service in the future.

3

¶ Implement the solution in such a way that every other business can integrate

and adopt with the system.

1.3 Motivation

Our main motivation throughout this thesis was to have a contribution in the

emerging sector of Internet of Things (IoT). We wanted to implement a solution by

thinking a few years ahead of us about the rising of technology and the increasingly

amount of data that is to be processed in order to make the Internet of Things a reality.

The topic of Internet of Things (IoT) rose in our minds after we saw the recent

updates and innovations for making objects to sense and reply with the help of

sensors and various IoT suites. We then realized the integration of these everyday

objects into the Internet is a huge step and this will surely have a big impact on the

network as there will soon be millions of these óThingsô everywhere. Therefore, then

and there we were convinced to do research and work for the distribution of data for

the Internet of Things so that we could lessen the huge volumes of data traffic for the

cloud to make a faster and reliable infrastructure.

4

1.4 Thesis Outline

Chapter 1 is the introduction of thesis. We have discussed our motivation and

objectives.

Chapter 2 is the background study that covers the literature review and all the

research work we have done and projected the basic real life applications of Fog

computing.

Chapter 3 is where we have proposed a new and better infrastructure for Internet of

Things which complements almost all the drawbacks of the traditional infrastructure.

Chapter 4 is the implementation section where we described all the algorithms and

flowcharts we have built to prove the validity of our proposed infrastructure and

compared our algorithms with the traditional infrastructure.

Chapter 5 is the results of our algorithms projected through graphs and result

comparison with the present cloud computing model.

Chapter 6 contains conclusion and discussion about the future aspects of our thesis

and research.

5

 Chapter 2

LITERATURE REVIEW

Considering the ad-hoc network, increasing usage of network is making people

habituated of social communication applications with required privacy controlling

opportunities. These applications are restricting users in a fixed networking area

combined with fixed components by communicating through nodes inside a

particular ad-hoc wireless network instead of communicating through central server

[2]. This wireless ad-hoc network can be designated as an appropriate solution for

the data traffic problem of todayôs fiber optic based networks [6, 19]. The

communication between different nodes in a particular network and resolving their

next destination network are confined within a specific group where the source may

not consist of any information about those groups. Dividing all nodes in two

categories, (i) small size with less popularity and (ii) with many social contacts and

more popularity and to divide bandwidth in equal parts to utilize network resources

for better performance the traffic through each cell can be routed assuming three

different scenarios (i) Nodes in transmission mode, (ii) Nodes in relay mode and (iii)

Node is in receive mode where each nodes transmit just one flow at a time and carries

traffic within maximum supportable traffic [2]. But processing these data and

application processing in cloud is very time consuming for large data, sending every

bit of data over cloud channels causes problem of bandwidth at remote places,

depending servers are located which causes slow response time and scalability.

Whereas, location awareness with less bandwidth, low latency and geo-distribution

is one of the core requirement of IoT which is not entirely possible to handle through

traditional cloud computing by following this structure.

Cloud computing having a significant ramification, is a riotous technology. Despite

everything, it has a few issues in regards to service-level agreements (SLA) with

security, protection and energy efficiency. Cloud uses three conveyance models

6

Software as a Service(SaaS), Platform as a Service(PaaS) and Infrastructure as a

Service(IaaS) with various level of security conditions [25]. In the event of SaaS, it

can't be guaranteed about the availability of utilization in need [20]. PaaS is not

legitimately arranged for responses of harmful actors on new cloud framework which

prompts unverifiable reviewed application parts [17]. IaaS is conveyed from

organization model which includes serious security issues. These security issues of

service models of cloud computing can be decreased noteworthy through applying

trust administration principle in the agent based SOA level (third level) of Fog

computing model of our proposed infrastructure [10].

Moving all information from IoT to the cloud for analysis would require

unfathomable measures of data transfer capacity. Today's cloud models are not

intended for the volume, assortment, and velocity of data that the IoT generates [9]

as specified in the past passage. Fog computing is a model that empowers extensive

variety of uses and services to the end clients by amplifying cloud computing model

towards the edge of network. Exchanging information over the network through

internet without human-to-human cooperationôs or human-to-machine associations,

is the supremacy of IoT which incorporates elements, for example, versatility

support, extensive variety of geo-distribution, availability of wireless accesses and

expansive number of nodes make Fog computing, a superior stage for a particular

number of IoT services [18].

From the view of IoT, devices are being able to communicate with each other with

or without any human inference [9]. A wireless sensor network contains large number

of wireless devices considered as the endpoints of the network. Success of IoT is

strongly linked with the collaboration of the end points. Therefore, computation will

need to go beyond traditional mobile computing scenarios that use smart phones,

portables and evolve into connecting existing objects and embedding systems into

our environment capable of collaborating among them and should be identified

7

having a well-defined functionality and connected to a network [21]. All these must

have their own identities, physical attributes and interfaces where they will

seamlessly be connected into the wireless network as active participants, sharing

information whenever and wherever it is needed [7]. Envisioning the practicality of

IoT Machine-to-Machine (M2M) communications is an emerging communication

standard that provides pervasive connectivity between devices able to interact

autonomously.

The service oriented architecture is one of the most widely used architectures for

heterogeneous devices. In the other hand, a light-weighted distributed service

composition model can be used for data acquisition which will convert basic existing

heterogeneous devices into better software units along with complex functionality

added with corresponding QoS features following the soft-real time restrictions by

the most appropriate sampling time of specific services. [21] Since this is a

lightweight model it can be used in the lower levels of the fog computing nodes as

they may have lower resources.

For the upper levels of the fog computing nodes we can use agent based Service

Oriented Architecture. Agent technology suites complex systems based on

distributed computational and information systems. For implementation, we can use

Hydra as it targeted the development of a service oriented Architecture based

middleware for intelligent networked embedded system which can be deployed on

both new and existing networks of distributed wireless and wired devices [2].

8

2.1 First Layer Of Fog Computing (M2m Communication)

Breaking down the FOG model in the lowest part, M2M devices become both

producer and consumer of data and from these devices will be able to learn and gain

information and knowledge directly with the data fed from things. All these devices

will create data and this huge number of data needs to be send, received and processed

by our current infrastructure. As the number of users (in our case it is also Machine)

and network increases the software system that runs on small scale mockup may lose

their properties.

 Data Streams

All the connected devices will transmit data throughout the network possibly

continuously. Some major characteristics of data streams [23],

¶ Data objects may come continuously.

¶ Stream size may be unbounded and

¶ Disordered Distributed systems can change the route and therefore unknown

data generation process.

In our study of IoT from a data perspective, from the beginning we have to keep in

mind that we have to work differently than normal Internet protocols as in the Internet

of Things, the main actors become the things. The ultimate goal is for these machines

to sense and react to the real world for humans. As of 2012 about 2.5 quintillion (2.5

× 1018) bytes of data are created daily [14]. Now, connecting all the things that are

connected would create much more data and this vast volume of data processing

become much more critical for existing technologies. Multiple data streams can be

generated at anywhere around the world and can be accessed globally via the Internet

if being made public. Therefore, a large number of data streams have to be processed

efficiently to provide real-time monitoring. For each device to be identified devices

stores their configuration in a local database. In case of a smart M2M devices it

9

locally saves a name, model number, hardware type, unit, version, type and

timestamp to the sensor values which creates metadata for each device [4]. The

management of the M2M devices are done using gateway. For a non-smart or legacy

device, the same is done using another gateway called intermediate gateway (IG)

which is configured using a predefined model. This gateway makes the connection

between the devices. For better apprehension gateway is diverged into two parts

North and South [11]. The North interface of the gateway which implements an API

to provide push notification containing sensor measurements and assists in dynamic

device discovery where the South interface employs proxy-in and proxy-out.

 Configuration of Resource Description API

An initial configuration of the device and its endpoints can be done by XML or JSON

file containing the static description [12]. This API reads the configuration file using

GET request or the file can be pushed to it. The configuration of the device for the

API to be recognized has the attributes,

¶ Location - It signifies the type of deviceôs location which can be described

using GPS co-ordinates, X and Y value.

¶ Id - Unique identification of the device.

¶ Name - Name of the device

¶ Value - Gives the reading or value of the hardware.

¶ Protocol - It provides information on the type of request.

¶ Proxy-in - URI to which a device with sensor is connected.

¶ Proxy-out - URI to which a device with actuator is connected.

Then the configuration of the endpoint for the API to be recognized has the attributes,

¶ Name - Name of the endpoint.

¶ Password ï Unique password of the endpoint.

10

¶ Token ï non-cryptographic token for unique identification.

After this the initial configuration files are pushed to the gateway and are examined

by the configuration resource API. Then the device and endpoint descriptions are

extracted from those files by the API and stored in the local database. Then, when

the device sends a GET request to receive the details of the devices connected to the

gateway, the API responds with the full list of devices and their descriptions.

Therefore, from this the devices are forwarded the data they require by the gateway.

This generates the data stream which needs to be transferred which is described in

the communication segment.

 Communication Between M2M

IoT Promises to build the globe where all the Objects around us will be connected to

the Internet and will communicate each other with bare minimum human

intervention. Standardization of communication has been already done

In this paper, we have conducted our work on smart objects both stationary and non-

stationary.

2.1.3.1 Smart Objects:

 In general, Smart Objects are those who can efficiently communicate with Human

or other Objects by following some specified protocols. Using smart object oriented

IoT, generally means to use smart communication orientation objects being reachable

and exploited [14]. But such huge heterogeneous network makes distributed network

and management very complex. Intelligence as in ósmartô should be provided with

service and actions not embedded inside objects.

As described the four major parts of object oriented IoT are [14], the Application

layer encompasses applications based not only on SOôs but also on other IT

11

infrastructures, the Middleware layer provides as set of mechanisms for the naming,

discovery, high-level interaction and state management of SOs, the Internet layer

includes application, transport, and network protocols for supporting the

communication with SOs and among SOs, the Smart Object layer offers

programming frameworks and tools enabling the design and implementation of SOs.

Calling this ñarchitecture of Smart Object oriented IoTò which is at higher level of

abstraction and promotes an ecosystem of smart objects based on the Internet. We

find an architecture consisting of sensing layer, application layer and network layer

[28], which was later extended by cloud assistance [14].

We have a successful almost generic paradigm for smart devices [11]. These devices

store their configuration in the local database system. This paradigm also transmits

metadata. These metadata will be particularly helpful for analyzing data.

2.2 Second Layer Of Fog Computing

(Service Oriented Architecture(SOA))

The nodes that are not at the end of the fog computing architecture will have a

middleware in order to fulfill the distributed architecture. The way ñThingsò are

going to communicate is a challenging matter. We found some models and before

choosing any of them we would like to discuss the models and their development.

Here the main modeling concept is óresourceô with all sensors, actuators and

processors which are modeled as resources [8].

 IoT Information Model

ñThingsò of Internet of Things can be anything such as human, car, watch, household

things, vehicles etc. Here the ñentityò is the main focus of interactions by humans or

12

agents and involves a device that can monitor the ñthingò and the portion of software

that gives information on the entity or controls that device possible which is called a

óresourceô. A ñserviceò provides a well-defined and standardized interface which

offers all required functionalities which will interact with the entities and related

process since the óresourceô is highly dependent on the device. The service can

expose the functionality of a device by accessing its resources. Other low-level

services can access these services in order to provide high level functionalities.

ñAssociationò is the relation between services and entities, which can be static or

dynamic. The concepts need to be presented such a way that will provide

interoperable and automated human and machine readable representations.

OWL-DL (Ontology Language Description Logic) provides a platform that is formal

and machine processable structure in order to present data collected from different

sources.

 Entity Model

An entity can have some properties such as, domain value, location and temporal

values. An entity can have several values for each of these properties. Location can

be Global location or Local location. For global location ontology uses a URI and for

local location it can be detailed.

 Resource Model

Resource model is the main part that represents an entity digitally. Resource model

has some properties of its own like, name, resource id and time zone. Resource also

has a functional location property and another attribute known as the resource type.

Which can be an instance of any kind of sensors, actuators or tag etc. The resource

interface is specified by Access Interface that is also interfaced by an Interface Type

13

which is a set of instances used in distributed technologies, for example, REST,

SOAP, RPC.

 IoT Service Model

In IoT service model resources are accessed by services where services provide

functionality. Functionality includes collecting information from entities they are

connected with or manipulate their physical properties. As we can see the service

based approach is so far the best for IoT context, we would like to use the Service

Oriented Architecture (SOA).

A service-oriented architecture (SOA) is an architectural pattern in computer

software design in which application components provide services to other

components via a communications protocol, typically over a network. The principles

of service-orientation are independent of any vendor, product or technology [24].

For the nodes that are not at the end but is in a lower level of the fog architecture we

will use the composite model based on the Service Oriented Architecture.

Classic old distributed software architecture doesn't support a network of

heterogeneous devices. So, the solution is to propose a middle-ware layer application,

that can handle heterogeneous devices running different services on different

platforms, which provides a dynamic distributed system assuring flexibility and

interoperability along with improving robustness, reliability, availability and

scalability if existing SOA lack proper settings of non-functional requirements.

A high-level light-weighted distributed service composition model for improvised

data acquisition which will convert basic existing heterogeneous devices into better

software units along with complex functionality. This functionality is added with

14

corresponding QoS features following the soft-real time restrictions by the most

appropriate sampling time of specific services.

The scalability of the system depends on the combination of SOA middleware and

the service composition model which maintain the efficiency by ensuring the

rectification of this combination between services by formation instead of providing

the identification of the requesting service, prioritizing the required function ensures

a lightweight composition system.

 IoT Services

Services of IoT can be represented by five-tuple. We can show them with this

definition:

IoT ίὩὶὺὭὧὩί = < ὍὨ, ὖί,Ὅὴ,Ὅὶ,ὃὸ > (1)

Here,

ὍὨ= Identification,

 ὖί= Purpose,

 Ὅὴ= Provided Interface,

Ὅὶ= Required Interface,

ὃὸ= Set of Attributes.

This equation characterizes IoT services from rest of the services on the network [15].

Each IoT service needs to be identified uniquely with an Id or name and we can use

URN (Uniform Resource Name) a kind of URI (Uniform Resource Identifier) for

that. Services are going to be publicly available and accessible for any other IoT

service that requests them with along with a particular purpose.

15

The operation of an IoT service can be either simple or composite where simple

operation defines a service which does not depend on other services for transactions

because of having full resources. On the contrary, composite services can be

depended on other services. Moreover, IoT services can act as both provider and

consumer using different interfaces creating a controlled as well as synchronized

mechanism. Here operations are assigned to different ports. Services may use

parameters based on its configuration when it acts as a provider.

 Service Composition Model

Composite operations which are the core of this model, can be defined in the required

interface (Ir) of the service definition. A service composition map is defined by a set

of predefined services which is more likely to be a static approach. In a dynamic

approach, the service and the called operations are selected in runtime using semantic

information. There is a misinterpretation between dynamic selection and dynamic

composition. Dynamic composition is very powerful that can determine dynamically,

which service can handle the request and increases the complexity in runtime.

When an operation is invoked, the requester knows its maximum execution time and

hence, the maximum time it has to wait to receive a response. This mechanism

ensures executing operations with soft real-time quality properties.

The service composition model was developed using the Graph Theory. Here the

composite operations form the composite map. The relation between these operations

is basically the relation between invoker & requested. This composition map can be

seen as a composite graph. Each composite operation op of a service S can be viewed

as a directed graph:

Ὃ = (ὕ , V(G), L(G), E(G)) (2)

16

Where,

ὕ = the main vertex of the graph and it indicates to the origin service S of the

composite operation έὴ.

V (G) = a set of vertices from the graph that requires a service on which an operation

is invoked from the composite operation.

L(G) = A set of labels where each label carries a requested operation in a required

service of V(G).

E(G) = A set of edges between the origin vertex ὕ and a destination vertex in

V(G) which is labeled with an element from L(G). These edges are directed. Each

element here is defined by,

ὩὨὫὩ(ὕ , έὴ , ὺ) (3)

Here, ὕ is the origin service and έὴ is the requested operation in the required

service ὺ , verifying E(G) Ṗ o x L(G)x V(G). [15]

2.3 Third Layer Of Fog Computing (Agent Based Soa)

For the nodes that are in the upper level we can use the agent based compositions to

make complex compositions and since these nodes have very low chances of having

low resources, the model does not need to be lightweight.

There has been a rise of interest in ontologies as artefacts to represent human

knowledge. Which leads to a concept titled ñmarriageò between agents. Here agents

work as a glue and the backbone of the system. To make agent based composition

effective the required three actors are, service provider, business process manager

and users.

17

This will make the autonomous agents work together to make their goal fulfill. The

agents should be able to do some activities which can be listed as: build workflows,

compose the external web services and monitor execution.

An agent based framework (Multi Agent Service Environment) which overcomes the

limitations of JADE, allows dynamically composing Web services. This architecture

is based on Society of Agents and mostly made up with two components:

 Component Manager

Each component manager here is in charge of interacting with one or more web

services. With the use of WSIG JADE add-on [22]. These can communicate with

web services by converting WSDL messages into ACL messages and vice versa. This

helps to provision flexible services which is based on some business rules maintained

by a rule engine and editable by some operator through an interface. This is titled

ñOn the flyò.

 Workflow Manager

Goals:

¶ Supporting users to build the workflows

¶ Composing external web services

¶ Monitoring their execution

This is a complex activity to accomplish and workflow manager does by two

alternative processes:

18

2.3.2.1 Predefined workflow

This helps users to select the most related or accurate workflow from a standard and

common template used in previous communications. Here the workflow manager

works by matching services, which is possible because of common background

knowledge of the agents based on shared ontology.

2.3.2.2 Dynamic workflow

This creates a new workflow based on user requirements and compose available

atomic services, with the help of a planner. After its creation, it replaces the failed or

deprecated or unavailable web services. This also allows users to manually build

workflows.

 Trust Management

Local names and the certificates are the main building blocks for the Trust

Management Principles. These systems avoid completely centralized authority and

works as a distributed system which opens up the way to build large peer-peer

networks where each node held responsible for its own security and also is in charge

of its own security. They will provide proper credentials to access other nodeôs

resources.

The authorization is very critical and important point for the trust management

because it helps building up the trusted peer to peer network without a centralized

control. Every system should ideally follow ñleast privilegeò. The RBAC model is a

good abstraction of managing complex systems, large systems and systems like

corporate environments. RBAC follows three things: principle, permissions and

roles.

19

A many to many relationships incorporates with principals and roles which they are

associated with and also incorporates permissions with roles. This enables privilege

inheritance schemes among superior and subordinate roles towards other principals.

To express properties of authenticable principals, a language has come to being

known as SAML which can associate public keys to local names and certify the

relation or links between different namespaces, as it happens in SDSI or SPKI

certificates. Delegation is particularly important as it activates intermediate agents

while acting between the human user and the pure service provider.

2.4 Fourth Layer Of Fog Computing (Generalized Cloud)

 Fog Nodes in the Cloud

IoT-enabled applications run for real-time control and analytics. Data transmission

between fog nodes and IoT devices can be done using any protocol in real time. This

ensures a very small response time. Fog nodes will have transient storage where data

can be saved locally and periodically data summaries are sent to the cloud.

Figure 1. Traditional cloud computing model vs fog computing model

20

 The Cloud Platform

After receiving data from Fog nodes, summaries are collected, analyzed on IoT data

and data from other sources to generate business insights and depending on these

insights new application rules can be conveyed to the fog nodes [9].

2.5 FOG COMPUTING APPLICATION FOR IOT

Billions of IoT devices adds up the number of new types of IoT devices including

machines connected to a controller using industrial protocols instead of IP.

Continuous data generation regarding the IoT devices should be analyzed rapidly [9].

This is the major reason for introducing Fog computing which is a significant

extension of cloud computing. Instead of utilizing the whole cloud computing

platform, Fog computing reproduces new applications and services that enhances

data management and analytics.

Fog Computing interrelates building blocks of cloud such as compute, storage, and

networking services with end devices virtually and traditional Cloud Computing Data

Centers, not necessarily located at the edge of network solely. Fog operates on

network edge instead of processing from a centralized cloud which is less time

consuming, every bit of data combining at particular access points rather than sending

over cloud channels results in less demand for bandwidth and small servers known

as edge servers in visibility of users are established which establish faster response

time and scalability [18].

It should also be mentioned that the very lower end of the fog computing architecture,

data is only transmitted by the connected objects via M2M communication is filtered

which eliminates the locally analyzable data and remaining data are transmitted to

21

the next layers. Handling the two Exabytes of data generated from the Internet of

Things regularly becomes easier with Fog computing. Exploding data volume,

variety, and velocity ends up with some challenges which are solved by processing

data closer to requirement and adjacent to edge where produced. Fog computing

avoids necessity of costly bandwidth additions by offloading gigabytes of network

traffic from the core network and also evades recursive visits to the cloud for data

analysis which results in reduced response time with awareness speed up based on

policy and send selected data to the cloud for historical analysis and longer-term

storage inside company walls along with ensuring the privacy of sensitive IoT data.

For example, With the semi-permanent storage at the highest level and momentary

storage at the lowest level FOG can be used to collect and utilize smart grid data

locally and make real-time reports, transactional analytics and data visualization to

the higher level to make proper decisions and send commands to the device actuators

[18]. Moreover, Software Defined Networks (SDN) concept in FOG will reveal and

improve vehicular network problems with connectivity, collusions and high packet

loss by increasing vehicle and infrastructure communication and control [21].

Fog enables low latency and context awareness as its nodes provide localization, on

the other hand Cloud provides global centralization. Both Fog localization, and Cloud

globalization are required for many applications, particularly for analytics and Big

Data. Fog collectors consumes the data generated by grid sensors and devices at the

edge where some of this data are related with protection and control loops that require

real-time processing [7].

In short, characteristics of Fog computing which make it surpass cloud computing

are edge location, location awareness, low latency to support endpoints with affluent

services at network terminals, geographical distribution with very large number of

nodes in demand of widely distributed deployments as sensor networks in general,

22

large-scale sensor networks to monitor the inherently distributed systems, requiring

distributed computing and storage resources, support for mobility, real-time

interactions rather than batch processing, supremacy of wireless access,

heterogeneity, fog components must interoperate as well as services must be

federated across domains, focuses on the ingestion and processing of the data closer

to source.

23

 Chapter 3

PROPOSED INFRASTRUCTURE AND

IMPLEMENTATION

3.1 Proposed Infrastructure

Our proposed infrastructure is allotted into several levels of nodes, at the very lower

end, there are the devices or óThingsô which utilizes the Machine to machine (M2M)

communication protocol. This protocol is particularly beneficial to a very high level

of communication messaging among the óObjectsô or óThingsô, intelligently. This

layer then communicates with the next two following layers which are addressed as

the óMiddle Wareô. This is based on their universal and local locations, which we

designated as the óregionôs. The second layer of Fog or the lower one of the Middle

Layer utilizes the Service Composition model. It is based on Service Oriented

Architecture which is a novel solution in this context and is a very light weight model

that suites devices with lower resources. The third layer of Fog or upper portion of

the Middle Layer utilizes the Agent based composition. Which can compose complex

compositions depending on the available resources. The whole middle layer also

opens up a peer to peer communication network without any centralized control but

secured. This provides a better interoperability for the óObjectsô. These layer follows

the Fog Computing Architecture. The M2M portion only sends the data which is

required to be sent in the higher levels or it just saves it locally. The local data in the

Higher and Lower Layers of the Middle Layer are also saved in the Fog Computing

Context.

24

Figure 2. IoT infrastructure model with FOG implementation

But in our infrastructure instead of doing that, the Upper Layer of the Middle Layer

learns which service to invoke in order to get the local data. Which is possible by

using the proper agent from the society of agents. This opens up the support of

devices to be executed as the middle layer. The last or the Highest Layer of the

infrastructure is the main cloud service where the data is ultimately sent or processed.

25

Our infrastructure tries to utilize every layer properly, which leads to the support for

a wide range of devices. For the security portion of the lower end, we have utilized

the óTrust managementô.

The existing infrastructure that came into being from the discrete development of IoT

needs to be specifically modeled in order to be properly utilized, characterized and

also make commercially available so that everyone can cope up with that. We believe

that our proposed model will definitely be able to fulfill these requirements.

In brief, in our proposed model, the first layer of the Fog is designed for Machine-to-

Machine (M2M) interaction which generally collects data from end devices. The

second layer works based on the service composition model and third layer works

with the agent based composition. At all part of the Fog, the time scales of these

interactions range from seconds to minutes (real-time analytics), and even days

(transactional analytics). It results in, the Fog supporting several types of storage,

from short-lived at the lowest layer to semi-permanent at the highest layer. Wider

geographical coverage, and longer time scale can be obtained in higher layers. The

ultimate, global coverage is provided by the Cloud, which is used as repository for

data that has a permanence of months and years, and which is the bases for business

intelligence analytics [7].

26

3.2 Implementation

In our Experimental setup, end devices, SOA Architecture and Agent based

Architecture have been represented using Virtual Machines(VM). For this purpose,

we have chosen Microsoft Azure as an implementation structure. Azure datacenters

were situated in different geographical positions, this is really efficient and

convenient to perform some test runs. Initially we planned to use two different

geographical positions: North Central US, South Central US and Central US. The

VMs represented the SOA, Agent based SOA and machines which were in the same

geographically available data centers. The main cloud service could be deployed in

any region.

Figure 3 below shows the deployed infrastructure in Azure using VMs in different

layer. In the above figure, SCUSL1M1, SCUSL1M2 and SCUSL1M3 are VMs

which represent the layer 1(M2M) in the South-Central US region and NCUSL1M1

belongs to layer 1 in the North Central US region. Next, in the second layer(SOA),

SCUSL2M1 and SCUSL2M2 are in the South-Central US region and NCUSL2M1

belongs to the North Central US region. In the third layer (Agent based SOA),

SCUSL3M1 is in the South-Central US region and NCUSL3M1 is in the North

Central US region. Finally, CUSMAIN is the main cloud server.

27

Figure 3. Deployed virtual machines for test run of our infrastructure

As mentioned before in this paper, our infrastructure has four layers from M2m to

main cloud server. In case of implementation, communication between these layers

was established with different algorithm and pseudocodes as the structure and

mechanism of each layer follows different approaches. But the request of data

requested by any of the VM and response of that requested data replied by any server

are represented through a json format. Request format is uniform for any request from

any layer and response format is also uniform for every reply in any layer.

Request JSON format:

{

 "REQ" :{

 "authentication" :{

 "USERID" :"user.name",

 "password" :"password123"

 } ,

 "token" :"2b2c5f9e6655ce42740584f4c25c85b6",

 "service" :{

 "n ame":"environment",

 "components":"temperature,humidity"

 }

 }

}

28

Response JSON format:

{

 "RES" :{

 "Token" :"2b2c5f9e6655ce42740584f4c25c85b6",

 "C.Service" :{

 "ServiceName":"environment",

 "provider" :"metro"

 } ,

 "B.Service" :{

 "ServiceName":[

 "temperature","humidity"

],

 "value" :[

 "32","55"

],

 "optionalParameters" :{

 "protocol" :[

 "http","http"

],

 "url" :[

 "http://www.example.com/temperature",

 "http://www.example.com/humidity"

],

 "ttl" :[

 "500", "500"

],

 "timestamp" :[

 "2016-10-08 08:26:27","2016-10-08 08:26:27"

]

 }

 }

 }

}

29

In our implementation process, we have defined services in two phases: Simple and

Complex. Complex services are combined with several basic or simple services. For

example, from our json format we can observe that ñenvironmentò is a complex

service which consists simple services such as ñtemperatureò and ñhumidityò. There

can be many independent simple services as well which are not generalized in a

particular complex service. The main advantage of this generalization of simple

services as a specific complex service is, there can be plenty of simple services with

same name but different category or mechanism for instance ñtemperatureò can be of

many categories such as environment, food, room, water and many more. So, if a

machine wants to request for environment temperature, it is easier to fetch the data

value from the server as a complex service called ñenvironmentò which consists

ñtemperatureò.

To Implement our proposed infrastructure, at first, we built some algorithms for layer

to layer communications for each layer and applied them in datadog in order to

generate graphs to compare the results. Datadog provides monitoring as a service and

to use that we need to integrate datadog agents in azure VMs which sends metric of

the azure VMs to the datadog dashboard. But datadog agents can have delay upto 2

minutes to send the data to datadog dashboard which may cause a bit delay in the

generated graphs. Therefore, we implemented our results in the second phase by VM

monitoring in Microsoft Azure with improved algorithms. So, two phases can be

observed in case of our implemented pseudocodes and results.

Though our proposed infrastructure worked for both of phase1 and phase2

pseudocodes and generated proper results but we implemented our infrastructure

twice to build more efficient algorithms and to get more appropriate results which

will help us to reserve the Quality of Service more precisely.

30

3.3 Pseudocode

 Pseudocode for Implementation Phase 1

3.3.1.1 Communication from M2M to SOA:

In our communication from M2M to SOA algorithm, SOA is always listening for

incoming requests from M2M devices. When a request for service is received its

saved as a String serviceName. Then getComplexServiceValues(serviceName)

method is called where firstly, a query runs in the ñcomplex_serviceò table in the

database and return value which is saved in variable named result (mysql type). If

result is not null, then a set of basic service names are received. Next, within a loop,

for each basic services the method getSimpleServiceValues(String

basicServiceName) is called to retrieve all the components or parameters of that

service from the ñsimple_servicesò table. Otherwise, if the query result was null, that

means the serviceName does not belongs to any complex service but it can be an

independent simple service and therefore getSimpleServiceValues(String

basicServiceName) is called to retrieve data. Now, in the

getSimpleServiceValues(String basicServiceName) method, a query runs in

ñsimple_servicesò table in database and stores all the parameters in the result variable

and if the result is null, that means SOA layer does not consist this data, so, it will

send an http request to an Agent in next layer which is the third layer(Agent based

SOA) of our infrastructure. On the other hand, if result is not null, then within a loop,

all the parameters are retrieved with values and then the difference between requested

timestamp and response timestamp to observe if the ttl has expired or not and it

exceeds the ttl then the request is sent again and an agent will update the table and

response is retrieved again after update in a different thread. The algorithm is given

below:

31

Algorithm1. ServiceBootstrap(Sevice s): getComplexServiceValues(String

serviceName), getSimpleServiceValues(), ttlCount(String serviceName, String

timestamp)

/* SOA data fetch, wait for request from M2M, Received request */

String serviceName

Call getComplexServiceValues(serviceName)

Intialize Object serviceResult [Map<String, String> valueresult.size()]

If (valueresult is not null) then

k=0

for (Object i: valueresult.keyset()) {

serviceResult[k] = new M2MReply(i.toString(), valueresult.get(i).toString())

k++

}

getComplexServiceValues(String serviceName):

result = query for searching all basic services of requested complex service

if (result is null) then

call getSimpleServiceValues(String serviceName)

else

for (every basic service)

call getSimpleServiceValues(String basicServiceName)

getSimpleServiceValues(String serviceName):

result = query for searching requested service and values from simple service

table

if(result is null) then

send http request to agent based on that region

32

else

for(Object i: result.res.keySet()){

Map<String, String> timestampresult.put(serviceName,timestamp)

Map<String, String> ttlresult.put(serviceName,ttl)

Map<String, String> valueresult.put(serviceName,value)

Map<String, String> urlresult.put(serviceName,url)

serttl = Call ttlCount(serviceName, timestamp)

If (ttl - serttl < 0) then

http request to url for latest value

return valueresult.put(serviceName, value)

ttlCount(String serviceName, String timestamp):

st = MiliSeconds(timestamp)

ct = currentTimeInMilis()

diff = ct ï st

return diff

3.3.1.2 Communication from SOA to Agent based SOA:

We have divided our Agent based SOA in three parts, Reply Agent, Update Agent

and Fellow Agent.

Prioritizing the services based on how frequently they are requested, success rate and

up time, the agents decides as an ñArtificial Intelligentò, which services should be

served at the first place. A Reply Agent always keeps listening requests sent from

layer two(SOA) and an Update Agent also keeps updating the simple services

through HTTP request based on priorities.

33

In our communication from layer two (SOA) to layer three (agent based SOA)

algorithm, a reply Agent of layer three is always listening for incoming requests from

layer two and an update Agent also continuously updates simple service values via

HTTP request based on priority where priority is fixed depending on request or

update counts which increased every time a service is requested. For the response

sent by the agent based SOA executes getComplexServiceValues(String

serviceName) and getSimpleServiceValues(String basicServiceName) which works

the same way described in SOA to fetch the values from ñagent_lookup_tableò

database. But here if it receives a null value it requests fellow agents situated in its

own region for the service. If the service is still not found it requests the main server

for the service. After that increaseUpdateCount(serviceName) is called to increase

the ñupdate_countò of that service by one and then the increasePriority(serviceName)

from the update agent is called to update the priority of services in ñsimple_serviceò

table based on the ñupdate_countò. The priority of the services is determined

observing the request rate of the services and if several services have the same

update_count, then it observes the most recent update timestamp.

The update agent on the other hand continuously updates the simple service values.

For updating, it calls the updateTable() method in which all the complex services are

retrieved in priority based order and runs a loop to call updateComponents(String

serviceName) to retrieve simple service URL and make an http request to the main

server through that URL and get ñvalueò and ñttlò. Finally, the updateValues (String

serviceName, String serviceValue, String ttl) is called to save the new ñvalueò and

ñttlò of that service in the ñagent_lookup_tableò database.

The fellow agent is called when an agent based SOA receives null after querying in

database. This agent also executes getComplexServiceValues(String serviceName)

and getSimpleServiceValues(String basicServiceName) and responds with the

ñvalueò to its requested fellow agent. The used algorithm is described below:

34

Algorithm 2. ReplyAgent(Sevice s): getComplexServiceValues(String

serviceName), getSimpleServiceValues(String serviceName),

increaseUpdateCount(String serviceName)

/* Agent based SOA data fetch, wait for request from SOA, Received request */

String serviceName

updateAgent ua = new updateAgent();

Call getComplexServiceValues(serviceName)

Call increaseUpdateCount(serviceName);

Call ua.increasePriority(serviceName);

Intialize Object serviceResult [Map<String, String> valueresult.size()]

If(valueresult is not null) then

k=0

For(Object i: valueresult.keyset()) {

serviceResult[k] = new M2MReply(i.toString(), valueresult.get(i).toString())

k++

}

increaseUpdateCount(String serviceName):

Increase and update ñupdate_countò of ñserviceNameò by 1 in Database

getComplexServiceValues(String serviceName) and getSimpleServiceValues(

String serviceName) is same as explained in SOA

Algorithm 3. UpdateAgent(Sevice s): updateTable(), updateComponents(String

serviceName), updateValues(String serviceName,String serviceValue),

increasePriority(String serviceName), changePriority(String serviceName, int i)

35

/* Update Agent always runs updateTable() in the background */

updateTable():

result = query for all available complex service by priority

csname[number of received services]

foreach (i : for all values of csname[])

CallUpdateComponents(csname[i])

UpdateComponents(serviceName):

result = query for simple service ñURLò

Make threads and send http request and get new value from that url

value = http response

Call updateValues(serviceName, value)

updateValues(String serviceName, String serviceValue):

Update simple service value to ñserviceValueò of the ñserviceNameò

increasePriority(String serviceName):

Get complex services with decreasing update_count

foreach(I : complex_services)

Call changePriority(complex_serviceName, i+1)

changePriority(String serviceName, int i):

Set and update priority to ñiò of the ñserviceNameò

Algorithm 4. fellowAgent(Sevice s): getComplexServiceValues(String

serviceName), getSimpleServiceValues(String serviceName),

increaseUpdateCount(String serviceName)

/* Agent based SOA data fetch, wait for request from SOA, Received request */

36

Ip = ip addresses of another agent based SOAs

getComplexServiceValues(String serviceName) and getSimpleServiceValues(

String serviceName)

is same as explained in SOA

increaseUpdateCount(String serviceName):

is same as explained in agent based SOA

3.3.1.3 Communication from third layer to main server:

When second and third layer is unable to fetch the requested service or data, then

agent sends an http request to the main server. After getting the request from third

layer, the main server call the getComplexServiceValues(String serviceName)

method which follows exactly similar algorithm described in section I

(Communication from M2M to SOA) along with the getSimpleServiceValues(String

serviceName) using the main cloud server(main_server database) except the method

named ttlCount(String serviceName, String timestamp) and the main server wonôt

need to send any http request.

 Pseudocode for Implementation Phase2

Lƴ ǘƘŜ ǎŜŎƻƴŘ ǇƘŀǎŜ ƻŦ ŀƭƎƻǊƛǘƘƳΣ ƻƴƭȅ ά/ƻƳƳǳƴƛŎŀǘƛƻƴ ŦǊƻƳ 9ƴŘ 5ŜǾƛŎŜǎ ǘƻ {h!έ

ŀƴŘ ά/ƻƳƳǳƴƛŎŀǘƛƻƴ ŦǊƻƳ {h! ǘƻ !ƎŜƴǘ ōŀǎŜŘ {h!έ have been improved and the

rest of the algorithms are the same as phase1.

37

3.3.2.1 Communication from End Device to SOA

For communication within the end devices and SOA, a server is always running to

process any request that comes from the end devices. Any request that has been

received is saved as a String ñserviceNameò and get_complex() meathod is called

upon which runs a query in ñcomplex_serviceò table within the SOA database and

returns mysql type variable definite as result. If the return value is not null then

required set of basic services are recieved. If result is not null, then a set of basic

service names are received. Next, within a loop, for each basic services the method

get_Simple (String cs_id) is called to retrieve all the components or parameters of

that service from the ñsimple_servicesò table. Otherwise, if the query result was null,

that means the serviceName does not belongs to any complex service but it can be an

independent simple service and therefore get_Simple(String cs_id) is called to

retrieve data. Now, in the get_Simple () method, a query runs in ñsimple_servicesò

table in database and stores all the parameters in the result variable and if the result

is null, that means SOA layer does not consist this data, so, it will send an TCP Socket

request to an Agent in next layer which is the third layer (Agent based SOA) of our

infrastructure. On the other hand, if result is not null, then within a loop, all the

parameters are retrieved with values and then the difference between requested

timestamp and response timestamp to observe if the TTL has expired or not and it

exceeds the ttl then the request is sent again and an agent will update the table and

response is retrieved again after update in a different thread.

38

The algorithm is given below:

Algorithm1. SOA: M2M_Response search(), get_complex(),get_simple(String

csid), get_simple(), ttlCount(String serviceName, String timestamp)

Class SOA:

M2M_Response search():

 if (cs_id != null) then get_simple(cs_id)

 else then

 get_simple()

 if (response.B_Service.isEmpty()) then

 return null

 return response

String get_complex():

 HashMap res = get_complex_services_from_db()

 if ((res.get("csid")).isEmpty()) then return null

 return res.get("csid")).get(0)

void get_simple(String csid):

 HashMap res = select_from_simple_with_relation(csid)

 rowLength = res.get("ss_name").size()

 for (int i = 0; i < rowLength; i++) {

 Simple_Service ss = (new M2M_Response()).new Simple_Service()

 ss.Ss_name = res.get("ss_name").get(i)

 ss.ss_value = res.get("ss_value")).get(i)

 response.B_Service.add(ss) }

void get_simple():

39

 HashMap res = select_from_simple(SERVICE_NAME)

 if (!(res.get("ss_name")).isEmpty()) then

 int rowLength = res.get("ss_name")).size()

 for (int i = 0; i < rowLength; i++) {

 Simple_Service ss = (new M2M_Response()).new Simple_Service();

 ss.Ss_name = res.get("ss_name").get(i)

 ss.ss_value = res.get("ss_value").get(i)

 response.B_Service.add(ss) }

ttlCount(String serviceName, String timestamp):

 st = MiliSeconds(timestamp)

 ct = currentTimeInMilis()

 diff = ct ï st

 return diff

3.3.2.2 Communication from SOA to Agent based SOA

We have already mentioned about the three types of agents which are, Reply Agent,

Update Agent and Fellow Agent. In the second phase of our implementation only the

reply agent is improved as Checker agent and rest of the agent follows the phase1

algorithms.

For the response sent from agent to the second layer, always executes

ñcheckerAgentò inner class under the ñAgentSocietyò class. ñAgentSocietyò

determines where to go and how to get the result. There are two methods inside

ñCheckerAgentò which are get_complex() and get_simple(). These methods query

throughout its own database which works the same way described in SOA to fetch

the values from ñagent_lookup_tableò database. But if it receives a null value it

40

requests its fellow agents for the service. If the service is still not found it requests

the main server for the service.

One additional thing from SOA server is that, these two methods also increases the

ñupdate_countò of that service by one and increase priority from the update agent is

called to update the priority of services in ñsimple_serviceò table based on the

update_count.

Algorithm 2. AgentSociety: SOA_server compile(),CheckerAgent(String

serviceName), CheckerAgent(String serviceName, List a),

get_simple(),get_simple(String csid), increaseUpdateCount(String

serviceName)

Class AgentSociety:

 final M2M_Request req;

AgentSociety(M2M_Request req):

 this.req = req;

SOA_server compile():

 CheckerAgent ca

 if (req.COMPONENTS.isEmpty()) then ca = new

CheckerAgent(req.SERVICE_NAME)

 else then ca = new CheckerAgent(req.SERVICE_NAME,

req.COMPONENTS)

 if (ca.result != null) then

call increaseUpdateCount(String SERVICE_NAME)

return ca.result

return null

41

 Class CheckerAgent:

 SOA_server result = null

 final mysql DB = mysql()

 final String SERVICE_NAME

 CheckerAgent(String serviceName):

this.SERVICE_NAME = serviceName

 call get_complex()

if (getResult() == null) then call get_simple()

 else then call get_simple(result.C_Service.csid)

 CheckerAgent(String serviceName, List a):

 this.SERVICE_NAME = serviceName

 call get_complex()

 if (getResult() != null) then call get_simple(result.C_Service.csid, a);

void get_complex():

 HashMap res = select_from_complex_db(SERVICE_NAME)

 if (!(res.get("csid")).isEmpty()) then

 result = SOA_server()

Complex_Service cs = (new SOA_server()).new Complex_Service()

add res.get(all cs values).get(0) to all cs column

 result.C_Service = cs

void get_simple():

 HashMap res = select_from_simple_db(SERVICE_NAME)

 if (!(res.get("ss_name")).isEmpty()) then

result = SOA_server()

42

Simple_Service ss = (SOA_server()).new Simple_Service()

add res.get(all ss values).get(0) to all ss collumn

 result.B_Service.add(ss)

void get_simple(String csid):

 HashMap res = select_from_simple_with_relation_db(csid))

 rowLength = res.get("ss_name").size()

 for (int i = 0; i < rowLength; i++) {

Simple_Service ss = (new SOA_server()).new Simple_Service()

add res.get(all ss values).get(i) to all ss collumn

 result.B_Service.add(ss)

void get_simple(String csid, ArrayList optionalParam):

 for (int ii = 0; ii < optionalParam.size(); ii++) {

 HashMap res =

select_from_simple_with_optional_param_db(csid,optionalParam.get(ii)

 if (res.containsKey("ssid") && !(res.get("ssid")).isEmpty()) then

Simple_Service ss = (new SOA_server()).new Simple_Service()

add res.get(all ss values).get(0) to all ss column }

 result.B_Service.add(ss)

increaseUpdateCount(String serviceName):

 Increase and update ñupdate_countò of ñserviceNameò by 1 in Database

 Traditional Cloud computing:

Figure 4 shows the deployed present infrastructure in Azure using VM. Among the

VMs, in the first layer end devices ñTSCUSMACHINE1ò, ñTSCUSMACHINE2ò

43

and ñTSCUSMACHINE3ò are situated in the South-Central US region and

ñTNCUSMACHINE1ò is in the North Central US region. Finally, ñTCUSMAINò is

the main cloud server.

Figure 4. Deployed VMs in Azure for traditional cloud computing infrastructure

In case of implementing present computing infrastructure, the main server directly

gets the request from end devices in same json format described before. Afterwards,

the main server fetch service from the ñtraditional_main_serverò database and send

reply to the end devices through json response format. The used algorithm is

described below:

Algorithm 5. serverCommunication(Service s):

Mysql result = query for searching service data from main server TCUSMAIN

Object [] serviceresult of result size

for(Object i: result.res.keySet()){

Map<String, String> valueresult.put(serviceName,value

serviceresult[k] = new endReply(i.toString(), valueresult.get(i).toString())

k++ }

44

 Flowcharts

3.3.4.1 Request and Response of SOA

Figure 5. SOA request and response

45

3.3.4.2 Checker Agent

Figure 6. Checker Agent

46

3.3.4.3 Update Agent

Figure 7. Update Agent

47

3.3.4.4 Agent to Main Server Communication

Figure 8. Main server request and response

3.4 Comparison between Traditional and Proposed Infrastructure

algorithms:

 Less Latency:

If we consider the worst case in our proposed infrastructure model, three end devices

in the south-central US ñSCUSL1M1ò, ñSCUSL1M2ò and ñSCUSL1M3ò request a

service. Both ñSCUSL1M2ò and ñSCUSL1M3ò can get response from the updated

second layer without requesting for the same service to the main server which reduces

latency as it was saved in second and third layer while fetching for SCUSL1M1. On

the other hand, in traditional algorithm the main server will get request three times

for the same service by ñTSCUSMACHINE1ò, ñTSCUSMACHINE2ò and

ñTSCUSMACHINE3ò.

48

 Local Backup:

If for any reason the main server is not available or get, the end devices can get

response from the second and third layer as they have stored the values in their own

databases. But for the traditional infrastructure if the main server is unavailable the

whole communication is halted.

 Less Bandwidth and Traffic:

As in our proposed infrastructure can result in less latency than the present

infrastructure, it will help to decrease the amount of bandwidth and data traffic

because all the requests are not necessarily going to the main server which is the

result of dividing the infrastructure in different layers with locally updated backup

data.

49

 Chapter 4

RESULT ANALYSIS

4.1 Result Graph in Individual VMs

A small-scale experiment was performed to monitor the network usage of each of the

VMs for our proposed infrastructure by requesting and responding with JSON

amounting to a few hundred kilobytes. It is to be considered that for a large-scale

deployment the request and response will exceed by millions and network will be

adjusted to cope up with delivering terabytes of data.

Table 1. VM Information

VM Name Layer Location

SCUSL1M1

Layer 1

South Central US

SCUSL1M2

SCUSL1M3

SCUSL2M1

Layer 2

SCUSL2M2

SCUSL3M1 Layer 3

NCUSL1M1 Layer 1

North Central US NCUSL2M1 Layer 2

NCUSL3M1 Layer 3

50

 Result Graph Using Datadog:

4.1.1.1 Result Graph of South Central US:

The graphs below show the network usage of VMs of South Central US which were

involved with the test environment while the experiment was conducted.

4.1.1.2 South Central US Layer 1:

For a trial within the first layer, request for the same service was sent from every

device, ñSCUSL1M1ò at 2:31:40am (Figure 9), ñSCUSL1M2ò at 2:36:00am,

ñSCUSL1M3ò at 2:36:00am.

Figure 9. SCUSL1M1

Time

K
ilo

by
te

s

51

4.1.1.3 South Central US Layer 2:

Initially, VM of the second layer ñSCUSL2M1ò received the request but it did not

have the service. So, request of the service was sent to ñSCUSL3M1ò at 2:31:00am

(Figure 10) in the third layer.

Figure 10. SCUSL2M1

4.1.1.4 South Central US Layer 3:

When the service was not even found in the third layer it was sent to the main server

ñCUSMAINò at 2:30:40am (Figure 11). Later, from the main server the result was

saved and sent back to the third layer and after that in the second layer.

Time

K
ilo

by
te

s

52

Figure 11. SCUSL3M1

We can observe from ñSCUSL2M1ò (Figure 10) and ñSCUSL3M1ò (Figure 11)

where only request from ñSCUSL1M1ò was sent but not from the other two devices

as the result was already saved in the second layer while processing for

ñSCUSL2M1ò. In the main server, request received and requested at 2:36:00am was

not sent from ñSCUSL1M2ò and ñSCUSL1M3ò but from North Central US which is

described below. So, ñSCUSL1M2ò and ñSCUSL1M3ò got the service directly from

the second & third layer.

4.1.1.5 Result Graph of North Central US

For ñNCUSL1M1ò, the service needed to be requested 2:36:00am and received

through all the layers ñNCUSL2M1ò, ñNCUSL3M1ò and ñCUSMAINò at

2:36:00am (Figure 14,15), since that was not previously requested by devices within

that region. It follows exactly the same procedure as South Central US.

Time

K
ilo

by
te

s

53

Figure 12. NCUSL1M1

The figures show network usage in bytes (y-axis) vs time (x-axis) graphs where its

clearly seen that in South Central US layer two VM has network usage of a size of

305bytes and layer one and layer three VMs with a usage of 249bytes.

4.1.1.6 Comparison between Traditional and Proposed Infrastructure

algorithms (Datadog)

As mentioned before, two experiments were conducted in two different test

environments. Among them, one represented our proposed infrastructure and the

other one represented the conventional infrastructure. For the sake of computing the

data transactions between the VMs and main cloud server and comparing our

proposed and present infrastructure, same service was requested from four end-

devices of different regions as shown in the table 1.

Time

K
ilo

by
te

s

54

Figure 13. Conventional Infrastructure Result

After finishing the data processing, our result was projected through different graphs.

Figure-13 shows the results of the conventional infrastructure where four devices

have requested for the same service in between 3:33:00am to 3:38:00am. If we notice

on the graph, we can observe that the total amount of data both received and sent,

shows a constant data consumption.

Figure 14. Fog Model's Total Received Data

Time

K
ilo

by
te

s

Time

K
ilo

by
te

s

55

Figure 15. Fog Model's Total Sent Data

On the contrary, Figure-14 (representing total received data) and Figure-15

(representing total sent data) symbolizes our infrastructure where the same scenario

was imposed, in between 2:31:00am to 2:36:00am. As indicated before, from the

kilobyte/time graph we can see that there is a big drop of data consumption in the

middle both while receiving and sending data. This data was recorded in at most 15

second interval, which gives this inconsistent growth of the graph. Now, comparing

the graphs we can distinctly comprehend that our proposed infrastructure has a very

low amount of network usage as it has a highest usage of 14kb to 11kb where as in

the conventional infrastructure it reaches 70kb to 60kb within that time limit.

From these results of the described algorithms along with the comparison with

present infrastructure, it can be ensured that our proposed infrastructure surpasses the

Time

K
ilo

by
te

s

56

traditional one in less traffic along with less bandwidth, reliability through trust

management by providing token authentication and heterogeneity maintaining the

Quality of Service(QoS).

 Result Graph Using Azure VM Monitoring:

4.1.2.1 Graphs of Proposed Infrastructure

At the very beginning one of our end device SCUSL1M1 requested for a óservice

xô at around 9:30 am and we can observe that as a rise in NETWORK OUT graph of

SCUSL1M1 in figure 16 which was received by SCUSL2M1 of layer two(SOA) at

the same time as a rise in NETWORK IN graph of SCUSL2M1 in figure 17. Next,

because of not having the service SCUSL2M1, it forwarded the service request (rise

in NETWORK OUT graph of SCUSL2M1 in figure 17) to SCUSL3M1 which is

located in layer three (Agent Based SOA) as a checker agent (rise in NETWORK IN

graph of SCUSL3M1 in figure 17). Later, when the service was not even found by

SCUSL3M1, it sent a request for the service to the fourth layer, the main server (rise

in NETWORK OUT graph of SCUSL3M1 in figure 17 and rise in NETWORK IN

graph of CUSMAIN in figure 19). Finally, the response of óservice xô is forwarded

back to the end device SCUSL1M1 via third and second layer which can be observed

through a rise in NETWORK IN graph of SCUSL1M1 in figure 16.

57

Figure 16. Graphs of SCUSL1M1 and SCUSL1M2

From another perspective, we can observe that three service requests were sent by

SCUSL1M2 between 9:35am to 9:45am where first two requests were for óservice xô

and the last one was óservice yô (rise in NETWORK OUT graph of SCUSL1M2 in

figure 16) which were received by SCUSL2M1 in second layer (rise in NETWORK

IN graph of SCUSL2M1 in figure 17) at the same time. Now we can notice from

Time

K
ilo

by
te

s

Time

K
ilo

by
te

s

