
Page | 1

Study of Ballistic Graphene Nanoribbon FET and

Carbon Nanotube FET for Device Applications

By

Md. Reaz Haider Pavel (11221050)

Md. Zishan Ibne Hussain (11121055)

A.B.M. Rakibul Ahsan (11221033)

A Thesis

Submitted as the partial Fulfillment for the Degree of Bachelor of

Science in Electrical and Electronic Engineering

Department of Electrical and Electronic Engineering

BRAC University

Dhaka-1212, Bangladesh

Page | 2

CERTIFICATE OF APPROVAL

The thesis entitled “Study of Ballistic Graphene Nanoribbon FET and Carbon Nanotube FET for

Device Applications” submitted by Md. Reaz Haider Pavel, Md. Zishan Ibne Hussain and A.B.M.

Rakibul Ahsan has been accepted satisfactorily in partial fulfillment of the requirement for the degree

of Bachelor of Science in Electrical and Electronic Engineering.

 Supervisor

 --

(Dr. Sharif Mohammad Mominuzzaman)

Department of Electrical and Electronic Engineering

Bangladesh University of Engineering and Technology (BUET)

Page | 3

CANDIDATE DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of

any degree or diploma.

 Author

 Md. Reaz Haider Pavel

 Author

Md. Zishan Ibne Hussain

 Author

 A.B.M. Rakibul Ahsan

Page | 4

ACKNOWLEDGEMENT

First and foremost, we are very much grateful to Almighty ALLAH for giving us eternal blessings on

choosing the correct path towards the target of this work.

This work has been performed through inspiration and constant guidance of several kind people. Most

importantly, we would like to thankfully acknowledge the help of Dr. Sharif Mohammad

Mominuzzaman, Professor, Department of Electrical and Electronic Engineering (EEE), Bangladesh

University of Engineering and Technology (BUET), Dhaka. His experience and in depth knowledge in

the field of nanotechnology, constantly guided us towards completion of the work. His guidance and

insightful discussions enlightened us throughout the thesis work. Thanks for his encouragement and

trust on our ability to work on this topic. It would not be possible to complete this work without his

informative assistance and motivation.

We would also like to thank Dr. A.K.M. Azad who referred our group to Professor Mominuzzaman

and always believed in our abilities.

A special thanks to Atanu Kumar Saha, faculty of EEE department of BRAC University, for his

persuasive consultations throughout our thesis.

We are indebted to Sheikh Ziauddin Ahmed, faculty of EEE department of BRAC University, for his

generosity and Syed Mahmud Hasan for taking the time out of his busy schedule to help us out with

our work.

Finally, we would like to thank our parents and well-wishers for their constant support, motivation and

their patience.

Page | 5

ABSTRACT

The need for technological progression in the field of electronics has been persistently escalating. So

far silicon has been the most important fabrication material of preference for meeting the current

demands. However, silicon itself has few of its own limitations; Silicon based integrated circuits and

the scaling of silicon MOSFET design faces complications like tunneling effect, gate oxide thickness

effect etc. which has given the extensive perimeter for new materials with improved characteristics to

emerge.

In up to date periods, graphene and carbon nanotube have shown huge promise as materials that can

swap silicon-based materials in the future due to their outstanding electrical properties and other

characteristics. Simulation studies of graphene nanoribbon field-effect transistors (GNRFETs) and

carbon nanotube field-effect transistors (CNTFETs) at different contact temperatures are presented in

this thesis paper using models that have been methodically developed and are of increasing

thoroughness and versatility. This thesis covers the studies and modeling of graphene nanoribbon and

carbon nanotube, which includes band structures and current-voltage graphical plots. Also, an analysis

has been presented which shows the effect by varying contact temperatures for relative dielectric

constant and chirality on the device performance, in particular on the drain current.

The purpose of this paper is to the study behaviour of graphene nanoribbon transistors and carbon

nanotube transistors. The simulation is carried out using NanoTCAD ViDES program and the main

focus is on the changes in the I-V characteristic curves for transfer and output characteristics for

relative dielectric constant and chirality for different contact temperatures. The obtained results were

used to make a comparative analysis of the device performance of GNRFET and CNTFET. We

confirmed our work by contrasting of our results with other recognized academic papers published

under the same category.

Page | 6

Table of Contents

 Pages

Certificate of Approval 2

Candidate Declaration 3

Acknowledgement 4

Abstract 5

Table of Contents 6

List of Tables 9

List of Figures 10

Chapter One

Introduction 12

1.1 Overview and Research Incentive 12

1.2 Objectives of the Research 13

1.3 Extents of the Research 14

1.4 Outline of the Research 15

Chapter Two

2.1 Evaluation of the Silicon MOSFET 16

2.1.1 Scaling of the Silicon MOSFET 17

2.1.2 Limitations of Scaling 18

2.1.2.1 Short Channel Effect 19

2.1.2.2 Threshold Voltage Effect 21

2.1.2.3 Oxide Thickness 21

2.1.2.4 Tunneling Limit 22

2.1.2.5 Contact Resistance 23

2.1.2.6 Power Consumption and Heat Dissipation 24

2.1.2.7 Theoretical Limitations 24

2.1.2.8 Design Limitation 24

2.2 Carbon Nanotube (CNT) 25

2.2.1 Physical structure of Carbon Nanotube 26

2.2.2 SWNT Characteristics of Electrical Transport 30

Page | 7

2.3 Carbon Nanotube field effect Transistor 31

2.3.1 Structure of CNTFET 31

2.3.2 Back Gate CNTFET 33

2.3.3 Top Gate CNTFET 33

2.3.4 Schottky-barrier (SB) CNTFET 34

2.3.5 MOSFET-like CNTFET 36

2.3.6 Vertical CNTFET (V-CNTFET) 37

2.4 Introduction to Graphene 38

2.4.1 Synthesis of Graphene 39

2.4.1.1 Exfoliation 40

2.4.1.1.1 Mechanical Cleavage 40

2.4.1.1.2 Solution and Chemical Exfoliation 40

2.4.1.1.3 Oxidation and Reduction 41

2.4.1.2 Chemical Vapor Deposition 42

2.4.1.3 Chemical Synthesis 42

2.4.2 Properties of Graphene 43

2.4.2.1 Structure 43

2.4.2.2 Electronic 43

2.4.2.2.1 Electronic spectrum 43

2.4.2.2.2 Dispersion Relation 43

2.4.2.2.3 Single-atom wave propagation 44

2.4.2.2.4 Electronic Transport 44

2.4.2.3 Thermal 46

2.4.3 Energy Band structure of Graphene 46

2.4.4 Band gap opening in Graphene devices 47

2.4.4.1 Graphene Nanoribbons 48

2.4.4.2 Bilayer Graphene FETs and Tunnel FETs 48

2.4.4.3 Epitaxial Graphene on SiC 49

2.4.4.4 Functionalized Graphene 49

2.5 Graphene Nanoribbon 49

2.5.1 GNR Structure 50

2.5.2 Production of Graphene Nanoribbon 51

Page | 8

2.5.3 Electronic Structure of GNR 52

2.5.4 Graphene Transistors 53

2.6 Summary 56

Chapter Three

3.1 The Model 57

3.1.1 Model Physics and the Process of Calculation 57

3.2 Result and Analysis 61

3.2.1 Effect of Contact Temperature 62

3.2.2 Effect of Relative Dielectric Constant 68

3.2.3 Effect of Chirality 76

3.3 Summary 79

Chapter Four

4.1 Conclusion 80

4.2 Future work 81

References 83

Appendix A 91

Appendix B 93

Page | 9

List of Tables

 Pages

2.1 Schematically illustratrations of the MOSFET 20

2.2 Young‘s modulus, Tensile strength, and density of

 carbon nanotubes compared with other materials 29

2.3 Some parameters for carbon nanotube 29

2.4 Comparison between Back gate CNTFET and Top

 gate CNTFET 34

3.1 Table of Parameters 59

Page | 10

List of Figures

 Pages

Figure 1.1: (a) Moore‘s law and (b) IC technology projection 13

Figure 2.1: Structure of MOSFET 17

Figure 2.2: Feature size versus time in silicon ICs 18

Figure 2.3: Short-channel-transistor leakage current mechanisms 19

Figure 2.4: Potential barrier between two transistors 22

Figure 2.5: Single-wall Carbon nanotube 26

Figure 2.6: Multi Wall Nanotube 26

Figure 2.7: Graphene sheet and rolling graphene sheet to create carbon 27

Nanotube

Figure 2.8: 3D model of the three types of single walled carbon nanotubes 28

Figure 2.9: Early CNTFET structure 31

Figure 2.10: (a) Back gate CNTFET , (b) Top gate CNTFET 34

Figure 2.11: Diagram of a SB-CNTFET 35

Figure 2.12: MOSFET-like CNTFET 36

Figure 2.13: Structure of Vertical CNTFET 37

Figure 2.14: Unit cell of graphene 38

Figure 2.15: Structures made of graphene 39

Figure 2.16: Exfoliated graphene 41

Figure 2.17: Synthesis of graphene by oxidation and reduction. 42

Figure 2.18: E-k diagram of graphene 47

Figure 2.19: Energy gap as a function of the chiral number 48

Figure 2.20: Effect of the origin of the GNR chiral vector 50

Figure 2.21: Examples of GNR chiral and transport vectors 51

Figure 2.22: Structure and evolution of graphene MOSFETs 55

Figure 2.23: Direct-current behaviour of graphene MOSFETs with a large-area- 56

graphene channel

Figure 3.1: Flow-chart of the self-consistent 3D Poisson-Schrodinger solver. 60

Figure 3.2: (a) Structure of GNRFET (b) Structure of CNTFET 61

Figure 3.3: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET (b) 63

Carbon Nanotube SBFET for different temperatures at VD = 0.5 V

Figure 3.4: ID vs. VD characteristics of (a) Graphene Nanoribbon SBFET (b)

Carbon Nanotube SBFET for different temperatures at VG = 0.5 V 64

Figure 3.5: Dependence of resistance on temperature of graphene nanoribbon 65

Page | 11

Figure 3.6: (a) Schematic of a FET based on GNR arrays patterned by Block 66

Copolymer lithography and (b) the corresponding SEM image. In (b), the contrast

difference in the channel between the GNR arrays and the bare silica is evident.

(c)IDS - VDS curves of the GNR array FET with a 9 nm ribbon width recorded at

different gate voltages. (d) I DS - V G curves of the GNR array FET with a 9 nm

ribbon width recorded at V DS = 100 mV in the temperature range of 100–300 K

Figure 3.7: ID vs. VG characteristics of Graphene Nanoribbon SBFET and Carbon 67

Nanotube SBFET at T= 400K and VD = 0.5 V

Figure 3.8: ID vs. VD characteristics of Graphene Nanoribbon SBFET and Carbon 67

Nanotube SBFET at T= 400K and VG = 0.5 V

Figure 3.9: Dielectric constant changing effect investigated by Rasmita Sahoo et 69

al. which satisfied simulation result

Figure 3.10: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET (b) 69

Carbon Nanotube SBFET for different relative dielectric constant at VD = 0.5 V

Figure 3.11: ID vs. VD characteristics of (a) Graphene Nanoribbon SBFET (b) 70

Carbon Nanotube SBFET for different relative dielectric constant at VG = 0.5 V

Figure 3.12: ID vs. VG characteristics of Graphene Nanoribbon SBFET and 71

Carbon Nanotube SBFET for relative dielectric constant of 11.9 at VD = 0.5 V

Figure 3.13: ID vs. VD characteristics of Graphene Nanoribbon SBFET and 71

Carbon Nanotube SBFET for relative dielectric constant of 11.9 at VG = 0.5 V

Figure 3.14: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET (b) 72

Carbon Nanotube SBFET in different temperatures for relative dielectric constant

k = 3.9 at VD = 0.5 V

Figure 3.15: ID vs. VD characteristics of (a) Graphene Nanoribbon SBFET (b) 73

Carbon Nanotube SBFET in different temperatures for relative dielectric constant

k =3.9 at VG = 0.5 V.

Figure 3.16: ID vs. VD characteristics of (a) Graphene Nanoribbon SBFET (b) 74

Carbon Nanotube SBFET in different temperatures for relative dielectric constant

k =11.9 at VD = 0.5 V

Figure 3.17: ID vs. VD characteristics of (a) Graphene Nanoribbon SBFET (b) 75

Carbon Nanotube SBFET in different temperatures for relative dielectric constant

k =11.9 at VG = 0.5 V.

Figure 3.18: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET

(b) Carbon Nanotube SBFET for different chirality at VD = 0.5 V 77

Figure 3.19: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET

(b) Carbon Nanotube SBFET for different chirality at VG = 0.5 V 78

Page | 12

Chapter 1

INTRODUCTION

The objective of this paper is to present a comprehensive discussion about the contact temperature

effect on the ballistic graphene nanoribbon and carbon nanotube transistor. This research also

establishes a relative analysis of the transfer and output characteristics of ballistic barrier graphene

nanoribbon and carbon nanotube transistor. The scrutiny is carried out by shifting contact temperatures

for different parameters on input and comparing the consequence with the result of other research

groups. Being the first chapter, this chapter presents the background of the research, objective, and the

extent of this research work. The chapter itself also comes up with the outline of the thesis. Finally,

this chapter summing up the content of each chapter.

1.1 Overview and Research Incentive

Silicon has been the structural block for the electronics sector till today. This emerging technology

paced at a rate which over turn the historic pace of Moore‘s law [1]. Even so, the scaling limits of

silicon are approaching the closing stages since many problems come up as devices become smaller in

size. Problems like tunneling effect, short-channel effect etc. come into the picture and these effects

hinder the device performance. It is therefore essential that silicon be substituted by other materials

which will take device advancement to a whole new level. On basis of that, it is of intense concern to

identify reliable, suitable and most importantly effective new materials which can be a super substitute

of silicon platform with sustainable properties that can out run the existing silicon technology. New

materials with superior electronic, optical and mechanical properties emerge as a result to allow

devices scaling to continue to the atomic scale. Nanosize devices open many pathways to exploit the

physical and chemical properties at the nanoscale. Chemical synthesis, self-assembly, and template

self-assembly promise the precise fabrication of device structures or even the entire functional entity.

Thus, the reasonable new nanoelectronic devices can be originated based on completely new system

architecture for instance: nanotubes, nanoribbons, nanowires, molecular devices and unique

nanoelectronics devices [1].

Page | 13

Among diverse material systems and structures, grapheme and carbon nanotubes shown meticulous

promises according to their nanoscale size and unique electronic properties. Due to their low

dimensionality, nanostructures such as quantum dots, carbon nanotubes (CNTs) possess unique

properties that make them promising candidates for future technology applications [2]. Though a

through and relentless study have been performed but yet to understand how a graphene and carbon

nanotube transistor operates and how to improve their performance [3] [4] [5]. In recent times both of

them have been fabricated which showed an improved performance than a silicon transistor of

identical size.

Figure 1.1: (a) Moore‘s law and (b) IC technology projection. [1]

In this thesis substantial simulation of GNRFETs and CNTFETs for the different temperatures is

extended. In order to explore the infinite outcomes for GNRFETs and CNTFETs, it is compulsory to

build up an elementary understanding of the basic physics. This research therefore deals with the I-V

characteristics of ballistic GNRFETs and CNTFETs and thus enhances our depth of knowledge

regarding the fundamental physics that governs their behavior in other devices.

1.2 Objectives of the Research

The scaling of silicon-based transistors has been the dynamic factor behind the large growth of the

technology industry over the last few decades. However, this miniaturization imposes some limits on

the silicon-based transistors. Thus, researchers have been aggravated to explore and ascertain other

alternative technology like graphene and carbon nanotubes for better functioning of the current

devices. Because of having low dimensionality and outstanding electronic properties; Graphene and

Page | 14

carbon nanotubes are the potential materials for future nanoelectronics, both as interconnects and as

critical elements like channel materials for field-effect transistors. At present, ballistic graphene

nanoribbon field-effect transistor(GNRFET) and carbon nanotube field-effect transistor (CNTFET) are

indulged as two of the nanoelectronic devices that have vast prospective to be treated as a switching

device for future. We are planning to make an extended comparative analysis between these two types

of transistors for different temperatures. The nucleus parts of our research work to summarize are:

 Analyze the graphene nanoribbon and carbon nanotube device models and the limitation of Si

MOSFET.

 Understand the basic of graphene nanoribbon and carbon nanotube physics and focus on their

electrical properties.

 Comprehend the device characteristics, fundamental equation and mathematical model of

GNRFET and CNTFET.

 Realize theoretical difference between graphene nanoribbon based FET and carbon nanotubes

based FET.

 Using mathematical model simulation investigate the I-V characteristics of GNRFET and

CNTFET by varying different parameters and make an unalloyed comparison with different

research group result.

 By examining the objective stated above, we can deduce total GNRFET and CNTFET

characterization and form a complete understanding of the effect of changing different

parameters on transfer and output characteristics of these two transistors.

1.3 Extents of Work

The research paper has been constrained to the following scopes of work due to lack of resources,

proficiency and restricted time frame.

 By using NanoTCAD ViDES [6] simulate Schottky barrier Graphene Nanoribbon field-effect

transistor (GNRFET) and Carbon Nanotube field-effect transistor (CNTFET) and generate I-V

curves.

 Simulate the transfer and output characteristics by changing temperature for different

parameters like chirality, dielectric constant and channel length.

 Comparing the obtained results with other research groups.

 Comparison between GNRFET and CNTFET.

Page | 15

1.4 Outline of the Research Report

This thesis paper has been divided into four chapters including this one.

Chapter 1 thrashes out the overview and research incentive, the research objectives and the extents of

work of this paper.

Chapter 2 gives a detailed overview of Silicon MOSFETs along with the limitation it faces due to

scaling. Afterward there is a comprehensive discussion on Carbon Nanotube, the structure of CNT,

chirality, single walled CNT (SWCNT), multi walled CNT (MWCNT) and properties of CNT are

discussed. Subsequently the operational principles of carbon nanotube transistors are presented.

Before ending, this chapter gives an elaborate discussion on graphene and graphene nanoribon, their

synthesis procedures and their properties.

Chapter 3 contains the results and analysis of our focal works where we generated the I-V curves for

both Schottky barrier GNRFET and CNTFET. This chapter largely deals with the transfer and output

characteristics of both GNRFET and CNTFET. The result and analysis section exhibits and discusses

the effects of relative dielectric constant, chirality and channel length on the transfer and output

characteristics for different temperatures.

Chapter 4 brings to a closure of our entire research and discusses about our future projections and

realistic researches.

Page | 16

Chapter 2

MOSFET, CARBON NANOTUBE, CNTFET,

GRAPHENE AND GNRFET

2.1 Evaluation of the Silicon MOSFET

In 1930, Lilienfeld [7] patented the basic concept of the field effect transistor (FET). After thirty years

in 1959, the concept was finally materialized in Si-SiO2 by Kahng and Atalla [8] [9]. The first

MOSFET was invented in 1959 and since then it has completely changed the world of digital

electronics. MOSFETs have dominated all fronts of digital applications especially modern computers;

because it offers many advantages to the user. MOSFETs are relatively small in size and this

contributes to the fact that they can be packed in large numbers on a single integrated circuit. It is also

very reliable and offers low consumption of power. The progress up to now is well described by

―Moore‘s law.‖ Gordon Moore predicted in 1965 that for each new generation of memory chip and

microprocessor unit on the market, the device size would reduce by 33 percent, the chip size would

increase by 50 percent, and the number of components on a chip would quadruple every three years.

So far this trend has shown no signs of stopping [10].

Several properties of silicon have made these developments in microelectronics possible. Silicon can

be grown in single crystals that are more than 1 m long and 30 cm across. The purity of the crystal and

the number of electrically active defects can be controlled. The number of atomic crystal defects in

sub-micrometresized MOSFETs is now limited to individual centers that act as traps for electrons.

Such traps may be identified, individually characterized, and counted, so that single-electron

transistors are possible. The reason behind Silicon being the semiconductor of choice for MOSFET is

its native oxide. Silicon dioxide (SiO2) is an almost perfect insulating material with a resistivity in

excess of 1016 Vcm. The insulating films of SiO2 grown on silicon are smooth and coherent with no

holes, in a thickness ranges down to single atomic layers [10].

Page | 17

The metal–oxide–semiconductor field-effect transistor (MOSFET) is a transistor used for amplifying

or switching electronic signals. Although the MOSFET is a four-terminal device with source (S), gate

(G), drain (D), and body (B) terminals; [11] the body (or substrate) of the MOSFET often is connected

to the source terminal, making it a three-terminal device like other field-effect transistors. The gate

terminal is a metal electrode that controls the current flow from source to drain [12]. The gate voltage

needs to be higher than the threshold voltage in order for the current to flow in MOSFET. The source

terminal is usually grounded and the drain voltage applied is relatively very small. As the gate voltage

rises above the threshold voltage; an inversion layer or channel is created. This causes electrons to

flow from source to drain terminal and as a result of which the current flows from drain to source

terminal. There is no current flow to gate terminal since there is an oxide barrier which acts as an

insulator. Figure 2.1 shows the structure of MOSFET.

Figure 2.1: Structure of MOSFET

2.1.1 Scaling of the Silicon MOSFET

Scaling is a process which involves reducing the size of MOSFET and at the same time improving its

performance. The first method was introduced in 1974 in which by reducing the MOSFET dimension,

the device density, switching speed and energy was also improved. Each new generation has

approximately doubled logic circuit density and increased performance by about 40% while the

memory capacity has increased by four times. In ideal scaling, as the dimension and the operating

voltage is reduced by a factor of 0.7, the area density doubles, switching delay decreases by a factor of

Page | 18

0.7 and the switching energy is halved. The switching speed can be estimated when the gate

capacitance, operating voltage, and drive current are known. Switching energy is reduced as a result of

the lower total combination parasitic capacitance due to smaller device size and lower operating

voltage. Reduction of switching energy is very important since the overall circuit power is very crucial

especially if the system is used for a long period continuously [12].

Figure 2.2: Feature size versus time in silicon ICs [13]

2.1.2 Limitations of Scaling

There have been many articles and papers on the current situation and future prospects for Si-

MOSFETs; many different scaling limits for MOSFETs have also been discussed and proposed [8].

There are a number of factors which needs to be taken under consideration with continued MOSFET

scaling that present challenges for the future and, ultimately, fundamental limits. There are quite a few

problems which arise as the MOSFET size reaches nanometer scale and ultimately limits the

performance of the MOSFET itself. These problems are crucial and must be taken under consideration

if the MOSFET is to survive in the near future.

Page | 19

2.1.2.1 Short Channel Effect

The first factor to be considered is the short channel effect. The short channel effect introduces several

leakage currents in MOSFET which are discussed below and shown in the figure- 2.3[14].

 Reverse bias p-n junction current occurs due to the minority carriers, diffusion near the

depletion region and also due to the generation of electron-hole pairs.

 Weak reverse current occurs when gate voltage is lower than threshold voltage.

 DIBL current is present when source‘s potential barrier is reduced as a result of the drain‘s

depletion region interacting with the source. The existence of DIBL lowers the threshold

voltage.

 Gate-Induced Drain Lowering (GIDL) current occurs in high electric field between gate and

drain, and it also occurs along the channel width between gate and drain.

 Another leakage current mechanism, punchthrough, occurs when the drain and source

depletion regions touch deep in the channel.

 Narrow-width current arises when the channel length is reduced to less than 0.5µm.

 Gate-oxide tunneling current occurs when the oxide layer is made very thin and also causes

gate leakage current tunneling through oxide bands.

 Hot-carrier injection occurs when hot carriers is injected into the oxide.

Figure 2.3: Short-channel-transistor leakage current mechanisms: reverse-bias p-n junction leakage

(I1), weak inversion (I2), drain-induced barrier lowering (I3), gate-induced drain leakage (I4), punch-

through (I5), narrow-width effect (I6), gate oxide tunneling (I7), and hot-carrier injection (I8).

Page | 20

Table 2.1: Schematically illustrates the MOSFET used in today‘s silicon chips. The basic fabrication

process steps to manufacture such a device have been broadly described. The basic structure will

continue to evolve to allow continued performance improvements, but fundamental changes are

unlikely until 2015 [13].

Page | 21

2.1.2.2 Threshold Voltage Effect

A notable limitation to MOSFET is that the threshold voltage is not proportionally decreasing with

respect to transistor scaling. The threshold voltage is maintained at a constant level when the channel

length is between 0.1µm-1µm and it deviates further when the channel length is below 0.1µm [12],

[7]. If the transistor is scaled below 0.1µm, the threshold voltage current does not drop to zero

immediately but it decreases exponentially, and is inversely proportional to the thermal energy [12].

There are some thermally distributed electrons at source terminal that have enough energy to

overcome the barrier potential regulated by gate terminal. This behavior is independent of channel

length and power supply. So, higher threshold voltage causes higher leakage current. Denoting leakage

current as Ioff gives:

Ioff = Io (-qVt / mKT) (2.1)

Ioff = Extrapolated current per width at threshold voltage.

m= Dimensionless ideality factor

Vt= Threshold voltage.

Lower leakage current is essential for a transistor in order to reduce the power loss. However lower

threshold voltage can reduce the leakage current. So, designing a transistor should be in such a way

that its threshold voltage remains very low. According to Sanudin, the leakage current is reduced ten

times for every 0.1V reduction of threshold voltage [12].

2.1.2.3 Oxide Thickness

The gate insulator in a MOSFET needs to be thin compared to the device channel length in order for

the gate to exert dominant control over the channel potential. This avoids ―short channel effects,‖

which are largely the result of the drain electric field penetrating throughout the channel and

influencing the channel potential at the source of the device [13].

Gate-oxide thickness causes two kinds of limitations. Firstly, the thin layer of oxide eventually

increases leakage current. This effect is also related to quantum effect tunneling that dominates in

MOSFET as the oxide thickness is reduced. The tunneling current due to thick oxide layer may look

negligible in comparison with ―on state‖ c urrent. However, it has a major effect when the chip is in

standby mode. Secondly, due to the oxide thickness there is a loss of inversion charge and also the

Page | 22

transconductance as a result of inversion-layer quantization and polysilicon gate depletion effect [15].

The gate electrode itself also presents some significant challenges. Polysilicon has been used for more

than 25 years as the gate electrode material. However, decreasing its resistivity, as shown in table-2.1,

implies increasing the doping levels in the polysilicon, which minimizes the resistivity of the gate

electrode. This aids in avoiding polysilicon depletion effects. However, this approach is limited by

dopant solubility limits and by dopant out diffusion from the polythrough to the thin gate dielectric

and into the silicon. This later problem is particularly acute with p-gates because boron diffuses

rapidly through SiO2. The likely solution is again new materials. But there are no known materials

solutions that are known to work in manufacturing [13].

2.1.2.4 Tunneling Effect

Under normal conditions, in an operating or computational system integrated transistors are separated

sufficiently enough so that operation of one transistor does not in any way affect the operation of

another transistor. This separation is made by inserting a material that acts as a barrier between two

transistors. However, the barriers are also scaling down along with the MOSFETs. So there is a

possibility of carriers from one MOSFET crossing over to another and distorting the performance.

This effect increases exponentially as the barrier distance decreases.

Figure 2.4: Potential barrier between two transistors.

Page | 23

2.1.2.5 Contact Resistance

Contacts are normally made by self-aligned silicides which are in contact with heavily doped silicon.

This process provides an ohmic contact; which completely covers the area of the source/drain

diffusions and this leads to the minimization or reduction of the contact resistance. Current flows in a

distributed manner from the source/drain extension to the contact. The exact flow lines depend on the

doping profile in the silicon and on the physical geometry. The contact resistance depends on the

effective area of the contact. Current crowding on the leading edge of the contact can have a

significant effect. In this structure, the contact resistance is given by:

Rcontact = √(ρcRSD) / (W × coth (Lc / Lt)) ≈ ρc / (WLc) (2.2)

Where,

ρc= specific contact resistivity of the silicide/semiconductor contact (Ω cm
¬2

);

RSD= sheet resistance of the source/drain diffusion (Ω/square);

W= contact width;

Lc= contact length.

Lt= √(ρc /RSD) is called the transfer length and is the average distance that carriers travel in the

diffusion before entering the contact.

For typical values of ρc, RSD and Lt, is greater than the physical contact length Lc, which results in the

approximation shown above. In this case, the current flows into the entire length of the contact and

current crowding effects are minimal. Thus, the contact resistance varies inversely with the contact

area if ρc is constant.

The silicide formation process itself often consumes silicon since the metal component (Ti, for

example) is usually deposited and then reacted to form the silicide. This has several important

consequences. Firstly, some of the volume of the heavily doped source/drain regions is lost or

consumed by the silicide formation. The portion of the source/drain region which is ―lost‖ is the top

portion, which is normally the most heavily doped and, therefore, the most conductive. This increases

the sheet resistance of the remaining diffusion in which current can flow to the contact and, therefore,

increases the effective contact resistance [13].

Page | 24

2.1.2.6 Power Consumption and Heat Dissipation

Power consumption and heat dissipation are two obstacles for further advancement in Si-based

transistors. For the past three years power density has grown with the rate of 0.7 for every generation

[16]. Large amount of power consumption boosts up the heat generation, increasing the possibility of

transistors interfering with each other. As MOSFETs are scaling down these small transistors consume

small amount of power but IC chips are becoming denser because of large number of transistors on

each of them. So it uses large amount of power to drive all transistors and therefore generates more

heat. Heat dissipation and power consumption are two major limitations. Therefore, there is the need

of searching for alternative media, which can overcome the limitations of conventional Si based

MOSFET. And this is where the idea of using carbon nanotubes instead of Silicon is conceived.

2.1.2.7 Theoretical Limitations

Thermal limit and quanta limit are a major problem. Amount of energy needed to write a bit must be

greater than the thermal function in order to avoid the bit error to occur. This is called the thermal

limit. Currently CMOS needs 10-13 J to write a bit and the trend is to reduce it, in order for the power

dissipation to reduce [12].

Quantum limit is associated with E/f where, E is the thermal energy and f is the frequency. Currently

CMOS is operating higher than the quantum limit and if the scale reaches to 100nm then it is expected

the limit is approached as E is decreased and f is increased.

2.1.2.8 Design Limitations

Due to the scaling down of MOSFETs lead to the discovery of its design limitations. MOSFET does

not work effectively when it is scaled to only around 30nm. The limit is because of the fact of Zener

breakdown at source/substrate junction [12]. Leakage at gate also starts to surface and it becomes very

difficult to have control over the channel.

Page | 25

2.2 Carbon Nanotube (CNT)

Carbon nanotubes were first discovered in 1991 by S. Lijima, also known as the father of carbon

nanotubes. Carbon nanotubes are formed when graphene layers are folded into a seamless cylindrical

form. Carbon nanotubes are quasi-one-dimensional and look like long thin cylinders of carbon with

diameters of about 1nm. There are two types of carbon nanotubes depending on their composure.

When the nanotube is composed of several shells of carbon, it is known as multi wall nanotube

(MWNT). On the other hand, when only one shell composes the nanotube it is known as single wall

nanotube (SWNT). Carbon nanotubes display a versatile range of properties which has attracted

researchers all around the globe. They are good conductors of heat, electricity and also display

semiconducting characteristics. Carbon nanotubes can be metallic, semiconducting or insulating

depending on their rolling helicity most importantly and then on its length and diameter. What is

fascinating is the fact that carbon nanotubes require no doping. The bandgap can also be varied just by

changing the diameter of the nanotube. Bandgap decreases with increasing diameter. Carbon

nanotubes have a very high current density; individual tubes are able to carry currents at a higher

density than most metals and other semiconductors. Carbon nanotubes are also inert and this makes

them very compatible with other materials. Currently, SWNTs are synthesized by one of three

different techniques: pulsed laser vaporization, arc discharge growth, or chemical vapor deposition

(CVD) on supported or gas phase catalysts. Transition metals in their nanoscales are used as catalysts

in the processes. Pure carbon nanotubes are highly polarizable, smooth-sided structures, they tend to

aggregate into parallel bundles that are held together by non-covalent interactions of approximately

0.5 eV per nanometer. These substantial Van der Waals cohesive forces are sufficient to bundle the

nanotubes in raw samples. This makes it really difficult to separate and collect individual tubes for

further research or device construction. One of the greatest needs in nanotube research and

commercialization is the development of effective methods for obtaining samples of SWNTs with

uniform electronic character. Ultrasonic agitation in surfactant solution followed by ultracentrifugation

can often give stable suspensions that are rich in individual nanotubes. However, physical separation

of the semiconducting and metallic species is much more difficult particularly for larger batch sizes.

Obtaining SWNT samples of specific (n, m) types is the most difficult goal and it is one of the major

factors disrupting the commercialization of carbon nanotubes [17].

Page | 26

Figure 2.5: Single Wall Nanotube (SWNT)

Figure 2.6: Multi Wall Nanotube (MWNT)

2.2.1 Physical Structure of CNT

SWNTs are more pliable than their multi-walled counterparts and can be twisted, flattened and bent

into small circles or around sharp bends without breaking [18]. They can be conducting, like metal or

semiconducting, which means that the flow of current through them can be controlled by varying an

electrical field. Whereas, multi-walled carbon nanotubes are basically like Russian dolls made out of

Page | 27

SWNTs concentric cylindrical graphitic tubes. In these more complex structures, the different SWNTs

that form the MWNT may have quite different structures (length and chirality). MWNTs are typically

100 times longer than they are wide and have outer diameters mostly in the tens o f nanometers.

Although it is easier to produce significant quantities of MWNTs than SWNTs, their structures are less

well understood than single-wall nanotubes because of their greater complexity and variety.

Multitudes of exotic shapes and arrangements, often with imaginative names such as bamboo-trunks,

sea urchins, necklaces, or coils, have also been observed under different processing conditions. The

variety of forms may be interesting but also has a negative side—MWNTs always (so far) have more

defects than SWNTs and these diminish their desirable properties [18].

Figure 2.7: Graphene sheet [14] and rolling graphene sheet to create carbon nanotube [19].

A SWNT is described as a graphene sheet rolled up into a cylindrical shape with axial symmetry,

exhibiting a spiral conformation called chirality [18]. Graphene has a hexagonal structure, and rolling

up the graphene sheet in different directions and diameter would yield the nanotubes with different

symmetries, which induces different electronic structures. Since electronic properties of SWNTs

depend on their structures, it is very important to find a way to specify the geometric structure of a

SWNT. As shown in Fig. 2.7, we can roll up the graphene sheet alone vector OA, which is

perpendicular to the nanotube axis in the direction of OB. Here, we can see that O, A, B and B‘ are

four crystallographically equivalent sites. By rolling up the paper plane and making OB overlap with

AB‘, we get a seamless single-walled tubular structure. Then it would be straightforward to define the

Page | 28

vectors Ch =OA as chiral vector and T=OB as translational vector. If we use a1 and a2 as the base

vectors of graphene 2-D crystal lattice, we can have the chiral vector as [20]:

Ch = na1+ma2 = (n, m) (2.3)

0 ≤ m ≤ n.

The way the graphene sheet wraps can be represented by a pair of indices (n, m) called the chiral

vector. The relationship between n and m defines three categories of CNTs. Arm chair (n = m) and

chiral angle equal to 30°); zigzag (n = 0 or m = 0 and chiral angle equal to 0°); and chiral (other values

of n and m and chiral angles lie between 0 and 30°) [21] [22] [23]. These are shown in figure 2.8

Ch= a/√n
2
 +m

2
 +n (2.4)

Where, a = 2.49 Å.

dt(diameter)= Ch / π (2.5)

θ(chiral angle)=arc cos (2n+m/2√n
2
 +m

2
 +nm) (2.6)

Figure 2.8: 3D model of the three types of single walled carbon nanotubes [21].

Page | 29

Table 2.2: Young‘s modulus, Tensile strength, and density of carbon nanotubes compared with other

materials [21]

Material Young's Modulus(Gpa) Tensile Strength (Gpa) Density (g/cm3)

Single wall nanotube 1054 150

Multi wall nanotube 1200 150 2.6

Steel 208 0.4 7.8

Epoxy 3.5 0.005 1.25

Wood 16 0.008 0.6

Table 2.3: Some parameters for carbon nanotubes [21]

Average diameter of SWNTs 1.2-1.4 nm

Distance from opposite carbon atoms (Line 1) 2.830 Å

Analogous carbon atom separation (Line 2) 2.456 Å

Parallel carbon bond separation (Line 3) 2.450 Å

Carbon bond length (Line 4) 1.420 Å

C-C tight bonding overlap energy ~ 2.50 eV

Group symmetry (10, 10) C5V

Interlayer spacing:

(n, n) Armchair 3.380 Å

(n, 0) Zigzag 3.410 Å

(2n, n) Chiral 3.390 Å

Optical properties

Fundamental gap:

For (n, m); n-m is divisible by 3 [Metallic] 0 eV

For (n, m); n-m is divisible by 3

[Semiconducting] ~0.5 eV

Maximum current density 1013 A/m2

Thermal transport

Thermal conductivity (room temperature) ~ 2000 W/m K

Phonon mean free path ~ 100 nm

Relaxation time ~ 10-11 s

Elastic behavior

Young's modulus (SWNT) ~ 1 TPa

Page | 30

2.2.2 SWNT Characteristics of Electrical Transport

A determination of the band structure allows for the calculation of an energy dependent Drude

conductivity for the graphene sheet that constitutes a nanotube surface, as . Here the

elastic scattering length (le) of the carriers is proportional to the electron-phonon scattering and

generally increases with decreasing temperature .One characterize the electrical conductivity in two

regimes:

 Low temperatures (kBT<EF), where in the conductivity equation above, the energy (E)

replaced by EF (the Fermi energy).The conductivity in this regime is metallic. A finite zero-

temperature value, the magnitude of which is determined by the static disorder, is obtained.

 High temperatures (kBT>EF), where in the conductivity equation, the energy (E) is replaced

by kBT. The conductivity, and the carrier density, is then directly proportional to T.

At the very outset, it is not trivial to measure the intrinsic resistance of a SWNT. Any contact in

addition to those at the two ends of the tube can destroy the one-dimensional nature of the SWNT and

make a true interpretation difficult. Theoretically, for a strictly one-dimensional system the Landauerm

formula predicts an intrinsic resistance, independent of the length is equal to h/e
2
 (1/T (Ef)). Assuming

perfect transmission through ideal Ohmic contacts, i.e., T (EF) equal to one. This contact resistance

arises from an intrinsic mismatch between the external contacts to the wire (which are of higher

dimensionality) and the one-dimensional nanotube system and is always present. When one takes

individually into account both the two-fold spin and band degeneracy of a nanotube the intrinsic

resistance (Rint) now becomes: (Rint)= h/4e
2
(1/T(Ef)), which again seems length independent [24] [25].

However, in the above discussion, we have not yet considered the contribution of the external

contacts. When we consider the transmission (T) through the contacts into the one dimensional

channel and then to the next contact, T=le/le+L, where le is the mean free path length for scattering and

L is the length of the one-dimensional conductor. The resistance is now equal to:

 (2.7)

The first term represents Rint while the second term denotes an Ohmic resistance (ROhmic) associated

with scattering. In the presence of dynamically scattering impurities, such as acoustical or optical

phonons, which are inevitably present at any temperature above 0 K, the Ohmic resistance should

definitely be considered. It is interesting to consider the limiting cases of a large mean free path (le→

infinity) or a small tube (L→ 0) i.e., in the ballistic regime, when the Ohmic resistance is seen to

Page | 31

vanish. Finally, the material resistance of the contacts contributes an additional term: Rc. The total

resistance as measured in an external circuit would now be: R = Rint +ROhmic +Rc. These

considerations imply that a minimum resistance of h/4 (∼6.5 kohm) is present in a SWNT with a

single channel of conduction. In practice however, imperfect contacts (which lead to T<1) and the

presence of impurities lead to larger resistance values, while deviations from strict one-dimensionality

or multiple channels of conduction (as in a MWNT) could lead to smaller numbers for the

resistance[24].

2.3 Carbon Nanotube field effect Transistor

2.3.1 Structure of CNTFET

The first carbon nanotube field-effect transistors were reported in 1998. These were simple devices

fabricated by depositing single-wall CNTs (synthesized by laser ablation) from solution onto oxidized

Si wafers which had been pre-patterned with gold or platinum electrodes. The electrodes served as

source and drain, connected via the nanotube channel, and the doped Si substrate served as the gate. A

schematic of such a device is shown in Fig. 2.9 Clear p-type transistor action was observed, with gate

voltage modulation of the drain current over several orders of magnitude. The devices displayed high

on-state resistance of several MΩ, low transconductance (-Ins) and no current saturation, and they

required high gate voltages (several volts) to turn them on [1] [12].

Figure 2.9: Early CNTFET structure [12].

Following these initial CNTFET results advances in CNTFET device structures and processing

yielded improvements in their electrical characteristics. Rather than laying the nanotube down upon

the source and drain electrodes, relying on weak van der Waals forces for contact, the electrodes were

patterned on top of previously laid down CNs [2]. In addition to Au, Ti and CO were used, with a

thermal annealing step to improve the metal/nanotube contact. In the case of Ti, the thermal

Page | 32

processing leads to the formation of TiC at the metal/nanotube interface, resulting in a significant

reduction in the contact resistance - from several MΩ to – 30 kΩ. On-state currents ~1 μA were

measured, with transconductance - 0.3 μS. All early CNTFET were p-type, i.e., hole conductors.

Whether this was due to contact doping or doping by the adsorption of oxygen from the atmosphere

was initially unclear. N-type conduction was achieved by doping from an alkali (electron donor) gas

and by thermal annealing in vacuum. Doping by exposure to an alkali gas involves charge transfer

within the bulk of the nanotube, analogous to doping in conventional semiconductor materials [25].

On the other hand, annealing a CNTFET in vacuum promotes electron conduction via a completely

different mechanism: the presence of atmospheric oxygen near the metal/nanotube contacts affects the

local bending of the conduction and valence bands in the nanotube by way of charge transfer, and the

Fermi level is pinned close to the valence band, making it easier for injection of holes. When the

oxygen is desorbed at high temperatures, the Fermi level may line up closer to the conduction band,

allowing injection of electrons. Contrary to the case of bulk doping, there is no threshold voltage shift

when going from p-type to n-type by thermal annealing. In addition, it is possible to achieve an

intermediate state, in which both electron and hole injection are allowed, resulting in ambipolar

conduction. The ability to make both p-type and n-type CNTFETs enabled the first carbon nanotube

CMOS circuits. These were demonstrated by Derycke et al., who built simple CMOS logic gates,

including an inverter in which the two CNTFETs were fabricated using a single carbon nanotube.

Subsequently, more complex CN-based circuits have been built as well [1]. Carbon nanotube field

effect transistor (CNTFETs) uses semiconducting carbon nanotube as the channel. Both p-channel and

n-channel devices can be made from nanotubes. The physical structure of CNTFETs is very similar to

that of MOSFETs and their I-V characteristics and transfer characteristics are also very promising and

they suggest that CNTFETs have the potential to be a successful replacement of MOSFETs in

nanoscale electronics. Of course, there are some distinct properties of CNTFETs, such as:

 The carbon nanotube is one-dimensional, which greatly reduces the scattering probability. As a

result the device may operate in ballistic regime.

 The nanotube conducts essentially on its surface where all the chemical bonds are saturated

and stable. In other words, there are no dangling bonds which form interface states. Therefore,

there is no need for careful passivation of the interface between the nanotube channel and the

gate dielectric, i.e. there is no equivalent of the silicon/silicon dioxide interface.

 The Schottky barrier at the metal-nanotube contact is the active switching element in an

intrinsic nanotube device.

Page | 33

Because of these unique features CNTFET becomes a device of special interest. The field effect

transistors made of carbon nanotubes so far can be classified into two types:

a) Back gate CNTFET

b) Top gate CNTFET

2.3.2 Back Gate CNTFET

CNTFET was first demonstrated in 1998 by Tans et al. [26] to show a technologically exploitable

switching behavior and this work marked the inception of CNTFET research progress. In this structure

a single SWNT was the bridge between two noble metal electrodes on an oxidized silicon wafer. The

silicon oxide substrate can be used as the gate oxide and adding a metal contact on the back makes the

semiconducting CNT gateable. Here the SWCNT plays the role of channel and the metal electrodes

act as source and drain. The heavily doped silicon wafer itself behaves as the back gate. These

CNTFETs behaved as p-type FETs with an I (on) / I (off) ratio~10
5
 [27]. This suffers from some of the

limitations like high parasitic contact resistance (≥1Mohm), low drive currents (a few nanoamperes),

and low transconductance gm ≈ 1nS. To reduce these limitations the next generation CNTFET

developed which is known as top gate CNTFET.

2.3.3 Top Gate CNTFET

To get better performance Wind et al. proposed the first top gate CNTFET in 2003 [27]. In the first

step, single-walled carbon nanotubes are solution deposited onto a silicon oxide substrate. Then by

using either atomic force microscope or scanning electron microscope the individual nanotubes are

located. After which, source and drain contacts are defined and then patterned using high resolution

electron beam lithography. High temperature annealing reduces the contact resistance and also

increases union between the contacts and CNT. A thin top-gate dielectric is then deposited on top of

the nanotube, either via evaporation or atomic layer deposition. Finally, the top gate contact is

deposited on the gate dielectric. Arrays of top-gated CNTFETs can be fabricated on the same Silicon

wafer, since the gate contacts are electrically isolated from each other, unlike in the back-gated case.

Also, due to the thinness of the gate dielectric, a larger electric field can be generated with respect to

the nanotube using a lower gate voltage. These advantages mean top-gated devices are generally

favored over back-gated CNTFETs, regardless of their more complex fabrication process [28].

Page | 34

Figure 2.10: (a) Back gate CNTFET [29], (b) Top gate CNTFET [Source- Internet image].

Table 2.4: Comparison between Back gate CNTFET and Top gate CNTFET [29]

Parameters Back gate CNTFET Top gate CNTFET

Threshold voltage -12V -0.5V

Drain current Of the order of nanoampere Of the order of microampere

Transconductance 1nS 3.3µS

I(on)/I(off) 10
5
 10

6

2.3.4 Schottky-barrier (SB) CNTFET

Normally, a potential barrier known as Schottky barrier (SB) exists at every contact between metal and

semiconductor. The barrier height is determined by the filling of metal-induced gap states. These

states become available in the energy gap of semiconductor due to interface formed with the metal.

The SB is controlled by the difference of the local work functions of the metal and the carbon

nanotube. SB is also extremely sensitive to changes of local environment at the contact [30]. For

example, gas adsorption changes the work function of metal surfaces. Since this device employs metal

as its source/drain terminals and has Schottky barrier at its terminal contact between nanotube and

metal, therefore it is called Schottky-barrier CNTFET (SB-CNTFET). Diagram of SB-CNTFET is

shown in Figure 2.11.

Page | 35

Figure 2.11 Diagram of a SB-CNTFET [12].

SB-CNTFET works on the principle of direct tunneling through the Schottky barrier at the source-

channel junction. The barrier width is controlled by the gate voltage and hence the transconductance of

the device depends on the gate voltage. At low gate bias, large barrier limits the current in the channel.

As gate bias is increased, it reduces the barrier width, which increases quantum mechanical tunneling

through the barrier, and therefore increases current flow in transistor channel. In SB-CNTFET, the

transistor action occurs by modulating the transmission coefficient of the device [4] [10] [31] [32].

SB-CNTFET shows very strong ambipolar conduction particularly when the gate oxide thickness is

reduced even the Schottky barrier is zero [31]. This type of conduction causes leakage current to

increase exponentially with supply voltage especially when the nanotube diameter is large, which

results in limiting device potential. Thus, ambipolar conduction must be reduced in order to improve

the performance of SB-CNTFET. One of the solutions is to increase the gate oxide thickness. If the

gate oxide thickness is high, there is no ambipolar conduction exists when Schottky barrier is zero.

Hence, the leakage current is reduced and as a result, the transistor performance is improved. Another

alternative is to build asymmetric gate oxide, which is has been proposed recently, in order to suppress

the ambipolar conduction [32] [30].

Another issue regarding on SB-CNTFET is that this type of transistor suffers from metal-induced-gap

states which limit minimum channel length and thus increases source to drain tunneling. SB-CNTFET

is also unable to place gate terminal close to source because it can increase parasitic capacitance.

Page | 36

2.3.5 MOSFET-like CNTFET

The structure of this device is slightly dissimilar to SB-CNTFET since it uses heavily doped terminals

instead of metal. This was formed in order to overcome problems in SB-CNTFET and operates like

MOSFET. Unlike SB-CNTFET, source and drain terminals are heavily doped like MOSFET and

hence it is called as MOSFET-like CNTFET. This device, as shown in Figure 2.12, operates on the

principle of modulation the barrier height by gate voltage application. The drain current is controlled

by number of charge that is induced in the channel by gate terminal.

This type of transistor has several advantages over SB-CNTFET. This device is able to suppress

ambipolar conduction in SB-CNTFET. It also provides longer channel length limit because the density

of metal-induced-gap-states is significantly reduced. Parasitic capacitance between gate and source

terminal is greatly reduced and thus allows faster operation of the transistor. Faster operation can be

achieved since length between gate and source/drain terminals can be separated by the length of

source to drain, which reduces parasitic capacitance and transistor delay metric. It operates like SB-

CNTFET with negative Schottky barrier height during on-state condition and thus it delivers higher

on-current than SB-CNTFET. Previous work has shown that this type of device gives higher on-

current compared to SB-CNTFET and therefore it can justify the upper limit of CNTFET

performance. Based on the device performance, it is obvious that this device can be used to investigate

the ballistic transport in CNTFET [33] [34].

Figure 2.12: MOSFET-like CNTFET [35].

Page | 37

2.3.6 Vertical CNTFET (V-CNTFET)

The latest development in CNTFET progress could be the initiation of vertical CNTFET. This

structure with surround-gated is suggested by Choi et al. in 2004 [12]. The transistor size can be as

small as the diameter of carbon nanotube which corresponds to tera-level CNTFET and density of 10
12

elements per cm
-2

.The vertical CNTFET is prepared through the following steps: nano-pore formation

by anodization followed by synthesizing the carbon nanotube, metal-electrode formation, oxide

deposition and patterning and finally gate electrode formation. The silicon oxide was deposited at the

top of aligned carbon nanotube by electron gun evaporation and followed by holes formation of e-

beam patterning and chemical etching. The silicon oxide deposition process is then followed by

deposition of top gate electrode. The structure of vertical CNTFET is illustrated in Figure 2.13. In this

structure, each carbon nanotube is electrically attached to bottom electrode, source, upper electrode

(drain) and gate electrode is put around the carbon nanotube. Each cross point of source and drain

electrodes corresponds to a transistor element with a single vertical carbon nanotube. The number of

carbon nanotube in transistor depends on the hole-diameter of gate oxide. The vertical CNTFET

allows higher packing densities that can be achieved since source and drain areas can be arranged on

top of each other [36]. On the other hand, real 3-D structures can be made possible because the active

devices are no longer bound to the surface of mono-crystalline silicon wafer.

Figure 2.13: Structure of Vertical CNTFET [2]

Page | 38

2.4 Introduction to Graphene

Taking the shape of sheer thin, almost transparent like one atom thick Graphene composed of pure

carbon. It has extraordinary tensile strength being 100 times compared to that of steel despite of being

so light [37]. It also possesses sheer electrical and thermal conductivity [38]. First isolated in a lab in

2004 [39]. Such qualities as mentioned herewith make it highly potential for flexible conductors.

Figure 2.14: Unit cell of graphene. A) Image of bulk graphene, with a unit cell show in the inset. B)

Unit cell of graphene demonstrating its four nearest neighbors [40].

The allotrope of carbon, graphene has a 2-dimensional property. Mainly it consists of a lattice

structure of carbon atoms in the sp
2
 hybridization state. As depicted in figure 2.14 [41] each unit of

graphene lattice cell contains two carbon atoms that contributes one extra electron each to this vast

ocean of electron. In the atomic lattice the carbon atoms are closely packed in a typical sp
2

bonded

atomic-scale chicken wire (hexagonal) pattern. If stated plainly graphene is just a thick one-atom layer

of graphite. The basic structure of other allotropes of carbon, charcoal, carbon nanotube and fullerenes

constitute are the same.

Page | 39

Scientists initially were not atoned with the idea of separating graphene sheets despite of it being

known that graphite comprised of hexagonal carbon sheets layered on top of one another. A revolution

was brought about by Konstantin Novoselov, Andre Geim when they along with their collaborators

put forward that a layer could be separated from graphite and such few layers could electrically

characterized. Their electrical measurement for a single layer was published in July 2005 and as such

introduced the scientific fraternity to the graphene concept. [34] Figure 2.15 shows three separate

structures made of honeycomb lattice.

Figure 2.15: Structures made of graphene - fullerene molecules, carbon nanotubes, and graphite can

all be thought of as being formed from graphene sheets, i.e. single layers of carbon atoms arranged in

a honeycomb lattice [42].

2.4.1 Synthesis of Graphene

For decades in order to improve mass production techniques to generate high quality graphene

rigorous research has been going on [43]. Since the invention of x-ray diffraction crystallography the

graphite structure is widely known. Solution based exfoliation of graphite gave a unreasonable idea

about the atomic planes of carbon [44]. In order to get monolayers in solution Boehm put forward the

concept of lowering exfoliated graphite oxide [45]. Several successful venture accounts of producing

monolayers of carbon in graphitic structures, on various carbides [46] [47] [48] and transition metal

surfaces, [48-53] are there, of which the most praiseworthy is Van Bommel‘s journey with SiC [54].

Since the tightly bound metallic surfaces interrupt the perpendicular pi-orbitals, with SIC being a

special case, these studies did not reinforce the observation for any electronic properties. Synthesis

techniques can be categorized into micromechanical exfoliation, solution-based and chemically

assisted exfoliation, chemical synthesis, epitaxial growth through sublimated SiC surfaces, and the

Page | 40

pyrolysis of hydrocarbons on metal surfaces. In aspect of quality, processability, scalability & cost

each has its own pros, cons and distinctive features.

2.4.1.1 Exfoliation

2.4.1.1.1 Mechanical Cleavage

Using this technique bulk graphite can be isolated into single atomic planes. Before the ‗Scotch tape

Method‖ [54-57] was introduced scrutinizing isolated layers of graphene was nonviable.

Micromechanical cleavage of bulk graphite often been used to produce graphene samples of high

quality also termed peeled graphene. To pare layer off highly oriented pyrolytic graphite it uses

adhesive tape, which is then pulverized onto a proper substrate which is generally oxidized silicon.

This technique induce low output and largely used for the study of underlying properties of ballistic

transport, carrier mobility, thermal conductivity and the likes. This method is not feasible and efficient

although it produces quality graphene layers [57-63].

2.4.1.1.2 Solution and Chemical Exfoliation

This particular technique has the capability of producing graphene in bulk. By installing reactants

between layers than causes the cohesive Van Der Waals force [64] to weaken, bulk graphite is

intercalated. Successful high-quality, single-layer graphene sheets, stably suspended in organic

solvents were produced by Dai‘s group in steps of chemical intercalation, reintercalation, and

sonication[65]. Expandable graphite firstly is suspended in sulfuric & nitric acid, where the exfoliated

particles are still thick. This step is subsequently followed by oleum treatment with tetra-butyl alcohol

reintercalation to ensure the graphene is of high quality. Next sonification is done based on AFM

measurement immersed in a surfactant solution. Sonicating graphite powder in N-

methylpyrroidone[66] a liquid exfoliation process came into being which helps produce graphene.

Weeks of low power sonification to avoid damage to graphene sheets generate high concentration (up

to 1.2 mg/mL up to 4 wt %) of monolayer graphene [67]. Sonication-free, mild dissolution of graphite

by synthesizing well-documented GICs bearded large graphene flakes and ribbon [68].

Page | 41

Figure 2.16: Exfoliated graphene. a) Optical microscopy image of a very large micromechanically

exfoliated (tape method) monolayer of graphene. Note the considerable contrast for the single atomic

layer. b) Photograph of dispersed graphene by ultrasonic exfoliation of graphite in chloroform and (c)

that deposited on a bendable film [69].

2.4.1.1.3 Oxidation and Reduction

A more potent technique which provides high yields of graphene is to synthesize graphite oxide first

followed with exfoliation into monolayers, followed by the removal of oxygen groups by

reduction[71- 72]. Huge numbers of negative charges are carried by every single oxidized flake that

repel each other. The Brodie, Staudenmeier and Hummers methods are the three most familiar ways to

oxidize graphite. Of all these the Hummers method has become the most popular subject to some

slight modification in producing graphite oxide, for its comparatively lesser reaction time and the

absence of toxic byproducts[72]. As a result of oxidation the interlayer gap increases from 0.34 nm to

more than 0.6 nm, with delicate van der Waals forces in between layers. Exfoliation is generally

suplemented with sonication[73], generating single layers of graphene oxide[74] which are water

soluble without aid of surfactants to form unfaltering colloidal system. Using chemical [75], thermal

[76], electrochemical [77] or electromagnetic flash [78], laser-scribe techniques [79], etc the GO is

then minimized.

Page | 42

Figure 2.17: Synthesis of graphene by oxidation and reduction. Graphene oxide and reduced graphene

oxide showing the remaining oxygen-rich functional groups after reduction [69].

2.4.1.2 Chemical Vapor Deposition

The Chemical vapor deposition technique demonstrates great potential of scalability for production of

single and multi layered graphene films. Wafer size graphene films have developed on both single and

poly crystalline, invariably, in transition metal surfaces in high temperature such as of methane[80-84]

a result of pyrolysis of hydrocarbon precursors. Layers of graphene are variably dependent on carbon

solubility of the substrate. Metals with high carbon solubility, the atoms of carbon can disintegrate at

high temperature and as a result precipitate onto the surface of the metal to form develop into single or

multilayered graphite films upon cooling. Films with such non uniform structures ranging from 1-10

layers along with mono layer domain integrate up to several micrometers in diameters on nickel [85-

87] substrate [88].The rate of cooling and hydrocarbon gas concentration dictates the thickness and

crystal ordering. Moreover, low carbon solubility in few transition metals like copper [89] and

platinum [90] allows complete monolayer presentation [91].

2.4.1.3 Chemical Synthesis

Through bottom-up organic synthesis a controlled production of graphene can be achieved. It can be

composed of as a interconnected pattern of polycyclic aromatic hydrocarbons (PAHs) which are tiny

two dimensional segments of graphene. Due to its high flexibility and compatibility with different

organic synthesis techniques [92] this way of doing is appealing. The pioneers in this field are Mullen

& his coworkers announcing synthesis of nanoribbon like PAHs with lengths over 30 nm [93-94].

Lately the biggest stable colloidal graphene quantum dots were synthesized with the help of a

Page | 43

benzene-based chemical route which composed of 132, 168 & 170 mixture of carbon atoms [95-96].

Due to the decreasing solubility however the graphene dots are inhibited in size resulting in increased

size and more side reactions which are still now the main hurdle for organic synthesis of controllable

shapes, sizes and edge structured graphene molecules.

2.4.2 Properties of Graphene

2.4.2.1 Structure

Due to a closely packed periodic aray of atoms and of carbon a sp
2
 orbital hybridization - a

combination of orbitals px and py that constitute the ϭ-bond graphene is basically a steadfast material.

It has three ϭ-bonds and one π-bond. Final pz electron makes up the π-bond, and is key to the half-

filled band that allows free-moving electrons[98].The structure of isolated single layered graphene i.e

atomic structure was studied with the help of transmission electron microscopy (TEM) suspended on a

metallic bar grid[98] upon sheets of graphene. The expected honeycomb lattice resulted the electron

diffraction patterns.

2.4.2.2 Electronic

Graphene is a semi-metal or zero-gap semiconductor. It is distinguished from other condensed matter

systems as a result of four electronic properties.

2.4.2.2.1 Electronic spectrum

Electrons that proliferate due to graphenes honeycomb lattice structure produce quasi-particles by

losing their mass and that which is illustrated by a 2D analogue of the Dirac equation rather than the

Schrödinger equation for spin-1⁄2particles[99][100].

2.4.2.2.2 Dispersion Relation

Using a conventional tight-bonding model given the electron energy with wave vector k the dispersion

relation is [101][102].

With the nearest-neighbor hopping energy γ0 ≈ 2.8 eV and the lattice constant a ≈ 2.46 Å. The

conduction and valence bands equate to the different signs; touch each other at six points, "K-values"

Page | 44

of the two-dimensional hexagonal Brillouin zone. Of these six points two are independent which the

rest are symmetrical. Around the K points the energy relies directly on the wave vector as is the case

to a relativistic particle [101][103].Since an elementary cell of lattice has a two basis atom, the wave

function has an effective 2-spinor structure.

As a matter of which even the true spin,at low energy, the electrons can be stated by an equation that is

equivalent to the massless Dirac equation. Thus, the holes and the electrons are are known as Dirac

fermions and the six corners are called Dirac points.As a consequence, at low energies, even

neglecting the true spin, the electrons can be described by an equation that is formally equivalent to

the massless Dirac equation. Hence, the electrons and holes are called Dirac fermions and the six

corners are called the Dirac points[98].This pseudo-relativistic description is restricted to vanishing

rest mass M0, which leads to interesting extra features[101][105]:

The Fermi velocity in graphene here is illustrated as vF ~ 106 m/s (.003 c) which in the Dirac theory

substitutes the velocity of light; ⃗ is the vector of the Pauli matrices, is the two-component wave

function of the electrons, and E denotes their energy[99].

The equation is as describing the linear dispersion relation is:

 the wavevector k is measured from the Dirac points. The equation uses a pseudospin matrix formula

that describes two sublattices of the honeycomb lattice [103].

 2.4.2.2.3 Single-atom wave propagation

Waves of electron in a graphene proliferate within a single layer of atom thus making them vulnerable

in the vicinity of materials such high-κ dielectrics, superconductors and ferromagnetic.

2.4.2.2.4 Electronic Transport

Results derived from transport measurement imply that at room temperature graphene has tremendous

high electron mobility, with values exceeding 15,000 cm
2
·V

-1
·s

-1
[106].Moreover the measured

symmetrical conductances highlights that hole and electron mobilities are almost the same [100].This

mobility is free of temperature in between the range of 10k and 100k [107-109] pointing that the main

scattering mechanism is defect scattering. Intrinsically room temperature mobility is limited to

Page | 45

200,000 cm
2
·V

-1
·s

-1
 at a carrier density of 1012 cm

-2
 by the scattering of the acoustic phonons of

graphene, later on which was presented and exceeds that of copper[111].

The peripheral resistivity should be in order of 10
-6

 Ω·cm for the graphene sheet. This is lower than

the familiar resistivity at room temperature. The corresponding resistivity of the graphene sheet

should be in the order of 10
-6

 Ω·cm. this is lowered than the typical resistivity at room temperature.

Graphene on SiO2 substrates, scattering of electrons by optical phonons of the substrate, however, is

greater in effect than scattering by phonons of graphene. Thus limiting the mobility to 40,000 cm
2
·V

-

1
·s

-1
 [109].

In epitaxial graphene of 40-nanometer wide nanoribbons the change in electrical resistance is distinct.

The predictions are surpassed by a factor of 10 by the conductance of the ribbon. Like the optical

waveguides or quantum dots the ribbons behave in much similar way, facilitating the undisrupted flow

of electrons along the ribbon edges. For copper the resistance improves in proportion to length as

electrons jolt into impurities [113- 114].

Dominated by two modes transport basically of which one being ballistic and temperature independent

whereas the other thermally agile. The ballistic electrons replicate those in cylindrical carbon

nanotubes. Transport is dominated by two modes. One is being ballistic and temperature independent,

while the other is thermally activated. Ballistic electrons resemble those in cylindrical carbon

nanotubes. at a particular length- ballistic mode at 16 micrometers and the other at 160 nanometers

(1% of the former length) [113] there is a sudden increase in resistance.

By encraving into silicon carbide wafers on the edge of the 3-dimensional structure the ribbons were

natured. When these wafers are heated as a preference the silicons are washed away along the edges,

ideally at 1000 degree Celsius, forming nanoribbons the structure of which is determined by the motif

of the 3-dimensional surface. The nanoribbons had the ideal edges, tempered y the fabrication process.

Measurement of electron mobility exceeding one million is equivalent to a sheet resistance of one ohm

per square which is two orders lower in magnitude compared to 2-dimensional graphene [113]. Even

at room temperature graphene electrons can connect micrometer distances without scattering [99].

Graphene demonstrates the least conductivity on the order of 4e
2
/h, despite of zero carrier density at

the Dirac points. However the cause of this minimum density is still vague, although, taking ruffling

of the graphene sheets or ionized impurities in the SiO2 substrate may result local carrier puddles that

aid conduction [100]. Numerous theories imply that the minimum conductivity should be 4e
2
/(πh);

Page | 46

however most measurement are of the order 4e
2
/h or greater[106] and relies on impurity

concentration[115].

Graphene with near zero carrier density shows positive while negative photoconductivity at high

carrier density. Induced by changes of both Drude weight and carrier scattering rate such interplay

mainly controls it [116].

Graphene can be withdraw to an undoped state by gently heating [115][117] Graphene doped with

different gaseous species (both acceptors and donors). For concentrations of more than 1012 cm
-2

 for

dopant carrier mobility shows no identifiable change [114]. Mobility can be reduced 20 times

[115][118] if graphene is doped with potassium in ultra-high vacuum at low temperature. The

reduction in mobility is reversible on heating the graphene thus getting rid of the potassium.

As Graphene is two dimensional, there are chances of charge fractionalization to take place (In low

dimensional system where the usual charge of single pseudoparticles is less than a single quantum

[119]). Thus it may be an ideal material for constructing quantum computers with the help of anionic

circuits [121].

2.4.2.3 Thermal

In terms of thermal conductivity graphene is perfect. Recently its thermal conductivity was measured

and is way higher than the values observed for other carbon structures like carbon nanotubes, graphite

and diamond (> 5000 W·m
-1

·K
-1

) in room temperature. Graphenes ballistic thermal conductance is

isotropic that is same in every direction. Being a 3D version of Graphene, graphite demonstrates

thermal conductivity which is 5 times smaller (1000 W·m
-1

·K
-1

). Elastic waves propagating in the

graphene lattice termed phonons generally guide the whole phenomenon. Thermal conductivity studies

have crucial implications in electronic devices that are graphene based. Thermal conductivity reaches

600 W·m
-1

·K
-1

 on a substrate too [111].

2.4.3 Energy Bandstructure of Graphene

In contrast to the regular three dimensional structure graphenes electronic structure is very much

unorthodox. The sic double cones on the Fermi surface is characteristic at illustrated in fig 2.18. Fermi

surface as such is found at the cones adjoining points in undoped graphene. As the density of material

is zero at that point, the intrinsic electrical conductivity is usually lower of the conductance quantum

σ~e
2
/h; exact prefactor still debatable. However, with the means of an electric field the Fermi level can

Page | 47

be adjusted so that the material shifts either to p-doped(with holes) or n-doped(with electrons)

dependent on the applied fields‘ polarity. Graphene too can be dopped applying the adsorption

process. For doped graphene the electrical conductivity can be largely high and probably may be

higher than copper at room temperature [70].

The dispersion relation in case of electrons and holes is linear in proximity to the Fermi Level. The

curvature of the energy bands gives the effective masses; this equals to zero effective mass. The

equation is similar to the Dirac equation for describing the excitation in graphene for mass less

fermions which travel at constant speed. The cones connecting points are thus termed Dirac points

[70].

Figure 2.18: E-k diagram of graphene. The energy, E, for the excitations in graphene as a function of

the wave numbers, kx and ky, in the x and y directions. The black line represents the Fermi energy for

an undoped graphene crystal. Close to this Fermi level the energy spectrum is characterized by six

double cones where the dispersion relation (energy versus momentum, ħk) is linear. This corresponds

to massless excitations [70].

2.4.4 Band gap opening in Graphene devices

Several ways that can be taken into consideration before inducing a bandgap in graphene. i)lateral

confinement, i.e, utilizing grpahene nanoribbons as material for FET channels, II)the usage of bilayer

Page | 48

graphene that has a perpendicular electric field consisting of a gap tunable iii) utilizing epitaxial

graphene on SiC iv) graphene functionalization or doping.

There are a number of different ways that can be considered for inducing a bandgap in graphene: i)

lateral confinement, i.e., using graphene nanoribbons as material for FET channels, ii) the use of

bilayer graphene, that has a gap tunable with a perpendicular electric field, iii) the use of epitaxial

graphene on SiC, iv) graphene functionalization or doping. Through evaluation by modeling we will

further discuss the possibilities of these options. [123]

2.4.4.1 Graphene nanoribbons

As can be inferred from from fig 2.19 Nanocarbons offer a remarkable upperhand over

carbonnanotubes: by virtue of relaxation, all nanoribbons have a semiconducting gap [122].

Figure 2.19: Energy gap as a function of the chiral number in zigzag carbon nanotubes (2n,0) [black]

and in zigzag carbon nanoribbons (2n, 0) [white] [123].

2.4.4.2 Bilayer graphene FETs and Tunnel FETs

By applying a vertical electric field as suggested theoretically [124,125] the bandgap in bilyaer

graphene can be altered and observed [126,127]. This aspect opens a new prospect: the bandgap for

any device becomes large when required can be made possible i.e. the device should be turned off.

Page | 49

2.4.4.3 Epitaxial graphene on SiC

Graphene layer grown as a result of epitaxy on a SiC substrate if measured by angle-resolved photo-

emission spectroscopy can demonstrate a gap of around 0.26 eV as evident in recent experiments

[128]. However, there is still need of further experiment but the point made is promising as epitaxial

graphene on SiC is good for wafer scale fabrication. By exploring design with semi-analytical model

[129]. The chances of putting the material to use have been evaluated. For Vdd = 0.25 V An

ION/IOFF ratio of up to 60 is attainable but the channel bandgap (in eV) has to be more than the

supply voltage (in V), or else strong interband tunneling will take place. For smaller Vds large current

modulation is quite possible but considering digital applications the Vgs swing must be equivalent to

the applied Vds.

2.4.4.4 Functionalized Graphene

Of the many vitalizing options chemical functionaliztion of Graphene sheets or nanoribbons are

encouraging for tuning bandstructure and electronic properties. Conductance variations of up to six

orders in magnitude are attainable through reversible chemical modifications (probably

hydrogenation) as per latest experiments indicating the possibility of realizing memory elements

[130]. The experimental demonstration of Graphene [131], a two-dimensional hydrocarbon with a gap

of 4-5 eV attained by hydrogenation of graphene via plasma treatment further manifested that

chemical functionalizing is a feasible route toward bandgap engineering of graphene based materials.

However, suitable technique to achieve good ohmic contains and to preserve high mobility (exceeding

100 cm
2
/Vs) are still required.

2.5 Graphene Nanoribbon

Graphene nanoribbon (GNR) can be considered as a cut off from a graphene sheet. A chirality vector

defines how the stripr is to be cut off and this vector is distinct from CNT‘s. Like CNT‘s GNR‘s do

have periodic boundary conditions, as matter of which GNR has no closed form solution and thus

must be numerically determined. The following examples are based on armchair edge and zigzag edge

GNRs, which are similar to zigzag and armchair CNTs [132].

Page | 50

2.5.1 GNR Structure

The plainest way to define a graphene nanoribbon is to take of it as strip cut off from a graphene sheet

with a specific chiral vector as previously mentioned. With the chiral vector it would point out the

direction and magnitude of the GNR‘s width. For Graphene the basis vectors are a1 and a2, and these

basis vectors too makes it up for the CNT chirality vector. Although the origin of these vectors are not

critical for CNT, but is for the GNR‘s for conditions of absence periodic.

As it has been mentioned already, the simplest way of defining a graphene nanoribbon is to think of it

as a strip cut off from a graphene sheet that follows a specific chiral vector. The chiral vector would

indicate the direction and magnitude of the width of the GNR. The basis vectors for graphene are a1

and a2, and that these vectors make the basis vectors for the CNT chirality vector. Although the origin

of these vectors is not very important for CNT, it is crucial for GNRs due to the absence periodic

boundary conditions. The following figure would demonstrate this fact [132].

Figure 2.20: Affect of the origin of the GNR chiral vector [132].

A continuous infinite set of chiral vectors and their origins define every GNR. Here a specific genre of

GNR will be discussed which with the aid of integer GNR chiral vectors can be defined with basis

a1/2 and a2/2 with origin at either atom a or atom b of a graphene unit cell. A is the left-hand atom

whereas b is the right-hand atom for a graphene unit cell. Consider these GNRs as A-type and B-type

in case of this example. In Fig 2.20, GNR 1 is A-type, and GNR 2 is B-type. With the same

convention, the GNR chiral vector can be defined as:

Page | 51

In Equation 2.10 the subscript A/B represents the origin of the GNR chirality vector and is either value

A or B. The quantities n and m in this equation must be integers. The transport vector of the GNR is

perpendicular and equal in magnitude to the chiral vector. Fig 2.21 shows examples of the GNR chiral

and transport vectors. It is indispensible that there are few constraints on the indices that will result

stable structures. In most situations, n & m must be even. The chiral vector will not identify to a

carbon atom in case n & m are not even. If m is equal to zero, then n may be odd or even. Secondly, if

n is equal to m, then they may be odd or even [132].

Figure 2.21: Examples of GNR chiral and transport vectors [132].

As numerous methods are used, it is crucial not to point out that this is the undeniable method for

defining GNR. One popular method as proposed by Ezawa does a good job of defining physically

realizable GNRs. With these method two zigzag lines in a zigzag edge GNR which is m hexagons long

is firstly defined. An integer multiples of translation vector supersede the chain to create the ultimate

nanoribbon structure. Direct comparison has not been made in this paper as no definite relationship to

the simple indexing method exists [132].

2.5.2 Production of Graphene nanoribbon

Large volume of width controlled GNRs [133] can be produced by a process known as graphite

nanotomy. Applying sharp diamond knife on graphite nanoblock are fabricated. These blocks later on

can be exfoliated to yield GNRs. Another way would be ‗unzipping‘ or cut open of the nanotubes

[134]. Using the action of potassium permanganate and sulfuric acid solution multi-walled carbon

nanotubes were unzipped [135]. Another method is through plasma etching of nanotubes partially

Page | 52

embedded in polymer film [136]. Lately using ion implantation followed by vaccum or laser annealing

[137-139]. Graphene nanoribbons have been nurtured onto SiC.

2.5.3 Electronic Structure of GNR

The edge structures determine the electronic states of GNRs. The localized state with non-bonding

molecular orbitals near the Fermi energy is made possible by zigzag edges. They are expected to have

substantial changes in optical & electronic properties as a result of quantization.

As the tight binding theory anticipates based on computation that zigzag GNR are always metallic

whereas armchairs can either be metallic or semiconducting, dependent on the armchair nanoribbons

width. When it comes Discrete Fourier Transforms calculations it shows armchair nanoribbons are

semiconducting consisting of an energy gap inversely proportional to the GNR width [143]. With

decreasing GNR width experiments corroborate that energy gaps increase. Control edge oriented

graphene nanoribbons have been created by scanning tunneling microscope (STM) lithography [142].

It revealed energy gaps up to 0.5 eV in a 2.5 nm wide armchair ribbon.

Zigzag nanoribbons exhibit spin polarized edges and are metallic. Due to an unusual antiferromagnetic

coupling at carbon atoms of opposite edge this gap opens up. The size of this gap is inversely

proportional to the width of the ribbon and can be recounted to the spatial distribution properties of

edge wave functions in terms of behavior, and the exchange characteristics that creates the spin

polarization is mostly local character. As a result in zigzag GNR the quantum confinement, inter-edge

super exchange, and intra-edge direct exchange interactions are critical mostly for magnetism and its

bandgap is controlled by alkaline adatoms [144]. Zigzag GNRs edge magnetic moment and bandgap

are inversely proportional to the electron concentration.

Numerical simulation [145] of tight binding derived via ViDES [146] demonstrates transistors are

affected by field harnessing GNR for its compliance as channel material with ITRS stipulation for next

generation devices.

Graphene nanoribbons high electrical, thermal conductivity and 2D structure & low noise make GNRs

considerate alternative for integrated circuit interconnects to copper. By changing the width of GNRs

at certain points along the ribbon researchers are investigating the creation of quantum confinement

[147]. As graphene nanoribbons contains semi conductive properties it can be taken as a alternative to

silicon semiconductors [148] capable of sustaining microprocessor clock speeds in the vicinity of 1

Page | 53

THz [149]. with width less than 10 nm field-effect transistors came into being with GNR –

"GNRFETs" – with an ION/IOFF ratio >10
6
 at room temperature [150,151].

2.5.4 Graphene Transistors

In 2004 Manchester group reported a graphene MOS device. Doped silicon substrate as the black gate

and a 300-nm SiO2 layer underneath the graphene are used as black-gate dielectric. To manifest

concepts such back gate devices are useful but are susceptible to large parasitic capacitances and thus

cannot be integrated with various components. Thus, graphene transistor requires a top gate structure.

The top gate for a graphene MOSFET was first reported in 2007, and since then there has been

immense progress. Research in graphene is still in its premature days; graphene MOSFETs has the

potential to compete with devices that are result of years of research and investment.

Top gated graphene MOSFETs have been created with the help of exfoliated graphene, the ones that

grow on nickel and copper and epitaxial graphene. Channels for these top-gated graphene transistors

have been created by making use of large area graphene, which does not contain a bandgap so that

these transistors can be switched off.

As shown in fig 2.23a large area graphene transistors demonstrate a distinct current-voltage transfer

characteristic. The type of carrier and its density (electrons or holes) in the channel is largely

controlled by the potential difference between channel and the gates (top-gate and/or back-gate).

Electron accumulation in the channel (n-type channel) is a result of large positive gate voltages while

the large negative gate voltages assist a p-type channel. Two branches of the transfer characteristics

arise from this behavior segregated by the Dirac point (Fig. 2.23a). Several points determine the

position of the Dirac point; the differentiation between the work functions of the gate and the

graphene, the type and density of the charges at the interfaces at the top and bottom of the channel

(Fig. 2.21), and any doping of the graphene. For MOSFET devices the reported on-off ratios with

large area graphene channels are in 2-20 range.

Reports of graphene MOSFETs with gigahertz capabilities have come out lately where these

transistors have large area channels of exfoliated and epitaxial graphene. Currently the fastest

graphene transistor that Is in existence is a MOSFET that has a 240-nm gate with a cut off frequency

fT = 100 GHz, which compared to best silicon MOSFETs having similar gate lengths is quite higher

(as is the cut-off frequency of 53 GHz reported for a device with a 550-nm gate. A drawback of all

Page | 54

radio frequency graphene MOSFETs reported so far is the unsatisfying saturation behavior (only weak

saturation or the second linear regime), which has an adverse impact on the cut-off frequency, intrinsic

gain and other merits for radiofrequency devices. However, while operating with weakly saturated

current to outdone silicon MOSFETs is undoubtedly splendid.

One way of introducing a bandgap into graphene for logic applications is the creation of graphene

nanoribbons. Nanoribbon MOSFETs with back-gate control and having widths of even less than 5 nm,

have been operated as p-channel devices and that showed on–off ratios of up to 106. Such high ratios

have been obtained despite simulations showing that edge disorder leads to an undesirable decrease in

the on-currents and a simultaneous increase in the off-current of nanoribbon MOSFET. This, and other

evidence of a sizeable bandgap opening in narrow nanoribbons, provides sufficient proof that

nanoribbon FETs are highly suitable for logic applications. However, due to their relatively thick

back-gate oxide of these devices, voltage swings of several volts were needed for switching, which is

significantly more than the swings of 1 V and less needed to switch Si CMOS devices. Additionally,

CMOS logic requires both n-channel and p-channel FETs with well-controlled threshold voltages, and

graphene FETs that has all these properties have not yet been reported [152].

Recently, the fabrication of the first graphene nanoribbon MOSFETs with topgate control has been

reported. These transistors feature a thin high-dielectric-constant (high-k) top-gate dielectric (1–2 nm

of HfO2), a room-temperature on–off ratio of 70 and an outstanding transconductance of 3.2 mS μm-1

(which is higher than the transconductance reported for state-of-the-art silicon MOSFETs and III-V

HEMTs) [152].

Investigation of graphene bilayer MOSFETs have been carried out experimentally and also device

simulation has been performed. Although the on–off ratios seen so far (100 at room temperature and

2,000 at low temperature83) are too small for logic applications, they note a significant

improvement(of about a factor of 10) over MOSFETs in which the channel is made of large-area

gapless graphene [152].

We now return to the discussion of two-dimensional nature of graphene. According to theory of

scaling a thin channel region allows short-channel effects to be suppressed and thus makes it feasible

to scale MOSFETs to very short gate lengths. The two dimensional nature of graphene means that the

thinnest possible channel can be obtained by using graphene, so graphene MOSFETs should be more

scalable than their competitors. However, it should be noticed that scaling theory is valid only for

transistors with channels semiconducting in nature and does not apply to graphene MOSFETs with

gapless channels. Thus, the scaling theory does describe nanoribbon MOSFETs, which not only have a

bandgap but which have significantly lower mobility than large area graphene, as discussed. Given

Page | 55

that the high published values of mobility relate to gapless large-area graphene, the most attractive

characteristic of graphene for use in MOSFETs, especially those required to switch off, is probably its

ability to scale to shorter channels and higher speeds, rather than its mobility [152].

Figure 2.22: Structure and evolution of graphene MOSFETs. (a) Schematics of different graphene

MOSFET types: back-gated MOSFET (left); top-gated MOSFET with a channel of exfoliated

graphene or of graphene grown on metal and transferred to a SiO2-covered Si wafer (middle); top-

gated MOSFET with an epitaxial-graphene channel (right). The channel shown in red can consist of

either large-area graphene or graphene nanoribbons. (b) Progress in graphene MOSFET development

compared with the evolution of nanotube FETs [70].

Page | 56

Figure 2.23: Direct-current behaviour of graphene MOSFETs with a large-area-graphene channel.

Typical transfer characteristics for two MOSFETs with large-area-graphene channels. The on–off

ratios are about 3 (MOSFET 1) and 7 (MOSFET 2), far below what is needed for applications in logic

circuits. Unlike conventional Si MOSFETs, current flows for both positive and negative top-gate

voltages [70].

2.6 Summary:

The limitation of conventional Si-MOSFET, properties of carbon nanotube, types of carbon nanotube,

characteristics of Carbon nanotube, properties of graphene, synthesis of graphene, band structure of

graphene and properties of graphene nanoribbon have already been discussed. The production

techniques and electronic structure of GNR are also covered in this chapter. It is found that the

performance properties of CNT and GNR have given a higher performance properties compared to

conventional properties. Each type transistor is modeled in difference way based on the structure of

the transistor. This discussion includes different types of CNTFET from starting CNT technology,

operation of CNTFET and types of CNTFET based on this operation. Also, various types of graphene

transistors are discussed in this chapter and some details about their operation and properties are also

given.

Page | 57

Chapter 3

RESULTS AND CHARACTERIZATIONS OF

CNTFET AND GNRFET USING NANOTCAD

ViDES

This chapter will explain the methodology used in this project, simulation model used for simulation

study, simulation result obtained, comparing those results with other reliable research group‘s results

and finally making summary, analysis and discussion on the result.

3.1 The Model

This research implicates simulation based study to investigate the effect on I-V characteristic by

changing different parameters of CNTFET and GNRFET. This python based simulation study is

carried out based on the self-consistent solution of the 3-D Poisson and Schrödinger equations with

open boundary conditions within the non-equilibrium Green‘s function formalism and a tight-binding

Hamiltonian [155]. The model is built for a Schottky barrier field effective transistor in order to

investigate ballistic transport in CNTFET and GNRFET. The goal is to modify the MATLAB code

such a way to investigate the effect on I-V characteristics by changing major parameters of CNTFET

and GNRFET and also focused the result on 2D plot.

3.1.1 Model Physics and the Process of Calculation

The potential profile in the 3-D simulation domain obeys the Poisson equation

[156]

Where, is Electric potential, is dielectric constant, is fixed charge, is concentration

of ionized donor and is concentration of ionized acceptor.

Page | 58

The electron and hole concentrations (n and p, respectively) are computed by solving the Schrödinger

equation with open boundary conditions by means of the NEGF formalism [157]. A tight-binding

Hamiltonian with an atomistic (pz orbitals) real-space basis for CNT [158] and GNR [159] has been

used with a hopping parameter t = 2.7 eV.

Green‘s function can be expressed as:

G (E) = [EI – H – ΣS - ΣD] – 1 (3.2)

Where, E is the energy, I is the identity matrix, H is Hamiltonian, ΣS is self-energy of the source and

ΣD is self-energy of the drain. Transport here is assumed to be ballistic.

The length and chirality of CNT or GNR are now defined and the coordinates in the 3-D domain of

each carbon atom are then computed [160]. After that, the 3-D domain is discredited so that a grid

point is defined in correspondence with each atom, while a user-specified grid is defined in regions not

including the CNT or GNR.

A point charge approximation is assumed, i.e., all the free charge around each carbon atom is spread

with a uniform concentration in the elementary cell including the atom. Assuming that the chemical

potential of the reservoirs is aligned at the equilibrium with the Fermi level of the CNT or GNR, and

given that there are no fully confined states, the electron concentration is

While the hole concentration is

Where, is coordinate of carbon site, f is Fermi-Dirac factor,

|ψS|
2

is probability that states injected by the source reach the carbon site (),

|ψD|
2
 is probability that states by the drain reach the carbon site (),

EFS is Fermi level of the source and EFD is Fermi level of the drain.

The current is computed as

Page | 59

Where q is the electron charge, h is Planck‘s constant, and (E) is the transmission coefficient

computed as

Where Tr is the trace operator. In the present model, we only deal with the one-dimensional (1-D)

transport between source and drain reservoirs, while the leakage gate current has not be taken into

account. For the considered devices with channel length of a few nanometers, it can be shown that the

gate current is negligible with respect to the drain current.

Detail discussion about the physics and mathematical calculation of modeling is provided in

Appendix A. Figure 3.1 describes the total calculation procedure that is done in the simulation.

Table 3.1: Parameters and physical constants used in the simulation.

Input Parameters Default Values

Gate Insulator Thickness, t (nm) Boltzmann’s Constant, k= 1.8 10
-23

 J/K

 Planck’s constant,h= 6.63 10
-23

Relative dielectric constant, εr Reduced Planck’s constant, ħ= 1.05 10-34

Temperature, T (K)

Gate Voltage, VG(V) Mass of electron, m0= 9.11 10
-31

 kg

Drain Voltage, VD(V) Source Fermi level, Ef= 0.32eV

 Overlap integral of tight bonding C-C model,

 ς= 2.7 eV

Channel Length, Lch(nm) Charge of an electron, q=1.6 10
-19

 C

Chiral axis,(n,0) Permittivity of free space, ε0= 8.854 10-12

 C-C bond length, ac-c= 1.42 10
-10

 m

Page | 60

Figure 3.1: Flow-chart of the self-consistent 3D Poisson-Schrodinger solver [155].

Page | 61

3.2 Result and Analysis

From the simulation different parameter changing effect on I-V characteristics of CNTFET and

GNRFET is shown. Result started with varying contact temperature effect, dielectric constant effect,

and also chirality changing effect on Graphene nanoribbon field effect transistor and Carbon nanotube

based field effect transistor. The GNRFET and CNTFET structure that considered for the simulation is

shown in Fig 3.2.

For studying the various effects, perfectly patterned 15nm long N=12 armchair GNR having chirality

(6, 0) and a 15nm long zigzag CNT having chirality (13, 0) are used as the default channel materials in

the simulation due to their similar bandgaps. The default relative dielectric constant for both the FETs

is taken to be 3.9. The default gate oxide thickness is 1.5nm and lateral spacing is 0.5nm. The default

contact temperature is taken to be 300K. This default values are used in the simulation if the user does

not specify the values of the parameters mentioned above.

Figure 3.2: (a) Structure of GNRFET [179] (b) Structure of CNTFET [Source-internet image].

Page | 62

3.2.1 Effect of Contact Temperature

Now the concern is the effect of changing contact temperature on the transfer and output

characteristics of graphene nanoribbon and carbon nanotube FET. Figure 3.3 and 3.4 deals with the

contact temperature changing effect. The simulation is carried out at contact temperatures 77K, 100K,

200K, 300K, 350K and 400K.

In Fig 3.3, both GNR FET and CNT FET display ambipolar characteristics. The on-state drain currents

are similar for both GNRFET and CNTFET. Both the FETS have off-state leakage currents which are

almost of the same order of magnitude. It is observed that for different contact temperatures the drain

current remains same for different gate voltages because of the ballistic consideration of the model.

The effect of changing contact temperatures on the output characteristics for both the FETs is shown

in Fig 3.4. As the contact temperature varied between 77K and 400K, there is a small increase in the

on-state drain current for each FET. This is increase is due to the decrease in channel resistance of the

channel materials. Fig 3.5 shows the how the resistance of graphene nanoribbon decreases as contact

temperature is increased from 198K to 373K studied by Huaqing Xie et al [161]. At any particular

contact temperature, the on-state drain current of GNRFET is higher compared to the on-state drain

current of CNTFET. The GNRFET has drain current in the order of 10
-6

 and the drain current of

CNTFET has an order of 10
-7

. In Figure 3.4, At VD=0.35V, GNRFET has a current of 1.93×10
-6

 A at

T=400K while the CNTFET has a current of 7.63×10
-7

 A. Thus, we can conclude that the channel

resistance of graphene nanoribbon is lower compared to the channel resistance of carbon nanotube at

any particular contact temperature resulting in a higher on-state drain current for GNR. The off-state

leakage current for both GNRFET and CNTFET can be found by extrapolation of the output

characteristics graphs and it can be concluded that the GNRFET will have a higher off-state leakage

current than CNTFET.

Fig 3.6 shows the schematic of a FET based on GNR arrays patterned by BCP lithography [162].Fig

3.6 (c) and (d) shows its transfer and output characteristics recorded by Son et al in the contact

temperature range 100K-300K. It is observed in the figure that as the contact temperature of the

patterned FET increases, its ambipolar behavior decreases. It is seen in Fig 3.3 (a) that for the GNR

SBFET simulated in this thesis paper, the ambipolar behavior decreases with increasing contact

temperature. Thus it can be concluded that ambipolar behavior decreases with increasing contact

Page | 63

temperature.

Figure 3.3: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for

different contact temperatures at VD = 0.5 V.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.00E-009

1.00E-008

1.00E-007

1.00E-006

1.00E-005

1.00E-004

(a)

77k

100k

200k

300k

350k

400k

Vg(V)

Id (A)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.00E-011

1.00E-010

1.00E-009

1.00E-008

1.00E-007

1.00E-006

1.00E-005

1.00E-004

(b)

77k

100k

200k

300k

350k

400k

Vg (V)

Id
 (

A
)

Page | 64

Figure 3.4: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for

different contact temperatures at VG = 0.5 V.

0 0.1 0.2 0.3 0.4 0.5 0.6

1.00E-007

1.00E-006

1.00E-005

(a)

77k

100k

200k

300k

350k

400k

Vd (V)

Id (A)

0 0.1 0.2 0.3 0.4 0.5 0.6

1.00E-006

(b)

77k

100k

200k

300k

350k

400k

Vd (V)

Id (A)

Page | 65

Figure 3.5: Dependence of resistance on contact temperature of graphene nanoribbon [161].

Page | 66

Figure 3.6: (a) Schematic of a FET based on GNR arrays patterned by Block Copolymer lithography

and (b) the corresponding SEM image. In (b), the contrast difference in the channel between the GNR

arrays and the bare silica is evident. (c) I DS - V DS curves of the GNR array FET with a 9 nm ribbon

width recorded at different gate voltages. (d) I DS - V G curves of the GNR array FET with a 9 nm

ribbon width recorded at V DS = 100 mV in the contact temperature range of 100–300 K [162].

Page | 67

Figure 3.7: Combined ID vs. VG characteristics of Graphene Nanoribbon FET and Carbon Nanotube

FET at T= 400K and VD = 0.5 V.

Figure 3.8: Combined ID vs. VD characteristics of Graphene Nanoribbon FET and Carbon Nanotube

FET at T= 400K and VG = 0.5 V.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.00E-010

1.00E-009

1.00E-008

1.00E-007

1.00E-006

1.00E-005

1.00E-004

(a)

GNR

CNT

Vg(V)

Id
(A

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.00E-007

1.00E-006

1.00E-005

(b)

GNR

CNT

Vd (V)

Id
 (

A
)

Page | 68

3.2.2 Effect of Relative Dielectric Constant

At this stage of report now the concern is to investigate the effect on GNRFET and CNTFET transfer

and output characteristics by changing the dielectric constant. Naturally SiO2 is used as a gate oxide

material which has a dielectric constant of 3.9. But other material can be used as an oxide material for

better performance. At this case dielectric constant will change definitely. Figure 3.9 shows the results

of changing dielectric constant studied by Rasmit Sahoo et al [164].

Because of scaling, bulk Si MOSFET suffers from many limitations like short channel effect,

tunneling etc. To overcome these limitations many solutions were proposed by different researchers.

Use of high dielectric material as gate insulator was one of the proposed solutions [163-167]. Keeping

this in eye it is tried to see the effect of using different dielectric materials as gate insulator in

GNRFET and CNTFET. In this case the dielectric constant is changed within a range of 3.9 to 15.9

and interval is 4 keeping other parameter constant. At this inspect the temperature is kept at 300K

which was a subject of change in our previous experiment. In Fig 3.10, the transfer characteristics of

GNRFET and CNTFET are shown for different values of relative dielectric constant. Both the FETs

show ambipolar characteristics. From the figure, it is observed that transfer characteristics for both

GNRFET and CNTFET are similar. It is seen that as the relative dielectric constant is increased, the

on-state drain current at any particular voltage increases. For GNRFET, at VG=0.5V the value of drain

current at k=3.9 is 5.72×10
-7

 A and at k=15.9 is 2.56×10
-6

 A. For CNTFET, at VG=0.5V the value of

drain current at k=3.9 is 6.08×10
-7

 A and at k=15.9 is 1.57×10
-6

 A.

Fig 3.11 shows the output characteristics of the FETs for different values of relative dielectric

constant. When the value of relative dielectric constant is 3.9, the off-state leakage current of CNTFET

is observed to be lower than the off-state current of GNRFET. The on-state drain current of GNRFET

at k=3.9 is of the order of 10
-6

A and that of CNTFET is of the order of 10
-7

A. As the value of relative

dielectric constant increases, both the off-state leakage current and the on-state drain current increases

for both GNRFET and CNTFET. The GNRFET has a higher saturation current compared to the

CNTFET. For k=15.9, the current in the GNRFET is 5µA and the current in the CNTFRT is 2.33 µA

at VD=0.55V. It is clear from the plot is that the saturation current increases for increasing dielectric

constant but degree of this positive effect reduces as going for higher dielectric material [166] . This

means that going for higher and higher dielectric material the increment in ID with respect to k

reduces. These results also match with the result of Rasmita Sahoo et al Fig 3.9 [164].

Page | 69

Figure 3.9: Dielectric constant changing effect investigated by Rasmita Sahoo et al. which satisfied

simulation result [164].

Figure 3.10: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for

different relative dielectric constant at VD = 0.5 V.

Page | 70

Figure 3.11: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for

different relative dielectric constant at VG = 0.5 V.

Page | 71

Figure 3.12: ID vs. VG characteristics of Graphene Nanoribbon FET and Carbon Nanotube FET for

relative dielectric constant of 11.9 at VD = 0.5 V.

Figure 3.13: ID vs. VD characteristics of Graphene Nanoribbon FET and Carbon Nanotube FET for

relative dielectric constant of 11.9 at VG = 0.5 V.

Page | 72

Again we check the dielectric effect by varying contact temperature and observed that, as the contact

temperature increases on state drain current and off state leakage current also increase for both

GNRFET and CNTFET.

Figure 3.14: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in

different contact temperatures for relative dielectric constant k = 3.9 at VD = 0.5 V.

Page | 73

Figure 3.15: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in

different contact temperatures for relative dielectric constant k = 3.9 at VG= 0.5 V.

Page | 74

Figure 3.16: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in

different contact temperatures for relative dielectric constant k = 11.9 at VD = 0.5 V.

Page | 75

Figure 3.17: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in

different contact temperatures for relative dielectric constant k = 11.9 at VG = 0.5 V.

Page | 76

3.2.3 Effect of Chirality

Now the discussion will relate the changing effect of chirality on GNRFET and CNTFET. Actually

chirality relates with the diameter and diameter changing effect is very important for FET. That‘s why

chirality changing effect is very important for any Graphene Nanoribbon or Carbon Nanotube based

design. The equation that relates chirality and diameter is:

Where, m and n is the chiral axis (n, m). Here n should be always greater than m. The width of

Graphene Nanoribbon is equal to the perimeter of the Carbon Nanotube [168].

The energy bandgap of the CNT is inversely proportional to the nanotube diameter (Egap α

1/Diameter) and also inversely proportional to the width of the GNR (Egap α 1/Width). Since the drain

current of CNFET is dependent on the total charge that filled up the first subband, therefore it is

possible that the drain current too depends on the diameter of CNT [169]. So ultimately the drain

current depends on the chirality. In this experiment it will observe one chiral axis changing effect that

is n. When it is changing n we will keep m value constant and the range of n value should be such a

value that is always greater than m value to observe the effect on output. Other parameter will

maintain their default value as like previous experiment.

Fig 3.18 shows the transfer characteristics of both GNR FET and CNT FET for different chirality. In

Fig 3.18 (a), variation in ID vs. VG graph is seen for different chiralities of Graphene Nanoribbon.

Graphene Nanoribbon can be metallic or semiconducting [170]. It is metallic when N= 3M-1, where M

is an integer and N=2n. Hence, the gate voltage has little control over the drain currents as shown in in

Fig 3.18(a). It is observed that for semi-conducting GNRs, the bandgap decreases with increasing

chirality as width increases. In Fig 3.18(b) the ambipolar characteristics decreases and drain current

increases as CNT diameter increases with increasing chirality. Comparing Fig 3.18(a) and Fig 3.18(b)

it is seen that the order of the drain current of GNR FET is greater than the order of the drain current

of CNT FET.

The output characteristics of GNRFET and CNTFET for different chirality are shown in Fig 3.19. In

Fig 3.19 (a) the Graphene Nanoribbons have significantly higher off-state leakage currents compared

to the Carbon nanotubes shown in Fig 3.19 (b).

Page | 77

(a)

(b)

Fig 3.18 ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for

different chirality at 400K VD = 0.5 V.

Page | 78

(a)

(b)

Fig 3.19: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET (b) Carbon Nanotube SBFET

for different chirality at 400K and VG = 0.5 V.

Page | 79

3.3 Summary

This research primarily investigates the dependence of the transfer and output characteristics of

GNRFET and CNTFET with respect to contact temperature, relative dielectric constant and chirality.

A comparative analysis of the transfer and output characteristics between the GNRFET and CNTFET

is done in this chapter. Also, the results of contact temperature dependence of sub-10 nm Graphene

Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography are given in

this paper and are compared to the contact temperature dependence of the GNRFET simulated in this

research paper. The results of changing chirality of both GNRFET and CNTFET are observed. The

transfer and output characteristics of the simulated GNRFET and CNTFET for relative dielectric

constant with respect to contact temperature also observed in this chapter.

So, to summarize the results:

 The drain current increases only slightly with respect to contact temperature for both GNRFET

and CNTFET.

 For both the transistors, the saturation current increases with respect to relative dielectric

constant.

 For a specific relative dielectric constant, on state drain current increases with increasing

contact temperature for both GNRFET and CNTFET.

 Ambipolar behavior decreases with respect to diameter of CNT and width of GNR for

semiconducting transistors.

 The drain current is directly proportional to the diameter (CNT) or width (GNR) for both

semiconducting GNRFET and CNTFET

 GNRFET has comparatively higher drain current than CNTFET.

Page | 80

Chapter 4

CONCLUSION

4.1 Conclusion

Of the most promising nanoscale device transistors currently grapheme and carbon nanotube are

leading the way. Substantial research has been carried out on these materials and their accompanying

devices. As a result the understanding of these devices has improved and has thus led to drastic

improvements. The drawback faced by the present silicon MOSFESTs on the face of scaling has

opened up avenues for a new range of devices and their application in logic circuit device which can

significantly produce improved performance. Grapheme and carbon transistors that are of ideal quality

are capable of providing significant performance and energy utility over regular CMOS technology.

However high defect rates and material irregularity due to confinement of fabrication techniques are

the setbacks faced by such nanoscale devices. Graphene and carbon nanotube exhibit electronic

properties like high mobility which is remarkable and due to its scale it makes it possible to design

high performance standard devices.

A detailed comparative analysis is undertaken between grapheme nanoribbon field-effect transistor

and carbon nanotube field-effect transistor as part of this research paper. In this analysis three distinct

parameters set are varied for each transistor. They are contact temperature, relative dielectric constant,

and chirality. For each parameter varied for each transistor ID vs.VG curves and ID vs. VD curves are

obtained for comparison purpose.

When it comes to the results the initial analysis demonstrates the effect of changing contact

temperature on both transistor types. The transfer characteristic for contact temperature is very much

similar since a ballistic transport has been assumed in our model. Additionally the output

characteristics for GNRFET and CNTFET here a slight increase in drain current is visible with a rise

in contact temperature. In contrast to CNTFET a higher drain current is observed for GNRFET.

The effects of changing relative dielectric constant on GNRFET and CNTFET are demonstrated in the

second analysis. On-state drain current rises in relation to dielectric constant for both the FETs in

Page | 81

terms of both transfer and output characteristics. For both the transistors the transfer characteristics are

the same whereas when it comes to output characteristics grapheme nanoribbon transistor possess a

drain current that is higher. Thus we can infer from this analysis that performance of both grapheme

nanoribbon and carbon nanotube transistors will improve with materials of higher relative dielectric

constant.

The third part of our result and analysis section compares the changing effects of chirality of the two

transistors. The diameter increases with respect to chirality. For GNR and CNT it is observed that gate

voltage has only slight control over the drain current. For semiconducting FETs, it is observed that

bandgap decreases with increasing diameter or width. As a result, drain current increases with respect

to diameter or width. Lastly, the results obtained in this simulation are compared to the results of other

research groups.

The changing effects of chirality of two transistors are compared in the third part of our outcome.

Moreover the diameter increases in terms of chirality. In terms of semiconducting FETs it is evident

that bandgap reduces with increase in diameter or width as a result of which the drain current also

increases in that respect.

In the end after examination it can be said that grapheme nanoribbon and carbon nanotube field effect

transistors has remarkable potential in the electronic industry and can be used to embark in a new era

of electronics.

4.2 Future work:

There remain a large number of areas of graphene nanoribbon and carbon nanotube transistor

modeling that can be explored further and which offer further scopes for improvement and

development. The following would be the future prospects of this research:

 In future, the study can expand our study to the effects of varying transconductance and

conductance of GNRFET and CNTFET.

 GNRFET and CNTFET with doped reservoirs can be modeled and simulate these transistors to

make comparative analysis between these two transistors.

 In the future the performances of the GNRFET and CNTFET and GNRFET and CNTFET with

doped reservoirs can be compared to determine which type of structure is better.

Page | 82

 Expanding comparison of GNRFET and CNTFET to traditional MOSFET to get a clearer

picture of the performance of these transistors compared to MOSFET.

 Lastly, GNRFET and CNTFET can be modeled using different model physics and make

simulation for each structure and make comparison between each model performances.

Page | 83

References

[1] Heng Chin Chuan, ―Modeling and Analysis of Ballistic Carbon Nanotube Field Effect Transistor (CNTFET)

with Quantum Transport Concept‖ MAY 2007, Unpublished.

[2] M P Anantram, and FL ´Léonard, ―Physics of carbon nanotube electronic devices‖ Institute of Physics

Publishing, Rep. Prog. Phys. 69, pp: 507–561, 2006.

[3] P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, ―Carbon nanotube electronics‖, Proceedings of the

IEEE, Vol. 91, pp. 1772-1784, 2003.

[4] P. L. McEuen, M. S. Fuhrer, and H. K. Park, ―Single-walled carbon nanotube electronics‖, IEEE

Transactions on Nanotechnology, Vol. 1, pp. 78-85, 2002.

[5] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. and Ruoff, R. S. Graphene and Graphene Oxide:

Synthesis, Properties, and Applications. Adv. Mater., 22: 3906–3924. doi: 10.1002/adma.201001068, 2010.

[6] Gianluca Fiori; Giuseppe Iannaccone, "NanoTCAD ViDES," https://nanohub.org/resources/vides, 2009.

(DOI: 10.4231/D3RJ48T8X)

[7] Compano, R. ed. ―Technology Roadmap for Nanoelectronics,‖ Microelectronics Advanced Research

Initiative, 2000.

[8] David J. Frank et al, ―Device Scaling Limits of Si MOSFETs and Their Application Dependencies,‖

proceedings of the IEEE, vol. 89, no . 3, march 2001.

[9] Chen, Z. et. al. ―IDDQ Testing for Deep-Submicr on ICs: Challenges and Solutions,‖ IEEE Design and

Test of Computers. pp: 24-33, 2002.

[10] Max Schulz, ―The end of the road for Silicon?‖ Nature, Vol 399, 24 June, 1999.

[11] Yuhua Cheng, Chenming Hu (1999). ―MOSFET classification and operation,‖ MOSFET modeling &

BSIM3 user's guide. Springer. p. 13. ISBN 0-7923-8575-6.

[12] Rahmat Bin Sanudin, ―Characterization of Ballistic Carbon Nanotube Field-Effect Transistor,‖ Thesis

report, University Technology Malaysia, November 2005.

[13] James D. Plummer, Peter B. Griffin (2001).‖Mate rial and Process Limits in Silicon VLSI Technology,‖

PROCEEDINGS OF THE IEEE, VOL. 89, NO. 3, MARCH 2001.

[14] Taur, Y., ―CMOS design near the limit of scaling,‖ IBM J. Ref. & Dev., Volume: 46(2): pp: 213-220,

2002.

[15] T Surukai, ―Perspectives on power aware electronics‖, Keynote presentation, F, ISSCC Conference, pp.26-

29, 2003.

[16] John L. Hennessy and David A. Patterson, ―Computer Architecture, A Qualitative Approach‖, Ed. 3, pp.

14. 55 Carbon Nanotube Field Effect Transistors

[17] J. Guo, S. Datta, and M. Lundstrom, "A numerical study of scaling issues for Schottky-Barrier carbon

nanotube transistors," IEEE Transactions on Electron Devices, vol. 51, pp. 172-177, 2004.

[18] Paul Holister, Tim Harper and Christina Roman Vas, ―Nanotubes White Paper,‖ CMP Cientifica, January

2003.

[19] T.Grace, ―An Introduction to Carbon Nanotubes, ‖ Summer, Stanford University, 2003.

[20] Xiaolei Liu,―Synthesis, Devices and Applicatio ns of Carbon Nanotubes,‖ Thesis report, University of

Southern California, January 2006.

[21] Jaldappagari Seetharamappa, Shivaraj Yellappa and Francis D‘Souza, ―Carbon Nanotubes: Next

Generation of Electronic Materials,‖ The Elect rochemical Society Interface, Summer 2006.

[22] P.R. Bandaru., ―Electrical Properties and Appl ications of Carbon Nanotube Structures,‖ Journal of

Nanoscience and Nanotechnology Vol.7, 1– 29, 2007.

[23] T. W. Odom, J. L. Huang et al.,―Atomic structu re and electronic properties of single-walled Carbon

Nanotubes,‖ Nature, Volume 391, January, 1998.

[24] Xiaolei Liu,―Synthesis, Devices and Applications of Carbon Nanotubes,‖ Thesis report,

Page | 84

University of Southern California, January 2006.

[25] J.Seetharamappa et al., ―Carbon Nanotubes Next Generation of Electronic Materials,‖ summer, The

Electrochemical Society Interface, 2006.

[26] Forro, L. and Schoenberger, C. ―Physical Properties of Multi-wall Nanotubes‖, Berlin, Germany: Springer-

Verlag Berlin Heidelberg, pp: 329-390; 2001.

[27] Rasmita Sahoo and R. R. Mishra, ―Simulations of Carbon Nanotube Field EffectTransistors,‖ International

Journal of Electronic Engineering Research ISSN 0975- 6450 Volume 1 Number 2, pp. 117–125, 2009.

[28] Avouris et al., "Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes,"

Applied Physics Letters, 2002.

[29] Paul Holister, Tim Harper and Christina Roman Vas, ―Nanotubes White Paper,‖ CMP Cientifica, January

2003.

[30] Chen, Z. et. al. ―IDDQ Testing for Deep-Submicron ICs: Challenges and Solutions,‖ IEEE Design and Test

of Computers.pp: 24-33, 2002.

[31] Choi, W. B. et. al. ―Aligned carbon nanotubes for nanoelectronics,‖ Institute of Physics Publishing,

Volume: 15, pp: 512-516, 2002.

[32] Derycke, V. et. al. ―Carbon Nanotube Inter- and Intramolecular Logic Gates,‖ Nano Letters, Volume:1(9),

pp: 453-456, 2001.

[33] W. Shockley and G.L. Pearson, Phys. Rev. 74, 232, 1948.

[34] S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49, 1998.

[35] D. Kahng and M.M. Atalla, Silicon-Silicon Dioxide Field Induced Surface Devices, IRE Solid-State

Device Research Conference, Carnegie Institute of Technology, Pittsburgh, PA, 1960.

[36] D. Jiménez, X. Cartoixà, E. Miranda, J. Suñé, F. A. Chaves, and S. Roche, ―A simple drain

current model for Schottky-barrier carbon nanotube field effect transistors‖ Bercelona,Spain pp:

1-18, 2007.

[37] Andronico, Michael (14 April 2014). "5 Ways Graphene Will Change Gadgets Forever". Laptop.

[38]"Graphene properties". www.graphene-battery.net. 2014-05-29. Retrieved 2014-05-29.

[39]"This Month in Physics History: October 22, 2004: Discovery of Graphene".APS News. Series II 18 (9): 2.

2009.

[40]Fodor, J. K. Simulations involving carbon nanotubes and nanoribbons. Gainesville, Fla.: University of

Florida, 2007.

[41]"This Month in Physics History: October 22, 2004: Discovery of Graphene".APS News. Series II 18 (9): 2.

2009.

[42]Wu, Yudong. Simulation of graphene electronic devices. Ph.D. thesis, University of Birmingham, 2011.

[43]"The Nobel Prize in Physics 2010 - Advanced Information". Nobelprize.org.Nobel Media

AB 2014. Web. 22 Aug2014.

http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced.html

[44] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183, 2007.

[45] D. R. Dreyer , R. S. Ruoff , C. W. Bielawski , Angew. Chem. Int. Ed.2010 , 49 , 9336.

[46] M. S. Dresselhaus , G. Dresselhaus , Adv. Phys. 1981 , 30 , 139.

[47] V. H. P. Boehm , A. Clauss , G. O. Fischer , U. Hofmann , Z. Naturforschg.1962 , 17 , 150 .

[48] P. M. Stefan , M. L. Shek , I. Lindau , W. E. Spicer , L. I. Johansson , F. Herman , R. V. Kasowski ,

G.Brogen , Phys. Rev. B 1984 , 29 , 5423 .

[49] T. Aizawa , R. Souda , S. Otani , Y. Ishizawa , C. Oshima , Phys. Rev. Lett. 1990 , 64 , 768 .

[50] A. Nagashima , K. Nuka , H. Itoh , T. Ichinokawa , C. Oshima , S. Otani , Surf. Sci. 1993 , 291 , 93 .

[51] Chuhei Oshima et al 1977 Jpn. J. Appl. Phys. 16 965. doi:10.1143/JJAP.16.965

 R. Rosei , M. De Crescenzi , F. Sette , C. Quaresima , A. Savoia ,P. Perfetti , Phys. Rev. B 1983 , 28 ,

1161 .

[54] N. R. Gall , S. N. Mikhailov , E. V. Rut‘kov , A. Y. Tontegode , Sov. Phys.Solid State 1985 , 27 , 1410.

Page | 85

[55] H. Zi-Pu , D. F. Ogletree , M. A. Van Hove , G. A. Somorjai , Surf. Sci.1987 , 180 , 433 .

[56] A. J. Van Bommel , J. E. Crombeen , A. Van Tooren , Surf. Sci. 1975 , 48 , 463 .

[57] Y. Zhang , J. Small , W. Pontius , P. Kim , Appl. Phys. Lett. 2005 , 86 ,073104 .

[58] D. D. L. Chung , J. Mater. Sci. 1987 , 22 , 4190 .

[59] X. Lu , M. Yu , H. Huang , R. Ruoff , Nanotechnology 1999 , 10 , 269 .

[60] X. Du , I. Skachko , A. Barker , E. Y. Andrei , Nat. Nanotechnol. 2008 , 3 , 491 .

[61] S. V. Morozov , K. S. Novoselov , M. I. Katsnelson , F. Schedin , D. C. Elias , J. A. Jaszczak , A. K.

Geim , Phys. Rev. Lett. 2008 , 100 , 016602.

[62] E. V. Castro , H. Ochoa , M. I. Katsnelson , R. V. Gorbachev , D. C. Elias , K. S. Novoselov , A. K.

Geim , Phys. Rev. Lett. 2008 , 100 , 016602.

[63] A. A. Balandin , S. Ghosh , W. Bao , I. Calizo , D. Teweldebrhan , F. Miao , C. N. Lau , Nano Lett.

2008 , 8 , 902.

[64] C. Lee , X. Wei , J. W. Kysar , J. Hone , Science 2008 , 321 , 385.

[65] S. Berciaud , S. Ryu , L. E. Brus , T. F. Heinz , Nano Lett. 2009 , 9 , 346.

[66] C. Soldano , A. Mahmood , E. Dujardin , Carbon 2010 , 48 , 2127.

[67] X. L. Li , G. Y. Zhang , X. D. Bai , X. M. Sun , X. R. Wang , E. G. Wang , H. J. Dai , Nat.

Nanotechnol. 2008 , 3 , 538 .

[68] Y. Hernandez , V. Nicolosi , M. Lotya , F. M. Blighe , Z. Sun , S. De , I. T. McGovern , B. Holland , M.

Byrne , Y. K. Gun‘ko , J. J. Boland , P. Niraj , G. Duesberg , S. Krishnamurthy , R. Goodhue , J. Hutchison , V.

Scardaci , A. C. Ferrari , J. N. Coleman , Nat. Nanotechnol. 2008 , 3 , 563

[69]U. Khan , A. O‘Neill , M. Lotya , S. De , J. N. Coleman , Small 2010 , 6 , 864 .

[70] C. Valles , C. Drummond , H. Saadaoui , C. A. Furtado , M. He , O. Roubeau , L. Ortolani ,

[71] M. Monthioux , A. Penicaud , J. Am. Chem. Soc. 2008 , 130 , 15802 .

[72] J. S. Moon , D. Curtis , M. Hu , D. Wong , C. McGuire , P. M. Campbell , G. Jernigan , J. L.

Tedesco , B. VanMil , R. Myers-Ward , C. J. Eddy , D. K. Gaskill , IEEE Electron. Device Lett. 2009 ,

30 , 650 .

[73] O. C. Compton , S. T. Nguyen , Small 2010 , 6 , 711 .

[74] Y. Si , E. T. Samulski , Nano Lett. 2008 , 8 , 1679 .

[75] D. R. Dreyer , S. Park , C. W. Bielawski , R. S. Ruoff , Chem. Soc. Rev. 2010 , 39 , 228 .

[76] S. Park , J. An , I. Jung , R. D. Piner , S. J. An , X. Li , A. Velamakanni , R. S. Ruoff , Nano Lett. 2009 ,

9 , 1593 . M. A. Rafi ee , J. Rafi ee , Z. Wang , H. Song , Z.-Z. Yu , N. Koratkar , ACS Nano 2009 , 3 ,

3884 .

[76] Y. Shao , J. Wang , M. Engelhard , C. Wang , Y. Lin , J. Mater. Chem. 2010 , 20 , 743 .

[77] L. J. Cote , R. Cruz-Silva , J. Huang , J. Am. Chem. Soc. 2009 , 131 , 1 1027 .

[78] V. Strong , S. Dubin , M. F. El-Kady , A. Lech , Y. Wang , B. H. Weiller , R. B. Kaner , ACS Nano

2012 , 6 , 1395 .

[79] Y. Dedkov , A. Shikin , V. Adamchuk , S. Molodtsov , C. Laubschat , A. Bauer , G. Kaindl , Phys. Rev.

B 2001 , 64 , 035405

[80] P. W. Sutter , J.-I. Flege , E. A. Sutter , Nat. Mater. 2008 , 7 , 406 .

[81] T. A. Land , T. Michely , R. J. Behm , J. C. Hemminger , G. Comsa , Surf. Sci. 1992 , 264 , 261 .

[82] Y. S. Dedkov , M. Fonin , C. Laubschat , Appl. Phys. Lett. 2008 , 92 , 052506 .

[83] A. T. N‘Diaye , J. Coraux , T. N. Plasa , C. Busse , T. Michely , New J. Phys. 2008 , 10 , 043033 .

[84] Y. Wang , C. Miao , B.-c. Huang , J. Zhu , W. Liu , Y. Park , Y.-h. Xie , J. C. S. Woo , IEEE Trans.

Electron Devices 2010 , 57 , 3472 .

[85] W. Cai , R. D. Piner , Y. Zhu , X. Li , Z. Tan , H. C. Floresca , C. Yang , L. Lu , M. J. Kim , R. S. Ruoff

, Nano Res. 2009 , 2 , 851 .

W. Liu , C.-H. Chung , C.-Q. Miao , Y.-J. Wang , B.-Y. Li , L.-Y. Ruan , K. Patel , Y.-J. Park , J. Woo , Y.-H.

Page | 86

Xie , Thin Solid Films 2010 , 518 , S128 .

[86] A. Reina , X. Jia , J. Ho , D. Nezich , H. Son , V. Bulovic , M. S. Dresselhaus , J. Kong , Nano Lett.

2009 , 9 , 30 .

[87] G. Lopez , E. Mittemeijer , Scr. Mater. 2004 , 51 , 1 .

[88] G. L. Selman , P. J. Ellison , A. s. Darling , Platinum Metals Rev. 1970 , 14 , 14 .

[89] S. Bhaviripudi , X. Jia , M. S. Dresselhaus , J. Kong , Nano Lett. 2010 , 10 , 4128 .

[90] J. Wu , W. Pisula , K. Muellen , Chem. Rev. 2007 , 107 , 718 .

[91] X. Yang , X. Dou , A. Rouhanipour , L. Zhi , H. J. Rader , K. Müllen , J. Am. Chem. Soc. 2008 , 130 ,

4216 .

[92] J. Cai , P. Ruffi eux , R. Jaafar , M. Bieri , T. Braun , S. Blankenburg , M. Muoth , A. P. Seitsonen , M.

Saleh , X. Feng , K. Muellen , R. Fasel , Nature 2010 , 466 , 470 .

[93] X. Yan , X. Cui , L.-s. Li , J. Am. Chem. Soc. 2010 , 132 , 5944 .

[94] X. Yan , X. Cui , B. Li , L.-s. Li , Nano Lett. 2010 , 10 , 1869 .

[95] Kusmartsev, F. V.; Wu, W. M.; Pierpoint, M. P.; Yung, K. C. . "Application of Graphene within

Optoelectronic Devices and Transistors", 2014. arXiv:1406.0809 [cond-mat.mtrl-sci].

[97] Meyer, J.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. "The structure of

suspended graphene sheets". Nature 446 (7131): 60–63, 2007. arXiv:cond-

mat/0701379.Bibcode:2007Natur.446...60M. doi:10.1038/nature05545. PMID 17330039.

[98] Neto, A Castro; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.; Geim, A. K.. "The electronic

properties of graphene" (PDF). Rev Mod Phys 81: 109, 2009.

[99] Charlier, J.-C.; Eklund, P.C.; Zhu, J.; Ferrari, A.C. "Electron and Phonon Properties of Graphene: Their

Relationship with Carbon Nanotubes". In Jorio, A.; Dresselhaus and, G.; Dresselhaus, M.S. Carbon

Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Berlin/Heidelberg:

Springer-Verlag), 2008.

[100] Semenoff, G. W. "Condensed-Matter Simulation of a Three-Dimensional Anomaly".Physical Review

Letters 53 (26): 2449, 1984.

[101] Avouris, P.; Chen, Z.; Perebeinos, V. "Carbon-based electronics". Nature Nanotechnology2 (10):605-

15, 2007.

[102] Semenoff, G. W. "Condensed-Matter Simulation of a Three-Dimensional Anomaly".Physical Review

Letters 53 (26): 2449, 1984.

[103] Lamas, C.A.; Cabra, D.C.; Grandi, N. "Generalized Pomeranchuk instabilities in graphene".Physical

Review B 80 (7): 75108, 2009.

[104] Lamas, C.A.; Cabra, D.C.; Grandi, N. "Generalized Pomeranchuk instabilities in graphene".Physical

Review B 80 (7): 75108, 2009.

[105] Geim, A. K.; Novoselov, K. S. "The rise of graphene". Nature Materials 6 (3): 183–91, 2007.

[106] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.;

Dubonos, S. V.; Firsov, A. A. "Two-dimensional gas of massless Dirac fermions in graphene".Nature 438

(7065): 197–200, 2005.

[107] Morozov, S.V.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.; Geim, A. "Giant

Intrinsic Carrier Mobilities in Graphene and Its Bilayer". Physical Review Letters 100 (1): 016602,

2008.

[109] Chen, J. H.; Jang, Chaun; Xiao, Shudong; Ishigami, Masa; Fuhrer, Michael S. "Intrinsic and Extrinsic

Performance Limits of Graphene Devices on SiO2". Nature Nanotechnology 3 (4): 206–9, 2008.

[110] Akturk, A.; Goldsman, N. "Electron transport and full-band electron–phonon interactions in graphene".

Journal of Applied Physics 103 (5): 053702, 2008.

[111] Kusmartsev, F. V.; Wu, W. M.; Pierpoint, M. P.; Yung, K. C. "Application of Graphene within

Optoelectronic Devices and Transistors", 2014.

Page | 87

[112] Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene :: University

Communications Newsdesk, University of Maryland. Newsdesk.umd.edu (2008-0324).

[113] Jens Baringhaus et al., Exceptional ballistic transport in epitaxial graphene

nanoribbons, Nature, 2014, DOI: 10.1038/nature12952

[114] Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A.

P.; Jiang, Z.; Conrad, E. H.; Berger, C.; Tegenkamp, C.; De Heer, W. A. "Exceptional ballistic transport in

epitaxial graphene nanoribbons". Nature 506 (7488): 349, 2014.

[115] Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. "Charged Impurity

Scattering in Graphene". Nature Physics 4 (5): 377–381, 2008.

[116] A. J. Frenzel, C. H. Lui, Y. C. Shin, J. Kong, N. Gedik, Semiconducting-to-Metallic

Photoconductivity Crossover and Temperature-Dependent Drude Weight in

Graphene, Physical Review Letters, 2014, DOI: 10.1103/PhysRevLett.113.056602

[117] Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S.

"Detection of individual gas molecules adsorbed on graphene". Nature Materials 6 (9): 652–655, 2007.

[118] Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. "A self-consistent theory for graphene

transport". Proc. Nat. Acad. Sci. USA 104 (47): 18392–7, 2007.

[119] Steinberg, Hadar; Barak, Gilad; Yacoby, Amir; et al. "Charge fractionalization in quantum wires

(Letter)". Nature Physics 4 (2): 116–119, 2008.

[120] Trisetyarso, Agung. "Dirac four-potential tunings-based quantum transistor utilizing the Lorentz force".

Quantum Information & Computation 12 (11–12): 989, 2012.

[121] Chen, Shanshan; Wu, Qingzhi; Mishra, Columbia; Kang, Junyong; Zhang, Hengji; Cho, Kyeongjae;

Cai, Weiwei; Balandin, Alexander A.; Ruoff, Rodney S. "Thermal conductivity of isotopically modified

graphene". Nature Materials (2012-01-10) 11 (3): 203, 2012.

[122] Y.-W. Son, M. L. Cohen, S. G. Louie, ―Energy gaps in graphene nanoribbons‖, Phys. Rev. Lett. Vol. 97,

n. 21, 216803-1-4, 2006.

[123] G. Iannaccone, G. Fiori, M. Macucci, P. Michetti, M. Cheli, A. Betti, P. Marconcini, "Perspectives of

graphene nanoelectronics: probing technological options with modeling", IEDM 2009, 7-9 December,

Baltimore, USA.

[124] E. McCann, V. I. Fal‘ko, ―Landau-level degeneracy and quantum Hall effect in a graphite layer‖, Phys.

Rev. Lett. Vol. 96, n. 8, 086805-1-4, 2006.

[125] E.V. Castro, K. S. Novoselov, V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F.

Guinea, A. K. Geim, and A. H. Castro Neto, ―Biased bilayer graphene: Semiconductor with a gap tunable

by the electric field effect‖, Phys. Rev. Lett., Vol. 99, p.

216902, 2007.

[126] T. Ohta et al., ―Controlling the electronic structure of bilayer graphene‖, Science, Vol. 313, n. 5789, pp.

951-954, 2008.

[127] Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang,

"Direct observation of a widely tunable bandgap in bilayer graphene", Nature,Vol. 459, p. 820-823, 2009.

[128] S. Y. Zhou et al., ―Substrate-induced bandgap opening in epitaxial graphene‖, Nat. Mat.,

Vol. 6, n. 10, p. 770, 2007.

[129] M. Cheli, P. Michetti, G. Iannaccone, ―Physical Insights on Nanoscale FETs based on epitaxial

graphene on SiC‖, Proc. ESSDERC 2009, 193-196, 2009.

[130] T. J. Echtermeyer, M. C. Lemme, M. Baus, B. N. Szafranek, A. K. Geim, H. Kurz, ―Nonvolatile

Switching in Graphene Field-Effect Devices‖, IEEE EDL, Vo. 29, pp. 952-954, 2009.

[131] T. J. Echtermeyer, M. C. Lemme, M. Baus, B. N. Szafranek, A. K. Geim, H. Kurz,―Nonvolatile

Switching in Graphene Field-Effect Devices‖, IEEE EDL, Vo. 29, pp. 952-954, 2009.

Page | 88

[132] Fodor, J. K. Simulations involving carbon nanotubes and nanoribbons. Gainesville, Fla.: University of

Florida, 2007. Nihar Mohanty, David Moore, Zhiping Xu, T. S. Sreeprasad, Ashvin Nagaraja, Alfredo A.

Rodriguez and Vikas Berry. "Nanotomy Based Production of Transferrable and Dispersible Graphene-

Nanostructures of Controlled Shape and Size". Nature Communications 3 (5): 844, 2012.

[133] Brumfiel, G. "Nanotubes cut to ribbons New techniques open up carbon tubes to create

ribbons", 2009.

[134] Kosynkin, Dmitry V.; Higginbotham, Amanda L.; Sinitskii, Alexander; Lomeda, Jay R.;

Dimiev, Ayrat; Price, B. Katherine; Tour, James M. "Longitudinal unzipping of carbon nanotubes to

form graphene nanoribbons". Nature 458 (7240): 872-6, 2009.

[135] Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai. "Narrow graphene nanoribbons

from carbon nanotubes". Nature 458 (7240): 877–80, 2009.

[136] "Writing Graphene Circuitry With Ion 'Pens'". ScienceDaily. Mar 27, 2012.

[137] "AIP‘s Physics News Highlights March 27, 2012". American Institute of Physics (AIP). 2012-

03-28.

[138] S. Tongay, M. Lemaitre, J. Fridmann, A. F. Hebard, B. P. Gila, and B. R.

Appleton. "Drawing graphene nanoribbons on SiC by ion implantation".Appl. Phys. Lett. 100 (073501),

2012.

[139] Barone, V., Hod, O., and Scuseria, G. E. "Electronic Structure and Stability of Semiconducting

Graphene Nanoribbons". Nano Letters 6 (12): 2748–54, 2006.

[140] Han., M.Y., Özyilmaz, B., Zhang, Y., and Kim, P. "Energy Band-Gap Engineering of Graphene

Nanoribbons". Physical Review Letters 98 (20), 2007.

[141]Tapasztó, Levente; Dobrik, Gergely; Lambin, Philippe; Biró, László P. "Tailoring the atomic

structure of graphene nanoribbons by scanning tunnelling microscope lithography". Nature Nanotechnology

3 (7): 397–401, 2008.

[141] Son Y.-W., Cohen M. L., and Louie S. G. "Energy Gaps in Graphene Nanoribbons". Physical

Review Letters 97 (21), 2006.

[142] L. F. Huang, G. R. Zhang, X. H. Zheng, P. L. Gong, T. F. Cao, and Z. Zeng. "Understanding

and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon". J.

Phys.: Condens. Matter 25 (5): 055304, 2013.

[143] Fiori G., Iannaccone G. "Simulation of Graphene Nanoribbon Field-Effect Transistors". IEEE

Electron Device Letters 28 (8): 760, 2007.

[144] Gianluca Fiori; Giuseppe Iannaccone, "NanoTCAD ViDES,"

https://nanohub.org/resources/vides, 2009. (DOI: 10.4231/D3RJ48T8X).

[145] Wang, Z. F., Shi, Q. W., Li, Q., Wang, X., Hou, J. G., Zheng, H., Yao, Y., Chen, J. "Z-shaped

graphene nanoribbon quantum dot device". Applied Physics Letters 91 (5): 053109, 2007.

[146] Bullis, Kevin. "Graphene Transistors". Technology Review (Cambridge: MIT Technology

Review, Inc), 2008-01-28.

[148] Bullis,Kevin. "TR10: Graphene Transistors". Technology Review(Cambridge: MIT Technology Review,

Inc), 2008-02-25.

[149] Wang, Xinran; Ouyang, Yijian; Li, Xiaolin; Wang, Hailiang; Guo, Jing; Dai, Hongjie. "Room-

Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors". Physical

Review Letters 100 (20), 2008. arXiv:0803.3464

[150]Jing; Dai, Hongjie. "Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-

Effect Transistors". Physical Review Letters 100 (20), 2008.

[150] Ballon, M. S. Carbon nanoribbons hold out possibility of smaller, speedier computer chips. Stanford

Report, 2008-05-28.

[151] Schwierz F. Graphene transistors. Nat. Nanotechnol. 5, 487–496, 2010.

Page | 89

[152] "The Nobel Prize in Physics 2010 - Advanced Information". Nobelprize.org.Nobel Media AB 2014.

Web. 22 Aug 2014. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced.html

Gianluca Fiori; Giuseppe Iannaccone, "NanoTCAD ViDES,"

[153] https://nanohub.org/resources/vides, 2009. (DOI: 10.4231/D3RJ48T8X).

[154] G. Fiori, G. Iannaccone, "Simulation of Graphene Nanoribbon Field-Effect Transistors", IEEE,

Electron Device Letters, Vol. 28, Issue 8, pp. 760 - 762, 2007.

[155] G. Fiori, G. Iannaccone, G. Klimeck, "A Three-Dimensional Simulation Study of the

Performance of Carbon Nanotube Field-Effect Transistors With Doped Reservoirs and Realistic

Geometry", IEEE Transaction on Electron Devices, Vol. 53, Issue 8, pp. 1782-1788, 2006. doi:

10.1109/TED.2006.878018

[156] S. Datta, ―Nanoscale device modeling: Green‘s function method,‖ Superlattices Microstruct.,

vol. 28, no. 4, pp. 253–277, Jul. 2000.

[157] J. Guo et al., ―Performance analysis and design optimization of near ballistic carbon nanotube

field-effect transistors,‖ in IEDM Tech. Dig., 2004, pp. 703–706

[158] Y.W. Son, M.L. Cohen, and S.G. Louie, ―Energy gaps in graphene nanoribbons‖, Phys. Rev.

Lett., Vol. 97, pp.216803, 2006.

[159] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes.

London, U.K.: Imperial College Press, 2003, pp. 35–58.

[160] Xie, Huaqing; Chen, Lifei; Yu, Wei; Wang, Bingqian, "Temperature dependent thermal

conductivity of a free-standing graphene nanoribbon," Applied Physics Letters , vol.102, no.11,

pp.111911,111911-4, Mar 2013.

[161] J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, et al.,"Sub‐10 nm

Graphene Nanoribbon Array Field‐Effect Transistors Fabricated by Block Copolymer Lithography,"

Advanced Materials, vol. 25, pp. 4723-4728, 2013.

[162] S. Mudanai, Y Y Fang, Q Quyang, ―Modeling of direct tunneling current through gate

dielectric stacks‖, IEEE Trans. Electron Dev, vol. 47, Number. 10, pp. 1851–1857, 2000.

[163] Rasmita Sahoo et al., ―Carbon Nanotube Field Effect Transistor: Basic Characterization and

Effect of High Dielectric Material‖ International Journal of Recent Trends in Engineering, Vol 2, No. 7,

November 2009.

[164] A. Kawamoto., J. Jameson, K. Cho, and R. Dutton, ―Challenges for Atomic Scale Modeling in

Alternative Gate Stack Engineering,‖ IEEE Trans. Electron Dev, vol. 47, pp. 1787-1794, October 2000.

[165] Cheng B, Cao M, Rao R, et al, ―The impact of high-k gate dielectrics and metal gate electrodes

on sub-100 nm MOSFETs,‖ IEEE Trans. Electron Dev, vol. 46, 1537-1544, July 1999.

[166] Youngki Yoon; Yijian Ouyang; Guo, Jing, "Scaling Behaviors of Graphene Nanoribbon FETs,"

Device Research Conference, 2007 65th Annual , vol., no., pp.271,272, 18-20 June 2007 doi:

10.1109/DRC.2007.4373750.

[167] Obradovic, B.; Kotlyar, R.; Heinz, F.; Matagne, P.; Rakshit, T.; Giles, M.D.; Stettler, M.A;

Nikonov, D.E., "Analysis of graphene nanoribbons as a channel material for field-effect transistors,"

Applied Physics Letters , vol.88, no.14, pp.142102,142102-3, Apr 2006.

[168] Chen, Z. et. al. ―IDDQ Testing for Deep-Submicron ICs: Challenges and Solutions‖,IEEE

Design and Test of Computers.pp: 24-33, 2002.

[169] Sai-Kong Chin; Dawei Seah; Kai-Tak Lam; Samudra, G.S.; Liang, Gengchiau, "Device Physics

and Characteristics of Graphene Nanoribbon Tunneling FETs," Electron Devices, IEEE Transactions

on , vol.57, no.11, pp.3144,3152, Nov. 2010.

[170] Guo, Jing; Datta, Supriyo; Lundstrom, Mark, "A numerical study of scaling issues for

Schottky-barrier carbon nanotube transistors," Electron Devices, IEEE Transactions on , vol.51, no.2,

Page | 90

pp.172,177, Feb. 2004.

[171] Nakada K., Fujita M., Dresselhaus G. and Dresselhaus M.S. (1996). "Edge state in graphene

ribbons: Nanometer size effect and edge shape dependence". Physical Review B 54 (24): 17954.

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, ―Single and Multiband modeling of

[172] quantum electron transport through layered semiconductors devices‖, J. Appl. Phys., Vol. 81,

pp.7845-7869, Feb. 1997.

[173] A. Svizhenko, M. P. Anantram, T. R. Govindam, and B. Biegel, ―Two dimensional quantum

mechanical modeling of nanotransistors‖, J. Appl.Phys., Vol. 91, pp. 2343-2354, Nov. 2001.

[174] J. Guo, S. Datta, M. Lundstrom, and M. P. Anantram, Multi-scale modelingof carbon nanotube

transistors, Int. J. Multiscale Comput. Eng., Vol. 2, pp.257260, 2004.

[175] A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, ―Iteration scheme for the solution of the two-

dimensional Schrdinger-Poisson equations in quantum structures‖, J. Appl. Phys, Vol. 81, p. 7880-7884,

1997.

24: Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y. and Duan, X. 2012. Adv. Mat., 5782–

5825.

[176] Youngki Yoon; Fiori, G.; Seokmin Hong; Iannaccone, G.; Guo, Jing, "Performance Comparison of

Graphene Nanoribbon FETs With Schottky Contacts and Doped Reservoirs," Electron Devices, IEEE

Transactions on , vol.55, no.9, pp.2314,2323, Sept. 2008

Page | 91

Appendix A

Numerical Implementation

The Green‘s function is computed by means of the Recursive Green‘s Function (RGF) technique [174,

175]. Particular attention must be put in the definition of each self-energy matrix, which can be

interpreted as a boundary condition of the Schrödinger equation. In particular, in our simulation we

have considered a self-energy for semi-infinite leads as boundary conditions, which enables to

consider the CNT/GNR as connected to infinitely long CNTs/GNRs at its ends.

In addition, contacts are considered for both CNT and GNR following a phenomenological approach

described in [176].

From a numerical point of view, the code is based on the Newton-Raphson (NR) method with a

predictor/corrector scheme [177]. In Fig. 3.1 we sketched a flow-chart of the whole code. In particular,

the Schrödinger /NEGF equations are solved at the beginning of each NR cycle, starting from an

initial potential ̃ and the charge density in the CNT /GNR and SNWT is kept constant until the NR

cycle converges (i.e. the correction on the potential is smaller than a predetermined value). The

algorithm is then repeated cyclically until the norm of the difference between the potential computed

at the end of two subsequent NR cycles is smaller than a predetermined value.

Some convergence problems however may be encountered using this iterative scheme. Indeed, since

the electron density is independent of the potential within a NR cycle, the Jacobian is null for points of

the domain including carbon atoms/SNWT region, losing control over the correction of the potential.

We have used a suitable expression for the charge predictor, in order to give an approximate

expression for the Jacobian at each step of the NR cycle. To this purpose, we have used an exponential

function for the predictor In particular, if n is the electron density the electron density ni at the i-th step

of the NR cycle can be expressed as

Where and are the electrostatic potentials computed at the first and ith step of the NR cycle,

respectively, and VT is the thermal voltage. Same considerations follow for the hole concentration.

Page | 92

Since the electron density n is extremely sensitive to small changes of the electrostatic potential

between two NR cycles, the exponential function acts in the overall procedure as a dumping factor for

charge variations. In this way, convergence has been improved in the subthreshold regime and in the

strong inversion regime. Convergence is still difficult in regions of the device where the charge is not

compensated by fixed charge, where the right-hand term of the Poisson equation is considerably large.

An under-relaxation of the potential and of the charge can also be performed in order to help

convergence. In particular, three different under-relaxations can be performed inside ViDES :

• Relaxation on the potential at each NR cycle

• Relaxation on the potential at the end of each NR cycle

• Relaxation of the charge density ρNEGF computed by the NEGF modules

Page | 93

Appendix B

B.1 Pyhthon script for simulating transfer characteristics of CNT

SBFET

from NanoTCAD_ViDES import *

I define the nanotube
CNT=nanotube(13,15);

I create the grid

x=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3]))
y=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3]));

grid=grid3D(x,y,CNT.z,CNT.x,CNT.y,CNT.z);

#I define the contacts
CNT.contact='Schottky'

Now I define the gate regions
top_gate=gate("hex",grid.xmax,grid.xmax,grid.ymin,grid.ymax,grid.zmi n,grid.zmax)
bottom_gate=gate("hex",grid.xmin,grid.xmin,grid.ymin,grid.ymax,grid. zmin,grid.zmax)

I take care of the solid

SiO2=region ("hex",-2, 2,-2, 2, grid.gridz [0], grid.gridz [grid.nz-1]);

SiO2.eps=3.9;

I create the interface
p=interface3D(grid,top_gate,bottom_gate,SiO2);

I work in the mode space, using 2 modes
p.modespace="yes"
CNT.Nmodes=2;

Vds = 0.5 V
CNT.mu2=-0.5;

I start the Vgs sweep. In particular 0<=Vgs<=1.25 V, with

with 0.25V as voltage step

Vgmin=0.0;

Vgmax=1.25;

Vgstep=0.25;

#I create the vectors in which I store the data vg=zeros (20);
current=zeros(20);
counter=0;
Vgs=Vgmin;

Page | 94

while (Vgs<=Vgmax):

I set the Fermi level of the top and bottom gate top_gate.Ef=-Vgs;
set_gate (p, top_gate);
bottom_gate.Ef=-Vgs; set_gate
(p,bottom_gate);

#If the first voltage, then I computes the initial solution if (Vgs==Vgmin):

I compute the initial solution
p.normpoisson=1e-3;

solve_init (grid, p, CNT);

p.normpoisson=1e-1;
p.normd=5e-2;

solve_self_consistent (grid, p, CNT);

vg[counter]=Vgs; current[counter]=CNT.current();

counter=counter+1; Vgs=Vgs+Vgstep;

tempo=[vg,current]

savetxt ("transfer1.out",transpose(tempo));

B.2 Pyhthon script for simulating transfer characteristics of GNR

SBFET

from NanoTCAD_ViDES import *

The width of the nanoribbon is 1.37 nm, and it is 15 nm long GNR=nanoribbon(6,15);

I create the grid

xg=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])) yg=nonuniformgrid(array([-
1,0.3,0,0.2,1.37,0.2,2.37,0.3])); grid=grid3D(xg,yg,GNR.z,GNR.x,GNR.y,GNR.z);

I define Schottky contacts
GNR.contact='Schottky'

Now I define the gate regions

top_gate=gate("hex",grid.xmax,grid.xmax,grid.ymin,grid.ymax,grid.zmi n,grid.zmax)
bottom_gate=gate("hex",grid.xmin,grid.xmin,grid.ymin,grid.ymax,grid. zmin,grid.zmax)

Page | 95

I take care of the solid

SiO2=region ("hex",-2, 2,-2, 2, grid.zmin, grid.zmax);

SiO2.eps=3.9;

#I create the interface
p=interface3D (grid, top_gate, bottom_gate, SiO2);

Vds = 0.5 V
GNR.mu2=-0.5;

I start the Vgs sweep. In particular 0<=Vgs<=1.25 V, with
with 0.25V as voltage step
Vgmin=0.0;
Vgmax=1.25;

Vgstep=0.25;

#I create the vectors in which I store the data
vg=zeros(20);
current=zeros(20);

counter=0;

Vgs=Vgmin;

while (Vgs<=Vgmax):

I set the Fermi level of the top and bottom gate top_gate.Ef=-Vgs;
set_gate(p,top_gate); bottom_gate.Ef=-
Vgs; set_gate(p,bottom_gate);

#If the first voltage, then I compute the initial solution if (Vgs==Vgmin):

I compute the initial solution p.normpoisson=1e-3;

solve_init(grid,p,GNR);

p.normpoisson=1e-1; p.normd=5e-
2;
solve_self_consistent(grid,p,GNR); vg[counter]=Vgs;

current[counter]=GNR.current(); counter=counter+1;

Vgs=Vgs+Vgstep;

tempo=[vg,current]
savetxt("transfer2.out",transpose(tempo));

Page | 96

B.3 Pyhthon script for simulating output characteristics of CNT

SBFET

from NanoTCAD_ViDES import *

I define the nanotube
CNT=nanotube(13,15);

I create the grid

x=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3]));
y=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3]));
grid=grid3D(x,y,CNT.z,CNT.x,CNT.y,CNT.z);

#I define the contacts
CNT.contact='Schottky'

Now I define the gate regions top_gate=gate("hex",2,2,-2,2,grid.gridz[0],grid.gridz[grid.nz-
1]) bottom_gate=gate("hex",-2,-2.5,-2,2,grid.gridz[0],grid.gridz[grid.nz-1])

I take care of the solid

SiO2=region("hex",-2,2,-2,2,grid.gridz[0],grid.gridz[grid.nz-1]);

SiO2.eps=3.9;

I create the interface
p=interface3D(grid,top_gate,bottom_gate,SiO2);

I work in the mode space, using 2 modes
p.modespace="yes"
CNT.Nmodes=2;

I set set Vgs= 0.5V

top_gate.Ef=-0.5;
set_gate(p,top_gate);
bottom_gate.Ef=-0.5;
set_gate(p,bottom_gate);

p.normpoisson=1e-3;
solve_init(grid,p,CNT);

I start the Vds sweep. In particular 0.05<=Vds<=0.55 V, with

with 0.1V as voltage step
Vdsmin=0.05;

Vdsmax=0.55;
Vdstep=0.1;

Np=int(abs(Vdsmin-Vdsmax)/Vdstep)+1; vg=zeros(Np);
current=zeros(Np);

Page | 97

p.underel=0.1;

counter=0;
Vds=Vdsmin;

while (Vds<=Vdsmax):

CNT.mu2=-Vds;
p.normpoisson=1e-1; p.normd=5e-
3;

solve_self_consistent(grid,p,CNT); vg[counter]=Vds;
current[counter]=CNT.current();

I save the output files if (rank==0):

string="./datiout/Phi%s.out" %Vds; savetxt(string,p.Phi);

string="./datiout/ncar%s.out" %Vds;

savetxt(string,p.free_charge); a=[CNT.E,CNT.T];

string="./datiout/T%s.out" %Vds;

savetxt(string,transpose(a));

string="./datiout/jayn%s.out" %Vds;

fp=open(string,"w");

string2="%s" %current[counter]; fp.write(string2);
fp.close();

counter=counter+1;

Vds=Vds+Vdstep;

tempo=[vg,current]

savetxt("idvd1.out",transpose(tempo));

B.4 Pyhthon script for simulating output characteristics of GNR
SBFET

from NanoTCAD_ViDES import *

The width of the nanoribbon is 1.37 nm, and it is 15 nm long GNR=nanoribbon(6,15);

I create the grid

xg=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])) yg=nonuniformgrid(array([-
1,0.3,0,0.2,1.37,0.2,2.37,0.3])); grid=grid3D(xg,yg,GNR.z,GNR.x,GNR.y,GNR.z);

I define Schottky contacts
GNR.contact='Schottky'

Now I define the gate regions

top_gate=gate("hex",grid.xmax,grid.xmax,grid.ymin,grid.ymax,grid.zmin, grid.zmax)
bottom_gate=gate("hex",grid.xmin,grid.xmin,grid.ymin,grid.ymax,grid.zm in,grid.zmax)

I take care of the solid SiO2=region("hex",-2,2,-2,2,grid.zmin,grid.zmax);

SiO2.eps=3.9;

Page | 98

I create the interface p=interface3D(grid,top_gate,bottom_gate,SiO2);

I set Vgs= 0.5V

top_gate.Ef=-0.5; set_gate(p,top_gate);
bottom_gate.Ef=-0.5;
set_gate(p,bottom_gate);

p.normpoisson=1e-3;
solve_init(grid,p,GNR);

I start the Vds sweep. In particular 0.05<=Vds<=0.55 V, with

with 0.1V as voltage step

Vdsmin=0.05;
Vdsmax=0.55;
Vdstep=0.1;

Np=int(abs(Vdsmin-Vdsmax)/Vdstep)+1;
vg=zeros(Np);
current=zeros(Np);
p.underel=0.1;

counter=0;
Vds=Vdsmin;
while (Vds<=Vdsmax):

GNR.mu2=-Vds;
p.normpoisson=1e-1;
p.normd=5e-3;

solve_self_consistent(grid,p,GNR); vg[counter]=Vds;
current[counter]=GNR.current();

I save the output files if (rank==0):

string="./datiout/Phi%s.out" %Vds; savetxt(string,p.Phi);

string="./datiout/ncar%s.out" %Vds;

savetxt(string,p.free_charge); a=[GNR.E,GNR.T];

string="./datiout/T%s.out" %Vds;

savetxt(string,transpose(a)); string="./datiout/jayn%s.out"

%Vds; fp=open(string,"w");

string2="%s" %current[counter]; fp.write(string2);
fp.close();

counter=counter+1;
Vds=Vds+Vdstep;

tempo=[vg,current]
savetxt("idvds2.out",transpose(tempo));

Page | 99

NanoTCAD ViDES main python script

==
===============

Copyright (c) 2010-2012, G. Fiori, G. Iannaccone, University of Pisa

This file is released under the BSD license.
See the file "license.txt" for information on usage and

redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.

==
===============

from numpy import *

from NanoTCAD_ViDESmod import * from
section import *

import sys import
types

writeout("\n")

writeout("--

-------\n")

writeout(" NanoTCAD ViDES ")

writeout(" Version 1.4 (rel-1-4)")

writeout(" Last Modified 29 Aug 2013")

writeout(" Copyright (C) 2004-2013 \n")

writeout("--
-------\n")

writeout("\n")

NEmax=5e3;
DIGIT_PRECISION=20;
max_number_of_cores_on_a_server=8;

#I check if mpi4py is installed on the machine or not try:

from mpi4py import MPI
mpi4py_loaded = True
sizeMPI = MPI.COMM_WORLD.Get_size() except

ImportError:
mpi4py_loaded = False

#I check if pylab is installed on the machine or not try:

if (mpi4py_loaded):

if (sizeMPI<=max_number_of_cores_on_a_server): from pylab
import *

Page | 100

pylab_loaded = True
else:

from pylab import *
pylab_loaded = True

#except ImportError: except
Exception:

pylab_loaded = False

writeout("pylab not installed on this machine or not set up correctly DISPLAY
variable")

#definition of constants

kboltz=1.3807e-23 hbar=1.05459e-34

m0=9.1095e-31 q=1.60219e-19

eps0=8.85e-12

#Slater-Costner parameter for sp3d5s* tight-binding Hamiltonian in Si thop_Si=array([-1.95933,-
4.24135,-1.52230,3.02562,3.15565,-2.28485,-0.80993,4.10364,-1.51801,-1.35554,2.38479,-
1.68136,2.58880,-1.81400]); onsite_Si=array([-
2.15168,4.22925,4.22925,4.22925,13.78950,13.78950,13.78950,13.78950,13
.78950,19.11650]);

def MPIze(channel):

if (mpi4py_loaded): del
channel.E;

channel.E=zeros(NEmax);
Eupper_save=channel.Eupper;
Elower_save=channel.Elower;
vt=kboltz*channel.Temp/q;

sizeMPI = MPI.COMM_WORLD.Get_size() if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank()
channel.rank=rank;

I compute the maximum and the minimum

of the energy interval

if ((channel.Eupper>900)&(channel.Elower<-900)):
Eupper=max(max(channel.mu1,max(-

channel.Phi)),channel.mu2)+0.5*channel.gap()+10*vt;

Elower=min(min(channel.mu1,min(-
channel.Phi)),channel.mu2)-0.5*channel.gap()-10*vt; else:

Eupper=channel.Eupper;
Elower=channel.Elower;

string="Eupper and Elower %s %s " %(Eupper,Elower)

if (rank==0): writeout(string)

E=arange(Elower,Eupper,channel.dE);
arraydim=size(E)/sizeMPI;

excess=size(E)-sizeMPI*arraydim if (rank<excess):

channel.Elower=E[rank*(arraydim+1)];

Page | 101

channel.Eupper=E[(rank+1)*(arraydim+1)-1]; else:
channel.Elower=E[(rank-

excess)*arraydim+excess*(arraydim+1)];
if (rank==(sizeMPI-1)):

channel.Eupper=E[size(E)-1];

else: channel.Eupper=E[(rank-excess+1)*arraydim-
1+excess*(arraydim+1)];

string="Inizio rank %s %s %s"
%(rank,channel.Elower,channel.Eupper)

writeout(string)

channel.charge_T();
#writeout("Finito rank "),rank,channel.Elower,channel.Eupper;

I send the charge and the transmission coefficient if (rank!=0):

temp=array(channel.charge);

MPI.COMM_WORLD.Send([temp, MPI.DOUBLE],dest=0,tag=11); del temp;

NPE=zeros(1,int);
NPE[0]=int(ceil((channel.Eupper-

channel.Elower)/channel.dE))+1;

#size(arange(channel.Elower,channel.Eupper,channel.dE)); #int((channel.Eupper-
channel.Elower)/channel.dE); #size(nonzero(channel.E));
temp=array(channel.T[:NPE[0]]); temp2=array(channel.E[:NPE[0]]);

NPE[0]=size(temp);

MPI.COMM_WORLD.Send([NPE, MPI.INT],dest=0,tag=10);
MPI.COMM_WORLD.Send([temp, MPI.DOUBLE],dest=0,tag=12);
MPI.COMM_WORLD.Send([temp2, MPI.DOUBLE],dest=0,tag=14);
#writeout("Spedito rank "),rank

del temp; del
temp2;

else:

channel.charge=array(channel.charge);
NNEE=int(ceil((channel.Eupper-

channel.Elower)/channel.dE))+1;

#size(arange(channel.Elower,channel.Eupper,channel.dE));

NNEE=((channel.Eupper-channel.Elower)/channel.dE);
size(nonzero(channel.E));

channel.T=array(channel.T[:NNEE]);

channel.E=array(channel.E[:NNEE]);

for i in range(1,sizeMPI):

temp=empty(size(channel.charge),dtype=double);
MPI.COMM_WORLD.Recv([temp,

MPI.DOUBLE],source=i,tag=11);

channel.charge=channel.charge+temp; del temp;

Page | 102

NPE=empty(1,int);

MPI.COMM_WORLD.Recv([NPE, MPI.INT],source=i,tag=10);
temp=empty(NPE[0],dtype=double); MPI.COMM_WORLD.Recv([temp,

MPI.DOUBLE],source=i,tag=12);

temp2=empty(NPE[0],dtype=double);
MPI.COMM_WORLD.Recv([temp2,

MPI.DOUBLE],source=i,tag=14);
channel.T=concatenate((channel.T,temp));

channel.E=concatenate((channel.E,temp2)); del temp;

del temp2; #writeout("Preso rank "),i

channel.charge = MPI.COMM_WORLD.bcast(channel.charge, root=0)
channel.T = MPI.COMM_WORLD.bcast(channel.T, root=0)
channel.E = MPI.COMM_WORLD.bcast(channel.E, root=0)

channel.Eupper=Eupper_save;

channel.Elower=Elower_save;

MPI.Finalize();

else:

writeout("*********************************")

writeout("MPI not installed on this machine")

writeout("*********************************")

return;

def MPIze_kt(channel): if

(mpi4py_loaded):

kmin_save=channel.kmin;
kmax_save=channel.kmax;
vt=kboltz*channel.Temp/q;

sizeMPI = MPI.COMM_WORLD.Get_size() if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank()
channel.rank=rank;

I compute the maximum and the minimum

of the wave-vector kt

kt_max=channel.kmax;
kt_min=channel.kmin;

if (rank==0): writeout("kt_max, kt_min"),kt_max,kt_min

k=arange(kt_min,kt_max,channel.dk); arraydim=size(k)/sizeMPI;

channel.kmin=k[rank*arraydim];

if (rank==(sizeMPI-1)):

channel.kmax=k[size(k)-1];

else: channel.kmax=k[(rank+1)*arraydim-1];

channel.charge_T();

NE=size(channel.E);

Page | 103

I send the charge and the transmission coefficient if (rank!=0):

temp=array(channel.charge); MPI.COMM_WORLD.Send([temp,

MPI.DOUBLE],dest=0,tag=11); del temp;

temp=array(channel.T);

MPI.COMM_WORLD.Send([temp, MPI.DOUBLE],dest=0,tag=12); del temp;
else:

channel.charge=array(channel.charge);

channel.T=array(channel.T); for i in
range(1,sizeMPI):

temp=empty(size(channel.charge),dtype=double);
MPI.COMM_WORLD.Recv([temp,

MPI.DOUBLE],source=i,tag=11);

channel.charge=channel.charge+temp; del temp;
temp=empty(NE,dtype=double);
MPI.COMM_WORLD.Recv([temp,

MPI.DOUBLE],source=i,tag=12);

channel.T=channel.T+temp; del temp;

channel.charge = MPI.COMM_WORLD.bcast(channel.charge, root=0) channel.T =
MPI.COMM_WORLD.bcast(channel.T, root=0) channel.kmin=kmin_save;
channel.kmax=kmax_save;

MPI.Finalize();

else:

writeout("*********************************")
writeout("MPI not installed on this machine")
writeout("*********************************")

return;

def set_gate(interface,gate):

interface.boundary_conditions[gate.index]=gate.Ef;

def solve_init(grid,interface,channel):

I get the rank if
(mpi4py_loaded):

channel.rank = MPI.COMM_WORLD.Get_rank()

I set the rank

if (mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank()
interface.rank=rank;

else:

interface.rank=0;

Page | 104

I first give an estimation of the density of states
when computing the flat band potential in the regions
where the fixed_charge is not equal to zero, assuming
full ionization

I save the temperature, mu1, mu2, the potential, n, Nc, Eupper, Elower

temp_save=channel.Temp;

mu1_save=channel.mu1;
mu2_save=channel.mu2;
Nc_save=channel.Nc;
Eupper_save=channel.Eupper;
Elower_save=channel.Elower;

boundary_conditions_save=copy(interface.boundary_conditions);
normpoisson_save=interface.normpoisson;

interface.normpoisson=1e-3;

I impose a low-temperature, so to compute the LDOS, instead of

the

LDOS multiplied by the Fermi-Dirac
name=grid.__class__.__name__;
name_channel=channel.__class__.__name__; if
(name=="grid3D"):

if (name_channel=="multilayer_graphene"): channel.Nc=8;

x_save=channel.x y_save=channel.y
z_save=channel.z
channel.atoms_coordinates();

else:

channel.Nc=6;

channel.Phi=zeros(channel.n*channel.Nc);

channel.mu1=0;

channel.mu2=0;

vt=kboltz*channel.Temp/q;

channel.Eupper=channel.gap()+10*vt;

channel.Elower=0;

I compute the NEGF

if (interface.modespace=="yes"):

channel.mode_charge_T();

else:

if (interface.MPI=="yes"):

MPIze(channel);
else:

channel.charge_T();

N1D=abs(sum(channel.charge))/(6*channel.Nc)/(3*channel.acc)*1e9;

Ec=channel.gap()*0.5;

N1D=sum(abs(channel.charge))/(6*channel.n)/(4*channel.acc)*1e9*exp(Ec/

vt);

Page | 105

return N1D

I compute the mean z: if atoms have a z-coordinate > zmean => I impose the

electrochemical potential mu2
if atoms have a z-coordinate < zmean => I impose the electrochemical

potential mu1

zmean=(grid.zmin+grid.zmax)*0.5;
indexS=nonzero((abs(interface.fixed_charge)>1e-

20)&(grid.z3D<zmean)); indexD=nonzero((abs(interface.fixed_charge)>1e-
20)&(grid.z3D>=zmean));

potential=zeros(grid.Np);

argoS=(abs(interface.fixed_charge[indexS])*grid.surf[indexS,5]/N1D);

argoD=(abs(interface.fixed_charge[indexD])*grid.surf[indexD,5]/N1D);

potential[indexS]=(vt*(log(exp(argoS)-
1))+Ec)*sign(interface.fixed_charge[indexS])+mu1_save;

potential[indexD]=(vt*(log(exp(argoD)-
1))+Ec)*sign(interface.fixed_charge[indexD])+mu2_save;

interface.boundary_conditions[indexS]=potential[indexS];
interface.boundary_conditions[indexD]=potential[indexD];

solve_Poisson(grid,interface); elif

(name=="grid2D"):
channel.Nc=8;

channel.Phi=zeros(channel.n*channel.Nc);
channel.mu1=0;

channel.mu2=0;

vt=kboltz*channel.Temp/q;

channel.Eupper=channel.gap()+10*vt;

channel.Elower=0;

I compute the NEGF

if (interface.modespace=="yes"):

channel.mode_charge_T();

else:

#if (interface.MPI_kt=="yes"):

MPIze_kt(channel); #else:
channel.charge_T();

Ec=channel.gap()*0.5;

N1D=sum(abs(channel.charge))/(8*channel.n)/(8*channel.acc)*1e9*exp(Ec/

vt);

I compute the mean z: if atoms have a z-coordinate > zmean => I impose the

electrochemical potential mu2

Page | 106

if atoms have a z-coordinate < zmean => I impose the electrochemical
potential mu1

ymean=(grid.ymin+grid.ymax)*0.5;
indexS=nonzero((abs(interface.fixed_charge)>1e-

20)&(grid.y2D<ymean)); indexD=nonzero((abs(interface.fixed_charge)>1e-
20)&(grid.y2D>=ymean));

potential=zeros(grid.Np);
argoS=(abs(interface.fixed_charge[indexS])/N1D);
argoD=(abs(interface.fixed_charge[indexD])/N1D);

potential[indexS]=(vt*(log(exp(argoS)-
1))+Ec)*sign(interface.fixed_charge[indexS])+mu1_save;

potential[indexD]=(vt*(log(exp(argoD)-
1))+Ec)*sign(interface.fixed_charge[indexD])+mu2_save;

potential[indexS]=Ec;

potential[indexD]=Ec;

interface.boundary_conditions[indexS]=potential[indexS];
interface.boundary_conditions[indexD]=potential[indexD];

solve_Poisson(grid,interface);

#going back to the old values
channel.Nc=Nc_save
channel.mu2=mu2_save;
channel.mu1=mu1_save;
channel.Eupper=Eupper_save;
channel.Elower=Elower_save;

interface.boundary_conditions=boundary_conditions_save;
interface.normpoisson=normpoisson_save;

if (name_channel=="multilayer_graphene"):

channel.x=x_save

channel.y=y_save
channel.z=z_save

del x_save,y_save,z_save #deleting

the save variables del

mu1_save,mu2_save,Nc_save,Eupper_save,Elower_save,boundary_conditions_ save;

return;

def solve_self_consistent(grid,interface,channel): normad=1e30;

Phiold=1.0*interface.Phi;

interface.Phiold=interface.Phi.copy(); counter=1;

if (mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank() else:
rank=0;

Page | 107

while (normad>interface.normd):
I pass the potential in correspondence of the

atoms of the material for which I compute the NEGF
channel.Phi=interface.Phi[grid.swap]
I compute the NEGF

channel.Phi=zeros(size(grid.swap));
savetxt("Phi.before",interface.Phi[grid.swap]);

if (interface.modespace=="yes"):

channel.mode_charge_T();
else:

if (interface.MPI=="yes"):

MPIze(channel);

elif (interface.MPI_kt=="yes"):
MPIze_kt(channel);

else: channel.charge_T();

savetxt("Phi.temp2",interface.Phi);

a=[channel.E,channel.T];

savetxt("T.temp",transpose(a));

if (rank==0):

writeout("--")

string=" CURRENT = %s A/m"

%(channel.current());

writeout(string);

writeout("--")

I pass back the free_charge term to

the 3D domain

interface.free_charge[grid.swap]=channel.charge

if (rank==0): savetxt("ncar.ini",interface.free_charge);

savetxt("Phi.ini",interface.Phi);

I solve Poisson
solve_Poisson(grid,interface);

normad=sqrt(sum((interface.Phiold-interface.Phi)**2));

Phiold=zeros(grid.Np);

normad=max(abs(interface.Phiold-interface.Phi))

interface.Phi=interface.Phi+(interface.underel)*(interface.Phiold-interface.Phi)

Page | 108

del interface.Phiold;
del Phiold;
Phiold=1.0*interface.Phi;

interface.Phiold=interface.Phi.copy();

if (rank==0): print()

string="Iteration # %s; ||Phi-Phiold||2 = %s" %(counter,normad)

if (rank==0): writeout(string) if (rank==0):
print() counter=counter+1;

if (counter>600): return;

def solve_Poisson(grid,interface):

name=grid.__class__.__name__; if
(name=="grid3D"):

solvePoisson(grid,interface); elif

(name=="grid2D"):

solvePoisson2D(grid,interface); elif
(name=="grid1D"):

solvePoisson1D(grid,interface);
interface.Phi=array(interface.Phi)

return;

def nonuniformgrid(argu):

#This is a wrapper for the nonuniformgridmod function

#so to convert both the argument and the output to numpy arrays #I convert the argument in
an array
argarr=array(argu);

out=nonuniformgridmod(argarr);

I return a pyarray
outarr=array(out); return outarr;

#Fermi-Dirac Function def
Fermi(x):

return 1/(1+exp(x));

def delete_class(class_obj):

del_class(class_obj); del class_obj;
return;

This is the class for the nanotube class nanotube:

acc=0.144;

def __init__(self,n,L): self.Nc=int(4*(floor((floor(L/nanotube.acc)-1)/3))+2);
self.n=n;

Page | 109

self.Phi=zeros(n*self.Nc);

self.Eupper=1000.0;

self.Elower=-1000.0; self.dE=1e-

3; self.thop=-2.7; self.eta=1e-5;

self.mu1=0; self.mu2=0;

self.Temp=300;

self.contact="doped";

self.E=zeros(NEmax);

self.T=zeros(NEmax);

self.charge=zeros(self.n*self.Nc);
self.Nmodes=n;
self.x=zeros(n*self.Nc);
self.y=zeros(n*self.Nc);

self.z=zeros(n*self.Nc);
self.L=int(self.Nc/2+((self.Nc-1)-

self.Nc*0.5)*0.5)*nanotube.acc;

self.atoms_coordinates(); self.rank=0;

def gap(self):

return abs(2*self.acc*self.thop*pi/(self.n*sqrt(3)*self.acc)); def atoms_coordinates(self):
CNT_atoms_coordinates(self);
self.x=array(self.x); self.y=array(self.y);
self.z=array(self.z); return;

def charge_T(self): CNT_charge_T(self);

self.E=array(self.E); self.T=array(self.T);
self.charge=array(self.charge); return;

def mode_charge_T(self):

CNTmode_charge_T(self);

self.E=array(self.E); self.T=array(self.T);
self.charge=array(self.charge); return

def current(self): vt=kboltz*self.Temp/q;

E=self.E;

T=self.T; arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE; return

sum(arg);

This is the class for the nanoribbon class GNRphonon:

def __init__(self,dimer):

self.N=1000; # number of points qx (longitudinal direction) while (((((self.N)-
1)%(dimer/2))!=0) | (((self.N)%2)==0)):

(self.N)+=1;

self.dimer=dimer; # numero dimer lines self.rank=0;
self.phi=0.0; # channel potential (midgap) self.numberAC=2; # number of AC modes
of different simmetry

considered (=2: LA+TA, =1: only LA) self.Ecutoff=1.0; #

cutoff energy
self.delta=2; # integer: it specifies the sampling along the kx direction

Page | 110

self.deltak=0;

self.kyE=zeros(dimer); # transverse electron wavevector self.qy=zeros(dimer); #
transverse phonon wavevector self.kx=zeros(self.N); # longitudinal electron
wavevector self.qx=zeros(self.N); # longitudinal phonon wavevector self.qx0=0.0; #
fixed value for qx (computation of graphene

branches)

self.qy0=0.0; # fixed value for qy (computation of graphene branches)

self.kxup=0; # maximum value for kx (computation of rates) self.kxdown=0; #
minimum value for kx (computation of rates) self.dim1=self.N;
self.dim2=dimer;

self.dim3=6;

self.mmin=0;

self.mmax=dimer-1;

self.kxmin=0;

self.kxmax=0;
self.Phi_r1=39.87*10.0; # first neighbors

self.Phi_ti1=17.28*10.0;

self.Phi_to1=9.89*10.0;

self.Phi_r2=7.29*10.0; # second neighbors

self.Phi_ti2=-4.61*10.0; self.Phi_to2=-0.82*10.0;

self.Phi_r3=-2.64*10.0; # third neighbors

self.Phi_ti3=3.31*10.0; self.Phi_to3=0.58*10.0;

self.Phi_r4=0.10*10.0; # fourth neighbors

self.Phi_ti4=0.79*10.0; self.Phi_to4=-0.52*10.0;

self.energyE=zeros((self.dim1,(2*self.dim2))) # GNR electron
curves

self.energyP2D=zeros((self.dim1,(self.dim2*self.dim3))) # GNR phonon subbranches

self.minAC=zeros((self.dim2,3));# minimum of the acoustic subbranches
self.Egraphene=zeros(self.dim3); # graphene
self.rateAA=zeros((self.dim1,self.dim2));
self.rateAE=zeros((self.dim1,self.dim2));
self.rateOA=zeros((self.dim1,self.dim2));

self.rateOE=zeros((self.dim1,self.dim2)); self.Dac=4.5*(1.60219e-19); # deformation
potential value (eV) self.temp=300; # temperature (K)

self.thop=2.7; # hopping parameter (eV) self.aCC=0.144e-9;
lattice constant (m)

def electron_GNR(self): electron_GNR(self);

self.kx=array(self.kx); self.kyE=array(self.kyE);
self.energyE=array(self.energyE); return;

def phonon_GNR(self):

phonon_GNR(self);
self.qx=array(self.qx);
self.qy=array(self.qy);
self.energyP2D=array(self.energyP2D);
return;

def phonon_graphene(self): phonon_graphene(self);

self.Egraphene=array(self.Egraphene); return;

Page | 111

def rateACABS(self): rateACABS(self);
self.rateAA=array(self.rateAA); return;

def rateACEM(self): rateACEM(self);

self.rateAE=array(self.rateAE); return;

def rateOPTABS(self): rateOPTABS(self);

self.rateOA=array(self.rateOA); return;

def rateOPTEM(self): rateOPTEM(self);
self.rateOE=array(self.rateOE); return;

This is the class for the nanoribbon class nanoribbon:

acc=0.144;

def __init__(self,n,L): self.Nc=int(4*(int((int(L/nanoribbon.acc)-1)/3))+2);
self.n=n;
self.Phi=zeros(n*self.Nc);

self.Eupper=1000.0;
self.Elower=-1000.0;
self.dE=1e-3; self.thop=-2.7;
self.eta=1e-5; self.mu1=0;
self.mu2=0;
self.Temp=300;
self.contact="doped";
self.E=zeros(NEmax);
self.T=zeros(NEmax);

self.charge=zeros(self.n*self.Nc);

self.defects="no";
self.roughness="no";

self.rank=0; self.atoms_coordinates();

def atoms_coordinates(self):

GNR_atoms_coordinates(self);
self.x=array(self.x); self.y=array(self.y);
self.z=array(self.z); return;

def gap(self):

return GNRgap(self); def
charge_T(self):

GNR_charge_T(self); self.E=array(self.E);
self.T=array(self.T);
self.charge=array(self.charge); return;

def current(self): vt=kboltz*self.Temp/q;

E=array(self.E); T=array(self.T);

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-
self.mu2)/vt))*self.dE

return sum(arg);

This is the class for the graphene class graphene:

acc=0.144;

n=1;

def __init__(self,L): self.Nc=int(4*(floor((floor(L/graphene.acc)-1)/3)));
self.Phi=zeros(self.Nc);

Page | 112

self.Ei=zeros(self.Nc);

self.Eupper=1000.0; self.Elower=-1000.0;
self.delta=sqrt(3)*graphene.acc;
self.kmax=pi/self.delta; self.kmin=0;

self.dk=0.1; self.dE=1e-3;

self.thop=-2.7; self.eta=1e-8;

self.mu1=0.0; self.mu2=0.0;

self.Temp=300;

self.E=zeros(NEmax);

self.T=zeros(NEmax);
self.charge=zeros(self.Nc);

self.rank=0; self.atoms_coordinates();

self.gap(); self.T2D="no"

def atoms_coordinates(self):

GNR_atoms_coordinates(self);
self.y=array(self.z);
self.x=zeros(size(self.y)); del self.z;

return; def

gap(self):
return 0;

def charge_T(self):

Number of slices and atoms
slices=self.Nc;
atoms=1;

I define the vector of the k-wave vector
kvect=arange(self.kmin,self.kmax,self.dk)
I start defining the Hamiltonian for the graphene flake
h=zeros((2*slices,3),dtype=complex);
h[0][0]=1;

for i in range(1,slices+1): h[i][0]=i

h[i][1]=i

kk=1;

for ii in range(slices+1,2*slices): if ((ii%2)==1):
h[ii][0]=kk;

h[ii][1]=kk+1;

h[ii][2]=self.thop;

kk=kk+1;

I then compute the charge and the T for each energy and k and perform the integral
i=0;

k=self.kmin;

H = Hamiltonian(atoms, slices) if
(self.T2D=="yes"):

EE=arange(self.Elower,self.Eupper,self.dE);
kvect=arange(self.kmin,self.kmax+self.dk,self.dk);
X,Y=meshgrid(EE,kvect);

Z=zeros((size(EE),size(kvect))) while

Page | 113

(k<=(self.kmax+self.dk*0.5)):
if (self.rank==0): writeout("----------------------------------")

string=" kx range: [%s,%s] " %(self.kmin,self.kmax); if (self.rank==0):
writeout(string)
string=" iteration %s " %i;

if (self.rank==0): writeout(string);

if (self.rank==0): writeout("----------------------------------")
flaggo=0;
kk=1;

I fill the Hamiltonian for the actual wavevector k in the cycle

for ii in range(slices+1,2*slices): if ((ii%2)==0):
h[ii][0]=kk;
h[ii][1]=kk+1;
if ((flaggo%2)==0):

h[ii][2]=self.thop+self.thop*exp(k*self.delta*1j);

else: h[ii][2]=self.thop+self.thop*exp(-
k*self.delta*1j);

flaggo=flaggo+1;

kk=kk+1;

H.Eupper = self.Eupper;

H.Elower = self.Elower;

H.rank=self.rank;

H.H = h

H.dE=self.dE;

H.Phi=self.Phi;

H.Ei=-self.Phi;

H.eta=self.eta;

H.mu1=self.mu1;

H.mu2=self.mu2;

H.Egap=self.gap();

I then compute T and the charge for the actual kx H.charge_T()

I sum up all the contribution

if (i==0): self.E=H.E;

the factor 2 is because I integrate over kx>0
self.T=H.T*(2*self.dk/(2*pi));
self.charge=H.charge*(2*self.dk/(2*pi));

else:

the factor 2 is because I integrate over kx>0
self.T=self.T+H.T*(2*self.dk/(2*pi));
self.charge=self.charge+H.charge*(2*self.dk/(2*pi));

if (self.T2D=="yes"):

Z[:,i]=H.T[:size(EE)];
k=k+self.dk
i=i+1;

Page | 114

if (self.T2D=="yes"):

plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower',

extent=[self.kmin,self.kmax,self.Elower,self.Eupper])
show()

del H; self.E=array(self.E);
self.T=array(self.T)*1e9;

self.charge=array(self.charge)*1e9; del kvect,h;
return;

def current(self): vt=kboltz*self.Temp/q;
E=array(self.E); T=array(self.T);

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE
return sum(arg);

This is the class for the graphene bilayer class
bilayer_graphene:

acc=0.144;
acc_p=0.35; n=2;

def __init__(self,L): self.Nc=int(4*(floor((floor(L/bilayer_graphene.acc)-1)/3))); self.n=2;

self.Phi=zeros(bilayer_graphene.n*self.Nc);
self.Ei=zeros(bilayer_graphene.n*self.Nc); self.Eupper=1000.0;

self.Elower=-1000.0;
self.delta=sqrt(3)*bilayer_graphene.acc;
self.kmax=pi/self.delta;
self.kmin=0;

self.dk=0.1; self.dE=1e-3;

self.thop=-2.7; self.tp=-0.35;

self.eta=1e-8; self.mu1=0.0;

self.mu2=0.0; self.Temp=300;

self.E=zeros(NEmax);

self.T=zeros(NEmax);

self.charge=zeros(bilayer_graphene.n*self.Nc); self.rank=0;

self.atoms_coordinates(); self.gap();

self.T2D="no"

def atoms_coordinates(self): n_save=self.n;

self.n=1; GNR_atoms_coordinates(self);
ydown=array(self.z); yup=ydown-self.acc*0.5;
NN=size(ydown);
kkk=0;

self.y=zeros(2*NN); for i in
range(0,NN):

self.y[kkk]=ydown[i];
self.y[kkk+1]=yup[i];

kkk=kkk+2;

Page | 115

self.x=zeros(size(self.y)); i=linspace(0,size(self.y)-1,size(self.y))

i_even=nonzero((i%2)==0); i_odd=nonzero((i%2)==1);

self.x[i_even]=0; self.x[i_odd]=bilayer_graphene.acc_p; del

self.z,i,i_even,i_odd; self.n=n_save;

return; def gap(self):
This is an rough exstimation of

the Energy gap: for sure this is

the largest attainable value, within

the pz tight-binding model

return abs(self.tp); def charge_T(self):
Number of slices and atoms slices=self.Nc;
atoms=self.n;

I define the vector of the k-wave vector
kvect=arange(self.kmin,self.kmax,self.dk)
I start defining the Hamiltonian for the bilayer graphene h=zeros((4*slices+2*(slices/4)-
2,3),dtype=complex); h[0][0]=1;

for i in range(1,2*slices+1): h[i][0]=i

h[i][1]=i

h[i][2]=0.0;

I then compute the charge and the T for each energy

and k and perform the integral

i=0;
k=self.kmin;

H = Hamiltonian(atoms, slices) if
(self.T2D=="yes"):

EE=arange(self.Elower,self.Eupper,self.dE);

kvect=arange(self.kmin,self.kmax+self.dk,self.dk);

X,Y=meshgrid(EE,kvect);

Z=zeros((size(EE),size(kvect))) while
(k<=(self.kmax+self.dk*0.5)):

if (self.rank==0): writeout("----------------------------------")

string=" kx range: [%s,%s] " %(self.kmin,self.kmax); if (self.rank==0):
writeout(string);
string=" k: %s " %k;
if (self.rank==0): writeout(string);
if (self.rank==0): writeout("----------------------------------")

BEGINNING OF THE HAMILTONIAN DEFINITION
FOR THE GRAPHENE BILAYER

I work on the bottom graphene layer kk=1;
flaggo=0;

for ii in range(2*slices+1,3*slices): if ((ii%2)==1):

Page | 116

h[ii][0]=kk;

h[ii][1]=kk+2;

h[ii][2]=self.thop;

kk=kk+2;

else:

h[ii][0]=kk;

h[ii][1]=kk+2;

if ((flaggo%2)==0):

h[ii][2]=self.thop+self.thop*exp(k*self.delta*1j);

else: h[ii][2]=self.thop+self.thop*exp(-
k*self.delta*1j);

kk=kk+2;

flaggo=flaggo+1;

I work on the top graphene layer kk=2;
flaggo=1;

for ii in range(3*slices,4*slices-1): if ((ii%2)==0):

h[ii][0]=kk;

h[ii][1]=kk+2;

h[ii][2]=self.thop;
kk=kk+2;

else:

h[ii][0]=kk;

h[ii][1]=kk+2;

if ((flaggo%2)==0):

h[ii][2]=self.thop+self.thop*exp(k*self.delta*1j);

else:

h[ii][2]=self.thop+self.thop*exp(-
k*self.delta*1j);

kk=kk+2;
flaggo=flaggo+1;

I now work on the perpendicular hopping parameter kk=3;

for ii in range(4*slices-1,4*slices+int(slices/2)-2): h[ii][0]=kk;

h[ii][1]=kk+3;

h[ii][2]=self.tp;
kk=kk+4;

END OF THE HAMILTONIAN

H.Eupper = self.Eupper; H.Elower =
self.Elower; H.H = h
H.rank=self.rank; H.dE=self.dE;
H.Phi=self.Phi;

Page | 117

ind_even=arange(0,size(H.Phi),2);
ind_odd=ind_even+1; H.Ei[ind_even]=-

(self.Phi[ind_even]+self.Phi[ind_odd])*0.5; H.Ei[ind_odd]=-

(self.Phi[ind_even]+self.Phi[ind_odd])*0.5; H.Ei_flag="no"

H.eta=self.eta;

H.mu1=self.mu1;

H.mu2=self.mu2;

H.Egap=self.gap();

return H.H

I then compute T and the charge for the actual kx H.charge_T()

I sum up all the contribution

if (i==0): self.E=H.E;

the factor 2 is because I integrate over kx>0
self.T=H.T*(2*self.dk/(2*pi));
self.charge=H.charge*(2*self.dk/(2*pi));

self.charge=H.charge; else:

The spin is taken into account in the integral for

the current

the factor 2 is because I integrate over kx>0
self.T=self.T+H.T*(2*self.dk/(2*pi));

2 because I take into account

that I integrate over kx>0
self.charge=self.charge+H.charge*(2*self.dk/(2*pi));

if (self.T2D=="yes"):

Z[:,i]=H.T[:size(EE)];
k=k+self.dk
i=i+1;

if (self.T2D=="yes"):

plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower',

extent=[self.kmin,self.kmax,self.Elower,self.Eupper])
show()

del H; self.E=array(self.E);
self.T=array(self.T)*1e9;
self.charge=array(self.charge)*1e9;

self.charge=array(self.charge); del kvect,h;

return;

def current(self): vt=kboltz*self.Temp/q;
E=array(self.E); T=array(self.T);

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

Page | 118

self.mu2)/vt))*self.dE
return sum(arg);

This is the class for the general Hamiltonian class Hamiltonian:

def __init__(self, n, Nc): self.Nc=Nc;
self.n=n;

self.x=zeros(n*self.Nc);

self.y=zeros(n*self.Nc);

self.z=zeros(n*self.Nc);

self.Phi=zeros(n*self.Nc);

self.Ei=zeros(n*self.Nc);

self.Eupper=1000.0;

self.Elower=-1000.0;

self.dE=0.001; self.eta=1e-8;

self.mu1=0; self.mu2=0;

self.Temp=300;

self.E=zeros(NEmax);

self.T=zeros(NEmax);

self.charge=zeros(n*self.Nc);
self.Egap=0;
self.rank=0;

if this flag is set to "yes" then Ei=-Phi self.Ei_flag="yes"

The +1 will be then replaced by the number of orbitals per atoms in the nearest neighbourgh
approximation
self.H=zeros((((Nc*n)*(Nc*n+1)/2),2+100+10));

def current(self): vt=kboltz*self.Temp/q;
E=array(self.E); T=array(self.T);

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE

return sum(arg); def
charge_T(self):

if (self.Ei_flag=="yes"): self.Ei=-
self.Phi;

H_charge_T(self); self.E=array(self.E);
self.T=array(self.T);
self.charge=array(self.charge);

def gap(self): return 0.5;

This is the class for the zincblend structures

This is the class for the zincblend structures class Zincblend:

def __init__(self, material, sqci, tilt, edge, zmax): self.material = material
if self.material == 'Si':

self.aux = [-2.15168, 4.22925,

19.11650,

13.78950, -

1.95933, -

4.24135, -

1.52230,

3.02562,

Page | 119

3.15565, -

2.28485, -

0.80993,

4.10364, -

1.51801, -

1.35554,

2.38479, -

1.68136,

2.58880, -

1.81400,
]

self.skparameters = array(self.aux, dtype=float) self.a0 = 5.431
self.flag = 0

if self.material == 'Ge': self.aux = [-1.95617,

5.30970, 19.29600, 13.58060, -1.39456, -3.56680, -

2.01830, 2.73135, 2.68638, -2.64779, -1.12312,

4.28921, -1.73707, -2.00115, 2.10953, -1.32941,

2.56261, -1.95120

]

self.skparameters = array(self.aux, dtype=float) self.a0 = 5.6575
self.flag = 0

if self.material == 'InAs': self.aux = [-5.500420,

4.151070, -0.581930, 6.971630, 19.710590,

19.941380, 13.031690, 13.307090, -1.694350, -

4.210450, -2.426740, -1.159870, 2.598230, 2.809360,

2.067660, 0.937340, -2.268370, -2.293090, -0.899370,

-0.488990, 4.310640, -1.288950, -1.731410, -

1.978420, 2.188860, 2.456020, -1.584610,
2.717930, -
0.505090
]

self.skparameters = array(self.aux, dtype=float) self.a0 = 6.0583
self.flag = 1

self.sqci=sqci;
self.tilt=tilt;
self.edge=edge;

self.zmax=zmax;

layers = int(4*self.zmax/(self.a0) + 1)

if (rank==0): writeout("prima="), layers

if layers%4==1: layers-

=1
elif layers%4==2: layers-=2

elif layers%4==3: layers+=1

Page | 120

if layers%4!=0:

writeout("INTERRUPT AT WIRE"), material, parameters[0][i]
writeout("NUMBER OF SLICES NOT MULTIPLE OF 4")
quit()

layers += 8

self.L = (self.a0/4)*(layers-1)

self.n_aux = int((4*self.edge/self.a0)*(4*self.edge/self.a0))

+ 10;

#forse se ci si leva il +10 non cambia nulla (provare) self.Nc_aux =
int((4*self.zmax/self.a0)) + 10; self.zmax=self.L

self.atoms=zeros(1);

self.slices=zeros(1);

self.max=zeros(1);

self.rank=0;

self.deltae=20.0;

self.ics = zeros(self.n_aux*self.Nc_aux); self.ipsilon =
zeros(self.n_aux*self.Nc_aux); self.zeta =
zeros(self.n_aux*self.Nc_aux); self.H_aux=zeros(

(self.Nc_aux*self.n_aux)*((self.Nc_aux*self.n_aux+1)/2)*(2+100));

self.H=zeros((((self.Nc_aux*self.n_aux)*(self.Nc_aux*self.n_aux+1)/2), 2+100));

self.Zinc();
self.n = int(self.atoms[0]); self.Nc=
int(self.slices[0]); self.x = self.ics;

self.y = self.ipsilon; self.z =
self.zeta;

self.Phi=zeros(self.n*self.Nc);
self.Ei=zeros(self.n*self.Nc);

self.Eupper=1000.0;

self.Elower=-1000.0;

self.dE=0.001; self.eta=1e-8;

self.mu1=0; self.mu2=0;

self.Temp=300;

self.E=zeros(NEmax);

self.T=zeros(NEmax);
self.charge=zeros(self.n*self.Nc);

self.Egap=0; def

gap(self):
return 0;

def current(self): vt=kboltz*self.Temp/q;

E=array(self.E); T=array(self.T);

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-
self.mu2)/vt))*self.dE

return sum(arg); def
charge_T(self):

Page | 121

H_charge_T(self); self.E=array(self.E);
self.T=array(self.T);
self.charge=array(self.charge); return;

def Zinc(self):

writeout(self.skparameters)

quit()

Zinc(self);

self.zeta = array(self.zeta);

ics1 = []

ipsilon1 = []

zeta1 = []

i = 0

j = 0

k = 0

temp = self.zeta[0]- self.a0
zeta1.append(temp)

aux = []

for ln in self.zeta:

if (self.zeta[i]- self.a0) == temp:

#temp = self.zeta[i]- self.a0
i = i + 1
j = j + 1
else:
zeta1.append(self.zeta[i]- self.a0)

temp = self.zeta[i]- self.a0
i = i + 1
aux.append(j)
j=1;

print aux

print self.zeta

for i in range (100): #print zeta1

print 'slices =', int(self.slices[0])

print 'atoms =', int(self.atoms[0])

zeta2 = []

for i in range (int(self.slices[0])):

for j in range(int(self.atoms[0])):

zeta2.append(zeta1[i])

print 'ECCOLO' #print

zeta2

self.zeta = zeta2 #print

self.zeta H_back = []

Page | 122

i = 0

j = 0

bound = int(self.max[0]/102)
writeout(bound)

for i in range (bound): row = []

for j in range(102): row.append(self.H_aux[j + 102*i])

H_back.append(row) #print
row
del row

#print H_back[40]

new = array(H_back, dtype=complex)

self.H = new

print self.H[17]

quit()

return;

def ciccione(vettore,n,Nc,z,a0): ics1 = []

ipsilon1 = [] zeta1 = []

i = 0 j = 0 k
= 0

temp = z[0]- a0 z1=[];
z1.append(temp) aux = []

for ln in arange(0,n*Nc): if (z[i]- a0) ==

temp:

#temp = self.zeta[i]- self.a0 i = i + 1
j = j + 1 else:

z1.append(z[i]- a0) temp =
z[i]- a0

i = i + 1 aux.append(j)
j=1;

TODO: the following sum is equal to the total number of

atoms, really present in the simulated nanowire

Ntot_atoms=sum(aux[:Nc])

array2 = []

for i in range(Nc): k=0;
if (aux[i]==n):

Page | 123

for j in arange(sum(aux[:i]),sum(aux[:i])+n):
array2.append(vettore[j])

else:

for j in arange(sum(aux[:i]),sum(aux[:i])+aux[i]):
array2.append(vettore[j]);

for j in arange(sum(aux[:i])+aux[i],sum(aux[:i])+n): array2.append(0)

return array(array2, dtype=float);

class grid3D:

def __init__(self,*args):

I initialize the rank if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank() else:
rank=0;

args is a tuple and len(args) return
the number of arguments
the number of arguments can be either 3 or 6
if 3, the first three inputs are the grid along the

x,y,z axis
if 6, the first three inputs are the grid along the
x,y,z axis, while the last three inputs are the x-y-z
coordinates of the atoms

if (len(args)>3): xg=around(args[0],5);

yg=around(args[1],5);
zg=around(args[2],5);
xC=around(args[3],5);
yC=around(args[4],5);
zC=around(args[5],5);
npC=size(xC);

else:
xg=around(args[0],5);

yg=around(args[1],5);

zg=around(args[2],5);

npC=0;

#I create the grid if (npC!=0):

#find the unique values for xC,yC and zC uxC=unique(xC);
uyC=unique(yC);

uzC=unique(zC);

I find the only the additional values which are in xg and not in uxC

the same for the other axis
exg=intersect1d(setxor1d(xg,uxC),xg);
eyg=intersect1d(setxor1d(yg,uyC),yg);
ezg=intersect1d(setxor1d(zg,uzC),zg);

if (npC!=0): x=unique(concatenate((uxC,xg),1));

y=unique(concatenate((uyC,yg),1));
z=unique(concatenate((uzC,zg),1));

Page | 124

else:

x=xg;

y=yg;

z=zg;

I start to compute the volume associated to each grid point X,Y=meshgrid(x,y);

#Number of points

nx=size(x); ny=size(y);

nxy=nx*ny; nz=size(z);
Np=nxy*nz;

string="Number of grid points %s " %Np if (rank == 0):
writeout(string)

##############

#I create the Volume elements using the sorted grid xd=avervect(x);
yd=avervect(y);

zd=avervect(z);

X,Y=meshgrid(x,y);

X,Z=meshgrid(x,z);

XD,ZD=meshgrid(xd,zd);

surfxz=XD*ZD;

YD,ZD=meshgrid(yd,zd);

surfyz=YD*ZD;

XD,YD=meshgrid(xd,yd);

surfxy=XD*YD;

#The volumes for the sorted grid are finally computed
a,b=meshgrid((XD*YD).flatten(),zd); dVes=abs((a*b).flatten());

if (rank == 0): writeout("Volumes computed")

##############

I create the dist vectors
dists=zeros((Np,6));

I take care of dists[:,1] i=arange(0,nx);
ip1=i+1; ip1[nx-1]=nx-1;
xdistp=x[ip1]-x[i];

dists[:,1]=meshgrid(meshgrid(xdistp,y)[0].flatten(),z)[0].flatten(); del ip1,xdistp;

I take care of dists[:,0]

Page | 125

im1=i-1;
im1[0]=0;
xdistm=x[i]-x[im1];

dists[:,0]=meshgrid(meshgrid(xdistm,y)[0].flatten(),z)[0].flatten(); del i,im1,xdistm;

I take care of dists[:,3] j=arange(0,ny);

jp1=j+1; jp1[ny-1]=ny-1;
ydistp=y[jp1]-y[j];

dists[:,3]=meshgrid(meshgrid(x,ydistp)[1].flatten(),z)[0].flatten(); del jp1,ydistp;

I take care of dists[:,2] jm1=j-1;

jm1[0]=0; ydistm=y[j]-y[jm1];

dists[:,2]=meshgrid(meshgrid(x,ydistm)[1].flatten(),z)[0].flatten(); del j,jm1,ydistm;

I take care of dists[:,5] k=arange(0,nz);

kp1=k+1; kp1[nz-1]=nz-1;
zdistp=z[kp1]-z[k];

dists[:,5]=meshgrid(meshgrid(x,y)[1].flatten(),zdistp)[1].flatten(); del kp1,zdistp;

I take care of dists[:,4] km1=k-1;
km1[0]=0; zdistm=z[k]-
z[km1];

dists[:,4]=meshgrid(meshgrid(x,y)[1].flatten(),zdistm)[1].flatten(); del k,km1,zdistm;

##############

#Now I work on the surfaces

surfs=zeros((Np,6));

#surf 0 XD,YD=meshgrid(xd,yd)
##YD[:,0]=0;
a,b=meshgrid(YD.flatten(),zd)
surfs[:,0]=abs((a*b).flatten()); #surf 1

XD,YD=meshgrid(xd,yd) ##YD[:,nx-1]=0;
a,b=meshgrid(YD.flatten(),zd)
surfs[:,1]=abs((a*b).flatten()); #surf 2
XD,YD=meshgrid(xd,yd)
##XD[0,:]=0;

a,b=meshgrid(XD.flatten(),zd)
surfs[:,2]=abs((a*b).flatten()); #surf 3

XD,YD=meshgrid(xd,yd) ##XD[ny-1,:]=0;

Page | 126

a,b=meshgrid(XD.flatten(),zd)
surfs[:,3]=abs((a*b).flatten()); #surf 4

XD,YD=meshgrid(xd,yd)
a,b=meshgrid((XD*YD).flatten(),z)
surfs[:,4]=abs(a.flatten()); ##surfs[0:nx*ny-
1,4]=0;

#surf 5 XD,YD=meshgrid(xd,yd)

a,b=meshgrid((XD*YD).flatten(),z)
surfs[:,5]=abs(a.flatten()); ##surfs[(nz-
1)*(nx*ny):nz*nx*ny,5]=0;

if (rank == 0): writeout("Surfaces created")

##############

#Now I have to go back to the unsorted grid. #I create the sorted
and unsorted coordinates #vectors as a function of the index

#sorted positions x3Ds=meshgrid(meshgrid(x,y)[0].flatten(),z)[0].flatten();
y3Ds=meshgrid(meshgrid(x,y)[1].flatten(),z)[0].flatten();
z3Ds=meshgrid(meshgrid(x,y)[1].flatten(),z)[1].flatten();

#unsorted positions

if (npC!=0): xtemp=unique(concatenate((uxC,xg),1));

ytemp=unique(concatenate((uyC,yg),1));
ztemp=unique(concatenate((uzC,zg),1));

if (rank == 0): writeout("I work on the swap array"); NpC=size(xC);

swap=array(arange(0,NpC),int); for i in
range(0,NpC):

ixC=nonzero(xtemp==xC[i])[0][0];
iyC=nonzero(ytemp==yC[i])[0][0];
izC=nonzero(ztemp==zC[i])[0][0];

ii=ixC+iyC*nx+izC*nx*ny;
swap[i]=ii;

##############

I now fill the attributes of the istance of the grid class self.x3D=x3Ds;
self.y3D=y3Ds
self.z3D=z3Ds
self.dVe=dVes;

self.surf=surfs;

self.dist=dists;

Page | 127

self.nx=nx;

self.ny=ny;

self.nz=nz;

self.Np=Np;

self.gridx=x;

self.gridy=y;

self.gridz=z; if
(npC!=0):

self.swap=swap;

self.xmin=min(x);

self.xmax=max(x);
self.ymin=min(y);

self.ymax=max(y);

self.zmin=min(z);

self.zmax=max(z);

return;

class grid2D:

def __init__(self,*args):

I initialize the rank if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank() else:
rank=0;

args is a tuple and len(args) return

the number of arguments

the number of arguments can be either 2 or 4
if 2, the first two inputs are the grid along the

x,y axis

if 4, the first two inputs are the grid along the

x,y axis, while the last two inputs are the x-y
coordinates of the atoms if
(len(args)>2):

xg=around(args[0],5);
yg=around(args[1],5);

xC=around(args[2],5);
yC=around(args[3],5);
npC=size(xC);

else:
xg=around(args[0],5);
yg=around(args[1],5);

npC=0;

#I create the grid if (npC!=0):

#find the unique values for xC,yC and zC uxC=unique(xC);
uyC=unique(yC);

I find the only the additional values which are in xg and not in uxC

the same for the other axis

Page | 128

exg=intersect1d(setxor1d(xg,uxC),xg);
eyg=intersect1d(setxor1d(yg,uyC),yg);

if (npC!=0): x=unique(concatenate((uxC,xg),1));

y=unique(concatenate((uyC,yg),1));
else:

x=xg;

y=yg;

#Number of points
nx=size(x); ny=size(y);
nxy=nx*ny; Np=nxy;

string="Number of grid points %s " %Np if (rank == 0):
writeout(string)

##############

#I create the Volume elements using the sorted grid xd=avervect(x);
yd=avervect(y);

X,Y=meshgrid(x,y);

XD,YD=meshgrid(xd,yd);

surfxy=XD*YD;

if (rank == 0): writeout("Volumes computed")

##############

I create the dist vectors
dists=zeros((Np,4));

I take care of dists[:,1] i=arange(0,nx);
ip1=i+1; ip1[nx-1]=nx-1;
xdistp=x[ip1]-x[i];

dists[:,1]=meshgrid(xdistp,y)[0].flatten(); del ip1,xdistp;

I take care of dists[:,0]

im1=i-1;
im1[0]=0;

xdistm=x[i]-x[im1]; dists[:,0]=meshgrid(xdistm,y)[0].flatten()
del i,im1,xdistm;

I take care of dists[:,3] j=arange(0,ny);
jp1=j+1; jp1[ny-1]=ny-1;
ydistp=y[jp1]-y[j];

dists[:,3]=meshgrid(x,ydistp)[1].flatten() del jp1,ydistp;

Page | 129

I take care of dists[:,2]

jm1=j-1;
jm1[0]=0;

ydistm=y[j]-y[jm1]; dists[:,2]=meshgrid(x,ydistm)[1].flatten();
del j,jm1,ydistm;

##############

#Now I work on the surface

XD,YD=meshgrid(xd,yd)
surfs=(XD*YD).flatten();

if (rank == 0): writeout("Surface created")

##############

#Now I have to go back to the unsorted grid.

#I create the sorted and unsorted coordinates #vectors as a function
of the index

#sorted positions
x2Ds=meshgrid(x,y)[0].flatten();
y2Ds=meshgrid(x,y)[1].flatten();

#unsorted positions

if (npC!=0): xtemp=unique(concatenate((uxC,xg),1));

ytemp=unique(concatenate((uyC,yg),1));

if (rank == 0): writeout("I work on the swap array"); NpC=size(xC);

swap=array(arange(0,NpC),int); for i in
range(0,NpC):

ixC=nonzero(xtemp==xC[i])[0][0];

iyC=nonzero(ytemp==yC[i])[0][0];

ii=ixC+iyC*nx;

swap[i]=ii;

##############

I now fill the attributes of the istance of the grid class self.x2D=x2Ds;
self.y2D=y2Ds

self.surf=surfs;
self.dist=dists;

self.nx=nx;

Page | 130

self.ny=ny;

self.Np=Np;

self.gridx=x;

self.gridy=y; if
(npC!=0):

self.swap=swap;

self.xmin=min(x);

self.xmax=max(x);

self.ymin=min(y);

self.ymax=max(y);

return;

class grid1D:

def __init__(self,*args):

I initialize the rank if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank() else:
rank=0;

args is a tuple and len(args) return
the number of arguments
the number of arguments can be either 1 or 2
if 1, the first input is the grid along the

x axis
if 2, the first input is the grid along the
x axis, while the second input is the x
coordinates of the atoms

if (len(args)>1): xg=around(args[0],5);

xC=around(args[1],5); # attenzione: modificato il
28/5/2011

npC=size(xC);
else:

xg=around(args[0],5);
npC=0;

#I create the grid if (npC!=0):

#find the unique values for xC
uxC=unique(xC);

I find the only the additional values which are in xg and not in uxC
exg=intersect1d(setxor1d(xg,uxC),xg);

if (npC!=0): x=unique(concatenate((uxC,xg),1));
else:

x=xg;

#Number of points
nx=size(x); Np=nx;
if (rank == 0): print(("Number of grid points ",Np))

Page | 131

##############

I create the dist vectors
dists=zeros((Np,4));

I take care of dists[:,1] i=arange(0,nx);

ip1=i+1; ip1[nx-1]=nx-1;
xdistp=x[ip1]-x[i];
dists[:,1]=xdistp; del
ip1,xdistp;

I take care of dists[:,0] im1=i-1;
im1[0]=0; xdistm=x[i]-x[im1];
dists[:,0]=xdistm; del
i,im1,xdistm;

##############

#Now I have to go back to the unsorted grid. #I create the sorted
and unsorted coordinates #vectors as a function of the index

if (npC!=0): xtemp=unique(concatenate((uxC,xg),1));

if (rank == 0): print("I work on the swap array"); NpC=size(xC);
swap=array(arange(0,NpC),int); for i in
range(0,NpC):

ixC=nonzero(xtemp==xC[i])[0][0];

ii=ixC;

swap[i]=ii;

##############

I now fill the attributes of the istance of the grid class self.x=x;
self.dist=dists;

self.nx=nx;

self.Np=Np;

self.gridx=x; if
(npC!=0):

self.swap=swap;

self.xmin=min(x);

self.xmax=max(x);

return;

class region:

def __init__(self,*args):
self.name="none";

Page | 132

self.geometry="hex";
self.eps=3.9; self.rho=0;

if (args[0]=="hex"): if

(len(args)>5):
self.xmin=args[1];

self.xmax=args[2];

self.ymin=args[3];

self.ymax=args[4];
self.zmin=args[5];
self.zmax=args[6];

elif ((len(args)>3)&(len(args)<=5)):

self.xmin=args[1]; self.xmax=args[2];
self.ymin=args[3]; self.ymax=args[4];

elif (len(args)<=3):

self.xmin=args[1];
self.xmax=args[2];

def set_material(self,material): if

(material.lower()=="sio2"):
self.eps=3.9;
self.mel=0.5;
self.met=0.5;
self.Egap=8.05;

self.chi=0.95;

self.mhole=0.42

if (material.lower()=="si"): self.eps=11.8;
self.mel=0.916; self.met=0.19;
self.Egap=1.124519; self.chi=4.05;
self.mhole=0.549;

class gate:

def __init__(self,*args):
self.geometry="hex"; self.Ef=0;
self.wf=4.1;

if (args[0]=="hex"): if

(len(args)>5):
self.xmin=args[1];

self.xmax=args[2];

self.ymin=args[3];

self.ymax=args[4];

self.zmin=args[5];

self.zmax=args[6];

elif ((len(args)>3)&(len(args)<=5)):
self.xmin=args[1]; self.xmax=args[2];
self.ymin=args[3]; self.ymax=args[4];

elif (len(args)<=3):

self.xmin=args[1];
self.xmax=args[2];

if (args[0]=="cyl"): self.xc=args[1];

self.yc=args[2];
self.radius=args[3];

Page | 133

self.geometry="cyl" if
(args[0]=="trapz"):
self.xmin=args[1];
self.xmax=args[2];

self.y1=args[3];
self.z1=args[4];
self.y2=args[5];
self.z2=args[6];
self.y3=args[7];
self.z3=args[8];
self.y4=args[9];

self.z4=args[10];
self.geometry="trapz"

class interface3D:

def __init__(self,*args):

I set the rank if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank()
self.rank=rank;

else:

self.rank=0;

I compute the number of arguments (classes) Narg=size(args);

I first find the index of the class grid igrid=-10;

for i in range(0,Narg):

name=args[i].__class__.__name__ if
(name=="grid3D"):

igrid=i;

If no grid class is specified I exit

if (igrid==-10):

writeout("ERROR: grid not passed to structure") return;

I create the arrays to be used
self.eps=zeros(args[igrid].Np);

I create the vector, where the boundary conditions

are specified:

if 2000 : inner point

if 1001 : Neumann 1

if 1002 : Neumann 2

if 1003 : Neumann 3

if 1004 : Neumann 4

if 1005 : Neumann 5
if 1006 : Neumann 6

if <= 1000: Fermi level of the gate

Page | 134

I start defining all the points as inner points

self.boundary_conditions=2000*ones(args[igrid].Np);

#########################
Now I impose the Neumann Boundary conditions on
the surfaces delimiting the 3D domain

#########################

I take care of Neumann1
indexNeu1=nonzero(args[igrid].x3D==min(args[igrid].gridx));
self.boundary_conditions[indexNeu1]=1001;

I take care of Neumann2
indexNeu2=nonzero(args[igrid].x3D==max(args[igrid].gridx));
self.boundary_conditions[indexNeu2]=1002;

I take care of Neumann3
indexNeu3=nonzero(args[igrid].y3D==min(args[igrid].gridy));
self.boundary_conditions[indexNeu3]=1003;

I take care of Neumann4
indexNeu4=nonzero(args[igrid].y3D==max(args[igrid].gridy));
self.boundary_conditions[indexNeu4]=1004

I take care of Neumann5 and Neumann6
indexNeu5=nonzero(args[igrid].z3D==min(args[igrid].gridz));
self.boundary_conditions[indexNeu5]=1005;
indexNeu6=nonzero(args[igrid].z3D==max(args[igrid].gridz));
self.boundary_conditions[indexNeu6]=1006;

#########################

I check to which class the args belongs to

and I proceed accordingly

#########################

for i in range(0,Narg):

name=args[i].__class__.__name__

I check if the class is a gate if (name=="gate"):

#I check if the geometry is an hexahedron if
(args[i].geometry=="hex"):

I find the indexes of the 3D grid which belongs

to the gate

Page | 135

with hex geometry

index=nonzero((args[i].xmin<=args[igrid].x3D)&(args[i].xmax>=args[igri
d].x3D)&

(args[i].ymin<=args[igrid].y3D)&(args[i].ymax>=args[igrid].y3D)&

(args[i].zmin<=args[igrid].z3D)&(args[i].zmax>=args[igrid].z3D));

self.boundary_conditions[index]=args[i].Ef; args[i].index=index;
if (args[i].geometry=="trapz"):

I find the indexes of the 2D grid which belongs

to the gate

with trapezoidal geometry if
(args[i].y2==args[i].y1):

m1=(args[i].z2-args[i].z1)/(args[i].y2-
args[i].y1+1e-3)

else: m1=(args[i].z2-args[i].z1)/(args[i].y2-
args[i].y1)

if (args[i].y3==args[i].y2): m2=(args[i].z3-
args[i].z2)/(args[i].y3-

args[i].y2+1e-3)

else: m2=(args[i].z3-args[i].z2)/(args[i].y3-
args[i].y2)

if (args[i].y4==args[i].y3): m3=(args[i].z4-
args[i].z3)/(args[i].y4-

args[i].y3+1e-3)

else: m3=(args[i].z4-args[i].z3)/(args[i].y4-
args[i].y3)

if (args[i].y4==args[i].y1): m4=(args[i].z4-
args[i].z1)/(args[i].y4-

args[i].y1+1e-3)

else: m4=(args[i].z4-args[i].z1)/(args[i].y4-
args[i].y1)

index=nonzero((args[igrid].z3D>=(m1*(args[igrid].y3D-
args[i].y1)+args[i].z1))&

(args[igrid].z3D>=(m2*(args[igrid].y3D-args[i].y2)+args[i].z2))&

(args[igrid].z3D<=(m3*(args[igrid].y3D-args[i].y3)+args[i].z3))&

(args[igrid].z3D<=(m2*(args[igrid].y3D-args[i].y1)+args[i].z1))&

(args[i].xmin<=args[igrid].x3D)&(args[i].xmax>=args[igrid].x3D));

self.boundary_conditions[index]=args[i].Ef; args[i].index=index;

Page | 136

elif (name=="region"):
if (args[i].geometry=="hex"):

I find the indexes of the 3D grid which belongs
to the gate

with hex geometry

index=nonzero((args[i].xmin<=args[igrid].x3D)&(args[i].xmax>=args[igri
d].x3D)&

(args[i].ymin<=args[igrid].y3D)&(args[i].ymax>=args[igrid].y3D)&

(args[i].zmin<=args[igrid].z3D)&(args[i].zmax>=args[igrid].z3D));

self.eps[index]=args[i].eps; elif
(name=="grid3D"):

#dummy line name;
else:

writeout("ERROR: Unrecognized input") return;

#########################

I fill the field of the interface class

#########################

#self.boundary already filled #self.eps already
filled self.Phiold=zeros(args[igrid].Np)
self.Phi=zeros(args[igrid].Np);
self.normpoisson=1e-3; self.tolldomn=1e-1;
self.underel=0;

self.free_charge=zeros(args[igrid].Np);
self.fixed_charge=zeros(args[igrid].Np); self.normd=5e-2;

self.modespace="no"

self.MPI="no"
self.MPI_kt="no" return;

class interface2D:

def __init__(self,*args):

I set the rank if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank()
self.rank=rank;

else:

self.rank=0;

I compute the number of arguments (classes) Narg=size(args);

I first find the index of the class grid igrid=-10;
for i in range(0,Narg):

Page | 137

name=args[i].__class__.__name__ if
(name=="grid2D"):

igrid=i;
If no grid class is specified I exit
if (igrid==-10):

writeout("ERROR: grid not passed to structure") return;

I create the arrays to be used
self.eps=zeros(args[igrid].Np);

I create the vector, where the boundary conditions

are specified:

if 2000 : inner point

if 1001 : Neumann 1

if 1002 : Neumann 2

if 1003 : Neumann 3

if 1004 : Neumann 4

if <= 1000: Fermi level of the gate

I start defining all the points as inner points
self.boundary_conditions=2000*ones(args[igrid].Np);

#########################

Now I impose the Neumann Boundary conditions on

the surfaces delimiting the 3D domain

#########################

I take care of Neumann1
indexNeu1=nonzero(args[igrid].x2D==min(args[igrid].gridx));
self.boundary_conditions[indexNeu1]=1001;

I take care of Neumann2
indexNeu2=nonzero(args[igrid].x2D==max(args[igrid].gridx));
self.boundary_conditions[indexNeu2]=1002;

I take care of Neumann3
indexNeu3=nonzero(args[igrid].y2D==min(args[igrid].gridy));
self.boundary_conditions[indexNeu3]=1003;

I take care of Neumann4
indexNeu4=nonzero(args[igrid].y2D==max(args[igrid].gridy));

self.boundary_conditions[indexNeu4]=1004

Page | 138

#########################

I check to which class the args belongs to
and I proceed accordingly

#########################

for i in range(0,Narg):

name=args[i].__class__.__name__

I check if the class is a gate if (name=="gate"):
#I check if the geometry is an hexahedron if
(args[i].geometry=="hex"):

I find the indexes of the 2D grid which belongs

to the gate

with hex geometry

index=nonzero((args[i].xmin<=args[igrid].x2D)&(args[i].xmax>=args[igri

d].x2D)&

(args[i].ymin<=args[igrid].y2D)&(args[i].ymax>=args[igrid].y2D));

self.boundary_conditions[index]=args[i].Ef; args[i].index=index;

#I check if the geometry is an cylindrical if
(args[i].geometry=="cyl"):

I find the indexes of the 2D grid which belongs

to the gate

with cyl geometry
index=nonzero(((args[i].xc-

args[igrid].x2D)**2+(args[i].yc-
args[igrid].y2D)**2)<(args[i].radius)**2);

self.boundary_conditions[index]=args[i].Ef;
args[i].index=index;

elif (name=="region"):

if (args[i].geometry=="hex"):

I find the indexes of the 2D grid which belongs

to the gate

with hex geometry

index=nonzero((args[i].xmin<=args[igrid].x2D)&(args[i].xmax>=args[igri

d].x2D)&

(args[i].ymin<=args[igrid].y2D)&(args[i].ymax>=args[igrid].y2D));

self.eps[index]=args[i].eps; elif
(name=="grid2D"):

#dummy line name;

else:

writeout("ERROR: Unrecognized input") return;

Page | 139

#########################

I fill the field of the interface class

#########################

#self.boundary already filled #self.eps already
filled self.Phiold=zeros(args[igrid].Np)
self.Phi=zeros(args[igrid].Np);
self.normpoisson=1e-3; self.tolldomn=1e-1;
self.underel=0;

self.free_charge=zeros(args[igrid].Np);
self.fixed_charge=zeros(args[igrid].Np); self.normd=5e-2;
self.modespace="no"

self.MPI="no"
self.MPI_kt="no" return;

class interface1D:

def __init__(self,*args):

I set the rank if
(mpi4py_loaded):

rank = MPI.COMM_WORLD.Get_rank()
self.rank=rank;

else:

self.rank=0;

I compute the number of arguments (classes) Narg=size(args);

I first find the index of the class grid igrid=-10;
for i in range(0,Narg):

name=args[i].__class__.__name__ if
(name=="grid1D"):

igrid=i;

If no grid class is specified I exit

if (igrid==-10):

print("ERROR: grid not passed to structure") return;

I create the arrays to be used
self.eps=zeros(args[igrid].Np);

self.mel=zeros(args[igrid].Np);
self.met=zeros(args[igrid].Np);
self.chi=zeros(args[igrid].Np);

self.Egap=zeros(args[igrid].Np);
self.fixed_charge=zeros(args[igrid].Np);
self.mhole=zeros(args[igrid].Np);

Page | 140

I create the vector, where the boundary conditions
are specified:
if 2000 : inner point
if 1001 : Neumann 1
if 1002 : Neumann 2
if <= 1000: Fermi level of the gate

I start defining all the points as inner points
self.boundary_conditions=2000*ones(args[igrid].Np);

#########################

Now I impose the Neumann Boundary conditions on

the surfaces delimiting the 3D domain

#########################

I take care of Neumann1
indexNeu1=nonzero(args[igrid].x==min(args[igrid].gridx));
self.boundary_conditions[indexNeu1]=1001;

I take care of Neumann2
indexNeu2=nonzero(args[igrid].x==max(args[igrid].gridx));
self.boundary_conditions[indexNeu2]=1002;

#########################

I check to which class the args belongs to

and I proceed accordingly

#########################

for i in range(0,Narg):

name=args[i].__class__.__name__
I check if the class is a gate if (name=="gate"):

#I check if the geometry is an hexahedron if
(args[i].geometry=="hex"):

I find the indexes of the 2D grid which belongs

to the gate

Page | 141

with hex geometry

index=nonzero((args[i].xmin<=args[igrid].x)&(args[i].xmax>=args[igrid]
.x));

self.boundary_conditions[index]=args[i].Ef;
args[i].index=index;

elif (name=="region"):

if (args[i].geometry=="hex"):
dist=avervect(args[igrid].x)*1e-9;
I find the indexes of the 2D grid which belongs

to the gate

with hex geometry

index=nonzero((args[i].xmin<=args[igrid].x)&(args[i].xmax>=args[igrid]
.x));

self.eps[index]=args[i].eps;

self.mel[index]=args[i].mel;

self.met[index]=args[i].met;

self.chi[index]=args[i].chi;

self.Egap[index]=args[i].Egap;
self.fixed_charge[index]=args[i].rho*dist[index];
self.mhole[index]=args[i].mhole;

elif (name=="grid1D"): #dummy

line
name;

else:

print("ERROR: Unrecognized input") return;

#########################

I fill the field of the interface class

#########################

#self.boundary already filled #self.eps already
filled self.Phiold=zeros(args[igrid].Np)
self.Phi=zeros(args[igrid].Np);
self.normpoisson=1e-3; self.tolldomn=1e-1;
self.underel=0;

self.free_charge=zeros(args[igrid].Np); self.normd=5e-2;
self.modespace="no"

self.MPI="no"
self.MPI_kt="no" return;

Page | 142

def dope_reservoir(grid,interface,channel,molar_fraction,bbox):
name=grid.__class__.__name__;
if (name=="grid3D"):

xmin=bbox[0];

xmax=bbox[1];

ymin=bbox[2];

ymax=bbox[3];

zmin=bbox[4];

zmax=bbox[5];

index=nonzero((xmin<=grid.x3D[grid.swap])&(xmax>=grid.x3D[grid.swap])&

(ymin<=grid.y3D[grid.swap])&(ymax>=grid.y3D[grid.swap])&

(zmin<=grid.z3D[grid.swap])&(zmax>=grid.z3D[grid.swap]))

interface.fixed_charge[grid.swap[index]]=molar_fraction;

elif (name=="grid2D"):
xmin=bbox[0];
xmax=bbox[1];
ymin=bbox[2];
ymax=bbox[3];

index=nonzero((xmin<=grid.x2D[grid.swap])&(xmax>=grid.x2D[grid.swap])&

(ymin<=grid.y2D[grid.swap])&(ymax>=grid.y2D[grid.swap]))

interface.fixed_charge[grid.swap[index]]=molar_fraction/channel.delta* 1e9;

elif (name=="grid1D"):
xmin=bbox[0];
xmax=bbox[1];

index=nonzero((xmin<=grid.x[grid.swap])&(xmax>=grid.x[grid.swap]));

interface.fixed_charge[grid.swap[index]]=molar_fraction/(channel.delta z*channel.deltay)*1e18;
MODIFICATO IL 6/6/2011: aggiunto il deltay e deltaz

return index;

class Device:

def __init__(self): self.Nregions=1;
self.regions=[];
self.E=zeros(NEmax);

def test(self): return self.E;

def test_var_args(farg, *args): writeout("formal arg:"),

size(args) for arg in args:
writeout("another arg:"), arg

Page | 143

def avervect(x):
This function compute the length of

the Voronoi segment of a one-dimensional array x nx=size(x);
xd=zeros(nx);

xini=x[0]; xd[0]=abs(x[0]-x[1])*0.5;
for i in range(1,nx-1):

xd[i]=abs((x[i+1]-x[i-1])*0.5); xd[nx-

1]=abs(x[nx-1]-x[nx-2])*0.5 return xd;

def save_format_xyz(outputfile,x,y,z,atom):

if sys.version > '3': import

subprocess;
else:

import subprocess

out=[x*10,y*10,z*10]

fp=open(outputfile,"w");

fp.write(str(size(x)));

fp.write("\n");

fp.write("\n");
for i in range(0,size(x)):

string="%s %s %s %s" %(atom,out[0][i],out[1][i],out[2][i]); fp.write(string);

fp.write(" ");
fp.write("\n");

fp.close()
return;

"""def convert_pdb(filename,thop):

fp=open(filename,"r");
hh=[];

atoms=0;

i=0;
x=[];

y=[];

z=[];

h=[];

h.append([1,0,0]); for line in
fp:

hh.append(line); atoms=atoms+(hh[i].split()).count('HETATM');

if

(((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')== 1)):

x.append((hh[i].split())[5]);
y.append((hh[i].split())[6]);

z.append((hh[i].split())[7]);

h.append([int((hh[i].split())[1]),int((hh[i].split())[1]),0]); if

((hh[i].split()).count('CONECT')==1):

a=(hh[i].split());

Page | 144

NPV=size(a)-1
for j in range(0,NPV): a1=int(a[1]);

if (a1<int(a[j+1])): h.append([a1,int(a[j+1]),thop])

if ((hh[i].split()).count('CRYST1')==1): a=(hh[i].split());

if (double(a[1])>=100): deltax=0.0;
else:

deltax=double(a[1])/10.0; if

(double(a[2])>=100):
deltay=0.0;

else:

deltay=double(a[2])/10.0; if
(double(a[3])>=100):

deltaz=0.0;

else:

deltaz=double(a[3])/10.0;

i=i+1;

fp.close()

H=array(h,dtype(complex));

x=array(x,dtype(float))/10.0;

y=array(y,dtype(float))/10.0;

z=array(z,dtype(float))/10.0;

return H,x,y,z,deltax,deltay,deltaz;"""

def create_H_from_xyz(x,y,z,orbitals,onsite,thop,d_bond,Nbond):

WE ASSUME THAT:

1) TRANSPORT IS IN THE Z DIRECTION

2) THE STRUCTURE IS COMPOSED BY THE SAME TYPE OF ATOMS

3) ALONG THE Z-DIRECTION THE STRUCTURE IS PERIODIC WITH PERIOD
EQUAL TO 4 SLICES

I find the minimum and maximum coordinates at the border

so to take care of the passivation of the atoms at the borders xmin=min(x);
xmax=max(x);

ymin=min(y);
ymax=max(y);
zmin=min(z);
zmax=max(z);

I compute the number of slices (ASSUMPTION 2)
Nc=int(size(unique(z)));
I have already computed n at the beginning
n=int(size(nonzero(z==zmin)));

I compute the number of atoms in the first 4 slices temp=unique(z);
Natom_slices=size(nonzero(z<=temp[3]));
del temp;

Page | 145

I check the maximum number of atoms on each slice; u=unique(z);
Nuz=size(u); n=-1;
for i in range(0,Nuz):

nnew=size(nonzero(z==u[i])); if
(nnew>=n):

n=nnew;

del i;

Now I start doing though stuff

I fill x,y and z with dummy atoms

If it is a dummy atom, the coordinate is equal to dummy_coord

dummy_coord=10000;

xa=[];
ya=[];

za=[];

k=0;

for i in range(0,Nuz):

print ya

nnew=size(nonzero(z==u[i]));

for j in range(0,nnew):

xa.append(x[k]);

ya.append(y[k]);

za.append(z[k]);

k=k+1;

if (nnew<n):

for j in range(nnew,n):
xa.append(dummy_coord);

ya.append(dummy_coord);

za.append(dummy_coord);

k=k+1;

del x,y,z,u,i

x=array(xa,dtype(float));

y=array(ya,dtype(float));

z=array(za,dtype(float));

del xa,ya,za

Np=size(x);

Ncol_max=10;
NN=zeros((Np,Ncol_max),dtype(int)); border=[]

I first find the Nearest Neighbour for i in
range(0,Np):

ind=nonzero((sqrt((x-x[i])**2+(y-y[i])**2+(z-z[i])**2)<=d_bond)&(sqrt((x-

x[i])**2+(y-y[i])**2+(z-z[i])**2)>1e-10))[0];
if (size(ind)>Ncol_max):

print()
writeout("ERROR IN create_H_from_xyz subroutine in

NanoTCAD_ViDES.py file")
writeout("Use a larger value for Ncol_max")

Page | 146

print()

exit(0);

print i

NN[i,0]=i+1;

NN[i,1:size(ind)+1]=ind+1;
NPV=size(nonzero(NN[i,:]))-1; if
(NPV<Nbond):

border.append(i);

Now I work on the Hamiltonian atoms=0;
i=0;

h=[];

I fill the h list with the number of orbitals ll=[orbitals,0];
fill=zeros(orbitals**2);

h.append(ll+list(fill)) del ll,i

I take care of the diagonal elements for i in
range(0,Np):

if ((x[i]<dummy_coord)): if

(orbitals>1):

(ASSUMPTION 1) if i in
border: xfn=zeros(4);

yfn=zeros(4); zfn=zeros(4);

if (z[i]==zmin): NPV=size(nonzero(NN[i+4*n,:]))-1;
xfn=x[NN[i+n*4,1:NPV+1]-1];
yfn=y[NN[i+n*4,1:NPV+1]-1];
zfn=z[NN[i+n*4,1:NPV+1]-1];
xp=x[i+n*4];
yp=y[i+n*4];

zp=z[i+n*4]; elif

(z[i]==zmax):

NPV=size(nonzero(NN[i-4*n,:]))-1; xfn=x[NN[i-
n*4,1:NPV+1]-1]; yfn=y[NN[i-n*4,1:NPV+1]-1];
zfn=z[NN[i-n*4,1:NPV+1]-1]; xp=x[i-n*4];

yp=y[i-n*4]; zp=z[i-
n*4];

else: NPV=size(nonzero(NN[i,:]))-1;

xfn=x[NN[i,1:NPV+1]-1];

yfn=y[NN[i,1:NPV+1]-1];

zfn=z[NN[i,1:NPV+1]-1]; xp=x[i];

yp=y[i];

zp=z[i];

deltae=20.0;

Page | 147

tempM=Sipassivation(xp,yp,zp,NPV,xfn,yfn,zfn,deltae);

print tempM

print x[i],y[i],z[i]

print xfn

print yfn

print zfn
exit(0);

B=zeros((10,10));

B[:4,:4]=tempM.reshape(4,4);

h.append([i+1,i+1]+list((diag(onsite)+B).flatten()));

h.append([i+1,i+1]+list((diag(onsite)).flatten())); del B,tempM,xfn,yfn,zfn;

else:

h.append([i+1,i+1]+list((diag(onsite)).flatten())); else:

h.append([i+1,i+1]+list(fill));
else:

If the atom is dummy then I mark it with the 77777 value

Right now it works only for one orbital
h.append([i+1,i+1]+list(77777*ones(orbitals**2)));

I take care of the off-diagonal elements
for i in range(0,Np): NPV=size(nonzero(NN[i,:]))-1;

for j in range(0,NPV):

a1=int(NN[i,0]);
if (a1<int(NN[i,j+1])): if

(orbitals>1):

I compute the cosine
module=sqrt(((double(x[a1-1])-

double(x[int(NN[i,j+1])-1]))**2)+(double(y[a1-1])-
double(y[int(NN[i,j+1])-1]))**2+(double(z[a1-1])-
double(z[int(NN[i,j+1])-1]))**2);

cosx=(-double(x[a1-1])+double(x[int(NN[i,j+1])-
1]))/module;

cosy=(-double(y[a1-1])+double(y[int(NN[i,j+1])-
1]))/module;

cosz=(-double(z[a1-1])+double(z[int(NN[i,j+1])-
1]))/module;
print a1,int(NN[i,j+1]),cosx,cosy,cosz,module

input=hstack((array([cosx,cosy,cosy]),thop));

print input

matrix_thop=Simatrix(input);

matrix_thop=Simatrix(cosx,cosy,cosz,thop);

print matrix_thop

print "----------------"

h.append([a1,int(NN[i,j+1])]+list(matrix_thop)); else:
h.append([a1,int(NN[i,j+1]),thop])

Page | 148

H=array(h,dtype=complex); return
H,n,Nc;

def get_xyz_from_file(filename):

fp=open(filename,"r"); xa=[]

ya=[]

za=[]

for line in fp:

if (size(line.split())>3):
xa.append((line.split())[1]);
ya.append((line.split())[2]);
za.append((line.split())[3]);

x=array(xa,dtype(float));

y=array(ya,dtype(float));

z=array(za,dtype(float)); del xa,ya,za
return x,y,z;

def convert_pdb(filename,orbitals,thop):

ASSUMPTION: ALL THE ATOMS ARE OF THE SAME MATERIAL

I first read the atoms coordinates

hh=[];

deltax=0;

deltay=0;

deltaz=0;
x=[];
y=[];
z=[];

i=0;

fp=open(filename,"r"); for line in
fp:

hh.append(line); if

(((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')== 1)):

ATOM_TYPE=(hh[i].split())[2]; x.append((hh[i].split())[5]);

y.append((hh[i].split())[6]);
z.append((hh[i].split())[7]);

i=i+1;

fp.close() del hh;

Now I work on the Hamiltonian hh=[];
atoms=0;

i=0;

h=[];

I fill the h list with the number of orbitals ll=[orbitals,0];
fill=zeros(orbitals**2);

h.append(ll+list(fill)) del ll

Page | 149

I fill the rest of the h list
fp=open(filename,"r");
for line in fp: hh.append(line);

atoms=atoms+(hh[i].split()).count('HETATM'); if

(((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')== 1)):

if (orbitals>1):

h.append([int((hh[i].split())[1]),int((hh[i].split())[1])]+list((diag(onsite)).flatten()));

else:

h.append([int((hh[i].split())[1]),int((hh[i].split())[1])]+list(fill))

;

if ((hh[i].split()).count('CONECT')==1): a=(hh[i].split());
NPV=size(a)-1

for j in range(0,NPV): a1=int(a[1]);

if (a1<int(a[j+1])): if

(orbitals>1):
I compute the cosine
module=sqrt(((double(x[a1-1])-

double(x[int(a[j+1])-1]))**2)+(double(y[a1-1])-double(y[int(a[j+1])-1]))**2+(double(z[a1-1])-
double(z[int(a[j+1])-1]))**2);

cosx=(double(x[a1-1])-double(x[int(a[j+1])-
1]))/module;

cosy=(double(y[a1-1])-double(y[int(a[j+1])-
1]))/module;

cosz=(double(z[a1-1])-double(z[int(a[j+1])-
1]))/module;

cosx=1;cosy=1;cosz=1;

input=hstack((array([cosx,cosy,cosy]),thop));
matrix_thop=Simatrix(input);
h.append([a1,int(a[j+1])]+list(matrix_thop));

else:
h.append([a1,int(a[j+1]),thop])

if ((hh[i].split()).count('CRYST1')==1): a=(hh[i].split());

if (double(a[1])>=100): deltax=0.0;
else:

deltax=double(a[1])/10.0; if

(double(a[2])>=100):
deltay=0.0;

else:

deltay=double(a[2])/10.0; if
(double(a[3])>=100):

deltaz=0.0;

else:

deltaz=double(a[3])/10.0;

Page | 150

i=i+1;

fp.close()

H=array(h,dtype(complex));

x=array(x,dtype(float))/10.0;

y=array(y,dtype(float))/10.0;

z=array(z,dtype(float))/10.0; return
H,x,y,z,deltax,deltay,deltaz;

def Hamiltonian_per(H,x,y,z,deltax,deltay,deltaz,aCC,thop,k): Np=size(x);

Hnew=H.copy();
conn_per=[]
for ii in range(0,Np): xc=x[ii];

yc=y[ii]; zc=z[ii];

Here I compare with 1.05*aCC in order to take into account numerical tollerances
indp=nonzero(sqrt((x-xc+deltax)**2+(y-yc+deltay)**2+(z-

zc+deltaz)**2)<aCC*1.05)[0]+1;
indm=nonzero(sqrt((x-xc-deltax)**2+(y-yc-deltay)**2+(z-zc-

deltaz)**2)<aCC*1.05)[0]+1;
if (size(indp)>0):

for j in range(0,size(indp)):

conn_per.append([ii+1,indp[j]]);
if (size(indm)>0):

for j in range(0,size(indm)):

conn_per.append([ii+1,indm[j]]);

del ii Nconn=len(conn_per); for ii in
range(Nconn):

ind=nonzero((H[:,0]==conn_per[ii][0])&(H[:,1]==conn_per[ii][1]))[0] if (size(ind)>0):

if (deltax>0): segno=sign(x[int(abs(H[ind,0]))-1]-

x[int(abs(H[ind,1]))-1]); Hnew[ind,2]=H[ind,2]+thop*exp(-segno*k*deltax*1j);

elif (deltay>0): segno=sign(y[int(abs(H[ind,0]))-1]-

y[int(abs(H[ind,1]))-1]); Hnew[ind,2]=H[ind,2]+thop*exp(-segno*k*deltay*1j);

else: segno=sign(z[int(abs(H[ind,0]))-1]-

z[int(abs(H[ind,1]))-1]); Hnew[ind,2]=H[ind,2]+thop*exp(-segno*k*deltaz*1j);

else:

if (conn_per[ii][0]<conn_per[ii][1]): if (deltax>0):
segno=sign(x[conn_per[ii][0]-1]-x[conn_per[ii][1]-

1]);

temp=array([conn_per[ii][0],conn_per[ii][1],thop*exp(-segno*k*deltax*1j)]);

elif (deltay>0): segno=sign(y[conn_per[ii][0]-1]-y[conn_per[ii][1]-
1]);

temp=array([conn_per[ii][0],conn_per[ii][1],thop*exp(-segno*k*deltay*1j)]);

else: segno=sign(z[conn_per[ii][0]-1]-z[conn_per[ii][1]-
1]);

Page | 151

temp=array([conn_per[ii][0],conn_per[ii][1],thop*exp(-segno*k*deltaz*1j)]);

Hnew=vstack([Hnew,temp]);

del ii return Hnew

class nanoribbon_fast_ohmic: acc=0.144;

def __init__(self,n,L): self.Nc=int(4*(floor((floor(L/nanoribbon_fast_ohmic.acc)-
1)/3)));

self.n=n;

self.Phi=zeros(n*self.Nc);

self.Eupper=1000.0;

self.Elower=-1000.0;

self.dE=1e-3; self.thop=-2.7;

self.eta=1e-8; self.mu1=0;

self.mu2=0; self.Temp=300;

self.E=zeros(NEmax);

self.T=zeros(NEmax);
self.charge=zeros(self.n*self.Nc);

self.rank=0; self.atoms_coordinates();
self.defects_list=[] self.onsite_E=-1.5;

def atoms_coordinates(self):

GNR_atoms_coordinates(self);
self.x=array(self.x); self.y=array(self.y);
self.z=array(self.z); return;

def gap(self):

return GNRgap(self); def
charge_T(self):

M=self.Nc;

N=self.n;

t=self.thop; Energy =
0.0 Ene = 0.0

p = 0.0 d = 0.0

orbitals = [1, 0] hamiltonian = []
zeroes = [0, 0, 0, 0]

ene = [Energy, 0, 0, Ene] coupling1 = [t, 0,
0, p] coupling2 = [t*1.12, 0, 0, p] orbitals =
orbitals + zeroes
hamiltonian.append(orbitals)

for j in range(M): for i in range(N):

n = i + 1 + j*N p = [n,n]
p = p + ene hamiltonian.append(p)

for j in range(1, M-1, +4): for i in range(1, N):

n = i + 1 + j*N m = i + (j+1)*N p =
[n,m]

Page | 152

p = p + coupling1 hamiltonian.append(p)
hamiltonian.append([m, n, t, p, d])

for j in range(3, M-1, +4): for i in range(0, N-1):

n = i + 1 + j*N

m = i + 2 + (j+1)*N p = [n,m]

p = p + coupling1 hamiltonian.append(p)
hamiltonian.append([m, n, t, p, d])

nell'if ripristinare il fattore t*1.12 for j in range(0, M-1, +4):

for i in range(N): n = i + 1 + j*N
m = i + 1 + (j+1)*N

if i == 0:

p = [n,m]

p = p + coupling2 hamiltonian.append(p)

hamiltonian.append([m, n, t*1.12, p, d]) else :

p = [n,m]

p = p + coupling1 hamiltonian.append(p)
hamiltonian.append([m, n, t, p, d])

for j in range(1, M-1, +4): for i in range(N):

n = i + 1 + j*N

m = i + 1 + (j+1)*N p = [n,m]
p = p + coupling1 hamiltonian.append(p)

hamiltonian.append([m, n, t, p, d])

 # nell'if ripristinare il fattore t*1.12
 for j in range(2, M-1, +4):
 for i in range(N):
 n = i + 1 + j*N
 m = i + 1 + (j+1)*N
 if i == (N-1):
 p = [n,m]

p = p + coupling2

hamiltonian.append(p)
hamiltonian.append([m, n, t*1.12, p,

d])
else :

p = [n,m]
p = p + coupling1

hamiltonian.append(p)

hamiltonian.append([m, n, t, p, d])

for j in range(3, M-1, +4): for i in

range(N):
n = i + 1 + j*N

m = i + 1 + (j+1)*N p = [n,m]

Page | 153

p = p + coupling1
hamiltonian.append(p)

hamiltonian.append([m, n, t, p, d])

H = Hamiltonian(N,M)

I work on the defects
ind=array(self.defects_list,dtype=int);
H.H=array(hamiltonian,dtype=complex)
H.H[ind,2]=self.onsite_E;

H.Eupper = self.Eupper; H.Elower =
self.Elower; H.rank=self.rank;
H.dE=self.dE; H.Phi=self.Phi;
H.Ei=-self.Phi; H.eta=self.eta;
H.mu1=self.mu1; H.mu2=self.mu2;
H.Egap=self.gap();

H.charge_T()

self.E=array(H.E);

self.T=array(H.T);

self.charge=array(H.charge); del
hamiltonian,H
return;

def current(self): vt=kboltz*self.Temp/q;
E=array(self.E); T=array(self.T);

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE
return sum(arg);

This is the class for the solution of the 1D drift-diffusion class multisubband1D:

def __init__(self, nx, ny, Neig): self.ny=ny;
self.nx=nx;
self.x=zeros(nx);
self.y=zeros(ny);
self.Phi=zeros(nx*self.ny);

self.Ei=zeros(nx*self.ny);

self.Egap=zeros(nx*self.ny);

self.Temp=300;

self.charge=zeros(nx*self.ny);

self.rank=0;

self.Neig=Neig;

self.Psi=zeros((nx*ny,Neig));

self.eig=zeros((ny,Neig));

self.mass=zeros((nx,ny)); self.mu=100e-

4*ones(self.ny); self.genric=zeros(self.ny);

self.n1d=zeros(self.ny);

self.ecs=zeros(self.ny);

self.charge_left_contact=0;

self.charge_right_contact=0; self.tolljay=1e-

3;

Page | 154

This is the class for the solution of the QM 1D

class QM1D:

def __init__(self, nx, Neig,gridx,p=None,charge_T=None): if charge_T is not
None:

self.charge_T=types.MethodType(charge_T,self); self.nx=nx;

self.x=zeros(nx);

self.ny=1;

ny=1;
self.Phi=zeros(nx*self.ny);

self.Ei=zeros(nx*self.ny);

self.Temp=300;

self.charge=zeros(nx*self.ny);

self.rank=0;
self.Neig=Neig;

self.Psi=zeros((nx*ny,Neig));

self.eig=zeros((ny,Neig)); if p is not
None:

self.Egap=p.Egap;
self.massl=p.mel
self.masst=p.met;
self.massh=p.mhole

self.chi=p.chi
self.mass=p.mel;

else:
self.Egap=zeros(nx*self.ny)
self.massl=zeros(nx*self.ny)
self.masst=zeros(nx*self.ny)

self.massh=zeros(nx*self.ny)
self.chi=zeros(nx*self.ny)
self.mass=zeros(nx*self.ny)

self.Ef=0;
self.x=gridx;

self.ecs=zeros(self.ny); def

charge_T(self):

del self.charge self.charge=zeros(self.nx*self.ny);
self.Ei=-self.Phi;

I compute the confined electrons
dist=avervect(self.x)

self.Ei=4.05-self.Phi-self.chi-self.Egap*0.5 self.mass=self.massl;

solve_schroedinger_1D(self); vt=self.Temp*kboltz/q;

for i in range(0,self.Neig): self.charge=self.charge-
2*dist*1e-

9*(self.Psi[:,i])**2*self.masst*m0*kboltz*self.Temp/pi/hbar**2*log(1+e xp(-(self.eig[0,i]-
self.Ef)/vt));

self.mass=self.masst;
solve_schroedinger_1D(self);
vt=self.Temp*kboltz/q;

for i in range(0,self.Neig): self.charge=self.charge-

4*dist*1e-

Page | 155

9*(self.Psi[:,i])**2*self.massl*m0*kboltz*self.Temp/pi/hbar**2*log(1+e xp(-(self.eig[0,i]-
self.Ef)/vt));

I now add the holes

for i in range(0,size(self.charge)):
self.charge[i]=self.charge[i]+dist[i]*1e-

9*(2/sqrt(pi))*2*(vt/(2*pi)*(self.massh[i]*m0/hbar)*(q/hbar))**1.5*fph alf((self.Ei[i]-
self.Egap[i]*0.5-self.Ef)/vt)

return;

def current(self): return 0;

	page27
	page219
	page221
	page223
	page225
	page227
	page229
	page231
	page233
	page235
	page237
	page239
	page241
	page243
	page245
	page247
	page249
	page251
	page253
	page255
	page257
	page259
	page261
	page263
	page265
	page267
	page269
	page271
	page273
	page275
	page277
	page279
	page281
	page283
	page285
	page287
	page289
	page291
	page293
	page295
	page297
	page299
	page301
	page303
	page305
	page307
	page309
	page311
	page313
	page315
	page317
	page319
	page321
	page323
	page325
	page327
	page329
	page331
	page333
	page335
	page337
	page339
	page341
	page343
	page345
	page347
	page349
	page351
	page353

