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ABSTRACT 
 
A discussion is made on the possible forms of mathematical formulations for the basic diffusion 
equation. The formulations have been derived from the law of motion.  It is shown that the 
assumption of Stokes resistance leads to paradoxical conclusions in some specific cases of diffusion 
processes. It is argued that the expression for resistant forces in transport processes is empirical, and 
hence the form of the diffusion equation depends on the expression chosen in describing the 
resistant forces. Evidences are collected from literature in favor of both thermodynamic and Fickian 
formulation of the diffusion equation. It is concluded that ideal form of diffusion equation is absent, 
and the choice of the form of diffusion equation would depend on the specific circumstances being 
studied. 
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I. INTRODUCTION 
 
As early as 1855, Fick stated that he could apply 
Fourier’s law for heat conduction and Ohm’ law for 
the electric conduction to diffusion processes, and 
proposed that the diffusion flux J (mol.m-2.s-1) is 
proportional to the concentration gradient (Eq. 1) 
[1].  

J = −D
dC
dx

           
(1) 

where D (m2.s-1) is the diffusion coefficient, C 
(mol.m-3) is the concentration of the permeating 
species and x (m) is the position coordinate along 
the flow direction. The Eq. (1) is known as Fick’s 
first law. The diffusion coefficient D is a constant, 
and is numerically equal to the flux for unit 
concentration gradient. It might depend on the 
nature of the medium and the diffusing 
components, temperature and some other factors; 
but by no means, on the concentration. Under 
steady state flow, the concentration gradient is 
constant i.e. the concentration decreases linearly. 
For about 150 years, Fick’s law has been the 
fundament for all theoretical and experimental 
studies on diffusion transport. When viewed 

superficially, one finds no dissimilarity between the 
formulation of Fick’s law and those of Fourier and 
Ohm’s law. However, when viewed strictly, one 
finds that the Fick’s law suggests a driving force far 
different from those in the other two. Ohm’s law is 
clear-cut in its formulation - the driving force is the 
electrical potential gradient. The electrical potential 
gradient is the field intensity i.e. it is the force 
acting on unit charge (N/ unit charge). Under 
steady state flow, this force is balanced by      
resistant forces, which are proportional to electric 
current/ electron flux. In Fourier’s law, the driving 
force is the temperature gradient (which equivalent 
to thermal potential gradient), and the resistant 
forces could be viewed to be proportional to the 
thermal energy flux. Thus, the driving and the 
resistance forces in Fourier and Ohm’s laws are 
similar. The concentration gradient in Eq. (1), 
however, does not represent the force on unit mass. 
Thus, the mass flux in the Fick’s law is proposed to 
be proportional to a parameter, which is     
dissimilar to the driving forces in the transport of 
thermal and electrical energy.  This dissimilarity 
could be avoided, if the diffusion flux were 
presented as proportional to the chemical potential 
gradient (Eq.2). 
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where κ (mol2.m-1.s-1.J-1) is the constant of 
proportionality (independent of concentration) and 
µ  (J.mol-1) is the chemical potential, T (K) is the 
temperature, P 0(Pa) is the pressure of the reference 
state, R (J.mol-1. K-1) is the universal gas constant, 
µ0 (J.mol-1) is the chemical potential at the pressure 
P0 and temperature T, and ϑ   (m3/mol) is the partial 
molar volume of the species. According to the Eq. 
(2), under steady state flow, the chemical potential 
decreases linearly, and the concentration 
exponentially.  The flux equation expressed by the 
Eq.(2) is similar to Ohm’s and Fourier’s law not 
only in the form of mathematical formulations, but 
also in physical significance of the terms. Recently 
Islam [2] made a controversial conclusion that the 
both the equations (Eqs. 1 & 2) could be justified 
from thermodynamic viewpoint. Islam and 
Buschatz [3] have shown that the Eq. (2) might 
appear more convenient in describing the diffusion 
processes accompanied by chemical or physico-
chemical interactions. 
 
250 years have passed since Fick proposed his 
famous diffusion law. Since then enormous 
theoretical and experimental works have been done 
on diffusion transport, and the Fick’s law has 
always been the basis of analyses. Till today the 
investigation on the issue does not die down [4-15]. 
With the accumulation of experimental data, 
showing deviation of the diffusion flux from the 
Fick’s law, the analysis of the diffusion processes 
has again been performed by the Eq. (1), but not 
with D= constant, rather D=D(C). Ash et al. [14] 
presented a number of expressions relating the 
diffusion coefficient D to the concentration C. 
Since D=D(C) is a freely chosen empirical relation, 
it is quite expected that with such modification of 
the Eq. (1), the diffusion flux could always be 
described. Thus, the investigators seem do not 
intend to cross the boundary of thinking that the 
real driving force is the concentration gradient, and 
any deviation of the experimental data from the Eq. 
(1) should be attributed to the change in the 
diffusion coefficient with the change in 
concentration. It is worth mentioning that the non-
equilibrium thermodynamics utilizes entropy-
producing character of spontaneously occurring 
processes to provide a link between classical 
thermodynamics and the rate of processes. It shows 

that the gradient of the chemical potential is the 
proper thermodynamic force conjugate to the 
diffusion flux. The linear law relating the diffusion 
flux and the chemical potential (Eq.2) should have 
been then the correct relationship irrespective of the 
diffusion process considered. In spite of that, in all 
literatures (to authors’ knowledge) on non-
equilibrium thermodynamics [16-19], it is assumed 
that the driving force in the diffusion transport is 
the chemical potential gradient, but the flux is 
proportional to concentration gradient. It appears 
that the diffusion flux could not be described if not 
somehow expressed in terms of concentration 
gradient. In formulating the diffusion equation in 
the present work, we shall apply an approach, 
which is different from the previous investigators. 
We shall consider that the chemical potential 
gradient is the true driving force for diffusion 
processes. However, we shall bear in mind that the 
thermodynamic parameters as chemical potential 
do not establish the rates of processes, and the rates 
depend on both the driving forces and the 
resistances. Although chemical potential is a 
thermodynamic variable, resistances are not. In the 
present analysis, we shall make a brief discussion 
on ‘how a diffusion equation would look like, if the 
diffusion resistances follow the same laws as 
hydrodynamic resistances’. Thus, we are 
attempting to derive different forms of diffusion 
equation applying Newton’s law of motion. Such 
discussion would inspire researchers not to keep 
their thinking confined in a boundary drawn by 
some apparently established law. In the present 
case, for example, one (who is not pre-convinced in 
the validity of the Eq. (1)) could easily find that the 
credibility of the law suffers, if the proportional 
constant D is almost always empirically related to 
concentration, the gradient of which is considered 
to be the driving force of the process. In the present 
paper, we shall also discuss evidences in favor of 
the Eq. (1 or 2), and make comments on the 
interpretation on the concentration dependence of 
the diffusion coefficients when the analysis of the 
diffusion flux is based on the Eq. (1). It is found 
that the consideration of the hydrodynamic law for 
resistances results in the diffusion equations, which 
are completely different from the mentioned two. It 
appears that the form of the diffusion equation 
depends on how the resistances are described. It is 
concluded that for experimental systems treated 
with Eq. (1), the observation that ‘the diffusion 
coefficient decreases as the concentration 
increases’, dictates that the Eq. (2) is most likely to 
be the true diffusion equation.  
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II. FORM OF THE DIFFUSION EQUATION 
WITH RESISTANCES DESCRIBED AS 

THOSE IN HYDRODYNAMICS 
 
In this section, we shall discuss about what the 
form of the diffusion equation would be, if the 
diffusion resistances were described in terms of 
velocity as practiced in describing the 
hydrodynamic resistances.  
 
A. Diffusion equation with the Stokes law 

describing the resistances 
 
According to Stokes law, the resistant force is 
proportional to the velocity of the individual 
particles.  Einstein  [20] applied Stokes law in 
describing diffusion resistances (Such 
consideration coincides with the hydrodynamic 
resistances in laminar regime) and apparently 
justified Fick’s law from thermodynamic 
viewpoint. Thus, to a particle considerably larger 
than solvent molecules, the frictional resistance is 
assumed to be Fu, F being the frictional constant 
and u – the velocity of a particle. The work done in 
moving one mole of the solute at a distance dx is 
NAFudx, NA being the Avogadro number. This 
work is equal to -dµ. Thus, for a system with 
constant pressure and temperature 

0AA =−−⇒−= FuN
dx
ddFudxN µµ  

(3a) 

Then for the diffusion flux J, we can write 

dx
dC

FN
RTuCJ .

A
−==  

(3b) 

For spherical particles of radius r, Stokes law gives 
rF πη6=  (3c) 

where η is the viscosity of the medium. Combining 
Eqs. (3b & 3c) we have 

J = −D dC
dx

with D =
RT

NAF
=

RT
6NAπηr

 
(3d) 

The viscosity η is a function of the concentration 
and hence the diffusion coefficient D will appear 
concentration-dependent.  But for a small 
concentration difference, D might be assumed 
constant.  Thus, defining the resistant forces in a 
manner different from that in Ohm’s law, Fick’s 
law was derived assuming that the chemical 
potential gradient was the driving force in the 
diffusion process. Since then it has been assumed 
that the Eqs.(1) & (2) are identical, and as such the 
transport coefficients κ and D are related as in 
Eq.(4). 

κ = DC /(RT ) (4) 
where D is a constant and κ is concentration-
dependent. The relation expressed in the Eq. (4) is 
very attractive only if the concentration contributes 
to the chemical potential. In the cases, when 
pressure and temperature also contribute to 
chemical potential gradient, substitution of the Eq. 
(4) into the Eq. (2) would make the flux equation 
complicated.    
 
Is the Eq. (3b) properly derived? Now we shall 
review the derivation of the Eq.(3b), which has 
validated the Eq. (1) from the viewpoint of 
thermodynamics. At the first glance, the derivation 
of the Eq. (3d) was clean and smooth. Let’s discuss 
first whether the starting equation (3a) was written 
properly? Under steady state flow, at every point 
uC= J = constant. C is a continuously decreasing 
function of x. Consequently u is a continuously 
increasing function of x. Then the motion of the 
particles in the diffusion field is an accelerating 
one. Does the Eq. (3a) have magical power then?- 
At every point the net force acting on the particle is 
zero, but the velocity is increasing! Therefore, it 
must be accepted that the particles perform an 
accelerating motion, and the corresponding 
equation of motion should be described by the 
Eq.(5a) instead of the Eq. (3a). 

dt
dumNFuN

dx
d

AA =−− µ
 

(5a) 

Obviously, the Eq. (5a) could not lead exactly to 
the Fick’s law (Eq. 1) as the Eq. (3a) did. Let’s see 
how the steady state flux J (=constant) is related to 
concentrations according to the Eq.(5a). For this 
purpose, the following substitutions are made in the 
Eq. (5a): 

C/Juu/dxdt ==     and   (5b) 
 

Solving the Eq. (5a) for the boundary conditions: 
for x=0, C=C0 and for x=L, C=CL; we have  

L
)C.

CC
.

F
mA

FN
RTD
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L
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(5d) 
 

where L is the membrane thickness, and C0 and CL 
are the concentrations respectively at the feed 
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interface (x=0) and the permeate interface (x=L). 
Now compare the Eq.(3d) with the Eq. (5d). In fact, 
if Stokes law describes the diffusion resistances, it 
is the Eq. (5d) (and not the Eq. 3d), which appears 
to be the basic diffusion equation.  If 4AJFick is very 
small, the equation is approximated to the Fick’s 
law (Eq. 5e).  

Fick    
2

2(11-
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(5e) 

The value of CL plays the decisive role in 
determining the value of A (For CL →0, A →∞). 
Let’s see what would happen if CL →0.   

0 
2
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0
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J.A
LtJLt Fick

ACL

 
(5f)

The permeate side concentration CL is usually kept 
very small to ensure a high flux. The Eq.(5f) shows 
that for CL →0, J →0 (a paradox!). It might be 
assumed that in a real diffusion process, infinitely 
small value of CL could not be realized, and the 
factor 4AJFick would always be negligible in 
practice. What would it mean then? If it were 
possible to realize infinitely small concentration on 
the permeate side, we could have realized  ‘no flux 
regime’ whatever high concentration is maintained 
on the feed side!  It is true that a number of known 
and unknown factors might affect a real process, 
and the experimentally observed relations could 
deviate from the proposed laws. But it is very 
confusing that the investigators aim at the 
realization of high fluxes for CL →0, and under this 
condition the Eq. (5d) predicts ironically ‘no flux 
regime’. Where might the error lie in? It is probable 
that the frictional force is not described properly 
i.e. Stokes law does not describe the diffusion 
resistances. 
 
Let’s have a look on the Eq. (3a or 5a) again. For 
colloidal systems, it is considered that the concept 
‘diffusion velocity’ coincides with the velocity of 
individual particles. In the description of the 
diffusion of colloidal particles, Stokes law has been 
applied to describe the resistance forces. To apply 
Stokes law, the solvent molecules must be 
negligibly smaller than the moving particles [21]. It 
is disputable whether colloidal particles (not to 
speak of the molecular, atomic or ionic species, 
which are the usual species in diffusion flow) 
satisfy this requirement properly. If the velocity of 
the particles could be calculated by Stokes law, the 

diffusion process of such species would be 
seemingly very slow and even negligible. Thus, the 
application of Stokes law in describing the 
resistances has the following drawbacks:   

1. The concept ‘diffusion’ is related usually to 
molecular, atomic or ionic species. For such 
species, the concept ‘individual velocity u’ is 
not well defined.  

2. For very small values of CL, the predicted flux 
(from Eq.5d) is paradoxical. 

It seems that Stokes expression is not much 
appropriate to describe the resistance to diffusion 
flow for general cases. But the investigators are 
encouraged by the ‘apparent derivation’ of the 
Fick’s law from the Eq.(3a), and assume that the 
resistant forces to the diffusion flow of atomic, 
molecular or ionic species could also be described 
by the same equation as that for the colloidal 
particles. For this reason, may be, irrespective of 
the sizes of the diffusing species, the Eqs. (1 & 2) 
have been always thought to be identical with the 
transport coefficients related by the Eq. (4).  
 
B. Diffusion equation with resistances 

proportional to the square of the diffusion 
velocities 

 
Moelwyn-Hughes [22] described in details Einstein 
and Smoluchowski’s treatment of Brownian 
motion. It is interesting to remember what 
Smoluchowski proposed about the resistant forces.  
As per Moelwyn-Hughes [22], Smoluchowski 
considered that the diffusion process is related 
usually to the motion of very small particles and 
proposed that for small particles, Stokes expression 
would be rejected in favor of a resistance factor, 
which is proportional to the square of the velocity 
(Such consideration coincides with the 
hydrodynamic resistances in turbulent regime). 
Obviously, Smoluchowski was not talking about 
some general form of the diffusion equation. Let’s 
see what might be the form of the diffusion 
equation, if the resistant forces were expressed as 
proposed by Smoluchowski. Then the equation of 
motion of the particles will be given by Eq.(6a) and 
the steady state flux- by Eq. (6b) 

−
dµ
dx

− NAFv2 = NAm
dv
dt
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The form of the Eq. (6a) is far different from the 
usual form of the diffusion equation (Eq.1). 
Undoubtedly, the question of describing the 
resistant forces is open. 
   
In diffusion flow, Einstein proposed Stokes law to 
describe the resistant forces- a linear relationship 
between the velocity of the permeating species and 
the resistance force. Smoluchowski recommended 
that the resistance force would be proportional to 
the square of the velocity. In fact, these relations 
are the liming cases (at very low and high 
velocities) of the resistant forces experienced by 
particles moving through a fluid. In convective 
flow, the drag force experienced by a body 
immersed in a flowing fluid is proportional to the 
free stream velocity [23]. From the principle of 
transfer of momentum, the flowing fluid also 
experiences a resistant force equal and opposite to 
this drag force. The concept ‘free stream velocity’ 
is related more to the flux or area averaged velocity 
than to the velocity of the molecules itself. 
Therefore, in such cases the resistant force is 
considered to be proportional to the flux.  
According to D’Arcy’s law, the driving force is the 
pressure gradient (Force per unit volume permeate). 
For the flow of incompressible fluid through a 
highly porous membrane, the concentration would 
not have contribution to the chemical potential. 
Then the pressure-gradient multiplied by partial 
molar volume of the permeating fluid in the 
membrane equals to the chemical gradient. 
Therefore, for the convective flow obeying 
D’Arcy’s law, the resistant force is proportional to 
the flux itself, and the flux is virtually proportional 
to the chemical potential gradient. Thus, for the 
convective flow, the resistance is considered to be 
proportional to the flux. However, as discussed 
above, if the resistance forces are expressed as 
some function of the velocity of individual 
particles, the motion must be considered to be 
accelerating. Consequently, different inconvenient 
formulations of the diffusion law will be obtained 
(e.g. Eqs. 5d & 6b).  To escape from such a 
situation, the resistant forces could be described as 
those in the convective flow. Usually the flux J  
(m3.m-2.s-1 =m/s) is defined as the volume of the 
species permeating through unit area of the 
membrane in unit time. If the flux is expressed in 
terms of kg.m-2.s-1 or mol.m-2.s-1, still the 
dimension is related to m/s by a coefficient. So, it is 
reasonable to consider that in steady state diffusion 
flow the resistant force is approximately 
proportional to the flux J itself, and then the Eq. (2) 

represents the diffusion flux equation. Unlike the 
velocity of the individual particles, the steady state 
flow velocity or flux is not accelerating.  The Eq. 
(2) could be applied to describe the diffusion flux 
of all kinds of diffusing species- small or large, 
atomic, molecular, ionic or colloidal. The Eq. (2) is 
now really similar to the Ohm and Fourier’s laws, 
which state that the mass or the energy flux is 
proportional to the potential gradient.  But it should 
always be remembered that the form of the resistant 
forces described so far are approximations, and the 
resulting diffusion equations (Eqs. 1, 2, 5d or 6d) 
are also approximations. In fact, the diffusion is a 
complex process, and the resistant forces could 
merely be expressed in a single form equally valid 
for all cases of diffusion transport.   

 
III. EVIDENCES IN FAVOR OF THE EQ. (1) 

OR THE EQ. (2) 
 
The question of the type “ Which equation is more 
appropriate to describe a diffusion process- Eq.(1)  
or Eq. (2)?” is difficult to be answered. It depends 
on how the resistant forces are realized in a 
diffusion process. If the concentration distribution 
of the diffusing species in the membrane were 
known/measured reliably, some information could 
have been acquired about the true diffusion 
equation. If the steady state concentration profile is 
linear, the governing equation is the Eq.(1); and if 
the steady state concentration profile is 
exponentially decreasing, the governing equation is 
the Eq. (2). However it is a very tough task to 
measure the concentration profile across an 
operating membrane. Few efforts have been made 
in this regard [24-27] with stacked films rather than 
a single film. The stacked films were peeled and 
the component-films were separated for the 
measurement of averaged concentration in each 
film, after the permeation experiment had already 
been over.  Naturally, the method throws some 
shadow on the reliability of the results. Most 
reliable method is, to fit the steady state flux data 
directly to Eqs. (1) & (2), and to verify whether D 
or κ is constant. This method is also complicated, 
as the true concentrations at the interfaces are 
usually not known. As a usual practice, in 
estimating the interface concentrations, it is 
assumed that surface reaction is very fast and is in 
equilibrium. Thus, fitting the flux data to the 
Eq.(1), the diffusion coefficient is determined. 
There are also some other methods for the 
determination of diffusion coefficient (e.g. time lag, 
sorption and desorption kinetics), but the 
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coefficient determined from steady state flow 
seems most reliable to verify the validity of the 
diffusion equation. Regarding the diffusion 
coefficient, Mears [28] stated, “When D is 
determined by using Eq.(1), it is found that D 
varies with concentration. This may be due to 
variation of mobility with concentration or to the 
force departing from chemical potential”. Some 
interpretation had always been looked for to 
explain the concentration dependence of the 
diffusion coefficient.  No effort is made yet 
however, to fit the data to Eq.(2), and to verify 
whether κ is a constant. This is also difficult, as CL 
is always very small and difficult to be measured. 
Thus the probability of finding suitable literature 
data to fit to the Eq. (2) is fade.  
 

IV. CONCENTRATION DEPENDENCE OF 
THE DIFFUSION COEFFICIENT 

 
Barrie [29] has thoroughly discussed the 
concentration dependence of the diffusion 
coefficient through polymers. The diffusion 
coefficient could increase, decrease or remain 
constant depending on the processes. To explain 
the increase in the diffusion coefficient, it is 
assumed that with an increase in the concentration 
of the permeating species, the energy of the 
activation of the diffusion process decreases and 
hence D is an exponentially increasing function of 
concentration (Eq.7a) [30, 31].  
D = D0 exp(αC)           (7a)
where D0 and α are empirical constants. 
Combining Eqs. (1 & 7a), we have, 

J = D0 exp(αC)
dC
dx

           
(7b) 

The Eq. (7b) is considered to be the modified form 
of  the Fick’s law. Thus, two adjustable parameters 
(D0 and α) appeared in Eq. (7b) instead of a 
constant diffusion coefficient.  We could go further 
with the modification of the Fick’s law 
transforming the Eq. (7b) into Eq. (8).  

)C)/D(D
x

dDJ αζα
∂
ζ exp(=   and    with  0RR == (8)

The Eq. (8) has the properties to represent a new 
formulation of the diffusion law: (a) The quantity 
dζ /dx  (and not dC/dx as in Fick’s law) is the 
driving force for the diffusion flux. Both the 
quantities dζ /dx and dC/dx, however, are not 
related to the concept ‘force per unit mass’. (b) The 
proportionality constant DR is independent of ζ (or 
C). (c) Under the steady state flow, the parameter ζ  
(and not the concentration C) decreases linearly. 

From the mathematical viewpoint, the Eqs. (7b & 
8) are equivalents, but the ‘driving forces’ are 
expressed differently.  
 
Long [32] applied McCall’s model (Eq. 7b) to 
describe the steady state flux of some liquid 
hydrocarbons through polypropylene films and 
found that the value of α varied in the range of 20-
87. The author also calculated the concentration 
profile in the membrane, and found that at the feed 
side, the concentration gradient dC/dx is very low 
(in absolute value), and it increases as x increases. 
The concentration profile calculated by Long [32] 
could have been disputed arguing that most 
probably it was the Eq. (8) (and not the Eq.7b), 
which was describing the steady state flow. The 
room for such dispute disappeared, when Kim & 
Kammermeyer [27] measured the actual 
concentration profile in diffusion processes through 
a stacked film packet and provided experimental 
data in favor of the concentration distribution 
predicted by McCall’s model [30]. Kim & 
Kammermeyer [27] also reported very high values 
of α  (=17-100) for the systems under investigation. 
A bit earlier than Kim & Kammermeyer [27], 
Rosenbaum and Cotton [26] measured the 
concentration gradient of water though a stack of 
cellulose acetate films. However they found that 
the concentration decreased almost linearly. In fact, 
the measurement of actual concentration profile 
under steady state flow is a very difficult task, and 
could merely be precisely performed. On the other 
hand, the steady state flux can be measured in a 
reliable range of confidence. Thus, pretending (!) 
the unawareness of the concentration profile 
measured by Kim & Kammermeyer [27] or 
suspecting in the preciseness of the measured data, 
the steady state flux data could empirically be 
described by the Eq. (8) for α  =17-100, and the 
apparent driving force (-∆ζ/∆x) would appear much 
higher than (-∆C/∆x) predicted by the Fick’s law. It 
could easily be shown that for very small values of 
CL, the value of ln(C0/ CL) is also always much 
higher than that of (C0-CL).  Thus, the Eq. (2) with 
κ =constant, predicts a driving force for the 
diffusion flux higher than (C0-CL)/L. Therefore, 
even as an empirical approach, attempts could have 
been made to fit the diffusion flux data to the Eq. 
(2) (if CL were known). But as we are aware of the 
concentration profile reported by Kim & 
Kammermeyer [27], we have no alternative than 
accept that Fick’s law is valid with the diffusion 
coefficient exponentially increasing with 
concentration. In fact, the positive change in D is 
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related to the structural change in diffusion media. 
The exponential model of diffusion coefficient has 
been discussed in literatures [1,31] and enjoys 
much support from the investigators.     
 
Many investigators [33-37] studied the diffusion 
transport for a number of water-polymer systems. 
Unlike Kim & Kammermeyer [27], they found that 
the diffusion coefficient, obtained from an analysis 
of the steady state of permeation, decreased as the 
total concentration of water in the polymer was 
increased. In case of some silicon rubber [38, 39], 
beyond some critical concentration, the diffusion 
coefficient decreased as the water content 
increased. Wellons & Stannett [40] measured the 
diffusion coefficient in four ways, viz., sorption, 
desorption, time lag, and by dividing the 
permeability constants by the equilibrium solubility 
coefficients. The time lag gave diffusion constants 
that were independent of concentration, whereas 
the other three led to diffusion constants that 
steadily decreased with the increase in the 
concentration. Park [41] also reviewed a number of 
observations on the concentration dependence of 
diffusion coefficients. The author found that for a 
number of cases the diffusion coefficient decreased 
as the concentration increased. The concentration-
distance relationship was also exponentially 
decreasing. The decreasing tendency of D with 
concentration is usually interpreted in terms of the 
association of the water molecules through the 
formation of hydrogen bonds such that the effective 
mobility of the water molecules was reduced as the 
concentration was increased.  There is no doubt that 
the clustering of the permeating species would 
affect the diffusion process, and under steady state 
permeation, it might seem that the diffusion 
coefficient is decreasing as the concentration 
increases. The very question is whether the 
observations could be interpreted without assuming 
the cluster formation (or at least neglecting the 
effect of cluster formation)? From the viewpoint of 
the theory of molecular kinetics, the self-diffusion 
coefficient of a gas is given as follows [22]: 

D =
1

πσ2n
.

kT
πm

 
 

 
 

0.5

     
(9)

Where k is the Boltzmann constant, m is the mass 
of a molecule, σ is the molecular radius and n is the 
molecules per cm3. The Eq. (9) shows that the self-
diffusion coefficient is inversely proportional to n 
(concentration expressed in terms of molecules.m-

3). This coefficient is derived assuming the validity 
of Fick’s law. Let’s now also discuss a hypothetical 

situation: The Eq. (2) describes the diffusion 
transport properly.  But an investigator is pre-
convinced in the validity of Eq. (1) and applies it to 
treat the experimental data. What would he/she 
conclude about the concentration dependence of the 
diffusion coefficient? This can be seen rewriting 
Eq. (2) in terms of concentration gradient  (Eq.10). 

J = −
κRT

C
.
dC
dx

 
(10) 

Wouldn’t the investigator find that the diffusion 
coefficient D is some decreasing function of the 
concentration C? ‘The diffusion coefficient D 
varies inversely as the concentration C’ is an 
indirect evidence in favor of the Eq. (2). The 
statement ‘Under the steady state flow, the 
concentration profile is exponentially decreasing’ 
made by Taylor et al. [24] and especially 
reproduced by Park [41] could be the strongest 
evidence in favor of the Eq. (2). The concentration 
profile reported by Gillespie & Williams [25] for 
water vapor diffusion through stacked cellophane 
films was also to some extent exponentially 
decreasing. But as said earlier the method of 
measuring concentration profile is not so reliable to 
validate a law convincingly. ‘The diffusion 
coefficient D is an exponentially increasing 
function of the concentration with α as high as 20 
(see Eq. 7b or 8)’ also dictates that the data could 
more likely be fitted to the Eq.(2).   
 

V. CHOICE OF THE FORMULATION OF 
BASIC DIFFUSION EQUATION 

 
Virtually, the mathematical formulation of the 
diffusion law solely depends on how the resistant 
forces are defined. Only the experimental data 
(acquired without being pre-convinced in any 
model) could confirm the validity of the Eq. (1) or 
(2) in a given case. It is a usual practice that if 
experimental data do not fit to an established law, 
some explanation becomes eminent to justify the 
deviation. In diffusion processes, a number of 
factors (e.g. plasticization of the membrane 
material, clustering of the diffusing species, 
interaction between the permeating species and the 
membrane material) could actually cause deviation 
of the experimental data from the basic law. But the 
question ‘whether the basic diffusion equation is 
chosen properly’ does not get deserved attention. 
Before accepting any real deviation from a 
diffusion equation it should always be remembered 
how the resistance forces are defined in deriving 
the mathematical formulation of the equation. Both 
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the transport coefficients D and κ are 
phenomenological. There are no convincing 
evidences so as to accept for a general case that D 
is a constant and κ is directly proportional to 
concentration, or to accept that κ is a constant and 
D is inversely proportional to concentration. For 
that reason, the choice of the form of the diffusion 
equation (Eq.1 or Eq.2) would depend on the 
specific circumstances being studied. Moreover, as 
we have seen, the Eq. (1) & (2) might not 
necessarily be the only forms of diffusion equation.  
 

VI. CONCLUSIONS  
 
(1) The mathematical formulations of the diffusion 

law solely depend on how the resistant forces 
are defined. The description of resistances by 
Stokes law results in paradoxical prediction of 
diffusion fluxes in some specific cases. 

(2) Evidences are available validating both the 
thermodynamic and Fickian formulation of the 
diffusion equation. 

(3) Ideal form of diffusion equation is absent, and 
the choice of the form of diffusion equation 
would depend on the specific circumstances 
being studied.      
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