

THESIS REPORT

Context Aware Energy Allocation by Auction Based Method in Wireless Sensor Networks

Department of Computer Science and Engineering BRAC University

DECLARATION

We hereby declare that this work was carried out by us under the guidance and supervision of **Dr. Md. Muhidul Islam Khan,** Assistant Professor, Department of Computer Science and Engineering, BRAC University. The period of thesis work is from May 2015 to April 2016. This project work is submitted to the Department of Computer Science and Engineering, School of Engineering and Computer Science, BRAC University in partial fulfillment for the requirement of Degree in Bachelor of Science in Computer Science. We declare that this work has not been submitted anywhere else for the award of any other degree.

Signature of Supervisor

Signature of the Authors

Dr. Md. Muhidul Islam Khan

Assistant Professor

Department of Computer Science and Engineering, BRAC University Imam Ush Shaheed (12101046)

Sadia Sabrin Nodi (12101058)

ABSTRACT

Wireless sensor networks refer to hundreds and even thousands of small tiny devices called sensor nodes distributed autonomously to observe physical or environmental parameters like temperature, pressure, vibration and motion at different locations such as landslides. Every node in a sensor network usually equipped with one sensor, a wireless communications device like radio transceiver, a small microcontroller, and an energy supply, a battery. Since the nodes are battery operated energy plays a vital role. The application of the WSN involves several fields, like military battleground, fire detection, and other extreme environments. In these situations, it is troublesome to replace the dead nodes caused by energy depletion with new ones to provide energy for the system. Therefore, making sensor nodes operating as long as possible is the main method to maximize the lifespan of the sensor network. Context aware task allocation/energy allocation is an important issue for maximizing the lifetime of the network. In this research our goal is to minimize the wastage of energy and to maximize the usage by context aware energy allocation. We develop a context aware energy allocation algorithm based on First Price Auction method. Our simulation results show that our proposed method provides better results in terms of energy consumption comparing with the other existing methods.

TABLE OF CONTENTS

CHAPTER I

Section 1.1: Introduction	6
CHAPTER II	
Section 2.1: Related work	

CHAPTER III

CHAPTER IV

Section 4.1: Proposed Method	11
Section 4.2: Cluster head selection	
Section 4.3: Cluster head selection algorithm	12
Section 4.4: Job allocation	13
Section 4.5: Job allocation algorithm	13
Section 4.6: Selected nodes job	15
Section 4.7: Algorithm for selected nodes	15
Section 4.8: Step by step context representation	16
Section 4.9: Demonstration link2	22

CHAPTER V

Section 5.1: Experimental results and evaluation	
Section 5.2: Data Sheet	

CHAPTER VI

Section 6.1: Conclusion

CHAPTER VII

Section 7.1: References

LIST OF FIGURES

CHAPTER II

	Fig. 1. Multi-gateway clustered sensor network	. 8
СН	APTER IV	
	Fig. 2. Sensor node representation in 10 x10 matrix	11
СН	APTER V	
	Fig.3 Time versus remaining energy graph Fig.4 Time versus consumed energy graph	

Chapter I

Introduction

A wireless sensor network is a group of specialized transducers with a communications infrastructure for monitoring and recording conditions at diverse locations. Commonly monitored parameters are temperature, humidity, pressure, wind direction and speed, illumination intensity, vibration intensity, sound intensity, power-line voltage, chemical concentrations, pollutant levels and vital body functions [12]. WSN usually is battery powered which is very energy consuming. At present efficiently allocation of energy is one of the main challenges of WSNs [5]. To use the energy efficiently researchers have been working on WSN power/energy allocation. They are emphasizing on sensing, communication, computation and energy harvesting. In general, the communication consumes huge number of energy.

In our research we are working to find out an efficient algorithm/method of energy allocation which will be context aware and power efficient for WSN.

Context Aware means to behave dynamically with the environment and to act in a way that the situation demands. Suppose for a sensor node, it needs to be in sleep mode if there is nothing to detect or if a node needs to track something it will be activated immediately.

Generally, a wireless sensor network consists of three main components: Nodes, Gateways and Software [13]. The Nodes consist of several sensors are used to monitor assets or environment we are working on. The acquired data are transmitted to the gateway, which is connected to a host system where data collection, processing, analyzing and measurement data are performed using a software. Routers are a type of node that is used to expand WSN distance and its area of implementation.

There are many different kind of tiny sensors which is used in various purposes like in military issues, shopping malls, building utilities, border areas, forests security etc. which creates a smart environment from where we can collect several data. These sensors work in different phases according to the need of the environment. A single sensor might do multiple works such as sensing, broadcasting, transmitting, bidding etc. The main challenge in this process is to keep those sensors alive for the maximum period of time and get maximum output [1].

We propose an auction based method for context aware energy allocation in a WSN. We consider a clustered based WSN for various task allocations to the sensor nodes in a way that the energy is optimized and the performance is maximized. We consider a set of tasks/jobs. Based on a utility function and using First-Price auction cluster head of each cluster helps to allocate the jobs to the sensor nodes so that the network lifetime maximizes.

Rest of the thesis report is organized as follows. Chapter II describes the related works. Problem formulation is mentioned in chapter III. chapter IV has the description of proposed method. chapter V has simulation-results and chapter VI concludes the paper with the future direction of our work.

.

Chapter II

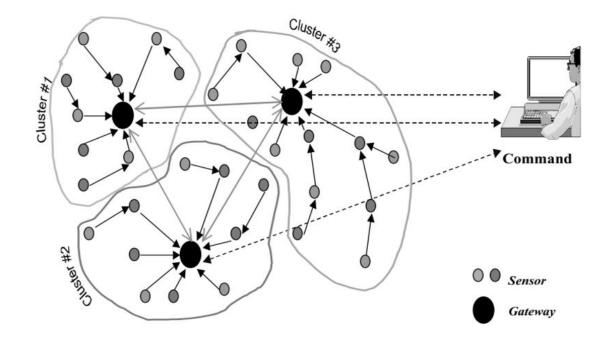


Fig. 1. Multi-gateway clustered sensor network [8]

B. Lokesh et al. N proposed[1] a system where each sensor node is pre-configured to fixed weight and Context (Either Seasonal or Time context base). After initial setup, each sensor nodes will sample data in a regular interval. Depending on the context and available information, each node will derive an emergency value which signifies the attention to be given to that particular tray. Derived value is forwarded to the Cluster Head (CH), which summarize further with other sensor nodes. Sensor nodes will also modify the event sensing rate or sleep time depending on available information, to reduce the power consumption. Catering the service to every floor by Store manager (SM) solely depends on emergency value forwarded by DSN. The cluster head (CH) acts as intermediate node to forward the data to SINK node. It collects the data from all the node belongs to its cluster. Then it summarizes the data, mainly the emergency value of

particular product. Then it forward the data to next cluster which connect to SINK or another cluster. [1]

In another research, A. Sinha et al. [4] proposed a prediction based method for task allocation. They have used power aware sensor node model which works on increasing latency and decreasing power consumption. The sleep states are differentiated by power consumption, the overhead required is going to sleep and the wake-up time. In general, a deeper sleep state consumes less power and has a longer wakeup time. An event occurs when a sensor node picks up a signal with power above a predetermined threshold. Here the calculated threshold level depends on the basis of average event rate. So the sleep states/wake up of the nodes depends on the probability of the occurrence of event. As the sleep time and wakeup time is based on the prediction of previous event, in worst case 2 things can be happened.

 Events may occur during sleep time therefore they might have missed events
 No event may occur during wake time therefore the whole energy is being wasted during the period of time.

Compare to this prediction based model, our algorithm runs in such a way where there is a less possibility of wastage of energy and also less missed events as a node is being awaken only if the event occurs. This makes our work unique comparing with the existing approaches.

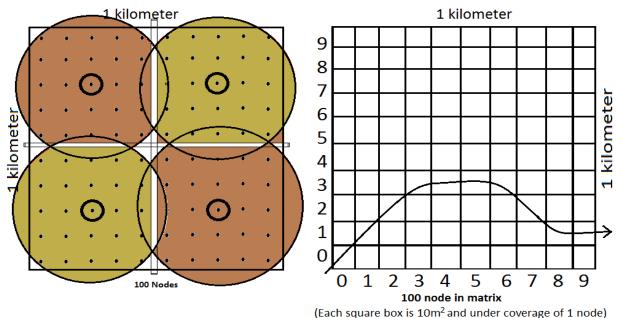
Chapter III

PROBLEM FORMULATION

Some applications of sensor networks include tracking the movements of birds, small animals, environmental monitoring in marine, soil, and atmospheric contexts, forest fire detection, meteorological or geophysical research, pollution study etc. There are some places in the world like forests and border area where it is dangerous to people to go and collect information's but which is needed. In these cases, a WSN plays a vital role. In those rural areas the sensor nodes sense the unwanted substance and transmit the information to the network.

A single sensor node does many things such as capturing temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels etc. In our paper we consider our sensors can perform four tasks.

- 1) Receive
- 2) Transmit
- 3) Sense
- 4) Bidding


Our goal is to allocate these tasks to the sensor nodes in a way that the network lifetime increases.

Chapter IV

PROPOSED METHOD

To distribute the tasks/jobs of the sensors we divide the whole process in to three sub processes:

- 1) Cluster Head (CH) selection algorithm
- 2) Job allocation algorithm
- 3) Algorithm for selected node

(Each square box is form and ander coverage of fined

Fig. 2. Sensor node representation in 10x10 matrix

If we take an area of 1000 miter consist of 100 sensor nodes in 10/10 matrix. we take 4 main sensor nodes called main sensor nodes. These four sensor nodes will always be in ON mode. Other nodes will be in sleep mode. The Main Sensor Nodes will have all the

information of other nodes. These nodes always sense if there any substance is present in their range or not. The battery power of main sensor node is higher than the other nodes.

Cluster Head (CH) selection

When one of the four main sensor nodes detect an unwanted substance in its range it calculates the area and make the nearest node of the substance Cluster Head and follows to the second algorithm (Job allocation algorithm).

Algorithm 1 ClusterHeadSelection algorithm.

Input: *matrixOfAllNode, fourMainSensorNodes* Output: *Cluster_head, AdjacentNodes*

Step 1: Start

Step 2: FourMainSensorNodes in 4 edges start sensing

Step 3: *if FourMainSensorNodes[x]* detects anything

- i. Detect nearest node from that location
- ii. Make it *cluster_head*
- iii. Initiate jobAllocationAlgorithm
- iv. go to Step 3

Step 4: exit

Job allocation:

In this part the cluster head selects its adjacent nodes and sends them a signal to initiate bidding. The selected nodes then bid to the cluster head according to their battery life and distance based on this bidding function.

Cluster heads gets all the bidding of all the adjacent nodes. It then finds out the two highest bidders. The highest bidder gets the job to sense and transmit and the second highest bidder remains in the queue as backup and send all the other bidders a message to terminate or sleep. If the highest bidder fails to complete its job, then the backup node continues the rest of the job. If the currently active node sends a message to terminate signal, it goes back to the cluster head selection algorithm if not it goes to the third algorithm for selected node).

Algorithm 2 Job allocation algorithm among bidders.

i. Phase I: INITIATE BIDDING

- a. Select bidders (Neighbors)
- b. Send "initiate bidding" signal to bidders

ii. Phase II: SETTING PRIORITY USING BIDDING FUNCTION

- i. Bi [i= 1,2,3,4,5,6,7,8]
- ii. Using bidding function

 $\frac{1}{distance(head, adj[x][y])} + b_Level[x][y]$

iii. Saves returned array:

priorityArray[][], stored high to low priority

iii. Phase III: WORK ALLOCATION

- a. Head knows the winner/highest bidder
- b. Assign the highest bidder to the job and 2nd highest as backup
 priorityArray[0] → got the job
 priorityArray[1] → in power saver as backup
- c. Send all other bidders sleep/terminate signal

iv. Phase IV: RECOVERY MODE

- a. *if* current node, *priorityArray[0]*, fails initiate backup, *priorityArray[1]*
- b. priorityArray[1] → got the job
- c. recover **priorityArray[0]** then → in power saver mode as backup

v. Phase V: TERMINATION

- a. if currently active node sends "terminate signal"
 - i. Send terminate signal to active and backup node
 - ii. Terminate (go back to *ClusterHeadSelection*)

Selected node's job:

The highest bidder will then check if the substance is in range and if DTT<0 or not. (DTT: Data to Transmit). If it is true, Then the bidder will start sensing and storing data.

If DTT >=1 the bidder will then transmit all the stored data to gateway and initiate the DTT in to 0.

If it doesn't match with any of the conditions, it means the substance is no more in the range it will transmit all the data to gateway and initiate the DTT into 0 again. Lastly it will send a signal to the cluster head to terminate its job. Thus the sensors will work according to the algorithm if it senses any substance into its range.

Algorithm 3 Algorithm for selected node. And backup node

 $I/DTT \rightarrow Data to Transmit$

Step 1: Start

Step 2: check if the object isInRange () and DTT<1

Step 3: if true continue sensing and storing data of the object

Step 4: else

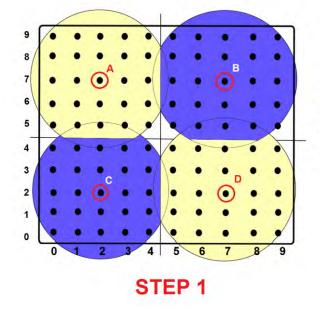
if DTT >=1

i. transmits stored data to gateway

ii. *DTT* → 0;

iii. Go to Step 2

else // object is not in range now


i. transmits stored data to gateway

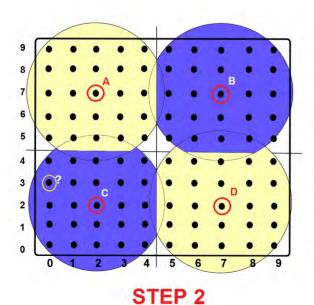
ii. *DTT* → 0;

iii. Send terminate signal to *cluster_head*

iv. Sleep.

Step 5: exit

Step by step context representation:


Node A B C D remains active

They will initiate ClusterHeadSelection Algorithm if detects any object in their area

#Suppose there is an object detected by C node in C region

Step 1:

If the system detects any object in its area it will initiate 'Cluster Head Selection Algorithm'.

Algorithm 1: Cluster Head Selection Algorithm

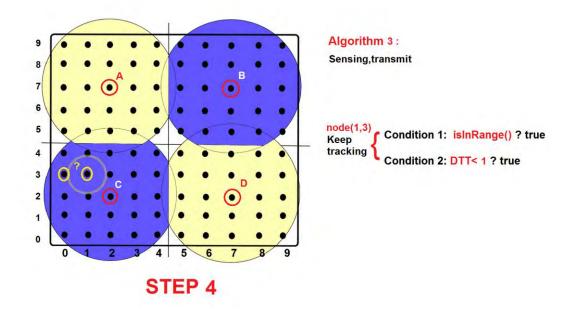
C node detects '?' object

Select node(0,3) as nearest node of object


make node(0,3) cluster_head

using this cluster_head jobAllocationAlgorithm starts

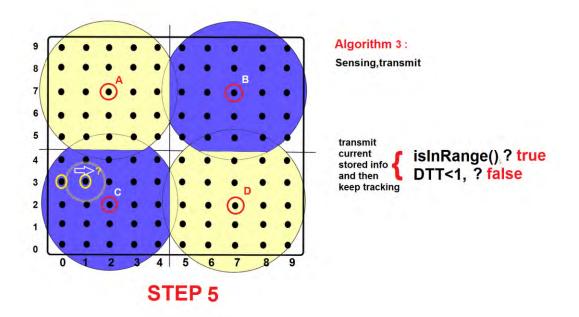
•?


Step 2:

When an object is being detected by a main sensor node it will run the cluster head selection algorithm to make the closest node of the object as the cluster head. Here 'C' is a main sensor node which detects an object '?' and makes node (0,3) cluster head. Cluster head then initiates 'Job Allocation Algorithm' to start bidding among its neighbor nodes.

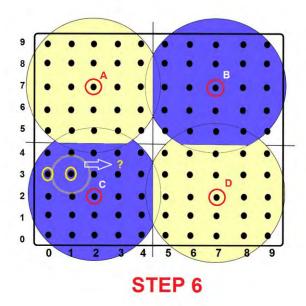
Step 3:

Cluster head bids among its neighbor nodes using the 'Bidding Function'. We can see from the function that the bidding depends on the distance from the object and battery level. So the smallest the distance is, there is the better chance to won the auction if it has a good battery level. Here in this system, node (1,3) won the auction because it is nearer and has a good amount of battery life left.


Step 4:

The winner node, Node (1,3), will check two things.

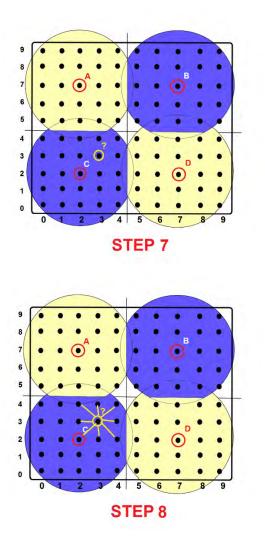
- 1. If object is in (active nodes) range
- 2. If DTT is full


Whether the objective is in range or not and DTT (Data to Transmit) is less than 1 or not. DTT<1 it means there are some space to store data. DTT=1 means the memory is full and stored data needs to be transmitted and cleared. If both the cases are true it will keep tracking the objective and will continue in sensing the environment and collecting data.

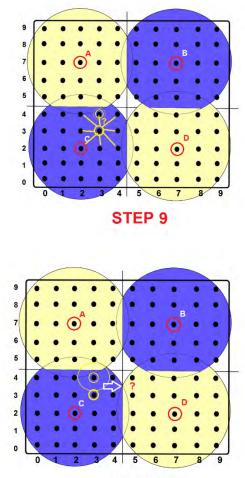
If the object is in range but DTT is not less than 1 it will move to step 5.

Step 5

DTT is either equals to 1 or greater than that but the object is in range. In that case, it will stop sensing and start transmitting the stored data and then again keep tracking

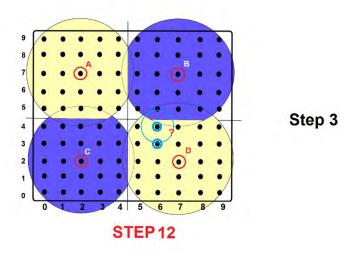

Algorithm 3 : Sensing,transmit

OUT OF RANGE


- # node(1,3) send signal to cluster_head to terminate node(1,3)
- # cluster_head terminate currently active node(1,3)
- # if object in the range of cluster_head,select another node
- # else inform Node C to select another cluster_head

Step 6

When the object is out of range. Then the cluster head (here Node(1,3)) send signal to the Cluster Head to terminate his job. Cluster Head then terminates its job and checks is the object is under its range or not. If it is in range then it allocates another Node by job allocation algorithm. If the object is not in range then the Cluster Head informs the active main node (Here C) to select another cluster head. And repeat from step 3 again



Repeat STEP 3

STEP 10

Demonstration link

We have uploaded the animated demonstration here:

http://bit.ly/WSNBRAC

Chapter V

EXPERIMENTAL RESULTS AND EVALUATION

In this simulation we have taken 100 sensor nodes in the area of 10-meter X 10-meter area. The visibility area of each sensor node is assumed to be 1 meter. One of the main part of this system is the four main sensor nodes which is always be in active mode. Which are powerful than the other 96 nodes. In this system we have divided the whole area into 4 units. Each unit has 24 sensor nodes and 1 main sensor node. 1 main sensor node covers the rest 24 in its area. So each of the main sensor node covers 25% of the total system. When an unwanted substance comes under its (main sensor node) sensing range it calculates and makes the nearest node of the substance as cluster head. So in this system cluster head is not fixed. It is being selected dynamically by the main sensor node.

We consider the following equations for remaining total energy and used energy calculation.

Remaining total energy (Stored energy) = $\sum_{\substack{i=node(9,9)\\i\neq A,B,C,D}}^{i=node(9,9)} \text{RemainingEnergy(i)};$

Used energy = initial energy- remaining energy

For simulation we are assuming some events.

In worst case at least one (any one) node will continuously track object and we are also assuming on an average after every 5 minute the transition (changing of currently active node because of changed location of the tracked object) will occur. During transition, at a time maximum of 8 nodes will remain active and between two transitions 2 nodes remain active. One is currently active node and another one is the cluster head.

In this case we are assuming total life time of a node is 10 days (14,400 min). It means one node can be active/live for 10 days' max if standby.

So, for every minute of activation, each node will lose **0.006944%** of its initial (100%) charge. And during the transition period 8 nodes(max) remain active simultaneously. If the transition period takes 5 secs to complete, this will cost (**0.00007233 × 5 × 8**) \div 60 % of initial charge of total system.

Total Transition = time/5

One node for one min = 0.006944 % //discharge from own

One node for one min = (0. 006944 ÷ (100-4)) = 0.00007233% // From total system

Total used energy =

(Total Transition ×Transition cost) + (Total Transition ×1 min of system cost ×2 ×4)

Considering static allocation of energy

Static use of energy = 0.006944% loss/min

Based on the equations, calculations and the result is shown in the given datasheet:

time	Total used	Transitions	Remaining	Remaining E	Used energy
(minute)	energy	5 min	total energy	(All node on)	(%)
0	0	0	100	100	0
500	0.294142	100	99.705858	96.528	3.472
1000	0.588284	200	99.411716	93.056	6.944
1500	0.882426	300	99.117574	89.584	10.416
2000	1.176568	400	98.823432	86.112	13.888
2500	1.47071	500	98.52929	82.64	17.36
3000	1.764852	600	98.235148	79.168	20.832
3500	2.058994	700	97.941006	75.696	24.304
4000	2.353136	800	97.646864	72.224	27.776
4500	2.647278	900	97.352722	68.752	31.248
5000	2.94142	1000	97.05858	65.28	34.72
5500	3.235562	1100	96.764438	61.808	38.192
6000	3.529704	1200	96.470296	58.336	41.664
6500	3.823846	1300	96.176154	54.864	45.136
7000	4.117988	1400	95.882012	51.392	48.608
7500	4.41213	1500	95.58787	47.92	52.08
8000	4.706272	1600	95.293728	44.448	55.552
8500	5.000414	1700	94.999586	40.976	59.024
9000	5.294556	1800	94.705444	37.504	62.496
9500	5.588698	1900	94.411302	34.032	65.968
10000	5.88284	2000	94.11716	30.56	69.44
10500	6.176982	2100	93.823018	27.088	72.912
11000	6.471124	2200	93.528876	23.616	76.384
11500	6.765266	2300	93.234734	20.144	79.856
12000	7.059408	2400	92.940592	16.672	83.328
12500	7.35355	2500	92.64645	13.2	86.8
13000	7.647692	2600	92.352308	9.728	90.272

13500	7.941834	2700	92.058166	6.256	93.744
14000	8.235976	2800	91.764024	2.784	97.216
14500	8.530118	2900	91.469882	discharged	all used
15000	8.82426	3000	91.17574	discharged	all used
15500	9.118402	3100	90.881598	discharged	all used
16000	9.412544	3200	90.587456	discharged	all used
16500	9.706686	3300	90.293314	discharged	all used
17000	10.000828	3400	89.999172	discharged	all used
17500	10.29497	3500	89.70503	discharged	all used
18000	10.589112	3600	89.410888	discharged	all used
18500	10.883254	3700	89.116746	discharged	all used
19000	11.177396	3800	88.822604	discharged	all used
19500	11.471538	3900	88.528462	discharged	all used
20000	11.76568	4000	88.23432	discharged	all used
20500	12.059822	4100	87.940178	discharged	all used
21000	12.353964	4200	87.646036	discharged	all used
21500	12.648106	4300	87.351894	discharged	all used
22000	12.942248	4400	87.057752	discharged	all used
22500	13.23639	4500	86.76361	discharged	all used
23000	13.530532	4600	86.469468	discharged	all used
23500	13.824674	4700	86.175326	discharged	all used
24000	14.118816	4800	85.881184	discharged	all used
24500	14.412958	4900	85.587042	discharged	all used
25000	14.7071	5000	85.2929	discharged	all used
25500	15.001242	5100	84.998758	discharged	all used
26000	15.295384	5200	84.704616	discharged	all used
26500	15.589526	5300	84.410474	discharged	all used
27000	15.883668	5400	84.116332	discharged	all used
27500	16.17781	5500	83.82219	discharged	all used
28000	16.471952	5600	83.528048	discharged	all used

28500	16.766094	5700	83.233906	discharged	all used
29000	17.060236	5800	82.939764	discharged	all used
29500	17.354378	5900	82.645622	discharged	all used
30000	17.64852	6000	82.35148	discharged	all used
30500	17.942662	6100	82.057338	discharged	all used
31000	18.236804	6200	81.763196	discharged	all used
31500	18.530946	6300	81.469054	discharged	all used
32000	18.825088	6400	81.174912	discharged	all used
32500	19.11923	6500	80.88077	discharged	all used
33000	19.413372	6600	80.586628	discharged	all used
33500	19.707514	6700	80.292486	discharged	all used
34000	20.001656	6800	79.998344	discharged	all used
34500	20.295798	6900	79.704202	discharged	all used
35000	20.58994	7000	79.41006	discharged	all used
35500	20.884082	7100	79.115918	discharged	all used
36000	21.178224	7200	78.821776	discharged	all used
36500	21.472366	7300	78.527634	discharged	all used
37000	21.766508	7400	78.233492	discharged	all used
37500	22.06065	7500	77.93935	discharged	all used
38000	22.354792	7600	77.645208	discharged	all used
38500	22.648934	7700	77.351066	discharged	all used
39000	22.943076	7800	77.056924	discharged	all used
39500	23.237218	7900	76.762782	discharged	all used
40000	23.53136	8000	76.46864	discharged	all used
40500	23.825502	8100	76.174498	discharged	all used
41000	24.119644	8200	75.880356	discharged	all used
41500	24.413786	8300	75.586214	discharged	all used
42000	24.707928	8400	75.292072	discharged	all used
42500	25.00207	8500	74.99793	discharged	all used
43000	25.296212	8600	74.703788	discharged	all used

43500	25.590354	8700	74.409646	discharged	all used
44000	25.884496	8800	74.115504	discharged	all used
44500	26.178638	8900	73.821362	discharged	all used
45000	26.47278	9000	73.52722	discharged	all used
45500	26.766922	9100	73.233078	discharged	all used
46000	27.061064	9200	72.938936	discharged	all used
46500	27.355206	9300	72.644794	discharged	all used
47000	27.649348	9400	72.350652	discharged	all used
47500	27.94349	9500	72.05651	discharged	all used
48000	28.237632	9600	71.762368	discharged	all used
48500	28.531774	9700	71.468226	discharged	all used
49000	28.825916	9800	71.174084	discharged	all used
49500	29.120058	9900	70.879942	discharged	all used
50000	29.4142	10000	70.5858	discharged	all used
50500	29.708342	10100	70.291658	discharged	all used
51000	30.002484	10200	69.997516	discharged	all used
51500	30.296626	10300	69.703374	discharged	all used
52000	30.590768	10400	69.409232	discharged	all used
52500	30.88491	10500	69.11509	discharged	all used
53000	31.179052	10600	68.820948	discharged	all used
53500	31.473194	10700	68.526806	discharged	all used
54000	31.767336	10800	68.232664	discharged	all used
54500	32.061478	10900	67.938522	discharged	all used
55000	32.35562	11000	67.64438	discharged	all used
55500	32.649762	11100	67.350238	discharged	all used
56000	32.943904	11200	67.056096	discharged	all used
56500	33.238046	11300	66.761954	discharged	all used
57000	33.532188	11400	66.467812	discharged	all used
57500	33.82633	11500	66.17367	discharged	all used
58000	34.120472	11600	65.879528	discharged	all used
l					

58500	34.414614	11700	65.585386	discharged	all used
59000	34.708756	11800	65.291244	discharged	all used
59500	35.002898	11900	64.997102	discharged	all used
60000	35.29704	12000	64.70296	discharged	all used
60500	35.591182	12100	64.408818	discharged	all used
61000	35.885324	12200	64.114676	discharged	all used
61500	36.179466	12300	63.820534	discharged	all used
62000	36.473608	12400	63.526392	discharged	all used
62500	36.76775	12500	63.23225	discharged	all used
63000	37.061892	12600	62.938108	discharged	all used
63500	37.356034	12700	62.643966	discharged	all used
64000	37.650176	12800	62.349824	discharged	all used
64500	37.944318	12900	62.055682	discharged	all used
65000	38.23846	13000	61.76154	discharged	all used
65500	38.532602	13100	61.467398	discharged	all used
66000	38.826744	13200	61.173256	discharged	all used
66500	39.120886	13300	60.879114	discharged	all used
67000	39.415028	13400	60.584972	discharged	all used
67500	39.70917	13500	60.29083	discharged	all used
68000	40.003312	13600	59.996688	discharged	all used
68500	40.297454	13700	59.702546	discharged	all used
69000	40.591596	13800	59.408404	discharged	all used
69500	40.885738	13900	59.114262	discharged	all used
70000	41.17988	14000	58.82012	discharged	all used
70500	41.474022	14100	58.525978	discharged	all used
71000	41.768164	14200	58.231836	discharged	all used
71500	42.062306	14300	57.937694	discharged	all used
72000	42.356448	14400	57.643552	discharged	all used
72500	42.65059	14500	57.34941	discharged	all used
73000	42.944732	14600	57.055268	discharged	all used

73500	43.238874	14700	56.761126	discharged	all used
74000	43.533016	14800	56.466984	discharged	all used
74500	43.827158	14900	56.172842	discharged	all used
75000	44.1213	15000	55.8787	discharged	all used
75500	44.415442	15100	55.584558	discharged	all used
76000	44.709584	15200	55.290416	discharged	all used
76500	45.003726	15300	54.996274	discharged	all used
77000	45.297868	15400	54.702132	discharged	all used
77500	45.59201	15500	54.40799	discharged	all used
78000	45.886152	15600	54.113848	discharged	all used
78500	46.180294	15700	53.819706	discharged	all used
79000	46.474436	15800	53.525564	discharged	all used
79500	46.768578	15900	53.231422	discharged	all used
80000	47.06272	16000	52.93728	discharged	all used
80500	47.356862	16100	52.643138	discharged	all used
81000	47.651004	16200	52.348996	discharged	all used
81500	47.945146	16300	52.054854	discharged	all used
82000	48.239288	16400	51.760712	discharged	all used
82500	48.53343	16500	51.46657	discharged	all used
83000	48.827572	16600	51.172428	discharged	all used
83500	49.121714	16700	50.878286	discharged	all used
84000	49.415856	16800	50.584144	discharged	all used
84500	49.709998	16900	50.290002	discharged	all used
85000	50.00414	17000	49.99586	discharged	all used
85500	50.298282	17100	49.701718	discharged	all used
86000	50.592424	17200	49.407576	discharged	all used
86500	50.886566	17300	49.113434	discharged	all used
87000	51.180708	17400	48.819292	discharged	all used
87500	51.47485	17500	48.52515	discharged	all used
88000	51.768992	17600	48.231008	discharged	all used
L	I			I	1

88500	52.063134	17700	47.936866	discharged	all used
89000	52.357276	17800	47.642724	discharged	all used
89500	52.651418	17900	47.348582	discharged	all used
90000	52.94556	18000	47.05444	discharged	all used
90500	53.239702	18100	46.760298	discharged	all used
91000	53.533844	18200	46.466156	discharged	all used
91500	53.827986	18300	46.172014	discharged	all used
92000	54.122128	18400	45.877872	discharged	all used
92500	54.41627	18500	45.58373	discharged	all used
93000	54.710412	18600	45.289588	discharged	all used
93500	55.004554	18700	44.995446	discharged	all used
94000	55.298696	18800	44.701304	discharged	all used
94500	55.592838	18900	44.407162	discharged	all used
95000	55.88698	19000	44.11302	discharged	all used
95500	56.181122	19100	43.818878	discharged	all used
96000	56.475264	19200	43.524736	discharged	all used
96500	56.769406	19300	43.230594	discharged	all used
97000	57.063548	19400	42.936452	discharged	all used
97500	57.35769	19500	42.64231	discharged	all used
98000	57.651832	19600	42.348168	discharged	all used
98500	57.945974	19700	42.054026	discharged	all used
99000	58.240116	19800	41.759884	discharged	all used
99500	58.534258	19900	41.465742	discharged	all used
100000	58.8284	20000	41.1716	discharged	all used
100500	59.122542	20100	40.877458	discharged	all used
101000	59.416684	20200	40.583316	discharged	all used
101500	59.710826	20300	40.289174	discharged	all used
102000	60.004968	20400	39.995032	discharged	all used
102500	60.29911	20500	39.70089	discharged	all used
103000	60.593252	20600	39.406748	discharged	all used
L	1		1	1	

103500	60.887394	20700	39.112606	discharged	all used
104000	61.181536	20800	38.818464	discharged	all used
104500	61.475678	20900	38.524322	discharged	all used
105000	61.76982	21000	38.23018	discharged	all used
105500	62.063962	21100	37.936038	discharged	all used
106000	62.358104	21200	37.641896	discharged	all used
106500	62.652246	21300	37.347754	discharged	all used
107000	62.946388	21400	37.053612	discharged	all used
107500	63.24053	21500	36.75947	discharged	all used
108000	63.534672	21600	36.465328	discharged	all used
108500	63.828814	21700	36.171186	discharged	all used
109000	64.122956	21800	35.877044	discharged	all used
109500	64.417098	21900	35.582902	discharged	all used
110000	64.71124	22000	35.28876	discharged	all used
110500	65.005382	22100	34.994618	discharged	all used
111000	65.299524	22200	34.700476	discharged	all used
111500	65.593666	22300	34.406334	discharged	all used
112000	65.887808	22400	34.112192	discharged	all used
112500	66.18195	22500	33.81805	discharged	all used
113000	66.476092	22600	33.523908	discharged	all used
113500	66.770234	22700	33.229766	discharged	all used
114000	67.064376	22800	32.935624	discharged	all used
114500	67.358518	22900	32.641482	discharged	all used
115000	67.65266	23000	32.34734	discharged	all used
115500	67.946802	23100	32.053198	discharged	all used
116000	68.240944	23200	31.759056	discharged	all used
116500	68.535086	23300	31.464914	discharged	all used
117000	68.829228	23400	31.170772	discharged	all used
117500	69.12337	23500	30.87663	discharged	all used
118000	69.417512	23600	30.582488	discharged	all used
	1		1		

118500	69.711654	23700	30.288346	discharged	all used
119000	70.005796	23800	29.994204	discharged	all used
119500	70.299938	23900	29.700062	discharged	all used
120000	70.59408	24000	29.40592	discharged	all used
120500	70.888222	24100	29.111778	discharged	all used
121000	71.182364	24200	28.817636	discharged	all used
121500	71.476506	24300	28.523494	discharged	all used
122000	71.770648	24400	28.229352	discharged	all used
122500	72.06479	24500	27.93521	discharged	all used
123000	72.358932	24600	27.641068	discharged	all used
123500	72.653074	24700	27.346926	discharged	all used
124000	72.947216	24800	27.052784	discharged	all used
124500	73.241358	24900	26.758642	discharged	all used
125000	73.5355	25000	26.4645	discharged	all used
125500	73.829642	25100	26.170358	discharged	all used
126000	74.123784	25200	25.876216	discharged	all used
126500	74.417926	25300	25.582074	discharged	all used
127000	74.712068	25400	25.287932	discharged	all used
127500	75.00621	25500	24.99379	discharged	all used
128000	75.300352	25600	24.699648	discharged	all used
128500	75.594494	25700	24.405506	discharged	all used
129000	75.888636	25800	24.111364	discharged	all used
129500	76.182778	25900	23.817222	discharged	all used
130000	76.47692	26000	23.52308	discharged	all used
130500	76.771062	26100	23.228938	discharged	all used
131000	77.065204	26200	22.934796	discharged	all used
131500	77.359346	26300	22.640654	discharged	all used
132000	77.653488	26400	22.346512	discharged	all used
132500	77.94763	26500	22.05237	discharged	all used
133000	78.241772	26600	21.758228	discharged	all used

133500	78.535914	26700	21.464086	discharged	all used
134000	78.830056	26800	21.169944	discharged	all used
134500	79.124198	26900	20.875802	discharged	all used
135000	79.41834	27000	20.58166	discharged	all used
135500	79.712482	27100	20.287518	discharged	all used
136000	80.006624	27200	19.993376	discharged	all used
136500	80.300766	27300	19.699234	discharged	all used
137000	80.594908	27400	19.405092	discharged	all used
137500	80.88905	27500	19.11095	discharged	all used
138000	81.183192	27600	18.816808	discharged	all used
138500	81.477334	27700	18.522666	discharged	all used
139000	81.771476	27800	18.228524	discharged	all used
139500	82.065618	27900	17.934382	discharged	all used
140000	82.35976	28000	17.64024	discharged	all used
140500	82.653902	28100	17.346098	discharged	all used
141000	82.948044	28200	17.051956	discharged	all used
141500	83.242186	28300	16.757814	discharged	all used
142000	83.536328	28400	16.463672	discharged	all used
142500	83.83047	28500	16.16953	discharged	all used
143000	84.124612	28600	15.875388	discharged	all used
143500	84.418754	28700	15.581246	discharged	all used
144000	84.712896	28800	15.287104	discharged	all used
144500	85.007038	28900	14.992962	discharged	all used
145000	85.30118	29000	14.69882	discharged	all used
145500	85.595322	29100	14.404678	discharged	all used
146000	85.889464	29200	14.110536	discharged	all used
146500	86.183606	29300	13.816394	discharged	all used
147000	86.477748	29400	13.522252	discharged	all used
147500	86.77189	29500	13.22811	discharged	all used
148000	87.066032	29600	12.933968	discharged	all used
L	1		1		

148500	87.360174	29700	12.639826	discharged	all used
149000	87.654316	29800	12.345684	discharged	all used
149500	87.948458	29900	12.051542	discharged	all used
150000	88.2426	30000	11.7574	discharged	all used
150500	88.536742	30100	11.463258	discharged	all used
151000	88.830884	30200	11.169116	discharged	all used
151500	89.125026	30300	10.874974	discharged	all used
152000	89.419168	30400	10.580832	discharged	all used
152500	89.71331	30500	10.28669	discharged	all used
153000	90.007452	30600	9.992548	discharged	all used
153500	90.301594	30700	9.698406	discharged	all used
154000	90.595736	30800	9.404264	discharged	all used
154500	90.889878	30900	9.110122	discharged	all used
155000	91.18402	31000	8.81598	discharged	all used
155500	91.478162	31100	8.521838	discharged	all used
156000	91.772304	31200	8.227696	discharged	all used
156500	92.066446	31300	7.933554	discharged	all used
157000	92.360588	31400	7.639412	discharged	all used
157500	92.65473	31500	7.34527	discharged	all used
158000	92.948872	31600	7.051128	discharged	all used
158500	93.243014	31700	6.756986	discharged	all used
159000	93.537156	31800	6.462844	discharged	all used
159500	93.831298	31900	6.168702	discharged	all used
160000	94.12544	32000	5.87456	discharged	all used
160500	94.419582	32100	5.580418	discharged	all used
161000	94.713724	32200	5.286276	discharged	all used
161500	95.007866	32300	4.992134	discharged	all used
162000	95.302008	32400	4.697992	discharged	all used
162500	95.59615	32500	4.40385	discharged	all used
163000	95.890292	32600	4.109708	discharged	all used
L	1			1	í

163500	96.184434	32700	3.815566	discharged	all used
164000	96.478576	32800	3.521424	discharged	all used
164500	96.772718	32900	3.227282	discharged	all used
165000	97.06686	33000	2.93314	discharged	all used
165500	97.361002	33100	2.638998	discharged	all used
166000	97.655144	33200	2.344856	discharged	all used
166500	97.949286	33300	2.050714	discharged	all used
167000	98.243428	33400	1.756572	discharged	all used
167500	98.53757	33500	1.46243	discharged	all used
168000	98.831712	33600	1.168288	discharged	all used
168500	99.125854	33700	0.874146	discharged	all used
169000	99.419996	33800	0.580004	discharged	all used
169500	99.714138	33900	0.285862	discharged	all used

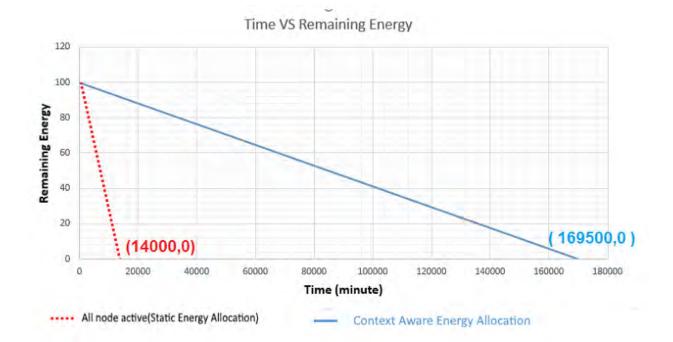


Fig. 3: Time vs Remaining energy

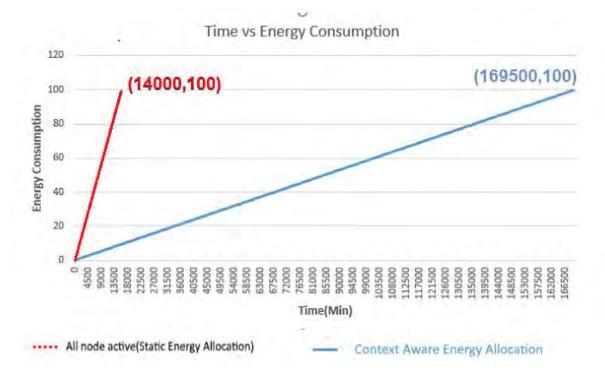


Fig. 4: Time vs Consumed energy in total system

Fig.3 and Fig.4 shows remaining energy and total consumed energy according to the change of time in worst case scenario. We started time from 0 minute where remaining energy was full (100% initially) as well as consumed energy was 0 and ended at 1,69,500 minute where remaining energy was approximately 0% and total energy was consumed by the nodes. We took 341 reading by changing time with 500-minute interval, until the remaining energy got down to 0% approximately or in other words till total energy was consumed. Fig. 3 shows that our approach provides better performance in terms of remaining energy comparing with the existing method. Fig. 4 shows that our method shows better performance in terms of total energy consumption.

According to this simulation result this 100 node can sense the area for 1,69,500 minute in worst case scenario, where 2 nodes were continuously active and at every 5 minute there were a transition period.

Chapter VI

CONCLUSION

We have used Context aware task allocation/energy allocation to maximize the lifetime of the network. In the proposed system we have used three different algorithms to collect data and transmit it when necessary. Our target was to use the Wireless Sensor Network in such a way that we can avoid wastage of energy as much as possible as well as get information. In this paper we have used a composite algorithm to select cluster head and allocation of jobs. Our proposed system focuses on job allocation so that all the nodes do not need to stay awake or active all the time. If we maintain some conditions this system can give very good solution like the main sensor nodes need to be constantly active (by using Solar System or with multiple backup power) and if simultaneously multiple event doesn't happen.

The simulation results show that the system saves significant amount of energy comparatively.

Chapter VII

REFERENCES

- Lokesh. B. Bhajantri, Nalini. N, Gangadharaiah. S, " Context Aware Resource Allocation in Distributed Sensor Networks ", International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 2, April 2012 DOI : 10.5121/ijwmn.2012.4203
- [2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks 38 (2002) 393–422, http://www.ece.gatech.edu/research/labs/bwn/surveys/sensornets.pdf
- [3] Jinseok Yang, Sameer Tilak, Tajana S. Rosing ,"An Interactive Context-aware Power Management Technique for Optimizing Sensor Network Lifetime", http://seelab.ucsd.edu/~jinsuksfa/Papers/issnip2013.pdf
- [4] S. Amit,C. Anantha,"Dynamic Power Management in Wireless Sensor Networks",07407475/01/\$10.00, 2001
 IEEE, http://www-mtl.mit.edu/researchgroups/icsystems/pubs/journals/2001_sinha_dtc.pdf
- [5] J. Vana, "Power Management in Wireless Sensor Networks with High-Consuming Sen-sors", JELICIC, QUALIFYING DOCTORAL EXAMINATION, APRIL 2011,

http://www.fer.unizg.hr/_download/repository/VJelicic,KDI.pdf

- [6] K. Surender, P. Manish and B. Bharat, "Energy Efficient (EECP) Clustered Protocol for Heterogeneous Wireless Sensor Network", July - 2013, pp. 1448-1453.
- [7] Manjusha M S1, K E Kannammal2, "Efficient Cluster Head Selection Method For Wireless Sensor Network", International Journal of Computational Engineering Researc, Vol, 04, Issue, 2.
- [8] Y. Mohamed, Y. Moustafa, A. Khaled, "Energy-aware management for cluster-based sensor networks", Computer Networks 43 (2003) 649–668.
- [9] Geoffrey Mainland, David C. Parkes, and Matt Welsh, "Decentralized, Adaptive Resource Allocation for Sensor Networks"
- [10] https://www.techopedia.com/definition/25651/wireless-sensor-network-wsn
- [11] http://wireless.ictp.it/wp-content/uploads/2012/02/WSN-Applications.pdf
- [12] Dilip Kumar, Trilok C. Aseri, R.B. Patel, "EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks", .Elsevier, Computer Communications 32 (2009) 662–667.

Context Aware Energy Allocation by Auction Based Method in Wireless Sensor Networks

- [13] D. Nadig, S.S. Iyengar, A new architecture for distributed sensor integration, Proceedings of IEEE Southeastcon'93, Charlotte, NC, April 1993.
- [14] Heinzelman W.R, Chandrakasan A., and Balakrishnan H.: "Energy-Efficient Communication Protocol for Wireless Micro sensor Networks".2000.
- [15] S. Goel and T. Imielinski, "Prediction-based monitoring in sensor networks: Taking lessons from MPEG", in Wireless Extensions to the Internet Computer Comm. Review, Vol. 31, Oct. 2001, pp. 82–98.
- [16] S. Bandyopadhyay, E.J. Coyle, "An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks," in: Proceeding of INFOCOM 2003, April 2003
- [17] G.J. Pottie, W.J. Kaiser, Wireless integrated network sensors, Communications of the ACM 43 (5) (2000) 551– 558.
- [18] I. F. Akyildiz, W.Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks", IEEE Communications Magazine, vol. 40, no. 8 pp. 102–114, Aug. 2002
- [19] P H. Chou and C. Park, "Energy-efficient platform designs for realworld wireless sensing applications", in Proc. Int'l Conf. Computer Aided Design (ICCAD), San Jose, CA, USA, Nov. 2005, pp. 913–920.