
An Intelligent Road Traffic Management
System

Tahmid Tanzi Alam 13101060
Ahmad Naquib Chowdhury 13101042

Department of Computer Science and Engineering

BRAC University

This dissertation is submitted for the degree of

Bachelor of Science in Computer Science

2016

We would like to dedicate this thesis to our loving parents ...

Declaration

We hereby declare that this report is our own work and effort and that is has not been submitted
anywhere for any award.

All the contents provided here is totally based on our own labor dedicated for the com-
pletion of the thesis. Where other sources of information have been used, they have been
acknowledged and the sources of information have been provided in there reference section.

Tahmid Tanzi Alam 13101060
Ahmad Naquib Chowdhury 13101042

2016

Acknowledgements

First of all, we would like to express our deepest sense of gratitude to almighty Allah.
We write this acknowledgment with great honor, pride and pleasure to pay our respects

to all who enabled us either directly or indirectly in completing this thesis. We would like to
show or gratification to our Supervisor Professor Dr. Mohammad Zahidur Rahman for being
constant source of inspiration, valuable guidance and constant encouragement to us especially
for solving the problems that we have encountered while working on this thesis. And we also
like to thank our Co-Supervisor Mr. Moin Mostakim.

Abstract

Road traffic congestion remains a global phenomenon that causes great problems in the cities
of the world; especially developing countries, resulting in massive delay, unpredicted travel
times, increased fuel consumption, man-hour and monetary loss. The issue has arisen from
poorly planned road network and traffic management, resulting in unbearable traffic jams. It
is prevalent greatly during weekends, public holidays and periods of major activities. Major
causes of the congestion include lane indiscipline, high traffic density, low road network car-
rying capacity, poor traffic management and support infrastructure such as lay-bye, and low
response to removal of broken down and crashed vehicles. This paper gives an intelligent
solution for tackling the issue of traffic congestion using parallel algorithm with real time data
feeding by re-routing.

Contents

Contents xi

List of Figures xv

List of Tables xvii

Nomenclature xix

1 Introduction 1
1.1 Problem Definitions . 2
1.2 Motivation . 2
1.3 Chapter Layout . 3

2 Literature Review 5
2.1 Real Time . 5

2.1.1 Real time scheduling . 5
2.2 Traffic . 6

2.2.1 Waze . 6
2.2.2 Google Traffic . 7
2.2.3 Go Traffic . 7

2.3 Algorithms . 8
2.3.1 Shortest Path Algorithm . 8

2.3.1.1 Bellman Ford Algorithm 8
2.3.1.2 Floyd-Warshall . 8
2.3.1.3 A* search Algorithm . 8

2.3.2 Single Source Shortest Path Problem 9
2.3.2.1 Dijkstra’s Algorithm . 9
2.3.2.2 Sequential Dijkstra Algorithm 9
2.3.2.3 Dijkstra’s Algorithm Priority Queue 10

xii Contents

2.3.3 Parallel Versions of Dijkstra’s Algorithm 10
2.3.3.1 Standard Parallel version of Dijkstra 10
2.3.3.2 Another Approach . 10
2.3.3.3 Δ-Stepping Algorithm . 11
2.3.3.4 GPU parallelization of Dijkstra’s Algorithm 11

2.4 GPU Architecture . 12
2.4.1 Up to NVIDIA G70 . 13
2.4.2 G80 to Tesla . 13
2.4.3 Fermi . 13

2.4.3.1 The key architectural highlights of Fermi are 14
2.4.4 Kepler Architecture . 14

2.5 CUDA Overview . 16
2.5.1 CUDA . 16
2.5.2 Poragramming capabilities . 16
2.5.3 Advantages . 16

2.5.3.1 GPU Accelarated Computing 17
2.5.4 How GPU Accelarate Operation . 17
2.5.5 CPU vs GPU . 18
2.5.6 Kernel . 18
2.5.7 Block . 18
2.5.8 Thread . 18

3 Methodology and Design 21
3.1 Graph Representation . 21
3.2 City Highway Graph . 22
3.3 Metric System . 22
3.4 Edge based Dijkstra . 23
3.5 Algorithm Design . 23

4 Implementation and Development Environment 27
4.1 Implementation . 27
4.2 Development Environment . 34
4.3 System Overview: . 35

5 Result 37
5.1 Data set . 37
5.2 Running Algorithm on CPU . 38

Contents xiii

5.2.1 Rome . 38
5.2.2 New York City . 39
5.2.3 Execution time comparison between New York City and Rome 40

5.3 Running Algorithm on GPU . 41
5.3.1 Rome . 41
5.3.2 New York City . 42
5.3.3 Comparison of Execution time between Rome and New York City in

GPU . 44
5.3.4 Dhaka City . 45

5.4 Comparison between GPU and CPU . 46
5.5 Platform Comparison of NVIDIA . 47

6 Conclusion and Future Work 49
6.1 Conclusion . 49
6.2 Future Work . 49

References 51

List of Figures

2.1 CUDA Processing Flow[1] . 17

3.1 Graph representation with vertex pointing to edge and edge pointing to weight 22
3.2 Flow Diagram . 24

4.1 Taking Input from user from Web Form . 28
4.2 Stack, Parent, CGI . 29
4.3 Path Printing . 29
4.4 Fixed Source . 30
4.5 Reading input file . 30
4.6 Taking input and sending to module . 31
4.7 Module . 31
4.8 Parent array initialization in Device Memory 32
4.9 Parent Setting . 32
4.10 Freeing parent from CPU memory . 32
4.11 Freeing parent from GPU memory . 32
4.12 Interface . 33
4.13 Output . 34
4.14 System Overview . 35

5.1 Number of Vertices and Nodes of New York City and Rome 37
5.2 Number of Vertices and Nodes of Dhaka City 38
5.3 Comparison of execution time of Rome city data set with 3353 vertices and

8870 edges for different test cases on CPU 39
5.4 Comparison of execution time of New York city data set with 94346 vertices

and 129684 edges for different test cases on CPU 40
5.5 Comparison of execution time of Rome city and New York City on CPU . . . 40
5.6 Comparison of execution time in GTX 950, GTX 760 and GeForce 920M for

different test cases (Rome City) . 42

xvi List of Figures

5.7 Comparison of execution time in GTX 950, GTX 760 and GeForce 920M for
different test cases (New York City) . 43

5.8 Comparison of execution time (ms) for Rome and New York city 44
5.9 Comparison of Dhaka city map on different GPU models 46
5.10 Comparison of CPU vs GPU for 3353 vertices and 8870 edges 46
5.11 Comparison of CPU vs GPU for 94346 vertices and 129684 edges 47

List of Tables

5.1 CPU Execution time (ms) for Rome . 38
5.2 CPU Execution time (ms) for New York City 39
5.3 GPU Execution time (ms) for Rome City . 41
5.4 GPU Execution time (ms) for New York City 42
5.5 GPU Execution time (ms) for Dhaka City 45

List of Algorithms

1 Predecessor Settle . 25

Chapter 1

Introduction

Mobility is essential in cities because it highly influences their socio-economic activities. It is
also known that economic advancement of a country is firmly connected to its transportation
system. Smooth transportation is obscured because of traffic congestion. In a report World
Bank (1999) stated that traffic congestions contribute 54.5% in hindrance of effective mobility.
This is as a consequence of the always expanding urbanization, human activities and the result
of over dependency on street transportation that indicates the increment in the number of vehi-
cles, of various classifications on city road. Of interest also is the difficulty of movements on
inter-city streets and other real passages because of blocks, for example, car accidents, broken
down vehicles or certain area use economic activities situated along these sideways or sheer
movement of high number of vehicles the street system limit and in festive seasons and some
other significant exercises [2]. Traffic management has been quite poor in many developing
countries, despite the growth in transport demand and supply. The resultant traffic conges-
tion has become impediment to our livability. Road traffic congestion, according to Goodwin
(1997) can be defined as the impedance vehicles impose on each other, due to the speed-flow
relationship, in conditions where the use of a transport system approaches its capacity. For
developing countries its big issue. And development of infrastructure in a short period of
time is not a solutions in a short run. Traffic management was used to be one of the major
part in civil engineering. But now computer science has also come. They are trying to solve
this traffic congestion problem in different manner. Our paper also proposes a solution using
shortest path routing algorithm, which can help to distribute the traffic by providing shortest
route to the destination in minimum time. It will take the real time data from the people and
by analyzing the data we will be setting the cost of the path.

2 Introduction

1.1 Problem Definitions

Traffic congestion has been one of the fundamental problems faced by modern cities since the
wide usage of automobiles. Over the past decade it has increased substantially. Sometimes it
takes more than an hour to cover 1 kilometers of road. There are many reasons for traffic con-
gestions like maintenance on road, broken down vehicles, not enough traffic police to control,
VIP movement, no strong implementation of traffic rule more over high density of vehicles in
the road [2]. First and foremost, there are several factors that contribute to the occurrence of
traffic congestion and the quick increment in the quantities of private car possession because
of the advancement of the nation and economy is certainly an undeniable one. In addition,
the small road capacity is also one of the contributing factors. As the quantity of private vehi-
cle increments incredibly throughout the years, traffic congestion happens when the required
street limit is not satisfied.

Basic enhancements of the street foundation can undoubtedly tackled this issue. For in-
stance, more extensive streets, bridges and even underground passages could be worked to trim
down the activity. Since jam happens every now and again in the city communities, neighbor-
hood government city can consider passing laws on limiting the quantity of auto claimed in a
family. This technique is truth be told, workable and viable. This traffic congestions is effect-
ing the normal day to day life and also socio-economic activity. One of the problem is faced
which is for traffic congestion patients are not taken to hospital in proper time.

1.2 Motivation

Road traffic jams continue to remain a major problem in most cities around the world, espe-
cially in developing regions resulting in massive delays, increased fuel wastage and monetary
losses. Due to the poorly planned road networks, a common outcome in many developing
regions is the presence of small critical areas which are common hot-spots for congestion;
poor traffic management around these hotspots potentially results in elongated traffic jams.
Poor road traffic management is the primary reason for extended periods of traffic conges-
tion throughout the world. As per Texas Transportation Institute’s 2011 Mobility report [3],
congestion in the US has increased substantially over the last 25 years with massive amounts
of losses pertaining to time, fuel and money. Sã o Paulo, Brazil is known to experience the
world’s worst traffic jams [4], where people are stuck for two to three hours every day in traf-
fic jams. In Bangladesh is also creating both health and economical problems [5]. The issue
of traffic congestion has affected both the developing and developed economies to different
degrees irrespective of the measures taken to curb the issue. These sort of jams could be ex-

1.3 Chapter Layout 3

cluded when people can choose a different path for their destination rather than selecting the
route with jams. As a result of this, load of vehicles on every road can be reduced and then a
reduction of traffic jams could also be developed.

1.3 Chapter Layout

In this paper, we made an approach to solve this problem and divied them into chapters. In
chapter 2 we have literature review, after that in chapter 3 we have methodology, in chapter 4
design, implementation and development environment, followed by chapter 5 result and lastly
chapter 6 conclusion.

Chapter 2

Literature Review

2.1 Real Time

Real time computing is something hardware and software has to give output in real-time con-
straint. Real time programs make sure that it give response in specified time constraints known
as "deadline" [6]. A real-time system has been described as one which "controls an environ-
ment by receiving data, processing them, and returning the results sufficiently quickly to affect
the environment at that time." [7].

Real time systems heavily depends on three things. "Time" is the most important thing in
real time system. It is the most precious resources to be scheduled carefully so that it can meet
the deadline as well as ensure logical correctness. Also message sending and receiving should
be done in real time. Secondly comes reliability. The program must to reliable because any
error can cause economical disaster or cost human life. Lastly the environment the machine
works [8].

Real time programs are categorized in three parts. Hard real time systems are those whose
result can be disastrous if it does not meet deadlines. Firm does not cause that much of
catastrophe but the corresponding task cease to be useful as soon as the deadline expires such
as transaction in database [9]. And lastly soft which does not create much of an impact.

2.1.1 Real time scheduling

A hard real time system should be executed in a manner that all the critical task must meet
their deadlines. Every process needs computational and data resources to accomplish the task.
Scheduling problems deals with the allocation of resources to satisfy the time constraints [10].

6 Literature Review

2.2 Traffic

As stated above, traffic congestion is becoming a serious problem in modern cities especially
in developing regions resulting in massive delays, increased fuel wastage and monetary losses.
Due to the poorly planned road networks, a common outcome in many developing regions is
the presence of small critical areas which are common hot-spots for congestion; poor traffic
management around these hotspots potentially results in elongated traffic jams. Poor road
traffic management is the primary reason for extended periods of traffic congestion throughout
the world. As per Texas Transportation Institute’s 2011 Mobility report [3], congestion in the
US has increased substantially over the last 25 years with massive amounts of losses pertaining
to time, fuel and money. Sã o Paulo, Brazil is known to experience the world’s worst traffic
jams [4], where people are stuck for two to three hours every day in traffic jams. The issue
of traffic congestion has affected both the developing and developed economies to different
degrees irrespective of the measures taken to curb the issue. These sort of jams could be
excluded when people can choose a different path for their destination rather than selecting
the route with jams. As a result of this, load of vehicles on every road can be reduced and then
a reduction of traffic jams could also be developed.

In past few decades, there have been several implementations of traffic monitoring system.
And in recent times we have seen some implementation of crowd-sourcing and location data
extraction.

2.2.1 Waze

Waze is a community-based traffic navigation application where people can share real-time
traffic and road information to improve daily computing of all. It is a GPS-based geographical
navigation application program. It also has a GPS support and displays screen that provides
route details, user-submitted travel time and downloading location-dependent information.
Waze was developed in Israel, which was funded by early-stage American venture capital firm
Bluerun Ventures. Later on 2013 it was acquired by Google [11].

Waze is different from traditional GPS navigation software. As stated earlier it is a community-
based traffic navigation application which gathers complementary map data and traffic infor-
mation from its users. It works like other traditional GPS software in terms of learning from
user’s actions to provide routing and real-time traffic updates. People can report accidents,
traffic jams, speed and police traps. Also from online map editor they can update roads,
house, landmarks etc.

Waze requires a critical mass of users to have real utility. Currently, only 13 countries
have a full based map and others are partially mapped. This indicates that a customized map

2.2 Traffic 7

is necessary. This is not that much effective where there is not much information to start.

2.2.2 Google Traffic

Google traffic is a feature on Google maps which displays traffic conditions on major highways
and roads in real time. It can be viewed in google map website and also in google map cellular
application.

It works by examining the GPS-determined locations transmitted to Google by a large
number of users. Google generate a live traffic map by calculating the speed of users along a
length of road. Google maps also works on the basis of the concept of crowdsourcing, which
refers to the process of soliciting electronic information from a large group of people. Google
processes the incoming raw data about mobile phone device locations, and then excludes
anomalies such as a postal vehicle which makes frequent stops. When a threshold of users in
a particular area is noted, the overlay along roads and highways on the Google map changes
color.

Early versions of Google Maps provided information to users about how long it would
take to travel a particular road based on the historic data. This information was not real time
and far from accurate. Currently Google traffic is available in 50 countries but not available in
Bangladesh.

2.2.3 Go Traffic

Go Traffic is a mobile app that is expected to monitor and provide real-time update in the
traffic situation in Dhaka. It is a startup in Bangladesh.

The approach of this application is similar to above mentioned systems. A team actively
collects data about the traffic in various parts of the city and highlights them in three different
colors Green for smooth traffic, Yellow but slow but moving and Red for jammed. However,
the users can also contribute to this application through a Facebook group and through the
application itself.

The main principle of this application is crowd-sourcing. They maintain a database of
Dhaka city and the application allows the user to submit a manual report at any given time.
After collecting all the report, it analyzes and update the condition of the roads.

Now all these system gives a condition of traffic which allows user to monitor the traffic
status of different locations. But these system does not suggest any paths where a user wants
to go. So by implementing shortest path algorithms on the graph with the help of data set we
can suggest different routes which to choose or not according to the condition of the traffic on
the roads.

8 Literature Review

2.3 Algorithms

2.3.1 Shortest Path Algorithm

In graph theory, shortest path problem is to find a path between two nodes in a graph that sums
the minimum weights of the integral edges. The shortest path problem can be defined for both
directed and undirected graphs. There are few criteria of shortest path problem. Among them
the single-source shortest path problem is to find the shortest path from a single source, single-
destination shortest path problem is to find the shortest path from all the vertices to a single
destination and the all-pair shortest path problem is to find the shortest paths between every
pair of vertices. Single-destination shortest path can be reduced to single-source shortest path
problem by reversing the directed edges. There are some important algorithms that solves
shortest path.

2.3.1.1 Bellman Ford Algorithm

A negative weight cycle is a cycle whose total weight is negative. No path from starting vertex
to another vertex on the cycle can be a shortest path. Since a path can run around a cycle
many times and get any negative cost desired, in other words, a negative cycle invalidates
the concept of distance based on edge weight. The Bellman-Ford algorithm [12] propagates
correct distance estimates to all nodes in a graph in V-1 steps, where V is the vertex number,
unless there is a negative weight cycle. If there exist any negative cycle, it goes on relaxing
its nodes indefinitely. Therefore, the ability to relax an edge after V-1 steps is a test for the
presence of a negative weight. So, Bellman-Ford algorithm tests for negative weight cycles.

2.3.1.2 Floyd-Warshall

Floyd-Warshall algorithm is for solving all-pairs shortest path problem. It compares all paths
in the graph between each pair of vertices [13]. It is used for weighted graph with positive or
negative edge weights but with no negative cycles. The complexity of the algorithm is Θ(n3) ,
where n is the number of vertices.

2.3.1.3 A* search Algorithm

A*search is an informed search algorithm used for path finding and graph traversal. It com-
bines the advantages of the Dijkstra’s Algorithm for finding the shortest path and Greedy
Best-Fit search for as it can use a heuristic to guide search. A* uses two functions, among
them g(n) represent the exact cost from the starting point to any vertex, f (n) represent the

2.3 Algorithms 9

heuristic estimated cost from vertex n to the goal. A* balances the two as it moves from start-
ing point to the goal. Each time through the main loop, it examines the vertex n that has the
lowest f (n) = g(n)+ h(n). A* search gives complete and optimal solution. Its time com-
plexity depends on the heuristic. As A* gives optimal solution, it cannot be chosen to get a
solution for a city map.

2.3.2 Single Source Shortest Path Problem

Computing shortest path algorithm on graphs with non-negative weight is one of the most
fundamental problems in computer science. The single source shortest path problem computes
from a given specific source to other vertices in a graph calculating the minimum weights of
the edges. For the computation of our approach we needed to implement the graph into a
single source shortest path algorithm.

2.3.2.1 Dijkstra’s Algorithm

There are many shortest path algorithm and among them the single source shortest path prob-
lem is the classical problem of optimization. We studied several algorithms and from them
the most well known algorithm solving the problem with non negative weights was given by
Dijkstra in 1959 [14]. The most efficient sequential algorithm on directional graphs with non
negative weight is Dijkstra’s Algorithm.

2.3.2.2 Sequential Dijkstra Algorithm

A weighted graph is defined by G = (V,E,w) where v is a finite set of vertices, E is the finite
set of edges and w is the weight function E → R+ and v0 is the starting vertex. The algorithm
generates a minimal paths exploring adjacent vertices from starting vertex to the remaining
vertices. This technique of exploring vertices is known as relaxation technique. The technique
consists of testing whether we can improve the shortest path found so far if so we update the
shortest path. A relaxation step may or may not decrease the value of the shortest path esti-
mate. In this step, for a particular edge having a source vertex and destination vertex, the
distance(destination) is set to min{distance(destination) + edgecost(source,destination)}.
The algorithm implements a loop. Let, M be the unresolved vertices and N be the visited
vertices. In each iteration the estimates are for the M-vertices are relaxed. After that the
minimum calculation of the M-vertices are computed and finally the M-vertex with minimum
estimate will be stored in N. Meanwhile to track the path or sequence of the shortest path the
predecessor of the selected vertices is also recorded. At last, if all the vertices are visited then
algorithm is terminated.

10 Literature Review

2.3.2.3 Dijkstra’s Algorithm Priority Queue

Dijkstra’s Algorithm also uses a priority queue for an efficient implementation. For sparse
graph, priority queue is used to store the reached nodes. As a result of this, the asymptot-
ical behavior can be reduced [15]. Fredman and Tarjan used Fibonacci heaps and observed
improved running times. The running time of Dijkstra using Fibonacci heaps is bounded by
O(n logn+m) [16]. There is also a linear time RAM algorithm for undirected graphs with
Θ(n+m) [17]. This takes n > 21220

due to the usage of atomic heaps.

2.3.3 Parallel Versions of Dijkstra’s Algorithm

As the graph of a city is a dense graph, so the runtime of sequential Dijkstra Algorithm cannot
be optimized. As a result of this, we decided to use parallel version of this algorithm.

2.3.3.1 Standard Parallel version of Dijkstra

The standard parallelization of Dijkstra’s Algorithm is to partition the graph where Q being
shared to extract the minimum vertex. In Alistair’s paper, the parallel implementation was
implemented by using shared memory and message passing in shared memory machine. But
his goals where partially met due to unavailability of the suitable shared memory machine. He
also did some additional experiments on queue type and found out that the sorted queue had a
negative impact on the parallelizability compared to unsorted queue. Also by using multilevel
over-partitioning scheme the asynchronous parallel algorithm by Lanthier et al. [18] gave
better performance but the performance of simple parallelization of Dijkstra’s algorithm which
is synchronous was worsened.

2.3.3.2 Another Approach

Another approach of parallel version of Dijkstra [19] were implemented based on Gabows’s
scaling algorithm [20]. The priority queue which is the relaxed heap attains the same amor-
tized time bounds as the Fibonacci heaps, that is a sequence of two operation, decrease key
and delete min. These two operation takes a time ofΘ(m+n logn). Θ(1) for decrease key and
Θ(logn) for delete min are the worst case time bound that can be obtained by different relaxed
heaps. In this paper [21], the relaxed heaps gave a processor-efficient parallel implementation
of the Dijkstra’s Algorithm. In [19] they introduced a variant of priority queue called paral-
lel bounded priority queue. It is able to perform two operations, insert and extract-min. The
queue has a bounded size of n and consists of bins numbered from 0 to n-1. As the edges are
non negative, every iteration of Gawbow’s Algorithm only needs to consider monotonically

2.3 Algorithms 11

increasing bin indexes. As a result, it allows the algorithm to use a simple data structure for the
priority queue which exposes parallelism. In this paper, they were able to expose parallelism
on all but the least advantageous graphs. This approach performs well on random graphs,
outperforming a simple Dijkstra implementation on six or more cores.

2.3.3.3 Δ-Stepping Algorithm

Mayers and Sanders Δ-stepping approach improves the situation for random directed graphs
and uniformly distributed edge weights using linear work [22]. This Δ-stepping algorithm is
a variant of Dijkstra’s algorithm. In this algorithm the total ordering of the queue is weakened
and an array of buckets is used to store the tentative distance [22]. In each phase, in the inner
loop, all the light edges are relaxed and the remaining heavy edges are relaxed once. As long
as a single relaxation is atomic, for a bucket, edge relaxation and deletion can be done in
parallel. Also when the distance of a vertex is less than the tentative distance of that vertex
then the algorithm eliminates the vertex from the queue and again it may reinsert the vertex
until the distance is equal to the tentative distance.

2.3.3.4 GPU parallelization of Dijkstra’s Algorithm

By changing the internal operations of the sequential Dijkstra algorithm, parallelism can be
done. So it means the loops of the algorithm are paralleled. In each iteration, the outer loop
takes a vertex and calculates the distances. The inner loop relaxes the outgoing edges of
the vertex and update the previous distances. After all relaxation are done, it calculates the
tentative distances from the unsettled vertices and extract the next frontier vertex. But only
parallelizing the inner loops is not enough to exploit the huge number of GPU cores. So the
outer loop is also parallelized. Without affecting the correctness of the algorithm the frontier
set can be parallel but to identify the frontier set is a matter of concern. Δ-stepping approach
[22] discussed above parallelizes the outer loop by exploring the vertices in the bucket. As
the parallel algorithm advances the number of reached vertices computed in parallel increases
so the GPU capabilities to solve the problem is more fitting [23]. In Ortega et al. paper, they
presented a GPU SSSP algorithm implementation which speeds up the computation not only
for CPU-based version but also other GPU implementation based on Dijkstra. The implemen-
tations were evaluated in NVIDIA architectures [23, 24] used two optimization techniques
which lead to 23% performance improvement compared to non-optimized versions. The two
optimization were modification of GPU L1 cache memory state and proper choice of thread-
block size. In their implementation, they followed the idea of Crauser et al. [25], where
the algorithm introduced an aggressive approach augmenting the frontier set with vertices of

12 Literature Review

greater tentative distances [25] algorithm computes in each iteration, for every unsettled vertex
it calculates the tentative distance and the minimum weight of the outgoing edges. From these
calculations it chooses the total minimum value. At last an unsettled vertex is put into the fron-
tier set if the tentative distance is less than the total minimum value. This total minimum value
is considered as a threshold value. So in [23] they used the threshold value by incrementing
it. In pre computational phase they calculated the minimum weight of every vertices outgoing
edges and then calculated the threshold value. As a result of this they were able to define the
frontier set for very vertices. Before going into the details of the GPU implementation we
needed to study the architecture of GPU.

2.4 GPU Architecture

GPU or Graphics processing unit is a special type of electronic chip which is used to rapidly
manipulate and alter the memory to create images in frame buffer for display purpose. GPU
is mostly found in personal computers, workstations, embedded systems, mobile phones and
gaming consoles. Modern days GPUs are highly efficient in their work but they have also
pivoted from their original purpose of only creating images in frame buffer. Their highly
parallelism nature has proven more efficient than general purpose PUs. Algorithms where the
processing of large blocks of data is done in parallel takes the advantage of modern GPUs.
GPUs are found in different ways like, separate, embedded in mother board or sometimes
integrated in processor like AMD’s APU [26][27].

GPU or Graphics processing unit the term was introduced by NVIDIA corp. when they
released their first ever GPU NIVIDIA GeForce 256 in 1999. NVIDIA’s GPU enabled a
new level of interactive content which was not possible before it arrived. It delivered an
order-of-magnitude increase in geometry processing power, dynamic lighting and real-time
environment reflection capabilities.

The GeForce 256 GPU incorporated many groundbreaking innovations that drove a major
discontinuity in the 3D graphics industry, a market already known for its staggering pace
of innovation. The new groundbreaking features available on NVIDIA’s GPU included first
256-bit 3D processor, first integrated geometry transform engine,integrated dynamic lighting
engine, first four-pixel rendering pipeline, Stunning new Microsoft’s DirectX 7.0 features:
cube environment mapping, projective textures and vertex blending [28].

There are several generations of NVIDIA GPU architectures. For our purpose we have
gone through NVIDIA’s G70 and before architecture as a group, G80 to Fermi, Fermi and
Kepler architecture.

2.4 GPU Architecture 13

2.4.1 Up to NVIDIA G70

Up to NVIDIA’s G70 GPU and there previous generation of architectures handled vertex and
pixel shading in multiple dedicated units. They used an array where the top of the array
was used to handle to vertex processing of 8 shaders and pixel processing was managed in
middle of the array of 24 shaders. Gaming industry needed high pixel shader count as they
performed difficult operation per pixel but simpler operation in vertex shaders. On the other
hand business market they wanted more vertex shader count as their most applications can
have any scene. As result having a dedicated shader became a problem because identifying
the accurate number or shader in a GPU became hard gradually. Games grew more complex
and scenes significantly varied in complexity instantly. When a scene’s geometry overloads
the vertex processor it created bottleneck issue. Many times pixel shaders sit idle until data
were passed through from vertex shaders. This counting problem, idle sitting of hardware
causes NVIDIA to shift their directions to new architecture [29].

2.4.2 G80 to Tesla

When G70 architecture failed to keep pace and solving issues like unused shader hardware a
new architecture being developed that allowed hardware to allocate number of pixel and ver-
tex shader dynamically as needed by current application. G80 was the first GPU architecture
by NVIDIA which incorporated unified shaders with 128 processing elements which was dis-
tributed among 8 shaders core [29]. The classic pipeline was not available in the diagram as
it was not the part of G80 architecture anymore. Moreover the pipeline loopback into itself
before a pixel is presented to the frame buffer. In previous architectures there were dedicated
few cores to each shader type, but in this architecture the scheduler can prioritize and allocate
shaders to all the execution units. It is noticeable that an opportunity for an increase of perfor-
mance is available because the hardware can easily increase the number of executing vertex
shaders across the cores [30]. This architecture also introduced CUDA(Compute Unified De-
vice Architecture). This was the first C-based development enviroment for GPU’s [31]. Later
to bring advantages Tesla product line was introduced [29].

2.4.3 Fermi

The Fermi based architecture is the most signification leap forward GPU architecture since the
original G80. G80 was the vision or model of what unified graphics and parallel computing
processor should look like. The Fermi was designed keeping in mind what prior two processor
did and all the applications were written for them. Totally new approach was taken to create

14 Literature Review

world’s first computational GPU. It was improved in some key points e.g Improve Double
Precision Performance, ECC suuport, True Cache Hierarchy, More Shared Memory, Faster
Context Switching, Faster Atomic Operations.

The improvement made by the Fermi Team based on request greatly increases the compute
capability. With new innovations it greatly improved programmability and compute efficiency.

2.4.3.1 The key architectural highlights of Fermi are

Third Generation Streaming Multiprocessor (SM) which has 32 CUDA cores per SM, 4x
over GT200,8x the peak double precision floating point performance over GT200,Dual Warp
Scheduler simultaneously schedules and dispatches instructions from two independent warps,
64 KB of RAM with a configurable partitioning of shared memory and L1 cache

Second Generation Parallel Thread Execution ISA with Unified Address Space with Full
C++ Support, Optimized for OpenCL and DirectCompute, Full IEEE 754-2008 32-bit and 64-
bit precision, Full 32-bit integer path with 64-bit extensions, Memory access instructions to
support transition to 64-bit addressing, improved Performance through Predication Improved
Memory Subsystem for NVIDIA Parallel DataCacheTM hierarchy with Configurable L1 and
Unified L2 Caches, First GPU with ECC memory support, Greatly improved atomic memory
operation performance

NVIDIA GigaThreadTM Engine with 10x faster application context switching, concur-
rent kernel execution, Out of Order thread block execution, Dual overlapped memory transfer
engines

The first Fermi based GPU had 3.0 billion transistors having up to 512 CUDA cores. A
CUDA core executes a floating point or integer instruction per clock for a thread. The CUDA
cores are organized in 16 SMs of 32 cores each. The GPU features a six 64-bit memory
partitions, for a 384 bit memory interface. It supports up to a total of 6 GB of GDDR5 DRAM
memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread
global scheduler distributes thread blocks to SM thread schedulers.

2.4.4 Kepler Architecture

Kepler is a GPU microarchitecture developed by NVIDIA as the successor of the Fermi mi-
croarchitecture. Kepler is the very first microarchitecture which focused on energy efficiency.
Most of the GeForce 600 series, 700 series and some of 800 series is based on thi Kepler ar-
chitecture. Which is 28 nm. It is also found in he GK20A, the GPU compoment of the Tegrea
K1 Soc and Quadro Kxxx. Later Kepler was followed by Maxwell architecture [32].

2.4 GPU Architecture 15

In the Kepler architecture NVIDIA’s priority was on efficiency, programmability and per-
formance [33][34] where its predecessors were design keeping in focus on increasing perfor-
mance on compute and tessellation [32]. Kepler could achieve the efficiency aim through the
use of a unified GPU clock, simplified static scheduling of instruction and emphasis on per-
formance per watt. They dropped the shader clock which was previously found on their GPUs
but they achieved the higher level of performance with additional cores. Reason is cores are
more power-friendly. Two Kepler core use 90% of power of one Fermi core but unified GPU
clock scheme reduces 50% power consumption [35].

Another aim was programmability which was achieved by Kepler’s Hyper-Q, Dynamic
Parallelism and multiple new Computer Capabilities 3.x functionality. Higher GPU usage and
simplified code management was achieveable with GK GPUs. Which enables more flexibility
in programming for Kepler GPUs [36].

Lastly with performance aim, extra execution resource and with Kepler’s ability to achieve
a memory clock speed of 6Ghz, which increases Kepler’s performance comparing to its pre-
decessor [35].

Like Fermi, Kepler GPUs are composed of different configurations of Graphics Processing
Clusters (GPCs), Streaming Multiprocessors (SMs), and memory controllers. The GeForce
GTX 680 GPU consists of four GPCs, eight next- generation Streaming Multiprocessors
(SMX), and four memory controllers.

Kepler GPUs are made of different configurations of Graphics Processing Clusters(GPCs),
Streaming Multiprocessors (SMs) and Memory controllers like its predecessor Fermi. The
GeFore GTX 680 GPU consists of four GPCs, eight next-generation Streaming Multiproces-
sors (SMX) and four memory controller [37].

The Kepler GK110 GPU is comprised of 7.1 billion transistors. It is an engineering created
to address the most daunting challenges in HPC. It is designed from the scratch to amplify the
computational performance with superior power efficiency. The innovations in this architec-
ture has made the hybrid computing dramatically easier, which is applicable to a broader set
of applications and more accessible [37].Kepler GK110 GPU is a computational workhorse
with teraflops of integer, single precision, and double precision performance and the highest
memory bandwidth. The first GK110 based product will be the Tesla K20 GPU computing
accelerator [37].

16 Literature Review

2.5 CUDA Overview

2.5.1 CUDA

With the advancement of graphics hardware it was required to have a certain platform so
that developers can use the power of those hardware. In 2007 NVIDIA came with a solu-
tions for the developer named CUDA [29] CUDA or Compute Unified Device Architecture
is a parallel computing platform developed by NVIDIA corp. It is an application program-
ming interface (API) which supports parallelism [38]. CUDA platform helps programmer to
use CUDA-enable GPUs to use as a general purpose processing which is known as GPGPU.
CUDA provides a layer of software which directly access the virtual instruction set and other
parallel computing elements to execute computer kernels of GPU [39]. The CUDA SDK was
made available to the public freely. They have evolved since then. Their on of major release
was 3.0. At present they have CUDA version 7.5 [40].

CUDA platform is developed in such a way that most popular machine level language like
C, C++, Fortran works with it. CUDA platform is very handy comparing to other parallel
programming platform like OpenGl or Direct3D because it required advance skills in graphics
programming. Programming framework such as OpenACC and OpenCL are also compatible
with CUDA [39].

2.5.2 Poragramming capabilities

The CUDA platform is available to developers through CUDA-accelarated libraries, compiler
directives, for example, OpenACC, and extensions to industry-standard programming lan-
guages including C, C++ and Fortran. C/C++ programmers use ’CUDA C/C++’, compiled
with "nvcc" – NVIDIA’s LLVM-based C/C++ compiler [41].

2.5.3 Advantages

CUDA offers several advantages over exsisting general-purpose computation on GPUs with
the help of graphics APIs. It can do scattered reading which means code can read from random
addresses in memory. It exposes a shared memory area which is shared among the threads.
It can serve many purpose such as user-managed cache, enabling higher rate of bandwidth.
It also have unified virtual memory (CUDA 4.0 and above), unified memory (CUDA 6.0 and
above). Quicker download and readbacks to and from GPU. Total support for integer and
bitwise operations [42].

2.5 CUDA Overview 17

2.5.3.1 GPU Accelarated Computing

GPU accelarated computing is a new type of computing combining GPU and CPU together to
speed up the analytics, engineering, scientific and enterprise application. In 2007 NVIDIA pri-
oneered this GPU accelerators which is now found in energy-eficient datacenters in goverment
labs, universities, enterprises and small and medium business across the globe. GPU accel-
erated applications are also found in different platform starting from cars to mobile phones,
tablets, drones and robots [43].

2.5.4 How GPU Accelarate Operation

While the remainder of the code still runs on CPU, GPU-accelerated computing provides an
application performance which was significantly new by offloading computing-intensive part
of application to the GPU [43].

Figure 2.1: CUDA Processing Flow[1]

18 Literature Review

2.5.5 CPU vs GPU

The operational difference happens between CPU and GPU are very simple. In CPU there
are few cores which is optimized for sequential processing whereas a GPU has thousands of
smaller, more efficient cores dedicatedly architectured keeping in mind of massive parallelism
to handle multiple of tasks simultaneously [43].

2.5.6 Kernel

Kernel is a special type of function in CUDA C which is extended from C which allows
programmer to define functions. When this kernel is call it is executed N times in parallel by
N different CUDA threads.

To call a kernel from a C function is specified using a <<<.....>>> execution configuration
syntax. This configuration also specifies how may CUDA threads and block will be running
in parallel. To make a function CUDA kernel we need to specify __global__ keyword. There
is a built-in threadIdx variable by which a certain thread is accessible where all the threads are
given a unique thread ID [44].

2.5.7 Block

Block is consist of some threads. The number of threads a block can have and number of
block is determined in <<<...>> syntax. The type can be integer or dim3.

Built-in variable blockIdx is used to access the block within the grid which is identified
by a one-dimensional, two-dimensional or three-dimensional index. "blockDim" is a built-in
variable in CUDA which is used to access the dimension of the thread block within kernel.

The execution of thread blocks need to run independently. It is possible that the execution
of it is in any order, may be sequential or parallel. This independence of execution enables
thread blocks to be scheduled in any particular order throug any numbers of cores which allows
programmers to write the program that can scale with the numbers of the core [44].

2.5.8 Thread

Threads can be identified using a one-dimensional, two-dimensional or three-dimensional
thread index. It is a 3-component vector. It forms a one-dimensional,two dimensional or
three-dimensional block of thread known as threadblock [44]. It allows a simple computation
across the elements in domain like vector, matrix, or volume [44].The index of a thread and
its thread ID relate to each other in a simple manner.

2.5 CUDA Overview 19

Though it is very flexible creating thread but there is a limitation in number of thread in a
block. Because all threads of block are have to share the shared memory and does computation
in same core. Today’s GPU supports upto 1024 threads in per block.

Chapter 3

Methodology and Design

As stated in the above, mobility is essential in a busy city as it influences the socio-economic
activities. So, smooth transportation is needed to carry out the objectives. Traffic congestion
has been a fundamental problem for modern cities as there is a wide usage of automobiles.
So to satisfy the problem we needed to follow crowd-sourcing approach to collect the data
to identify the traffic situation on the roads. And later on we implemented the collected data
into a shortest path algorithm which helps to distribute the traffic by providing shortest route
to the destination. Initially we completed the objectives and did the literature review that we
needed. After that to solve our problem we started to design our approach and algorithms. For
running the algorithm, we also represented the graph into suitable data structures. We tested
our implementation in CPU and GPU and then compared the result.

3.1 Graph Representation

A graph G(V,E) where V is the number of vertices and E the number of edges is commonly
used to represent adjacency matrix. It is suitable when the number of vertex and edge is
less. But for sparse graphs such representation wastes a lot of space. It takes lots of memory
resulting inefficiency. Adjacency List is more compact in graph representation. In this paper,
we have represented the graph in the form of adjacency list as it takes less space compared
to adjacency matrix representation. Also because of variable size of edge list per vertex,
the GPU representation may not be efficient under the GPU model. CUDA allows arrays of
arbitrary sizes to be created and hence can represent graph using adjacency list. We stored all
the vertices of the adjacency list into a single large array. The data representation consists of
vertex array Va and edge array Ea, where each vertex, Va points to the starting position of its
own adjacency list in this large array of edges. The Ea array stores the edges of the vertex I
for all I in V . One extra element is needed in vertex array to indicate out degree of last vertex

22 Methodology and Design

shown in the figure below. Each entry in the vertex array Va corresponds to the starting index
of its adjacency list in the edge array Ea. Each entry of the edge array Ea refers to a vertex
array Va. Moreover, another array is used to store the weights, Wa of each weights. This are
required for parallel implementation such that each thread can run on edges rather than on
vertices.

Figure 3.1: Graph representation with vertex pointing to edge and edge pointing to weight

3.2 City Highway Graph

A map of a city has many roads and road intersections. The intersection of a road is a conver-
gence point from two or more roads. We considered these intersection points as Vertex and
the roads as Edges. By doing so, a city map becomes a graph. Now at both the ends of a
span of a road, the traffic signals are used. So, at any given time, the density of the vehicles
in between any two nodes in the city map represents the amount of traffic on that span of the
road. For the city map, we considered a small section of Dhaka city based on the principle that
we discussed above. This data structure holds the information about the specific road-spans
which allows the identification of each individual road an also the information of the distances
of the corresponding span through which the shortest path is determined.

3.3 Metric System

In some previous case studies, we saw that they used GPS to locate the location of the traffic.
The users give direct input to determine the density of traffic. This process is the crowd
sourcing method where the system is updates according to the person participating in the poll

3.4 Edge based Dijkstra 23

or submitting the report. So, the data of all the roads condition are collected and are structured
in a data structure which holds the following information, the intersection points of the road
and the condition of the road. To illustrate the condition of a road accurately, we calculated a
threshold in the following, for a set of speed limit. For example:

• 0-15 km/h as heavy traffic.

• 16-30 km/h as moderate traffic.

• Above 30 km/h as light traffic.

Considering this threshold level, for a particular edge a new weight will be updated by aug-
menting the existing weight. We used a function that will change the weight according to
the condition of the road. This will help to create the edge heavier when there will a long
congestion of traffic and reduce the weight when the traffic is light.

3.4 Edge based Dijkstra

As discussed earlier, in Dijkstra’s Algorithm, the vertices are divided into two categories, set-
tle and unsettled vertices. Settle vertices are the vertices that have minimum vertex weight and
whose outgoing edges are relaxed while unsettled vertices may be unreachable vertices. This
approach means the vertex weight is equal to infinity or the vertex does not have minimum
weight. Initially the source vertex is settled and its outgoing edges are relaxed. In next itera-
tion, the vertex which have the minimum weight is settled and its outgoing edges are relaxed.
This procedure is repeated until all the vertices are settled. We used this algorithm approach
in for the CPU version. Later on, this edge based relaxation concept is also used in GPU.

3.5 Algorithm Design

In meeting the specified goals of the project, there were a variety of choices of algorithm that
could have been implemented. The Dijkstra Algorithm were chosen as the basis of the com-
parison as it is so well studied and relatively straightforward. For better optimization we chose
parallel algorithms over sequential algorithms where the algorithms work on GPU architec-
tures. We used as references the implementation of [24]. In their paper they followed the
approaches of the sequential implementation on CPU and the fastest version implementation
for GPU of [45]. Alongside they used the same input set of [45] to compare the performance
gain of their algorithms. We selected the GPU approach of [24] and used the same CUDA
configuration values of 256 threads per block kernel and L1 cache normal state (16KB).

24 Methodology and Design

Figure 3.2: Flow Diagram

We constructed a path by using this algorithm. In relax kernel when the successor of the
vertices is relaxed then a predecessor is set while calculating the distance. Here the algorithm
checks whether any of the predecessor vertex belongs to the current frontier set. So, if the new
distance is less than the previous distance then the tentative distance is relaxed.

When every vertex in the frontier set are relaxed parallel, we calculate the predecessor of
the vertex from the above algorithm. For a particular vertex, if the cost of the successor and
the predecessor of the vertex is not settled then we ignored the vertex as this is not settled
yet. Again if the the cost of the predecessor is less than the successor then the vertices in the
frontier set are about to settle and if the total cost on an edge is equal to the cost that which
has been computed in [24] then we can settle the predecessor of that current vertex.

3.5 Algorithm Design 25

tid = thread.ID
if tid is in frontier set then

for all i successor of tid do
sid = successor of edge i
if sid is unsettled then

if cost of sid and tid is settled then
if cost of tid < sid then

if cost of tid and edge,i = cost of sid then
parent[sid] = tid

end
end

end
end

end
end

Algorithm 1: Predecessor Settle

Chapter 4

Implementation and Development
Environment

4.1 Implementation

The problem we are trying to solve here is actually divided into two major parts. We have
gone through several algorithms and there efficiency and accuracy. In this area, real time
output and accuracy highly matters. We refer to algorithms [23]. We have extended that
algorithm to obtain the shortest path. As this algorithm works in parallel in different CUDA
threads, obtaining parent node for a particular node cannot be done in traditional way. The
way that algorithm gets the minimum cost is using CUDA reduction [24] method. Because the
algorithm uses the advantages of thread and parallelism its every information for a particular
node is obtained independently.

We have made some changes in the algorithm to achieve our desired goal. Obtaining path
is one of them. For obtaining the path in this environment we have given some conditions
which actually ensures the correct path and also prevent any kind of anomalies which can
happen related to memory or path. To prevent memory error we checked whether the cost of
the predecessor or successor is updated or not. Secondly the cost of the predecessor is less
than the cost of successor. The reason behind this checking is all the threads work in parallel
so there is always a chance that successor and predecessor becomes each others successor and
predecessor and in that case if it is not checked it will fall into an infinite loop. And lastly we
compare the cost of predecessor and weight of the current edge with cost of successor. If this
condition passes successfully then we set the parent. The parent is saved in an array which is
in device memory. After that the parent array is copied to CPU memory using cudaMemcpy
function. Later on that array in CPU memory is used to retrieve the shortest path.

28 Implementation and Development Environment

We modified the code to take the input from the web form and we have set some of the
parameters fixed as our need, in “template.cu” class in “main” method.

Figure 4.1: Taking Input from user from Web Form

In the above figure 4.1 in line number 48 we are taking the source and the destination from
the user and storing those into pre-defined variables which were declared in line number 40.
From line number 56 to 59 we set the value by ourselves where we do not need user input.
Line number 56 is taking how many times the program will run. We set it to 1 because we will
run the program once to identify path. In line number 57 we are giving our graph which is
fixed for a particular city. This file is the the city graph. For cache configuration we are setting
the cache 10 in line number 59.

Next we have changed and declared things in “launch_sssp” method which is still in the
“template.cu” class. We have initialized our parent array in line number 76 and declared our
stack in line number 84. As we have implemented CGI so we need to add line number 89 so
that it works while printing.

4.1 Implementation 29

Figure 4.2: Stack, Parent, CGI

For obtaining the sequence of the path, we initialized a stack line number 84 (Figure 4.2).
The path is stored into a stack which allows to maintains a precise order. Following code we
added to get our path.

Figure 4.3: Path Printing

The “comun.cu” class has also gone some under modification. In “random_conmod”
method we have changed from random destination to fixed source. Following figure line
number 60 shows it.

30 Implementation and Development Environment

Figure 4.4: Fixed Source

When “read_graph_from_file” method is called from line number 70 in figure 4.2. We are
reading a file which is our “input” file which contains the data of the road. Line number 77
and from 84 to 89 has been written. Following is the code snippet.

Figure 4.5: Reading input file

Another major part how to deal with traffic jam and reroute can be done. We developed
a module which identifies the edges getting the input from the user about a particular road.
We call the module from line number 125 in figure 4.6. After a certain period a input file is
generated from the user input which contains the situation of traffic. Our program reads that
input file figure out and work out the edges. When a road is detected with different kind of jam
situation, we have multiplied the length of the road with a fuzzy number. If a road contains
heavy jam, moderate or low jam we multiplied the road length 5, 3, 1 respectively. Our
purpose was how we can minimize the travel time. So we calculated the time with distance.
The number we have chosen to multiply is fuzzy. There are scope for experiment to figure
out more criteria and values of a road. Our solution is a general purpose solution which can
take a file about road situation in a particular format and generate path. So when we had done
this calculation it lengthens the road and consider lengthier road then usual. So our program
calculates with the updated length in real time and generate a parent array which is stated
above.

4.1 Implementation 31

Figure 4.6: Taking input and sending to module

This module takes two node and their current situation, figure out the edge and then multi-
ply with the number. By this it generates a new array which is given as a input to find out the
path.

Figure 4.7: Module

When “gpu_sssp_Atomic” is called we are taking a parameter which is “parent_h”. This
parent_h array resides in our CPU memory. We also initialized a “parent_d” array and allo-
cated a memory in our device (GPU). A code snippet is given below.

32 Implementation and Development Environment

Figure 4.8: Parent array initialization in Device Memory

Finally the following code was added which is used to identify the correct path by setting
the parent in “template_kernel.cu” class in “kernel_relax_Atomic” method.

Figure 4.9: Parent Setting

Lastly, we cleared the memory and following two figures exhibiting that. Figure 4.10 frees
memory from CPU and figure 4.11 frees memory from GPU.

Figure 4.10: Freeing parent from CPU memory

Figure 4.11: Freeing parent from GPU memory

We needed our application to run all the time whenever a client requests a path or several
clients request a path. If it was a program to run for once and then stop then it wouldn’t have
been a problem. But it is a program which needs to be running all the time. Our program is
written in CUDA C/C++. So we cannot implement our program traditionally in server. To

4.1 Implementation 33

overcome this barrier we used used CGI (Common gateway interface) which can be accessed
by Apache Tomcat server. We kept our executables in cgi-bin. So whenever a client requests
for a route CGI runs an instance of our executable and provide the path.

We built a simple user interface where client can easily give their source and destination
and get the output in a real time scenario. As our backend is written in CUDA C/C++ so
it generates the result swiftly. From this page when a client send a post request it invokes
the executable in cgi-bin with the necessary parameter. If the input is in correct format the
program starts executing.

Figure 4.12: Interface

Below figure is an output of our program. This shows the node number which have to
follow to reach the destination at minimum time possible.

34 Implementation and Development Environment

Figure 4.13: Output

To get the information of the road such as what is the condition of the road, we built
another web interface from where a user can easily update the situation of road by choosing
the source, destination and nature of traffic jam. It is saved as a database which later on works
as an input of the main program from where our module reads the traffic situation.

In the following section we briefly discuss about our experimental setup. What we have
used to develop our project.

4.2 Development Environment

In our experiment we have used different set of environment. We tested our program in three
NVIDIA GPU devices, a GeForce 920M (Kepler GK 208), GeFocre GTX 760 (Kepler GK
104), GeFocre GTX 950(Maxwell GM 206). The configurations of those host machines are
given respectively. First host machine has an Intel(R) core i3 processor with 3.2 GHz, with
a memmory of 4GB DDR3. The operating system in this host machine is Ubuntu Desktop
OS 14.04 (64 bits)and CUDA toolkit version 7.5 is used. Second machine has Intel(r) core
i5 processor with a memory of 8 GB DDR3. It also runs on Ubuntu Desktop 14.04 (64 bits).
The programs were run using CUDA toolkit 7.5. Lastly, the machine has Intel(R) Dual Core
2.3 Ghz processor with global memory of 8 GB DDR2. In this machine the CUDA toolkit
was also 7.5 and operating system was also Ubuntu-Desktop(64 bits). The programs were
compiled with gcc compiler using the flag -03.

4.3 System Overview: 35

4.3 System Overview:

Figure 4.14: System Overview

Chapter 5

Result

5.1 Data set

This section describes the results of our implementation that were described in the previous
sections. We tested the performance of our implementation using some simulated data. A data
set of Rome city consisting of 3353 vertices and 8870 edges and a data set of New York City
consisting of 94346 vertices 129684 edges.

For our implementation, due to insufficient resources we tested on a simulated graph of
Dhaka city consisting of 102 vertices and 286 edges. Following shows a representation of the
number of vertices and edges that we used for testing the performance of the algorithms.

Figure 5.1: Number of Vertices and Nodes of New York City and Rome

38 Result

Figure 5.2: Number of Vertices and Nodes of Dhaka City

5.2 Running Algorithm on CPU

5.2.1 Rome

We implemented the sequential edge based Dijkstra using the environment that was discussed
in the previous section. Implementing the data set of Rome city, we got the following output

Source Destination Execution Time (ms)

62 116 1232
54 1777 1156

2332 1354 1263
675 343 1251

Table 5.1: CPU Execution time (ms) for Rome

5.2 Running Algorithm on CPU 39

Figure 5.3: Comparison of execution time of Rome city data set with 3353 vertices and 8870
edges for different test cases on CPU

The average execution time for Rome city is 1225.5ms. We observed that range of vertices
and edges that were used in Rome city gave almost similar output for every test cases.

5.2.2 New York City

For New York city we saw that there was a huge difference among the test cases. The Follow-
ing table shows the output for some test cases.

Source Destination Execution Time (ms)

1231 1354 13869
8000 9000 226507

42212 44346 214111
28682 24343 221928

Table 5.2: CPU Execution time (ms) for New York City

40 Result

Figure 5.4: Comparison of execution time of New York city data set with 94346 vertices and
129684 edges for different test cases on CPU

The average execution time for New York city data set is 169,103.75ms. Running this data
set we observed that in a city map for a small set of output where the result consist of few
vertices differs tremendously in execution time compare to the results that consist large set of
vertices.

5.2.3 Execution time comparison between New York City and Rome

So, from that we came to a conclusion that in a dense city the execution time may differ
in different situation. Moreover, comparing this output with Rome city we noticed that the
execution time is more for New York city. Following graph shows the graphical representation
of the comparison.

Figure 5.5: Comparison of execution time of Rome city and New York City on CPU

So, from the above comparison we saw that dense graphs needs more execution time. We
calculated that New York city took almost 110 times in terms of milliseconds more than Rome

5.3 Running Algorithm on GPU 41

city. But for our approach we needed to have this execution done in real time. As the traffic in
roads changes frequently, so for real time output CPU version algorithm were not suitable.

5.3 Running Algorithm on GPU

5.3.1 Rome

We tested the parallel version of [23] which includes our modified path generator in GeForce
GTX 950(Maxwell GM 206), GeForce 920M (Kepler GK 208), GeForce GTX 760 (Kepler
GK 104). Following table shows execution time for different input set of Rome city.

Source Destination
Execution Time (ms)

GeForce

GTX 950

(Maxwel)

GeForce

GTX 760

(Kepler)

GeForce

920M

(Kepler)

62 116

26.57

26.35

16.8

16.85

24.34

23.3726.13 17.02 22.46

26.35 16.74 23.33

54 1777

23.06

24.96

17.34

17.33

22.71

23.3026.62 17.28 23.66

25.21 17.38 23.55

2232 1354

23.65

24.79

17.57

17.52

24.45

24.1827.09 17.13 24.03

23.63 17.86 24.08

675 343

22.9

24.19

17.33

17.22

22.85

23.2126.63 17.24 23.37

23.05 17.09 23.43

Table 5.3: GPU Execution time (ms) for Rome City

From the table 5.3, we saw that the average execution time for GeForce GTX 950 was
25.07ms. For GeForce GTX 760 the average execution time was 17.23ms. Finally, for
GeForce 920M it was 23.52ms.

Comparing the results on different GPU, we have seen that the output for three different
GPU model were different. The average execution time for GTX 950 and GeForce 920M were
almost the same but GTX 760 gave a better performance than the other GPUs. Following
shows the comparison of execution in different GPU models.

42 Result

Figure 5.6: Comparison of execution time in GTX 950, GTX 760 and GeForce 920M for
different test cases (Rome City)

5.3.2 New York City

Keeping the similar test cases that we used for the CPU algorithm, we executed the GPU
algorithm for New York city and found the following output.

Source Destination
Execution Time (ms)

GeForce

GTX 950

(Maxwel)

GeForce

GTX 760

(Kepler)

GeForce

920M

(Kepler)

1231 1354

62.23

60.56

33.95

33.97

182.27

183.4457.6 33.96 184.36

61.87 34.01 183.69

8000 9000

186.67

180.47

109.77

110.01

579.22

567.37185.36 109.9 562.15

169.39 110.36 560.75

42212 44346

221.92

210.02

129.49

129.45

664.85

665.44205.23 129.69 668.74

202.93 129.18 662.74

28682 24343

172.34

164.28

102.2

102.24

525.76

522.97161.03 102.53 520.82

159.49 101.99 522.34

Table 5.4: GPU Execution time (ms) for New York City

The average execution time in GTX 950 (Maxwell) is 153.83ms and in GeForce 960M

5.3 Running Algorithm on GPU 43

(Kepler) is 484.805ms. For GTX 760 (Kepler) it was 93.91ms. The test cases of this output
were similar as the CPU test cases. We observed that the GPU has reduced the execution
time remarkably. As discussed in CPU version algorithm, the execution time for this city map
showed different execution time for different situations. But in GPU the differences of the
execution time is comparatively less from one another.

Figure 5.7: Comparison of execution time in GTX 950, GTX 760 and GeForce 920M for
different test cases (New York City)

44 Result

5.3.3 Comparison of Execution time between Rome and New York City
in GPU

After executing all the graphs into GPU algorithms in GPU we have found the following result
for New York City and Rome which execution times are represented as graph.

(a) New York City (b) Rome City

Figure 5.8: Comparison of execution time (ms) for Rome and New York city

The main reason is that NYC graph has a higher execution time becuase it contains huge
number of nodes. We have shown the average execution time of 3 GPUs and among these the
mobile GPU has comparatively higher execution time. Due to mobile GPU its performance is
less than descrete GPUs which is yet to clarify.

5.3 Running Algorithm on GPU 45

5.3.4 Dhaka City

After comparing the performance of the GPU algorithm, we tested the performance of our
Dhaka city map.

Source Destination
Execution Time (ms)

GeForce

GTX 950

(Maxwell)

GeForce

GTX 760

(Kepler)

GeForce

920M

(Kepler)

80 79

1.6

1.52

1.04

1.02

1.4

1.381.38 1.03 1.38

1.59 1.01 1.37

53 100

1.44

1.50

1.12

1.07

1.43

1.431.42 1.04 1.44

1.65 1.06 1.42

1 100

1.8

1.78

1.14

1.16

1.52

1.521.77 1.2 1.53

1.79 1.15 1.53

7 47

1.27

1.32

0.95

0.94

1.88

1.461.45 0.93 1.25

1.26 0.94 1.26

Table 5.5: GPU Execution time (ms) for Dhaka City

The result that we obtained was the output with different conditions of the roads. Based
on roads situation we executed the GPU algorithm and found the path. We have seen that in
all the three GPU models the execution time was almost same. Among them, GeForce GTX
760 (Kepler GK 104) gave the best performance.

For a particular source and destination vertices, we tested three different situations of the
roads and observed that, by changing the situations of the traffic, the route for same set of
source and destination was altered but there were not much differences in execution time.
The following representation shows the comparison of execution time of Dhaka City map on
different GPU models.

46 Result

Figure 5.9: Comparison of Dhaka city map on different GPU models

5.4 Comparison between GPU and CPU

The execution time for GPU gave a better solution than the CPU. So for larger set of data, we
saw that GPU parallel version is better option. And also for getting the output in real time we
need a faster execution time which GPU can provide. After that, we modified the graph into a
more structured city map and executed it for finding shortest path. In the following we showed
the comparison of the data sets.

Figure 5.10: Comparison of CPU vs GPU for 3353 vertices and 8870 edges

5.5 Platform Comparison of NVIDIA 47

Figure 5.11: Comparison of CPU vs GPU for 94346 vertices and 129684 edges

We implemented the modified parallel version of [23] where we can obtain the path, with
a graph that we discussed in Chapter 3 methodology. Considering the changes of the situation
of the road with light, medium and heavy traffic we updated the city graphs status in real time.

The result that was generated for every section of source and destination with the updated
traffic situation of the city graph redirected the path when the roads have heavy traffic. When
a road has a shortest distance but the condition of the traffic is heavy compared to other routes,
then the algorithm ignores that route and chooses the best route for the required destination.

5.5 Platform Comparison of NVIDIA

Having more vertices in the graph implies that there are more distance combinations to be
compared. We observe that GPU architecture Maxwell GM 206 did not always have the best
performances. The mobile GPU Kepler GK 208 gave the lowest performances compared to
other architectures. For the scenario of different situations, the Kepler board obtained the best
performance. As the graph size increases the meeting point for Kepler GK 208 and Maxwell
decreases whereas, for dense graphs, the Maxwell board reaches closer to the best performance
as compared with Kepler GK 104.

This occurs because the Kepler GK 104 has the highest number of cores than the other
boards. It has 2304 cores whereas Maxwell has 768 cores and the mobile GPU Kepler GK

48 Result

208 has only 384 cores. So, for most cases, the mobile GPU gave the least performance as the
GPU has the lowest number of cores than the other tested boards. And Kepler GK 104 board
performed well due to its larger number of cores. But in some cases for Dhaka city graph
the mobile GPU gave better performance than the Maxwell as the graph was a low degree
graph and the level of parallelism was lower. And also in some cases, the Maxwell board
had a closer performance ratio with Kepler GK 104. This was because the base clock rate for
Maxwell is 1.0 Ghz but this board was overclocked and the boost clock rate was 1.18 Ghz
whereas the GK 104 board has 0.86 Ghz. It is better to use higher clock rate GPU with lower
cores than with slower clock rate. But as the Kepler board has 2304 cores which is almost 3
times more than the Maxwell board, the Kepler board dominated the Maxwell board in case
of performance. Finally, it is better to use GPU with many cores to achieve more parallelism
for the graphs having higher degrees and high size as there can be more threads performing
and increase execution time.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We started our project keeping in mind to solve one of the current issues in developing and
developed countries which is traffic jam. It is not possible to build new roads or infrastructure
to match the traffic over the night. Our goal was how can we provide a solution to minimize
the traffic jam and take people to their destination at the shortest time possible. We had to
keep in mind the result should be quick and as accurate as possible. So we designed and
implemented our whole project keeping these two points in focus.

We achieved the results which is the shortest path in real time and the result is also accurate.
We believed our motive to develop this project can reduce the load of traffic in a particular
road and can ensure less travel time. Which can eventually tends to less fuel consumption and
minimize other traffic jam related consequences.

6.2 Future Work

We have future improvement plan regarding our project. We want to take data of road from
more general perspective such as social media (Facebook, Twitter etc)or traffic updates.

We have also plan to integrate our project with Open Street Map(OSM). So that any one
can easily give data or if they want to get result they can see it in OSM.

Lastly, the nature of the road by examining the different situation. How much length can
be added depending on the size of the road, time and vehicle on the road.

References

[1] Tosaka, “Cuda processing flow,” https://commons.wikimedia.org/wiki/File:CUDA_
processing_flow_(En).PNG, November 2008.

[2] K. OLAGUNJU, “Evaluating traffic congestion in developing countries–a case study of
nigeria.” 2015.

[3] T. T. Institute, “2011 urban mobility report,” http://mobility.tamu.edu/ums/.

[4] A. Downie, “The world’s worst traffic jams,” http://content.time.com/time/world/article/
0,8599,1733872,00.html, April 2008.

[5] S. S. Andaleeb, M. Haq, and R. I. Ahmed, “Reforming innercity bus transportation in a
developing country: A passenger-driven model,” 2007.

[6] M. Ben-Ari, Principles of Concurrent and Distributed Programming. Prentice Hall,
1990, ch. 16, p. 164.

[7] J. Martin, Programming real-time computer systems. Prentice-Hall Inc., 1965.

[8] K. G. Shin and P. Ramathan, “Real-time computing: a new disipline of computer science
and engineering,” Proceedings of the IEEE, vol. 82, pp. 6–24, January 1994.

[9] J. R. Haritsa, M. J. Carey, and M. Livny, “Data access scheduling in firm real-time
database systems,” Real-Time Systems, vol. 4, pp. 203–241, September 1992.

[10] K. Juvva, “Real time systems,” 18-849b Dependable Embedded Systems, Carnegie Mel-
lon University, 1998.

[11] Waze, “Waze,” https://www.waze.com/, accessed: 2016–03–6.

[12] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, pp.
87–90, 1958.

https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG
https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG
http://mobility.tamu.edu/ums/
http://content.time.com/time/world/article/0,8599,1733872,00.html
http://content.time.com/time/world/article/0,8599,1733872,00.html
https://www.waze.com/

52 References

[13] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM, vol. 5, p. 345,
1962.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Math-
ematik, vol. 1, pp. 269–271, December 1959.

[15] T. H. Cormen, C. E. Leiserson, and C. Stein, Introduction to Algorithms. MIT Press,
1992.

[16] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms,” Journal of the ACM, vol. 34, pp. 596–615, July 1987.

[17] M. Thorup, “Undirected single source shortest paths in linear time,” Proceedings of the
38th Annual Symposium on Foundations of Computer Science, pp. 12–21, October 1997.

[18] L. G. Aleksandrov, A. K. Maheshwari, and J. R. W. Sack, “Approximating shortest paths
on weighted polyhedral surfaces,” Algorithmica, vol. 30, pp. 527–562, 2001.

[19] K. K. and T. B. Schardl, “Parallel single-source shortest paths.” MIT Computer Science
and Artificial Intelligence Laboratory.

[20] H. N. Gabow, “Scaling algorithms for networks problems,” Journal Of Computer and
System Sciences, vol. 31, pp. 148–168, 1985.

[21] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, “Relaxed heaps: an alter-
native to fibonacci heaps with applications to parallel computation,” Communications of
the ACM, vol. 31, pp. 1343–1354, 1988.

[22] U. Meyer and P. Sanders, “δ -stepping: a parallelizable shortest path algorithm,” Journal
of Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[23] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Comprehensive
evaluation of a new gpu-based approach to the shortest path problem,” International
Journal of Parallel Programming, vol. 43, pp. 918–938, October 2015.

[24] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, “A new gpu-
based approach to the shortest path problem,” in High performance computing and sim-
ulation (HPCS), 2013 international Conference on. IEEE, 2013, pp. 505–511.

[25] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization of dijkstra’s short-
est path algorithm,” in MFCS ’98 Proceedings of the 23rd International Symposium on

References 53

Mathematical Foundations of Computer Science. Springer-Verlag London, 1998, pp.
722–731.

[26] “Graphics processing unit,” https://en.wikipedia.org/wiki/Graphics_processing_unit, ac-
cessed: 2016–4–13.

[27] AMD, APU 101: All about AMD Fusion Accelerated Processing Units, AMD.

[28] NVIDIA, “Nvidia launches the wordl’s first graphiccs processing unit: Geforce 256,”
August 1999.

[29] A. Wiggins, N. Schultz, and P. Schmidt, “Nvidia’s gpgpu architecture: Fermi and cuda,”
Oregon State University, Tech. Rep., 2010.

[30] NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture:Fermi, NVIDIA Cor-
poration, 2009.

[31] P. N. Glaskowsky, NVIDIA’s Fermi: The First Complete GPU Computing Architecture,
NVIDIA Corporation, September 2009.

[32] “Kepler(microarchitecture),” https://en.wikipedia.org/wiki/Kepler_(microarchitecture),
accessed: 2016–4–14.

[33] L. Nyland and S. Jones, Inside Kepler, NVIDIA Corporation.

[34] J. Wang, “Introducing the geforce gtx 680 gpu,” March 2012.

[35] R. Smith, NVIDIA GeForce GTX 680 Review: Retaking The Performance Crown, March
2012.

[36] ——, NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last, November 2012.

[37] NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110,
NVIDIA, 2012.

[38] ——, “Cuda parallel computing platform,” http://www.nvidia.com/object/cuda_home_
new.html.

[39] F. Abi-Chahla, “Nvidia’s cuda: The end of the cpu?” June 2008.

[40] NVIDIA, “Cuda toolkit,” https://developer.nvidia.com/cuda-toolkit.

[41] ——, “Cuda llvm compiler,” https://developer.nvidia.com/cuda-llvm-compiler.

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Kepler_(microarchitecture)
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-llvm-compiler

54 References

[42] “Cuda,” https://en.wikipedia.org/wiki/CUDA.

[43] NVIDIA, “What is gpu accelerated computing?” http://www.nvidia.com/object/
what-is-gpu-computing.html.

[44] ——, CUDA C Programming Guide, NVIDIA, September 2015.

[45] P. J. Martín, R. Torres, and A. Gavilanes, “Cuda solutions for the sssp problem,” in
International Conference on Computational Science. Springer, 2009, pp. 904–913.

https://en.wikipedia.org/wiki/CUDA
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Problem Definitions
	1.2 Motivation
	1.3 Chapter Layout

	2 Literature Review
	2.1 Real Time
	2.1.1 Real time scheduling

	2.2 Traffic
	2.2.1 Waze
	2.2.2 Google Traffic
	2.2.3 Go Traffic

	2.3 Algorithms
	2.3.1 Shortest Path Algorithm
	2.3.1.1 Bellman Ford Algorithm
	2.3.1.2 Floyd-Warshall
	2.3.1.3 A* search Algorithm

	2.3.2 Single Source Shortest Path Problem
	2.3.2.1 Dijkstra’s Algorithm
	2.3.2.2 Sequential Dijkstra Algorithm
	2.3.2.3 Dijkstra’s Algorithm Priority Queue

	2.3.3 Parallel Versions of Dijkstra’s Algorithm
	2.3.3.1 Standard Parallel version of Dijkstra
	2.3.3.2 Another Approach
	2.3.3.3 D-Stepping Algorithm
	2.3.3.4 GPU parallelization of Dijkstra’s Algorithm

	2.4 GPU Architecture
	2.4.1 Up to NVIDIA G70
	2.4.2 G80 to Tesla
	2.4.3 Fermi
	2.4.3.1 The key architectural highlights of Fermi are

	2.4.4 Kepler Architecture

	2.5 CUDA Overview
	2.5.1 CUDA
	2.5.2 Poragramming capabilities
	2.5.3 Advantages
	2.5.3.1 GPU Accelarated Computing

	2.5.4 How GPU Accelarate Operation
	2.5.5 CPU vs GPU
	2.5.6 Kernel
	2.5.7 Block
	2.5.8 Thread

	3 Methodology and Design
	3.1 Graph Representation
	3.2 City Highway Graph
	3.3 Metric System
	3.4 Edge based Dijkstra
	3.5 Algorithm Design

	4 Implementation and Development Environment
	4.1 Implementation
	4.2 Development Environment
	4.3 System Overview:

	5 Result
	5.1 Data set
	5.2 Running Algorithm on CPU
	5.2.1 Rome
	5.2.2 New York City
	5.2.3 Execution time comparison between New York City and Rome

	5.3 Running Algorithm on GPU
	5.3.1 Rome
	5.3.2 New York City
	5.3.3 Comparison of Execution time between Rome and New York City in GPU
	5.3.4 Dhaka City

	5.4 Comparison between GPU and CPU
	5.5 Platform Comparison of NVIDIA

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

