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ABSTRACT

This paper deals with some problems of bifurcation theory for general non-linear eigenvalue prob-
lem for 2-dimensional parameter space. An explicit analysis of the bifurcation for 2-dimensional
parameter space is done and the structure of the non-trivial solution branches of the bifurcation
equation near origin is given. Since the study of the bifurcation problem is closely related to change
in the qualitative behaviour of the systems, and to exchange of stability, analysis of the stability of
the bifurcating solutions is done here. It is proved that the stability of the bifurcating solutions is de-
termined, to the lowest non-vanishing order, by the eigenvalues of the Fréchet derivative of the re-

duced bifurcation equation.
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I. INTRODUCTION

In this paper we will establish the structure of the
bifurcating solutions and discuss the stability of the
solutions of the equation

F(hx):=L(\)x + N(h,x)=0 (1)
near the origin, where Fisa C", m > 2 mapping,
L(X) is a linear operator on a Banach space for
reV?and N(k, x) is a non-linear operator with

N(x,0)=0, D,N(0,0)=0,
where DXN(O,O) is the Fréchet derivative of N

with respect to x at (0,0). We assume that the prin-
ciple of linearised stability holds i.e.,

“a solution x of (1) is stable if all the eigen-
values of the derived operator D F(\,x) have

negative real parts and x is unstable if some of
the eigenvalues have positive real parts”.

Thus the stability of a solution of Eq. (1) is deter-
mined by the eigenvalues of the linearised operator

D, F(1,x) We will prove that the stability of the
bifurcating solutions is determined, to the lowest

non-vanishing order, by the eigenvalues of the Fré-
chet derivative of the reduced bifurcation equation.

The known results are quite complete for a 1-
dimensional parameter space i.e., for real A, see
[2,3,4]. In [2], McLeod and Sattinger have shown
that, at a double eigenvalue, the stability of the
bifurcating solutions is determined by the eigen-
values of the Fréchet derivative of the bifurcation
equation. For a 1-dimensional parametric space V,
this result has been extended by Sattinger in [4] to
multiple eigenvalues i.e., when the dimension of
the null space of the linearised operator
D, F(0,0)is n>1.

We will extend the results given by McLeod and
Sattinger in [1] to the case of a 2-dimensional pa-
rameter space at a double eigenvalue.

Some preliminaries are given in Section 2. The
structure of the bifurcating solutions is given in
Sections 3. The Fréchet derivative of the reduced
bifurcation equation is evaluated in Section 4. In
Section 5, we have discussed two examples to give
the precise information about the stability of the
bifurcating solution using CAS (Mathematica).

II. PRELIMINARIES

Let X <Y be Banach spaces and X, Y” be the dual
spaces of X, Y respectively. Let us suppose that for
7A7 and 7x7 sufficiently small, N(A,x) has the form



N(k, x) = B(x, x) + h(k, x),
where B(x, z) is a bilinear operator from XxX—Y,
independent of A and h(%, x) is a C™, m >2 mapping
from V?x X to Y with the property that

h(rex)=¢h, (1. c x),

where h; and 0oh,/0x tend to zero as ¢, A—0.
Also suppose that,

L(A)=L, + AL, +2,L,,
where L, is a Fredholm operator of index zero with

2-dimensional null-space spanned by ¢y, ¢, and L,
L, are linear operators from X to Y. Since

L, : X —>Y, the adjoint operator L*0 maps from

Y" to X, Note that since X Y we have Y' < X'.
Let us suppose that the null space N(L,) and range
R(Ly) of Ly have zero intersection. Then as a con-
sequence of Hann-Banach Theorem, there exists a

set of linear functionals (pT,(p; €Y such that
<(P 1/(Pj > = atj 4
(v.07)=0, yeR(L,) ij=12.
where <,> is a duality pairing between a Banach
space and its dual space [5, Theorem 2.7 on page
sk
129]. Thus we have, <L0\|/, (pj> =0, forall
y € X, j=1,2. Also there exist two closed sub-
spaces Xo, Yo of X, Y respectively such that
X=X, ®N(L,)
Y=Y, ®R(L,)
Then L is an isomorphism from X, to R(L,). Let Q
be the projection of Y onto R(L,) given by,

Qy = y—<y,<p1 ><P1 —<y,q>2><p2, yeY.
Then the projection (I-Q) from Y onto Y, is given
by

(1-Q)y = (v.01 )0, +(v.05)0,. ye .

III. ANALYSIS OF THE BIFURCATION
EQUATION

In this section we will do an explicit analysis of the
bifurcation equation. We will also give the struc-
ture of the non-trivial solution branches of Eq. (1)
near the bifurcation point (0,0) €V?* x X. By the
Lyapunov—Schmidt method, we can reduce the
infinite-dimensional problem Eq. (1) to a 2-
dimensional equation
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(1= Q)F(h, v + x4 (2, v)) =0, @)
where v e N(LO) and xo(k, V) € X, is the
unique solution of the equation

QF(h, v +x,(x.v)) =0,
for (A,v) in a sufficiently small neighbourhood of
(0,0) with x,(2,0)=0,D x,(00)=0. So by
Taylor’s theorem we have

% (1 v) = O(WI(MI+ D) I 1] o.

Putting v=u,¢, +u,¢,, u= (ul,uz)e V2, we

>

find that Eq. (2) is equivalent to the system of
equations,

fi(k,u):: u1<(X1L1 +2,L, )‘P1’¢T>+

u2<(k1L1 + szz)‘Pz"P?>+qi(‘l)+ G;(ru)=0,
for i=1,2, where q;: V25> Visa quadratic function
given
by

q;(u) = <B(u1(p1 TULP, U0+ U0 2)=(P?>
and G;: V2 x V> — V is defined by

= ol o] )

Hence, we get amap f; : V2 x V> — V defined by

(0 u):= 2, Mu+2,M,u +q(u)+ G(h,u),
where,

_ <Lj<pl»<|>f> <Lj<pz,<f>f>

T (Lie03) <Lj<|>2,<p§>’j v

v

mogeneous quadratic mapping from V? to V* and
G(\,u) is an operator from V2 x V2 to V? satisfy-
ing GO u)=ofu]? + ]} Thus our original
problem Eq. (1) is reduced to the 2-dimensional
problem

£ u)=2,Mu+1,M,u+q(u)+G(ru)=0@3)

are 2(12 real matrices, q(u) :(

with f(A,0) = 0 for all A in a neighbourhood of
(0,0)eV?* x V2.

Now suppose that the following spanning condition
holds,

(C) YoeN(Lo) with [|o]| =1, span[M,¢,M0,q(¢)]=V".

This condition holds generically in the sense that
the set of matrices (L;,L,,q) satisfying (C) is open
and dense in the set of all such collections.
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We are now interested in finding the non-trivial
solutions of the equation Eq. (3), using the span-
ning condition (C). Let us denote S' as the unit cir-
cle in V2 Then for each ¢ € S', let us define,

N(p)={(v.) eV
xV:viM;0+v,M,p+ tq((p) = 0},
M(p)=N(p)" = V*x V.

Hence N(¢) and M(¢) are 1 and 2 dimensional

subspaces of V*x V respectively. Define,
Ey = {(v,t,(p) e V?xV

xS 1 (v.t) e N(o)}.

Exu ={(v,t,(p,u,r)e V2xVxS'xV*xV:
(v, t)eN(o) (,r)e M(9)}.

Ex and Eyy are manifolds. With these notations we
get the following result:

Theorem 1: Let the assumption on L, and condi-
tion (C) hold, then there exist unique C™' map-

pings r:Ey =V, u:Ey - V? such that the

point

(X(v, t, (p),u(v, t, (p)) = (v + u(v, t,(p), (t + r(v, t, (p))(p)

solves the Eq. (3). In addition, all non-trivial solu-
tions of Eq. (3) are of this form. Also,

D(,y1(0.0.0) =0, D, yu(0.0,¢)=0.

Proof. Let u =y, v €V. Then substituting this
value in Eq. (3) we get (after dividing by y),

g, (L7,0) =2 M0 +2,M,0+7q(9)+ G, (%,7),
where ||G1 (k,y)” = o(y + ||k||) Now for each ¢ €
S', decompose (A,y)e V> x V as,

(L) =(v+ut+r), (v,t)eN(o) (n,

Then consider the mapping g: Exy — V2 defined
by,
gv.t o, r)=g (v t+r,0)
= (Vl Ty )Ml(P + (Vz +H) )Mz(P +
(t+r)q((p)+ G, (v +u,t+1)
Note that, g(0,0,0,0,0)= 0, and
D(,1g(0.0,9,0,0(u’, ') = piM, @ +p5M o+
r'qle), (w,r")e M(p)

The operator D(pjr)g(0,0, (p,0,0) : M((p) — V?is an

isomorphism for each ¢ € S'. Hence by the Im-
plicit Function Theorem and by the compactness of

r) € M((p).
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S' there exists a neighbourhood U of Eg ={0}x{0}x

S' in Ey and unique C™"' functions r: U = V, p:

U—> V2 such that
r(0,0,0) =0,

g(v, t, 0, u(v, t, (p), r(v, t, (p)) =0,

1(0,0,0) = 0 and
\v (v, t,(p) el,

1.

M'\’m

1(V 15 (v, £, )M 0+ (t+1(v. . 9))a(e)+

Gl(v+u(v, t,(p),t+r(v, t,(p))z 0
This completes the proof of the first part of Theo-
rem 1.

“4)

i

Now differentiating Eq. (4) with respect to
(v,t) at (0,0,0) we get, for all (v',t")eN(¢),

2
ZID(V,t)ui (0.0,)v", t')M;9+ Dy, r(0.0,0)v", tha(e) = 0

(V',t)eN(d),s0 viM, 0 + V,M, 0 + t'q((p) =0).Bu
t(u,r)eM(¢)and
hence (D, (0.0, ¢0). D, )r(0.0,p))e M() . Also,

since M(9)=N(¢)", the above equation can only

hold if
Dy, yu(0,0,0)v',t')=0, ¥ (v',t')e N(p)
Dy, r(0.0,)v",t") =0, V( t)e N(<p)
= D, u(0.0.¢)=0, r(0.0,0)=0

This completes the proof.

Remark 1

These results show that if (v, t)e N((p) with t # 0

then there is a curve of non-trivial solutions of the
form

{(k(ocv, at, @), u(av, at, 9)): |oc| < 8},
and this curve is tangential (at (0,0)) to the ray
{a(v,t): a € V} of zeros of Q where

Q(}\., u)= 7\.1M1u + 7\.2M2u+q(u)
In this sense the solution set of the general problem
is similar to the solution set of Q(A,u)=0. If t=0,

we may get N(¢) ={0}and (C) does not hold for
roughly half of the pairs (M|,M,) (for details, see

(1)

Remark 2

It can happen that all the solutions found by Theo-
rem 1 are trivial. For example, consider the system
AX+uy=0

x? +y2=0.



Here the only solutions are trivial ones.

Now by Taylor’s expansion, for each ¢peS', the
non-trivial solutions of the equation (3) can be
written as:

My, )= v+0lt2 v

u(v, t, (p) = (p(t + O(t2 + ||v||2 ))
in a neighbourhood of {0}x{0}x S' in V*x Vx S
Now for fixed ¢eS', let us take a fixed normalised
vector (\31 Vo, f)e N(p)with t = 0. Then the solu-
tions (5) have the form
As)=sV+ O(s2 ),
u(s, (p) =sto+ 0(52 )
in a neighbourhood of s = 0 € V for each @eS'
(i.e., we look at a curve of solutions tangential to a

(6))

(6)

ray in V?xV space). Thus substituting in (3) and

dividing by s* and t we obtain the system of equa-
tions of the form

VM 9+, M,0+1q(9)+0(s)= 0. (7
Letting s—0 we get the reduced bifurcation equa-
tion

VM 0+7,M,0+iq(p)=0. (®)
If the Fréchet derivative of this equation with re-
spect to ¢ at a solution ¢° is nonsingular, then the
Implicit Function Theorem implies that there exists
. m-1 : .

a unique C" solution ¢ (s) for |s| sufficiently
small, with ¢(0)=¢", of (8).

Now by direct calculation, we get that the Fréchet
derivative of the reduced bifurcation equation (8)
with respect to ¢, evaluated at a solution ¢, is 2[12
matrix given by,

VM, +9,M, + z{(<13(¢,¢i ),¢j>)ij, ij=12.

In the next section we will prove that the stability
of the bifurcating solutions is determined, to the
first order in s, by the eigenvalues of the Fréchet
derivative of equation (8), i.e., the stability is de-
termined by the reduced bifurcation equation, so
we do not have to look at the eigenvalues of the
linearised operator of the original equation (1).

IV. STABILITY OF THE BIFURCATING
SOLUTIONS
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Let (Ax) be a solution of Eq (1),
i.e,L(A)x+N(x,x)=0 and the derived operator

associated with this solution is,
A(h,x)=L(A)+ D N, x), ©)
where D N(A,x)is a linear operator from X to Y
given by,
D N(&,x)X =2B(x,X)+ D h(x,x)X, XeX
Substituting the solution Eq. (6) into Eq. (9) we get
the operator A, : VxS' — L(X,Y) defined by

A s, 0)= A(S\A/-i-O(s2 )>sf(|)+0(s2 ))

~ (10)
=L, +sL(p)+R(s, )
where,
L(¢)=V,L; +¥,L, +2B(g,.)
and R(s, ¢) is an operator satisfying

||R(s,(p)||=0(s2) as |s| tends to zero. So we will

study the eigenvalues of the operator A (s, @) in a
neighbourhood of s = 0 € V for all ¢ € S'. Note
that for s = 0, the operator A(0, ¢) is a Fredholm
operator of index zero with 2-dimensional null
space. In the following Theorem we will prove that
the stability of the bifurcating solution can be re-
duced to the study of the eigenvalues of a 2[12 ma-
trix (this theorem is proved by McLeod and Sat-
tinger [2] for real parameter A. We will prove it for
two dimensional parameter space i.e, for he V?).

Theorem 2: For |s| sufficiently small and for each
¢ € S'the operator Eq. (10) has a uniquely defined
two-dimensional invariant subspace spanned by the
vectors of the form

9;(5,0)=0, +0(s) (i=12) (11)
and there exists a 2012 matrix C(s, @)=(ci(s, 9))
with

Cij (3 (P):<E((P)(P13(P?>a (ij=12) (12)
such that
2
Ails, 0)5:(s,0)= sZe;; (13)
iz

where ¢;; =cj (s, ).

Remark 3

Theorem 2 shows that, for sufficiently small |s|, the
eigenvalues of sC(s, @) are eigenvalues of A (s, ¢).
So, if we suppose that all the eigenvalues of A(s,
@) (other than those two of sC(s,()) have negative
real parts, for |s| sufficiently small, then by the
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principle of linearised stability, the solution
x(s,(p):sf(p+0(s2) for fixed @eS', of Eq. (1) is
stable, if both eigenvalues of sC(s, ¢) have nega-
tive real parts. If, for |s| sufficiently small and for
fixed peS', at least one of the eigenvalues of sC(s,
@) is positive, the solution is unstable.

Proof. (of Theorem 2) We will use the Implicit
Function Theorem to show that for |s| sufficiently
small and for all peS', the equation (13) has a so-
lution @; (s, (p), Cjj (s, (p), i, j=1,2 satisfying (11) and

(12). We look for basis vectors ¢; in the form
0 =0; +V; (14)
where <wi,<pj>=o, i,j=1,2. Substituting (14) in
(13) we get
~ - - 2 - :
Lovy; +SL(‘P)‘Pi +R(S,(P)(Pi _Szlcijq)j =0, (1 :1,2).(15)
=

This equation is equivalent to the equations (for i
=1,2)

- 2
Q|:L0\Vi +sL(e)p; +R(s. ¢)o; _Szlcijajj| =0 (16)
i

(1| Lov s + Rl s, |0 17)
From (16) we get, fori=1,2,
Lov; +SQI-((P)(NPi +QR(Sa (P)(NPi _szzlcij\T’j =0
where we have used the fact that
Qcij$j = CijQ&j =CyVi-

For each i = 1, 2, let us define a map ®@;: X, x V*x
Vx S' = R(Ly) by,

@i(\l/iaca S, (P)z LOWi +SQi((p)(T)i + QR(S,([))(T)i -
2
S2.CijV
=

where C denotes the matrix (c;;) which we regard as
an element of V*. Now from (16) we obtain

S(L(0)5:. 07 ) +(R(s,0);, 07 )—sey =0, i,j=12.

Dividing by s we obtain the equations
= (i C.s,0)= (Llodo; +v, ) o )+
S’1<R(S, <P)<~Pi,<P}7>—cij =0,

where @j;: X x Vix Vx S' 5V, for i,j=12. Also
for s =0, we have

Ty (vi.C.0,9)= <E((P)((Pi +yi ) (Pj>—cija

(18)
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(since [[R(s, )| = O(s).

Now consider the map ®: X, x X x Vix Vx S
R(Lo) x R(Ly) x V* defined by,

®=(\Vlv\VZrC’S»(P):

Thus we get equivalent system of equations

@(WD\VZJC’S’(P):O (19)

to the equation (15), of six unknowns v, (i = 1,2),
and C = (cjj), depending on s and ¢. We will apply
the Implicit Function Theorem to solve the equa-
tion (19). Now at

s=yi=0andc;= <f((p)(pi,(p§>,i,j =1,2we
have
@’(0,0, (<f((p)(pl s (p?>)0, (p): 0,forallog e s,

Also the Fréchet derivative of © with respect to ;
and cjats=y;=0and ¢ = <I:J(q))<p1 , (pj> 1S,

which from X, x Xox V* to R(Lg) x R(Lg) x V* is
non-singular since Ly : Xy — R(Ly) is bijective. So
by Implicit Function Theorem there exists a
neighbourhood of s =0 e V for all peS' and
unique C™' functions (s, ¢), cij(s, @) such that

vi0, ) =0, <y(0, 9) = (L(pos, 9} ), for each i
=1,2,
and
@:(‘Vl (S, (p)a \VZ (89 (p)a C(S, (P)9 S, (P) = O bl
ie,

2
Ay (S’(PX(Pi + Vi (S,(P)): S_Zlcij (s, (P)((Pj+\Vj (s, (P))a
J:
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with ;(5.0)=0(). (0. @) = (Elo)o.0}).

Hence the proof of the lemma is complete.

Thus the stability of the bifurcating solutions in the
infinite dimensional space is reduced, to the first
order in s, to the study of the eigenvalues of the
2x2 matrix

c(0.9)=(Tleko:.05)).
= ({/1<L1(Pi»(Pj>+‘A/2<L2(Pia‘Pj>+2E<B((P((Pi)»(P?>)ij
=9,M, +9,M, +2E(<B((p,<pi ),(p]f>)ij, ij=12,

which is the Fréchet derivative of the reduced bi-
furcation equation (10) at a solution peS".

AspectRatio- > Autamatic

Fig. 1: Parametric Plot of A(¢) for peS'
Remark 4 2

Thus to the first order in s, if both eigenvalues of
C(0, @), for fixed peS', have positive real parts,
then the corresponding bifurcating solution of
equation (1) is stable for small negative s and un-
stable for small positive s. The situation is reversed
if both eigenvalues have negative real parts, while
the bifurcating solutions are never stable if the ei- ‘
genvalues of C(0, ¢) have real parts of opposite 0.5 o,
signs. If neither of these holds, the stability is said
to be indeterminate and an analysis of higher order
terms may be carried out.

i

i

V. EXAMPLES

In this section we will consider two examples. We
will discuss the stability situations of the bifurcat-
ing solution near origin finding the eigenvalues of
C(0, @), for fixed peS'. These examples were stud-
ied by Bari [1], and similar stability situations were
found there by counting the indices of solutions.

Example 1: Let us consider

M 1 0 M 0 1 @ uu,
= I = , qu) = .
o 1) 2T o1 o) ! u?—u?

Then for all eS' with |jg|| = 1, the spanning con-

dition (C) holds. Now we will use the following

steps in MATHEMATICA to solve the equation
klMlu+X2M2u+q(u)= 0

and to find the eigenvalues of the 2x2 matrix C(0,

?)-

O
- - 12 120
Cos oin g
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Table 1
¢ M) C(0,0) Eigen-
values
0
0 1.
D 0.35
4 0.35
D 1.
2 0
3p 0.35
4 0.35
0
p -1.
Sp 0.35
4 0.35
3p -1
2 0
Ip 0.35
4 -0.35
20| 9

In Fig 1, we get three non-trivial solution curves
M¢) in every direction for all peS' in the (A;,A2)-
space and the Table 1 shows that, for different val-
ues of o, the real parts of the eigenvalues of C(0, @)
are of opposite signs. Hence all the solutions are
unstable.

Example 2 : Consider M;, M, as before and take
2 2
uj +2u
q(u) =( ! 2]-
2u,u,

Then for all peS' with ||o|| = 1, the spanning con-
dition (C) holds. Now we will use the following
steps in MATHEMATICA to solve the equation

MM u+A,M,u+qu)=0

and to find the eigenvalues of the 2x2 matrix C(0,
?):

e

—i ‘)-‘ \‘

4-'4 A\ 1"

-‘lf-x‘

AspectRatio- > Automatic

Fig. 2: Parametric Plot of A(¢) for peS'

I

=

B=genval A
. Cos
El e+ 2sin




Table 2

Eigen-
values

¢

(@]

© bk) ST o

N

Fig 2 shows that in certain directions in the (A,A;)-
space there exists only one non-trivial solution
curve A(¢), while in some other directions we get
three non-trivial solutions. Table 2 shows that,
when we get only one non-trivial solution, the real
parts of the eigenvalues of C(0, @) have opposite
signs. Hence the solution is unstable for fixed
¢eS'. But for some values of peS', such as ¢ =0,

122

Rehana Bari

m, 2w, the real parts of the eigenvalues of C(0, ¢)
have same signs. Thus by Remark 4, for ¢ =0, the
corresponding non-trivial solution is stable for
small negative s and unstable for small positive s,
that is the solution changes its stability as it passes
through the origin. We get the similar stability
situations for @ = 2m. But the stibility situations is
reversed for ¢ =m.
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