
Improve Computational Complexity of Sobel

Edge Detection using Parallel Contract Anytime

Algorithm

Department of Computer Science and Engineering
School of Engineering and Computer Science

BRAC University

Supervisor Dr. Jia Uddin

Md. Kamal Hossain 12101073

Md. Asif Ibtehaz 14341001

Md. Assaduzzaman Ashique 12301017

ii | P a g e

DECLARATION
We, hereby declare that this thesis is based on the results found by ourselves. Materials of work

found by other researcher are mentioned by reference. This Thesis, neither in whole or in part, has

been previously submitted for any degree.

Supervisor

Dr. Jia Uddin
Ass professor
BRAC University
Department of Computer Science &
Engineering
jia.uddin@bracu.ac.bd

Authors

Md. Kamal Hossain
12101073

Shajal16@gmail.com

Md. Asif Ibtehaz
14341001

Ibtehaz.shawon@gmail.com

Md. Assaduzzaman Ashique
12301017

ashique12301017@gmali.com

iii | P a g e

Contents

Table of Contents ……………………………………………………………………......... III

List of Figures …………………………………………………….………………………. V

List of Tables ………………………………………………………………………........... VII

Preface …………………………………………………………………………………… VIII

Acknowledgement …………….…………………………………………………….......... X

Abstract …………………………………………………………………………………… 1

Chapter I : Introduction

1.1 Introduction …………………………………………………………………… 2

1.2 Contribution Summary ………………………………………………………... 3

1.3 Thesis Orientation …………………………………………………………….. 3

Chapter II : Background Study

2.1 Parallel Computing - Definition ………………………………………………. 4

2.1.1 General Purpose Parallel Computing Architecture …………………………… 4

2.1.2 Kernels ……………………………………………………………………….... 4

2.1.3 Thread Hierarchy …………………………………………………………….... 5

2.1.4 Memory Hierarchy …………………………………………………………….. 6

2.2 Anytime Algorithm ……………………………………………………………. 9

2.2.1 Certainty ……………………………………………………………………….. 10

2.2.2 Accuracy ………………………………………………………………………. 10

2.2.3 Specificity ……………………………………………………………………... 11

iv | P a g e

2.2.4 Properties of Anytime Algorithm …………….……………………………….. 11

2.2.5 Type of Anytime Algorithm …………….…………………………………….. 11

2.2.5.1 Contract …………….………………………………………………………….. 11

2.2.5.2 Interruptible ………………….………………………………………………… 12

2.2.6 Difference between Interruptible and Contract Anytime Algorithm …….……. 12

2.2.6.1 Interruptible ……………………………………………………………………. 12

2.2.6.2 Contract ………………………………………………………………………... 13

2.2.7 Sample Algorithm of Anytime Algorithm ………………………….…………. 13

2.2.8 Reduction Theorem …………………………………………………………..... 13

2.3 Sobel Algorithm …………………………………………………………….…. 14

Chapter III : Proposed Model

3.1 Proposed Model …………………………….…………………………………. 16

Chapter IV : Experiment and Result Analysis

4.1 Experimental Environment and Tools …...…………….……………………… 19

4.2 Experimental Results of Parallel Sobel Detection …………………………….. 20

4.3 Experiment with Parallel Contract-time anytime and Sobel Detection ……….. 21

Chapter V : Application

5.1 Application ………….…………………………………………………………. 26

Chapter VII : Conclusion and Future Works

6.1 Conclusion ………….…………………………………………………………. 29

6.2 Future Works & Limitations ………………..…………………………………. 29

References …………………………………...……………………….…………………... 30

v | P a g e

List of Figures

Figure 1 Grid of Thread Blocks 7

Figure 2 Memory Hierarchy 8

Figure 3 CUDA Multithreaded Programming Model 9

Figure 4 Workflow of anytime algorithm 10

Figure 5 Model of contract-time Anytime Algorithm. 12

Figure 6 Performance profiles of interruptible and contract algorithms 14

Figure 7 Sobel operator Convolution Kernel/Mask. 14

Figure 8 Proposed Model 16

Figure 9 Contract-time Anytime Algorithm task processing. 17

Figure 10 3x3 sub-mask filters (1-8). 18

Figure 11 Image (a) and (b) are Sample Image I and II. (c) and (d) are the output of
Sobel 16 and 32 block

20

Figure 12 Console Result for 16 block dimension. 21

Figure 13 Console Result for 32 block dimension 21

Figure 14 Three contract-time process test for 32 block dimension Test (b, c, and d). 22

Figure 15 Three contract-time process test for 16 block dimension test (b, c and d). 23

Figure 16 Sample outputs 23

Figure 17 Process versus Time for 16 and 32 block dimension. 24

Figure 18 Time Comparison of 1920 x 1024 Input Image. 24

Figure 19 Time Comparison of 4096 x 4096 Input Image. 24

Figure 20 Sample Image III 26

Figure 21 Sample Image IV 26

Figure 22 Sample Output III 27

vi | P a g e

Figure 23 Sample Output IV 27

vii | P a g e

List of Tables

Table 1: GTX 550TI GPU ENGINE SPECS 19

Table 2: PROCESS EXECUTION TIME COMPARISON 25

viii | P a g e

Preface

Image processing has a vast impact on today’s world. Every steps we are giving forward being

dependent on image processing kinds of thing. This is call modernization of the world. And in this

world image processing is needed as we are giving vision to our robots, we are operating robotic

arms to do operations there we need high quality camera with good encoding software. Again we

are trying to shorten the process of any decision taken visually by test or judging by cameras there

we need image processing.

Whenever image processing topic comes there is always some limitations and its time range or

time limit that needed to do the process. In normal CPU it’s so tough and risky to run a complete

image processing as this might damage the machine. For high quality CPU it’s okay but till now

it takes a lot of time to do a good quality image processing. And sometimes may be after waiting

a long time the expected result is not there so it increases the disappointment.

Another problem is we cannot get a result partially based on the present methods of image

processing or edge detection. We have to wait the whole time where a partial processed could have

worthy.

Based on these problems stated above we came with an idea where we can resolve both the

problems based on hardware and software solution.

Now for that we have to go through some algorithms and to solve the second problem only

solution is using anytime algorithm where we can stop the program anytime we want to and get a

result that will help. For initial work stage we chose only edge detecting as edge detecting is the

main part of image processing.

ix | P a g e

When it comes to solve the first problem none but the solution came in to our head is parallel

computing and that’s been made easy by NVIDIA releasing support for GPU’s to use with CPU’s.

This GPU technology is the main part here and also challenge for as.

Anytime algorithm is a artificial intelligence based algorithm. And the main challenge was to

implement it on NVIDIA CUDA C programming. Where we have gone through many books and

web sites and the outcome was disappointed for us. As once only the anytime algorithm was

theoretically solve using parallel computing but they failed to implement practically. That was a

bad news for us as all other so far implemented AI algorithms in parallel computing doesn’t work

as great as thought in theoretically.

Then we decided to partition the problem and started working on it. We have to wait two month

long to get our first progress. And it was implementing only Sobel in CUDA C. and so we did it.

Then our next part was to do something with anytime algorithm. We had to go through tons of

references and works done by others for anytime algorithm and till then all the works for anytime

algorithm was done in CPU based models only. Never in any parallel things.

After making a process model of anytime algorithm for GPU programming we did it

successfully. We are now able to get a result on given time. If we give the process till how many

we want to get the final result now our can do that.

We did successfully implemented anytime algorithm with Sobel edge detection method in GPU

computing by NVIDIA that is CUDA C. Comparing the result of the output and other conventional

CPU edge detection process we came to an end with 4 times faster edge detection process.

x | P a g e

Acknowledgement

With great contentment, we would like to express our gratitude to all the people who helped us

through this research period. First of all, special thanks are due to Assistant Professor Dr. Jia

Uddin, our advisor, who gave us invaluable advice and instructions and helped us to implement

this research work by giving advises how should we proceed. What should we do in time where

we were stuck in work progress he helped us all the time. Providing us with vast resources he made

our work easier.

Then we would like to thank Dr. Md. Haider Ali our honorable Head of the Department. He is

a very kind person to permit us to start our research work. And because of him we learnt a lot about

Image processing. As well as Dilruba Showkat Mam’s given idea about image processing course

did helped a lot.

Our great gratitude to also our honorable teacher Rubel Biswas Sir and Professor Mohammad

Zahidur Rahman sir. Because of them we get interested on Artificial Intelligence. Where we did

give a think to solve our problem by Artificial intelligence.

We want to thank Moin Mostakim Sir because of him we could think about algorithms to solve

any problem and how to approach towards algorithm.

We would be so grateful to Annajiat Alim Rasel Sir. He helped us to get allocated Lab room to

do our research work there.

Then we would like to thank those people who were in the Lab with us. Though they had other

research topic but they sometimes helped us a lot to complete our work properly.

xi | P a g e

Finally, we would like to thank our parents. We owe a lot to them. Without their support we

might not come this far. They helped us in every aspects of life. They encourage us to continue

our research. This work would not be came to light without their collective help.

1 | P a g e

Abstract

Edge detection is a considerably important factor in image or video processing. Detecting the

edges of an image play a significant role in image segmentation, data compression, well matching,

and image reconstruction. There are several approaches available to detect the edges of an image.

In this paper we focus on Sobel edge detection using contract-time anytime algorithm in CUDA.

To reduce the computational complexity we implemented our proposed edge detection method

using an NVIDIA GPU. In the experimental setup we have used NVIDIA GTX 550Ti GPU along

with AMD FX8150 Processor and 8 GB RAM. Finally, we measure speedup as well as quick,

moderate and final (3steps of contract) of our proposed parallel implemented model. Comparing

with conventional serial CPU based edge detection we have experienced maximum 4X speedup

of proposed implementation for 16 block dimension.

2 | P a g e

Chapter I

Introduction

1.1 Introduction

Edge detection from a color image is a very important and basically critical area in low level

image processing. For performing high speed industrialized application based on image

processing, edge detection is a mandatory thing to enhance work rate as well as accuracy. A

number of researchers works on several edge detection algorithms and they give different

responses and details to the different input images [1-7]. Edge detection quality has a great impact

on realization of complex automated computer/machine vision systems [1]. Among them, the

Sobel edge detection algorithm is much more popular than simple gradient operators due to its

property to counteract the noise sensitivity and easier implementation process [2]. While using

Sobel operator for GPU takes much less time than CPU. Again, the use of Interruption-Algorithm

for image processing much less time efficient [3]. Moreover, in case of canny edge detection in

GPU time process seems efficient but not enough for real time [4]. The use of anytime algorithm

for GPU architecture makes it run faster in association with Dijkstra’s algorithm [5, 10]. In

addition, anytime algorithm seems much efficient when it is used for observing different tasks [6].

Interruptible Anytime Algorithm for image processing is much faster than normal image

processing algorithms and also gives the privilege of getting output in different stage of time [7].

That is why, we are choosing contract-time anytime algorithm in coordination with Sobel operator

for proposed parallel implementation.

3 | P a g e

1.2 Contribution Summary

The proposed edge detection of images was designed by passing through five main steps: Image

input taking in CPU, image conversion (gray scale) using the Sobel Algorithm along with

Contract-time Anytime Algorithm in GPU, essential Sobel Algorithm was used to detect the edge

of the image. We also used Contract-time Anytime Algorithm here for faster processing in GPU

Edge detection calculation of an image was done in CUDA environment. Finally, processed image

and calculated time is showing in CPU.

1.3 Thesis Orientation

The rest of this thesis is organized as follows: Chapter II discusses on the premises of our thesis

Parallel Computing and different components of parallel computing, anytime algorithm, its

features and Sobel Edge Detection Technique. Chapter III discusses our proposed model. Chapter

IV describes Experiment and result analysis on both CPU and CUDA Environment. Chapter V

will tell the Application of this thesis. Finally, Chapter VI will conclude this paper with our future

direction regarding this research.

4 | P a g e

Chapter II

Background Study

2.1 Parallel Computing - Definition

Parallel computing is operating on the idea that large problems can be divided into smaller ones,

which are then solved at the same time. All of the calculations are carried out at the same time.

2.1.1 General-Purpose Parallel Computing Architecture

NVIDIA introduced CUDA™, a general purpose parallel computing architecture, a new

parallel programming model and instruction set architecture. It leverages the parallel compute

engine in NVIDIA GPUs to solve many complex computational problems. It is more efficient way

than on a CPU. CUDA comes with a software environment that allows developers to use C as a

high-level programming language. Other languages, application programming interfaces, or

directives-based approaches are supported (i.e.) FORTRAN, DirectCompute, OpenCL,

OpenACC.

2.1.2 Kernels

CUDA C extends C by allowing the programmer to define C functions, called kernels. When

called, are executed N times in parallel by N different CUDA threads. In regular C functions, it

will be executed only once. A kernel is defined using the __global__. It specifies the number of

CUDA threads that execute when a kernel is called using a new <<<…>>> execution configuration

syntax. Each thread that executes, given a unique thread ID. It is accessible within the kernel

through the built-in threadIdx variable. As an illustration, the following sample code adds two

vectors A and B of size N and stores the result into vector C.

5 | P a g e

Here, each of the N threads that execute VecAdd() performs one pair-wise addition.

2.1.3 Thread Hierarchy

ThreadIdx is a 3-component vector. The threads can be identified using a one-dimensional, two-

dimensional, or three-dimensional thread index. It forms a one-dimensional, two-dimensional, or

three-dimensional thread block respectively. This provides a way to invoke computation across

the elements in a vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way. For a one-

dimensional block, they are the same. For a two-dimensional block of size (Dx, Dy), the thread ID

of a thread of index (x, y) is (x + y Dx). For a three-dimensional block of size (Dx, Dy, Dz), the

thread ID of a thread of index (x, y, z) is (x + y Dx + z Dx Dy).

As an example, the following code adds two matrices A and B of size N x N and stores the

result into matrix C:

1. // Kernel definition
2. __global__ void VecAdd(float* A, float* B, float* C){
3. int i = threadIdx.x;
4. C[i] = A[i] + B[i];
5. }

6. int main() {
7. ... // Kernel invocation with N threads
8. VecAdd<<<1, N>>>(A, B, C);
9. ... }

6 | P a g e

There is a limit to the number of threads per block. On current GPUs, a thread block may contain

up to 1024 threads. A kernel can be executed by multiple equally-shaped thread blocks. The total

number of threads is equal to the number of threads per block times the number of blocks. Blocks

are organized into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks

as illustrated by Figure 1.

A thread block size of 16x16 (256 threads), is a common choice. Thread blocks are required to

execute independently. This allows thread blocks to be scheduled in any order across any number

of cores.

2.1.4 Memory Hierarchy

Each thread has private local memory. They have shared memory visible to all threads of the

block and shared the same lifetime as the block. All threads have access to the same global

memory.

There are also two additional read-only memory spaces accessible by all threads: the constant

and texture memory spaces. The global, constant, and texture memory spaces are persistent across

kernel launches by the same application. Figure 3 illustrates a basic memory hierarchy block.

1. // Kernel definition
2. __global__ void MatAdd (float A[N][N], float B[N][N], float C[N][N]) {
3. int i = threadIdx.x;
4. int j = threadIdx.y;
5. C[i][j] = A[i][j] + B[i][j];
6. }
7. int main() {
8. ... // Kernel invocation with one block of N * N * 1 threads
9. int numBlocks = 1;
10. dim3 threadsPerBlock(N, N);
11. MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
12. ... }

7 | P a g e

.

Figure 1. Grid of Thread Blocks

8 | P a g e

Figure 2. Memory Hierarchy

A multithreaded program is partitioned into blocks of threads. It executes independently from

each other. A GPU with more multiprocessors will automatically execute the program in less

time than a GPU with fewer multiprocessors.

Per - thread local

memory

Thread Block

Per - block shared

memory

9 | P a g e

Figure 3. CUDA Multithreaded Programming Model

2.2 Anytime Algorithm

Anytime algorithm is a class of algorithm whose quality of results improves gradually as

computation time increases. However, it offers trade-off between the resource consumption and

output quality. The most wonderful feature of anytime algorithm is that it can be stopped anytime

and an approximate result will be given based on the so far calculated data. It is the best part of

anytime algorithm that other algorithm’s cannot do. In case of any other algorithm, the program

will crash if it is being try to stop in the middle of the calculation. They have to run the whole

process to give a result.

Anytime algorithm is suited for the problem which has the trade-off between the processing

(computation) time and the accuracy. The accuracy will be improved as the computation time

10 | P a g e

increases. The computation of anytime algorithm extends the traditional idea of computational

procedures by allowing to return many possible approximate answers to any given inputs. The

specialty of anytime algorithm is the use of well-defined quality measures to monitor the progress

in problem solving. It also allocates the computational resources effectively.

Figure 4. Workflow of anytime algorithm.

According to S. Zilberstein’s paper [11] metrics of various kind can be used to get the quality

of the result which is produced by anytime algorithm.

2.2.1 Certainty

This metrics reflects the certainty whether the result is correct. Certainty can be expressed

using probabilities, certainty factors, or any other approaches.

2.2.2 Accuracy

This metric reflects the difference between the approximate result and the exact answer. Many

anytime algorithms can provide a guarantee of a bound on the error, where the bound is reduced

over time.

 .

Quality of Results

Computation Time
 Less

 Low High

 More

Possible
Result

Approximated

Result

 Exact
Result

Any

Input
Output

11 | P a g e

2.2.3 Specificity

This metric reflects the level of detail of the result. Anytime algorithm always produces the

correct results, but the level of detail increases over time.

2.2.4 Properties of Anytime Algorithm

This section explains the properties of anytime algorithm according to S. Zilberstein’s paper

[11]. Anytime algorithm has the properties that satisfy the following features –

 Measurable quality: Quality of result can be defined exactly.

 Recognizable quality: Quality of an approximated result is easy to determine at

intermediate processing time.

 Monotonicity: Quality of result is an increasing function of time and input quality.

 Consistency: Quality of result is connected with computation time and input quality.

 Diminishing returns: The solution’s quality improves much larger than previous stages

of computation and diminishes over time.

 Interruptibility: The algorithm can be stopped at any time and given some answer.

 Preempt ability: The algorithm can be stopped and started again at any time with minimal

overhead.

2.2.5 Type of Anytime Algorithm

There are two types of anytime algorithm, (i.e.,) contract and interruptible

2.2.5.1 Contract

Contract based anytime algorithm provides the result in a given time frame. Although the

algorithm can produce the results for any given time allocation, it might not be able to produce

the required result. If the algorithm is interrupted before the expiration of the allocation, it might

12 | P a g e

not be able to produce the required result. In case of contract anytime time algorithm, there are

few ways to be adopt. Among them, one is knowing the full time of the program and another is

till which processes the program can give results.

 Figure 5. Model of contract-time Anytime Algorithm.

2.2.5.2 Interruptible

Anytime algorithm also produce an acceptable or required result based on the requirement

when interrupted. The total run time of this algorithm is unknown. It can provide the output at

any step of the result.

2.2.6 Differences Between Interruptible and Contract Anytime Algorithms

2.2.6.1 Interruptible

 Total execution time is unknown.

 Can be interrupted at any time.

13 | P a g e

 It is always contract algorithms.

 It is more complicated to construct than contract algorithm

 Flexible and widely applicable.

2.2.6.2 Contract

 Total execution time must be known in advance.

 Cannot be interrupted at any time, if it is interrupted between the execution time, it

cannot provide the required result.

 It is not interruptible algorithms.

 Easier to construct.

2.2.7 Sample Algorithm of anytime algorithm

2.2.8 Reduction Theorem

Reduction theorem allows the construction of contract anytime algorithms as an intermediate

step, before the system is made interruptible. (S. Zilberstein, 1993).

1. Result ← INITIALIZATION-STEP (Input(x, y))
2. REGISTER-RESULT (Result)
3. x ← 0; y ← 0;
4. While (x < h)
5. {

a. While (y < w)
b. {

i. Output(x, y) ← Input(x, y);

ii. y ← y + 2;
c. }
d. SIGNAL (TERMINATION)
e. HALT

6. }
7. w ← w/2;
8. h ← h/2;

14 | P a g e

For any contract algorithm, an interruptible algorithm B can be constructed such that for any

particular input qB(4t) ≥ qA(t).

Figure 6. Performance profiles of interruptible and contract algorithms

2.3 Sobel Algorithm

The Sobel operator is widely used for edge detection in images. It is based on the computing

the approximation of the gradient of image intensity function. The Sobel filter uses two 3 x 3

spatial masks to calculate the gradient. Two filters are Sx and Sy.

Figure 7. Sobel operator Convolution Kernel/Mask.

Sobel operator is based on convolving the image with a small, separable and integer valued

filter in both horizontal and vertical directions. The local edge strength is defined as the gradient

magnitude is given by equation 1. Equation 2 can give approximate magnitude for the

computation, much faster to compute the gradient.

15 | P a g e

S=√ (Sx²+Sy²) (1)

|S| = | Sx | + | Sy | (2)

The above mentioned scheme is for grayscale images. For color images (RGB color space), this

scheme is applied separately for each color component. Final color edge map of color image is

computed by using the edge maps of each color component.

16 | P a g e

Chapter III

Proposed Model

3.1 Proposed Model

Figure 8 shows the block diagram of proposed parallel implementation of CPU-GPU based

edge detection method. To evaluate our proposed model have utilized different test images. First

of all, we have taken the images as input. As the images are color images, we converted it into

gray scale images. The process ran in GPU and we used contract-time anytime algorithm to make

the conversion process faster, as depicted Figure 8.

Edge detection
(Sobel) Contract-time

Anytime
Algorithm for

Sobel

Gray Scale
Conversion

Image input CPU

Contract-time
Anytime

Algorithm for
gray scale

GPU

Output CPU

Figure 8. Proposed Model

17 | P a g e

After that, the edge detection process runs in GPU. Again, used contract-time anytime algorithm

to detect the edges. We have calculated the time for Sobel operator in CUDA environment and

took the time for processing and compared results. Our all the outputs shows in CPU that were

calculated in GPU that is the primary aspiration of parallel implementation of Sobel operator along

with any time algorithm. Figure 10 is a Sobel operator matrix that we used to calculate value for

detecting edges in our CUDA environment. Here we used the general Sobel operator gradient

matrix with CUDA. That detects edges and the time taken here is less than normal Sobel operator

in CPU.

Figure 9. Contract-time Anytime Algorithm task processing.

In Figure 7 Sx represents horizontal convolution mask and followed by Sy represents vertical

convolution mask. These convolution mask is being used for calculating the gradient.

Sobel operator 2D gradient based measurement is performed on an image. High spatial

frequency which correspond to edges is mainly used to perform the measurement. For

measurement we use Equation 1 which is the equation for gradient magnitude. In addition,

Equation 2 can give approximate magnitude for the computation, which is much faster to compute

the gradient. Figure 9 shows the task processing structure of any image input. From starting point

it takes less time to compute but quality of processing is low. That is the quick process of contract-

Input Quick
Process

Half Process Full process Output

Less More

Low High

18 | P a g e

time anytime algorithm. Gradually for half process and complete process of the program gives

better output.

Figure 10. 3x3 sub-mask filters (1-8).

Figure 10 depicted how we divide every image into eight 3x3 sub-masks to use Sobel operator

and use contract-time in different time period. We initially experiment only 3 contracts using these

sub-masks and calculate process time in GPU and CPU system.

19 | P a g e

Chapter IV

Experiment and Result Analysis

4.1 Experimental Environment and Tools

In the experimental setup, we have used AMD FX 8150 CPU, 8 GB RAM with a GTX 550TI

GPU. We have also used Visual Studio 2013, CUDA ToolKit 7.5, OpenGL, Java 7, .NET C++,

Eclipse Mars editor and Create a graph (online tool). Table I describes the detailed specification

of GTX 550TI GPU.

Table I. GTX 550ti GPU Engine Specs

Parameters Value

CUDA Cores 192

Graphics Clock (MHz) 900

Processor Clock (MHz) 1800

Texture Fill Rate (billion/sec) 28.8

Processor Clock (MHz) 1800

Total amount of shared memory per block 49152 bytes

Maximum number of threads per block 1024

CUDA Driver Version / Runtime Version 7.5 / 7.5

20 | P a g e

4.2 Experimental Results of Parallel Sobel Detection

To evaluate our proposed edge detection model, we have used a 4096 image [Image I] and a

1920x1080 image [Image II]. Figure 11(a) is our sample image [Image I] for this experiments.

Figure 11 (c) and (d) are the two outputs of input we present in Figure 11 (a).

Figure 11 (c) & (d) are two outputs for our experiment image. For large pixel images we capture

the real image in 4096x4096 texture and then we send it to the GPU for gray scale conversion and

edge detection. CPU execution time is the total time to read the image and printing the output.

GPU time is the time for kernel that is calculating the total time to execute the kernel in GPU. We

have taken block dimension 16 and 32 to calculate threads lowest threads for 16 block dimension

is 256. And for 32 block dimension uses highest 1024 threads. For our experiment, we have

calculated the blocks using Equation 3.

Figure 11. (a) And (b) are the Sample Image I and II.
(c) And (d) are the output of Sobel 16 and 32 block.

21 | P a g e

𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 = (𝑋1 , 𝑌1) (3)

𝑋1= 𝑊/𝐵d

𝑌1= 𝐻/𝐵d

Where, width and height of image are from input image and block dimension is our default

value. Width of image = W, Height of image = H, and Block dimension = Bd.

 Figure 12. Console Result for 16 block dimension.

Figure 13. Console Result for 32 block dimension.

This program process 4K ultra HD images that is a normal conventional CPU programming

Sobel edge detection cannot do. As we have also implemented Sobel for conventional CPU

programming language with 3840 x 2400 image [Image 1] but it cannot read the image.

4.3 Experiment with Parallel Contract-time anytime and Sobel Detection

For experimenting our contract time algorithm with Sobel we have used a 1920x1080 image

[Image II], which is presented in Figure 11(b).

22 | P a g e

Figure 14 shows that we have used 32 block dimension for test contract-time anytime algorithm.

Where we have got different output and execution time from 3 contract of our program. Test 1 is

the result of quick process. Test 2 is for half process and Test 3 is for Full process. Test 1 takes

comparatively less time than test 3. Same goes for the image tested in 16 block dimension that’s

showed in Figure 15.

Figure 16 illustrates the sample outputs of our process. Where process of our algorithm is

anytime algorithm output [Output 1], here user defines which process will be calculated. This

output is for 16 block dimension half process. We have processed an image also in conventional

CPU programming language to compare our results. Conventional CPU result is shown in Figure

16 (b).

Figure 14. Three contract-time process test for 32 block
dimension Test (b, c, and d).

(a) (b)

(c) (d)

23 | P a g e

Figure 16. Sample outputs.

(a) (b)

(c) (d)

Figure 15. Three contract-time process test for 16 block
dimension test (b, c and d).

24 | P a g e

Figure 17. Process versus Time for 16 and 32 block dimension.

Figure 18. Time Comparison of 1920 x
1024 Input Image.

Figure 19. Time Comparison of 4096 x
4096 Input Image.

25 | P a g e

Table II. Result Comparison

PROCESS
CPU – GPU

TIME (MS)

THREADS

PER BLOCK

BLOCK

SIZE

CPU

EXECUTION

TIME (MS)

SPEEDUP

(AGAINST

CPU)

16 BLOCK

DIMENSION

QUICK 119.899

256 8192 480

4.003X

HALF 127.809 3.7X

FULL 127.992 3.75X

32 BLOCK

DIMENSION

QUICK 138.227

1024 2048 480

3.47X

HALF 141.027 3.4X

FULL 141.601 3.38X

Table II represents the comparison of our program with conventional CPU programming.

Comparing with the CPU program we have calculated speedup of our program and for 16 block

low it is 4.003x and for high quality edge detection it is 3.75x. Figure 17 graph represents the

detailed comparison between 16 and 32 block dimension with respect to execution time.

26 | P a g e

Chapter V

Application

5.1 Application

Edge detection is a fundamental feature of Image Processing. It is the basic step of image

analysis. The purpose of edge detection is to discover the information about the shapes and the

reflectance or transmittance in an image. We can apply edge detection in many sectors.

Our first thought of applying this technology in game of cricket. In Cricket, there are some

contradiction in giving out. To determine, whether it was out or not, they took help of snicko

technology (sound wave based). In this case, we can apply our proposed model instead of snicko

technology.

Figure 20. Sample Image III Figure 21. Sample Image IV

27 | P a g e

Figure 20 and Figure 21 are the sample image III and sample image IV to use in our application.

Figure 22 and Figure 23 are the same output of III and sample image IV are the output image. It is

clearly visible that whether the ball touched the bat or not.

Figure 22. Output Image III

Figure 23. Output Image IV

28 | P a g e

We can also implement our edge detection methods on medical science (detect the edge of lungs

CT image), shape and object recognition, traffic management and line detection from blurry image.

29 | P a g e

Chapter VI

Conclusion and Future Works

6.1 Conclusion

This paper presented a new parallel edge detection method using Sobel and Contract Anytime

Algorithm. As a parallel platform we utilize an NVIDIA GTX GPU and 8 Core CPU. For sample

test images, we calculate the execution time of proposed CPU-GPU parallel method and

conventional CPU based algorithm. In addition, by varying thread and block sizes, we observed

the effect of computation time. Experimental results show that the proposed parallel

implementation exhibits above 4X speedup over the conventional serial implementation.

6.2 Future Works & Limitations

Among the various difficulties and limitations we have faced, the most important one is the

Visual Studio 2013 extension error with CUDA C environment. Moreover, CUDA C 7.0 toolkit

did not permit some of our coding technique. So, we have to wait till CUDA C toolkit 7.5. In

addition, due to lack of Kepler Architecture GPU, we were not able to implement the interruptible

anytime algorithm. Normal GTX architecture that we used and are available to us does not support

the techniques required.

We are interested to extend this thesis to compute image in real time using contract-based

anytime algorithm. Furthermore, we like to implement interruptible anytime algorithm. Again, we

also want to implement the above method of computing edge detection in video formats as well.

30 | P a g e

References

[1] M. B. Ahmad and T. S. Choi, “Local threshold and boolean function based edge detection,”

IEEE Transactions on Consumer Electronics, vol. 45, no. 3, pp. 674–679, 1999.

[2] T. A. Abbasi and M. U. Abbasi, “A novel FPGA-based architecture for Sobel edge detection

operator,”International Journal of Electronics, vol. 94, no. 9, pp. 889–896, 2007.

[3] W. Kywe, D. Fujiwara, and K. Murakami., “Scheduling of Image Processing Using Anytime

Algorithm for Real-time System,” Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, vol.3.2006.

[4] Ogawa, Kohei, Y. Ito, and K. Nakano. “Efficient Canny Edge Detection Using a GPU.” First

International Conference on Networking and Computing. 2010.

[5] M. Rahul, and A. A. Saba. “Anytime Algorithms for GPU Architectures.” 2011 IEEE 32nd

Real-Time Systems Symposium, 2011.

[6] Baxter, J W, J. Hargreaves, N. Hawes, and R. Stolkin. “Controlling Anytime Scheduling of

Observation Tasks.” Research and Development in Intelligent Systems XXIX: 219-24, Oct 2012.

[7] W. Kywe, D. Fujiwara, and K. Murakami, “An Approach to Linear Spatial Filtering Method

based on Anytime Algorithm for Real-time Image Processing,” 18th International Conference on

Pattern Recognition (ICPR'06), vol. 4, no. 12, 2012.

[8] Rostov Kremlin Available from:

<https://wallpaperscraft.com/wallpaper/rostov_velikij_kreml_rossiya_kh ram_103672>

[9] Gulls Available from:

https://wallpaperscraft.com/download/gulls_birds_flying_flapping_1064 66/1600x900

31 | P a g e

 [10] J. Uddin, E. Oyekanlu, C.H. Kim, and J. M. kim, “High Performance Computing for Large

Graphs of Internet Applications using GPU,” International Journal of Multimedia and Ubiquitous

Engineering, Vol. 9, No. 3, pp. 269-280, 2014.

[11] S. Zilberstein, ‚Using Anytime Algorithms in Intelligent Systems‛, AI Magazine, vol. 17, no.

3, pp. 73-83, (1996).

[12] S. Zilberstein and S. J. Russell. In S. Natarajan (Ed.), ‚Approximate Reasoning Using

Anytime Algorithms, Imprecise and Approximate Computation‛, Kluwer Academic Publishers,

(1995).

[13] J. Grass and S. Zilberstein. In M. Pittarelli (Ed.), ‚Anytime Algorithm Development Tools‛,

SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation Scheduling, 7(2):20-27,

(1996).

[14] Harley R. Myler and Arthur R. Weeks, ‚The handbook of image processing algorithms in C‛,

Prentice-Hall PTR, 1993.

[15] R.C. Gonzalez and R.E. Woods, ―Digital image processing,‖ Prentice Hall, 2nd Edition,

2002.

[16] R.K. Sandhu, P.S. Maan, ―A spatial-domain filter for digital image De-noising used for Real

time applications‖, International Journal of Computer Science and Technology, IJCST Vol. 2, Issue

3, September 2011.

[17] J.R. Parker, ‚Algorithms for image processing and computer vision‛, John Wiley & Sons, Inc.

U.S.A, 1997.

[18] I. Pitas, ‚Digital Image Processing Algorithms and Applications‛, John Wiley & Sons, Inc.

U.S.A, 2000.

32 | P a g e

[19] A. K. Jain, ‚Fundamentals of Digital Image Processing‛, Prentice-Hall, Inc. U.S.A, 1989.

[20] J. Cheng, M. Grossman, T. McKercher, Professional CUDA C programming, Wrox, a Wiley

brand, INpolis, IN, 2014.

[21] I. Hatzilygeroudis, V. Palade, Combinations of intelligent methods and applications:

proceedings of the 3rd International Workshop, CIMA 2012, Montpellier, France, August 2012,

Springer, Heidelberg, 2013.

[22] J. Sanders, E. Kandrot, CUDA by example: an introduction to general-purpose GPU

programming, Addison-Wesley, Upper Saddle River, NJ, 2011.

[23] T. Masters, Deep belief nets in C and CUDA C, n.d.

[24] http://www.profc.udec.cl

[25] http://www.eng.iastate.edu/ee528/sonkamaterial/chapter_1.htm

[26] http://www.eng.iastate.edu/ee528/sonkamaterial/chapter_2.htm#Image%20functions

[27] http://en.wikipedia.org/wiki/

[28] http://www.nvidia.com/object/what-is-gpu-computing.html

[29] http://www.nvidia.com/object/cuda_home_new.html

[30] http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz465OFzRvq

[31] http://www.nvidia.co.kr/content/cudazone/download/showcase/kr/Tutorial-DKIRK.pdf

[32] https://blogs.nvidia.com/blog/2013/05/03/trump-card-why-a-pro-poker-player-bet-on-cuda

[33] http://docs.nvidia.com/cuda/

[34] http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2012-02-20/07-intro_to_cuda_c.pdf

33 | P a g e

[35] https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c

[37] https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc

[38] http://www.pgroup.com/resources/cuda-x86.htm

[39]

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_la

nguage/Introduction_to_CUDA_C.pptx

[40] http://cs.unc.edu/~prins/Classes/633/Readings/CUDA_C_Programming_Guide_4.2.pdf

[41] http://www.codeproject.com/Articles/202792/Using-Cudafy-for-GPGPU-Programming-in-

NET

[42] http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf

[43] Create A Graph (Online tool) - https://nces.ed.gov/nceskids/createagraph/

