
Page | 1  
 

Study of Ballistic Graphene Nanoribbon FET and 

Carbon Nanotube FET for Device Applications  

 

 

By 

Md. Reaz Haider Pavel (11221050) 

Md. Zishan Ibne Hussain (11121055) 

A.B.M. Rakibul Ahsan (11221033) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

A Thesis 

Submitted as the partial Fulfillment for the Degree of Bachelor of 

Science in Electrical and Electronic Engineering 

 
 
 
 

Department of Electrical and Electronic Engineering 

BRAC University 

Dhaka-1212, Bangladesh 



Page | 2  
 

CERTIFICATE OF APPROVAL 
 

 

The thesis entitled “Study of Ballistic Graphene Nanoribbon FET and Carbon Nanotube FET for 

Device Applications” submitted by Md. Reaz Haider Pavel, Md. Zishan Ibne Hussain and A.B.M. 

Rakibul Ahsan has been accepted satisfactorily in partial fulfillment of the requirement for the degree 

of Bachelor of Science in Electrical and Electronic Engineering. 

 
 
 
 
 
 
 
 
 
 
 

 

                  Supervisor 

 

 

 
 
 
 

       ---------------------------------------------- 
 

(Dr. Sharif Mohammad Mominuzzaman) 

Department of Electrical and Electronic Engineering 

Bangladesh University of Engineering and Technology (BUET) 

 

 

 

 

 

 

 

 

 

 

 



Page | 3  
 

CANDIDATE DECLARATION 
 
 
It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of 

any degree or diploma. 

 
 
 
 
 
 
 
 
 
 
 
 

    Author 
 
 
 
 
 

       -------------------- 
 

 Md. Reaz Haider Pavel 
 
 

 

     Author 
 
 
 
 
 

        ------------------------ 
 

Md. Zishan Ibne Hussain 
 
 
 

      Author 
 
 
 
 
 

        ------------------------ 

                                                                                                                 A.B.M. Rakibul Ahsan 

 

 

 

 



Page | 4  
 

ACKNOWLEDGEMENT 
 
 
First and foremost, we are very much grateful to Almighty ALLAH for giving us eternal blessings on 

choosing the correct path towards the target of this work. 

 

This work has been performed through inspiration and constant guidance of several kind people. Most 

importantly, we would like to thankfully acknowledge the help of Dr. Sharif Mohammad 

Mominuzzaman, Professor, Department of Electrical and Electronic Engineering (EEE), Bangladesh 

University of Engineering and Technology (BUET), Dhaka. His experience and in depth knowledge in 

the field of nanotechnology, constantly guided us towards completion of the work. His guidance and 

insightful discussions enlightened us throughout the thesis work. Thanks for his encouragement and 

trust on our ability to work on this topic. It would not be possible to complete this work without his 

informative assistance and motivation. 

 

We would also like to thank Dr. A.K.M. Azad who referred our group to Professor Mominuzzaman 

and always believed in our abilities. 

 

A special thanks to Atanu Kumar Saha, faculty of EEE department of BRAC University, for his 

persuasive consultations throughout our thesis. 

 

We are indebted to Sheikh Ziauddin Ahmed, faculty of EEE department of BRAC University, for his 

generosity and Syed Mahmud Hasan for taking the time out of his busy schedule to help us out with 

our work. 

 

Finally, we would like to thank our parents and well-wishers for their constant support, motivation and 

their patience. 

 

 

 

 

 

 

 



Page | 5  
 

ABSTRACT 
 
 
The need for technological progression in the field of electronics has been persistently escalating. So 

far silicon has been the most important fabrication material of preference for meeting the current 

demands. However, silicon itself has few of its own limitations; Silicon based integrated circuits and 

the scaling of silicon MOSFET design faces complications like tunneling effect, gate oxide thickness 

effect etc. which has given the extensive perimeter for new materials with improved characteristics to 

emerge. 

 

In up to date periods, graphene and carbon nanotube have shown huge promise as materials that can 

swap silicon-based materials in the future due to their outstanding electrical properties and other 

characteristics. Simulation studies of graphene nanoribbon field-effect transistors (GNRFETs) and 

carbon nanotube field-effect transistors (CNTFETs) at different contact temperatures are presented in 

this thesis paper using models that have been methodically developed and are of increasing 

thoroughness and versatility. This thesis covers the studies and modeling of graphene nanoribbon and 

carbon nanotube, which includes band structures and current-voltage graphical plots. Also, an analysis 

has been presented which shows the effect by varying contact temperatures for relative dielectric 

constant and chirality on the device performance, in particular on the drain current. 

 

The purpose of this paper is to the study behaviour of graphene nanoribbon transistors and carbon 

nanotube transistors. The simulation is carried out using NanoTCAD ViDES program and the main 

focus is on the changes in the I-V characteristic curves for transfer and output characteristics for 

relative dielectric constant and chirality for different contact temperatures. The obtained results were 

used to make a comparative analysis of the device performance of GNRFET and CNTFET. We 

confirmed our work by contrasting of our results with other recognized academic papers published 

under the same category. 
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Chapter 1 

INTRODUCTION 
 

 

The objective of this paper is to present a comprehensive discussion about the contact temperature 

effect on the ballistic graphene nanoribbon and carbon nanotube transistor. This research also 

establishes a relative analysis of the transfer and output characteristics of ballistic barrier graphene 

nanoribbon and carbon nanotube transistor. The scrutiny is carried out by shifting contact temperatures 

for different parameters on input and comparing the consequence with the result of other research 

groups. Being the first chapter, this chapter presents the background of the research, objective, and the 

extent of this research work. The chapter itself also comes up with the outline of the thesis. Finally, 

this chapter summing up the content of each chapter. 

 
 

1.1 Overview and Research Incentive 

Silicon has been the structural block for the electronics sector till today. This emerging technology 

paced at a rate which over turn the historic pace of Moore‘s law [1]. Even so, the scaling limits of 

silicon are approaching the closing stages since many problems come up as devices become smaller in 

size. Problems like tunneling effect, short-channel effect etc. come into the picture and these effects 

hinder the device performance. It is therefore essential that silicon be substituted by other materials 

which will take device advancement to a whole new level. On basis of that, it is of intense concern to 

identify reliable, suitable and most importantly effective new materials which can be a super substitute 

of silicon platform with sustainable properties that can out run the existing silicon technology. New 

materials with superior electronic, optical and mechanical properties emerge as a result to allow 

devices scaling to continue to the atomic scale. Nanosize devices open many pathways to exploit the 

physical and chemical properties at the nanoscale. Chemical synthesis, self-assembly, and template 

self-assembly promise the precise fabrication of device structures or even the entire functional entity. 

Thus, the reasonable new nanoelectronic devices can be originated based on completely new system 

architecture for instance: nanotubes, nanoribbons, nanowires, molecular devices and unique 

nanoelectronics devices [1]. 
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Among diverse material systems and structures, grapheme and carbon nanotubes shown meticulous 

promises according to their nanoscale size and unique electronic properties. Due to their low 

dimensionality, nanostructures such as quantum dots, carbon nanotubes (CNTs) possess unique 

properties that make them promising candidates for future technology applications [2]. Though a 

through and relentless study have been performed but yet to understand how a graphene and carbon 

nanotube transistor operates and how to improve their performance [3] [4] [5]. In recent times both of 

them have been fabricated which showed an improved performance than a silicon transistor of 

identical size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: (a) Moore‘s law and (b) IC technology projection. [1] 

 

In this thesis substantial simulation of GNRFETs and CNTFETs for the different temperatures is 

extended. In order to explore the infinite outcomes for GNRFETs and CNTFETs, it is compulsory to 

build up an elementary understanding of the basic physics. This research therefore deals with the I-V 

characteristics of ballistic GNRFETs and CNTFETs and thus enhances our depth of knowledge 

regarding the fundamental physics that governs their behavior in other devices. 

 

1.2 Objectives of the Research 

The scaling of silicon-based transistors has been the dynamic factor behind the large growth of the 

technology industry over the last few decades. However, this miniaturization imposes some limits on 

the silicon-based transistors. Thus, researchers have been aggravated to explore and ascertain other 

alternative technology like graphene and carbon nanotubes for better functioning of the current 

devices. Because of having low dimensionality and outstanding electronic properties; Graphene and 
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carbon nanotubes are the potential materials for future nanoelectronics, both as interconnects and as 

critical elements like channel materials for field-effect transistors. At present, ballistic graphene 

nanoribbon field-effect transistor(GNRFET) and carbon nanotube field-effect transistor (CNTFET) are 

indulged as two of the nanoelectronic devices that have vast prospective to be treated as a switching 

device for future. We are planning to make an extended comparative analysis between these two types 

of transistors for different temperatures. The nucleus parts of our research work to summarize are: 

 

 Analyze the graphene nanoribbon and carbon nanotube device models and the limitation of Si 

MOSFET. 

 Understand the basic of graphene nanoribbon and carbon nanotube physics and focus on their 

electrical properties. 

 Comprehend the device characteristics, fundamental equation and mathematical model of 

GNRFET and CNTFET. 

 Realize theoretical difference between graphene nanoribbon based FET and carbon nanotubes 

based FET. 

 Using mathematical model simulation investigate the I-V characteristics of GNRFET and 

CNTFET by varying different parameters and make an unalloyed comparison with different 

research group result. 

 By examining the objective stated above, we can deduce total GNRFET and CNTFET 

characterization and form a complete understanding of the effect of changing different 

parameters on transfer and output characteristics of these two transistors. 

 

1.3 Extents of Work  

The research paper has been constrained to the following scopes of work due to lack of resources, 

proficiency and restricted time frame. 

 By using NanoTCAD ViDES [6] simulate Schottky barrier Graphene Nanoribbon field-effect 

transistor (GNRFET) and Carbon Nanotube field-effect transistor (CNTFET) and generate I-V 

curves. 

 Simulate the transfer and output characteristics by changing temperature for different 

parameters like chirality, dielectric constant and channel length.  

 Comparing the obtained results with other research groups. 

 Comparison between GNRFET and CNTFET. 
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1.4 Outline of the Research Report  

This thesis paper has been divided into four chapters including this one.  

 

Chapter 1 thrashes out the overview and research incentive, the research objectives and the extents of 

work of this paper. 

Chapter 2 gives a detailed overview of Silicon MOSFETs along with the limitation it faces due to 

scaling. Afterward there is a comprehensive discussion on Carbon Nanotube, the structure of CNT, 

chirality, single walled CNT (SWCNT), multi walled CNT (MWCNT) and properties of CNT are 

discussed. Subsequently the operational principles of carbon nanotube transistors are presented. 

Before ending, this chapter gives an elaborate discussion on graphene and graphene nanoribon, their 

synthesis procedures and their properties. 

Chapter 3 contains the results and analysis of our focal works where we generated the I-V curves for 

both Schottky barrier GNRFET and CNTFET. This chapter largely deals with the transfer and output 

characteristics of both GNRFET and CNTFET. The result and analysis section exhibits and discusses 

the effects of relative dielectric constant, chirality and channel length on the transfer and output 

characteristics for different temperatures. 

Chapter 4 brings to a closure of our entire research and discusses about our future projections and 

realistic researches. 
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Chapter 2 

MOSFET, CARBON NANOTUBE, CNTFET, 

GRAPHENE AND GNRFET 

 
 
 

2.1 Evaluation of the Silicon MOSFET 

In 1930, Lilienfeld [7] patented the basic concept of the field effect transistor (FET). After thirty years 

in 1959, the concept was finally materialized in Si-SiO2 by Kahng and Atalla [8] [9]. The first 

MOSFET was invented in 1959 and since then it has completely changed the world of digital 

electronics. MOSFETs have dominated all fronts of digital applications especially modern computers; 

because it offers many advantages to the user. MOSFETs are relatively small in size and this 

contributes to the fact that they can be packed in large numbers on a single integrated circuit. It is also 

very reliable and offers low consumption of power. The progress up to now is well described by 

―Moore‘s law.‖ Gordon Moore predicted in 1965 that for each new generation of memory chip and 

microprocessor unit on the market, the device size would reduce by 33 percent, the chip size would 

increase by 50 percent, and the number of components on a chip would quadruple every three years. 

So far this trend has shown no signs of stopping [10]. 

 

Several properties of silicon have made these developments in microelectronics possible. Silicon can 

be grown in single crystals that are more than 1 m long and 30 cm across. The purity of the crystal and 

the number of electrically active defects can be controlled. The number of atomic crystal defects in 

sub-micrometresized MOSFETs is now limited to individual centers that act as traps for electrons. 

Such traps may be identified, individually characterized, and counted, so that single-electron 

transistors are possible. The reason behind Silicon being the semiconductor of choice for MOSFET is 

its native oxide. Silicon dioxide (SiO2) is an almost perfect insulating material with a resistivity in 

excess of 1016 Vcm. The insulating films of SiO2 grown on silicon are smooth and coherent with no 

holes, in a thickness ranges down to single atomic layers [10]. 
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The metal–oxide–semiconductor field-effect transistor (MOSFET) is a transistor used for amplifying 

or switching electronic signals. Although the MOSFET is a four-terminal device with source (S), gate 

(G), drain (D), and body (B) terminals; [11] the body (or substrate) of the MOSFET often is connected 

to the source terminal, making it a three-terminal device like other field-effect transistors. The gate 

terminal is a metal electrode that controls the current flow from source to drain [12]. The gate voltage 

needs to be higher than the threshold voltage in order for the current to flow in MOSFET. The source 

terminal is usually grounded and the drain voltage applied is relatively very small. As the gate voltage 

rises above the threshold voltage; an inversion layer or channel is created. This causes electrons to 

flow from source to drain terminal and as a result of which the current flows from drain to source 

terminal. There is no current flow to gate terminal since there is an oxide barrier which acts as an 

insulator. Figure 2.1 shows the structure of MOSFET. 

 

 

Figure 2.1: Structure of MOSFET  

 

 

2.1.1 Scaling of the Silicon MOSFET 
 
Scaling is a process which involves reducing the size of MOSFET and at the same time improving its 

performance. The first method was introduced in 1974 in which by reducing the MOSFET dimension, 

the device density, switching speed and energy was also improved. Each new generation has 

approximately doubled logic circuit density and increased performance by about 40% while the 

memory capacity has increased by four times. In ideal scaling, as the dimension and the operating 

voltage is reduced by a factor of 0.7, the area density doubles, switching delay decreases by a factor of 
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0.7 and the switching energy is halved. The switching speed can be estimated when the gate 

capacitance, operating voltage, and drive current are known. Switching energy is reduced as a result of 

the lower total combination parasitic capacitance due to smaller device size and lower operating 

voltage. Reduction of switching energy is very important since the overall circuit power is very crucial 

especially if the system is used for a long period continuously [12]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Feature size versus time in silicon ICs [13] 

 

2.1.2 Limitations of Scaling 

There have been many articles and papers on the current situation and future prospects for Si-

MOSFETs; many different scaling limits for MOSFETs have also been discussed and proposed [8]. 

There are a number of factors which needs to be taken under consideration with continued MOSFET 

scaling that present challenges for the future and, ultimately, fundamental limits. There are quite a few 

problems which arise as the MOSFET size reaches nanometer scale and ultimately limits the 

performance of the MOSFET itself. These problems are crucial and must be taken under consideration 

if the MOSFET is to survive in the near future. 
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2.1.2.1 Short Channel Effect 

The first factor to be considered is the short channel effect. The short channel effect introduces several 

leakage currents in MOSFET which are discussed below and shown in the figure- 2.3[14]. 

 Reverse bias p-n junction current occurs due to the minority carriers, diffusion near the 

depletion region and also due to the generation of electron-hole pairs.  

 Weak reverse current occurs when gate voltage is lower than threshold voltage.  

 DIBL current is present when source‘s potential barrier is reduced as a result of the drain‘s 

depletion region interacting with the source. The existence of DIBL lowers the threshold 

voltage.  

 Gate-Induced Drain Lowering (GIDL) current occurs in high electric field between gate and 

drain, and it also occurs along the channel width between gate and drain.  

 Another leakage current mechanism, punchthrough, occurs when the drain and source 

depletion regions touch deep in the channel.  

 Narrow-width current arises when the channel length is reduced to less than 0.5µm.  

 Gate-oxide tunneling current occurs when the oxide layer is made very thin and also causes 

gate leakage current tunneling through oxide bands.  

 Hot-carrier injection occurs when hot carriers is injected into the oxide. 

 

 

 

 

 

 

 

Figure 2.3: Short-channel-transistor leakage current mechanisms: reverse-bias p-n junction leakage 

(I1), weak inversion (I2), drain-induced barrier lowering (I3), gate-induced drain leakage (I4), punch-

through (I5), narrow-width effect (I6), gate oxide tunneling (I7), and hot-carrier injection (I8). 
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Table 2.1: Schematically illustrates the MOSFET used in today‘s silicon chips. The basic fabrication 

process steps to manufacture such a device have been broadly described. The basic structure will 

continue to evolve to allow continued performance improvements, but fundamental changes are 

unlikely until 2015 [13]. 
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2.1.2.2 Threshold Voltage Effect 
 
A notable limitation to MOSFET is that the threshold voltage is not proportionally decreasing with 

respect to transistor scaling. The threshold voltage is maintained at a constant level when the channel 

length is between 0.1µm-1µm and it deviates further when the channel length is below 0.1µm [12], 

[7]. If the transistor is scaled below 0.1µm, the threshold voltage current does not drop to zero 

immediately but it decreases exponentially, and is inversely proportional to the thermal energy [12]. 

There are some thermally distributed electrons at source terminal that have enough energy to 

overcome the barrier potential regulated by gate terminal. This behavior is independent of channel 

length and power supply. So, higher threshold voltage causes higher leakage current. Denoting leakage 

current as Ioff gives: 

 

Ioff = Io (-qVt / mKT) (2.1) 
 

 

Ioff = Extrapolated current per width at threshold voltage.  

m= Dimensionless ideality factor 

Vt= Threshold voltage. 
 

 

Lower leakage current is essential for a transistor in order to reduce the power loss. However lower 

threshold voltage can reduce the leakage current. So, designing a transistor should be in such a way 

that its threshold voltage remains very low. According to Sanudin, the leakage current is reduced ten 

times for every 0.1V reduction of threshold voltage [12]. 

 

2.1.2.3 Oxide Thickness 

The gate insulator in a MOSFET needs to be thin compared to the device channel length in order for 

the gate to exert dominant control over the channel potential. This avoids ―short channel effects,‖ 

which are largely the result of the drain electric field penetrating throughout the channel and 

influencing the channel potential at the source of the device [13]. 

 

Gate-oxide thickness causes two kinds of limitations. Firstly, the thin layer of oxide eventually 

increases leakage current. This effect is also related to quantum effect tunneling that dominates in 

MOSFET as the oxide thickness is reduced. The tunneling current due to thick oxide layer may look 

negligible in comparison with ―on state‖ c urrent. However, it has a major effect when the chip is in 

standby mode. Secondly, due to the oxide thickness there is a loss of inversion charge and also the 



Page | 22  
 

transconductance as a result of inversion-layer quantization and polysilicon gate depletion effect [15]. 

The gate electrode itself also presents some significant challenges. Polysilicon has been used for more 

than 25 years as the gate electrode material. However, decreasing its resistivity, as shown in table-2.1, 

implies increasing the doping levels in the polysilicon, which minimizes the resistivity of the gate 

electrode. This aids in avoiding polysilicon depletion effects. However, this approach is limited by 

dopant solubility limits and by dopant out diffusion from the polythrough to the thin gate dielectric 

and into the silicon. This later problem is particularly acute with p-gates because boron diffuses 

rapidly through SiO2. The likely solution is again new materials. But there are no known materials 

solutions that are known to work in manufacturing [13]. 

 

2.1.2.4 Tunneling Effect 

Under normal conditions, in an operating or computational system integrated transistors are separated 

sufficiently enough so that operation of one transistor does not in any way affect the operation of 

another transistor. This separation is made by inserting a material that acts as a barrier between two 

transistors. However, the barriers are also scaling down along with the MOSFETs. So there is a 

possibility of carriers from one MOSFET crossing over to another and distorting the performance. 

This effect increases exponentially as the barrier distance decreases. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Potential barrier between two transistors. 
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2.1.2.5 Contact Resistance 

Contacts are normally made by self-aligned silicides which are in contact with heavily doped silicon. 

This process provides an ohmic contact; which completely covers the area of the source/drain 

diffusions and this leads to the minimization or reduction of the contact resistance. Current flows in a 

distributed manner from the source/drain extension to the contact. The exact flow lines depend on the 

doping profile in the silicon and on the physical geometry. The contact resistance depends on the 

effective area of the contact. Current crowding on the leading edge of the contact can have a 

significant effect. In this structure, the contact resistance is given by: 

Rcontact = √(ρcRSD) / (W × coth (Lc / Lt)) ≈ ρc / (WLc)                                (2.2) 

Where, 

ρc= specific contact resistivity of the silicide/semiconductor contact ( Ω cm
¬2

 ); 

RSD= sheet resistance of the source/drain diffusion (Ω/square);  

W= contact width; 

Lc= contact length. 

Lt= √(ρc /RSD) is called the transfer length and is the average distance that carriers travel in the 

diffusion before entering the contact. 

 

For typical values of ρc, RSD and Lt, is greater than the physical contact length Lc, which results in the 

approximation shown above. In this case, the current flows into the entire length of the contact and 

current crowding effects are minimal. Thus, the contact resistance varies inversely with the contact 

area if ρc is constant. 

 

The silicide formation process itself often consumes silicon since the metal component (Ti, for 

example) is usually deposited and then reacted to form the silicide. This has several important 

consequences. Firstly, some of the volume of the heavily doped source/drain regions is lost or 

consumed by the silicide formation. The portion of the source/drain region which is ―lost‖ is the top 

portion, which is normally the most heavily doped and, therefore, the most conductive. This increases 

the sheet resistance of the remaining diffusion in which current can flow to the contact and, therefore, 

increases the effective contact resistance [13]. 
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2.1.2.6 Power Consumption and Heat Dissipation 

Power consumption and heat dissipation are two obstacles for further advancement in Si-based 

transistors. For the past three years power density has grown with the rate of 0.7 for every generation 

[16]. Large amount of power consumption boosts up the heat generation, increasing the possibility of 

transistors interfering with each other. As MOSFETs are scaling down these small transistors consume 

small amount of power but IC chips are becoming denser because of large number of transistors on 

each of them. So it uses large amount of power to drive all transistors and therefore generates more 

heat. Heat dissipation and power consumption are two major limitations. Therefore, there is the need 

of searching for alternative media, which can overcome the limitations of conventional Si based 

MOSFET. And this is where the idea of using carbon nanotubes instead of Silicon is conceived. 

 

2.1.2.7 Theoretical Limitations 

Thermal limit and quanta limit are a major problem. Amount of energy needed to write a bit must be 

greater than the thermal function in order to avoid the bit error to occur. This is called the thermal 

limit. Currently CMOS needs 10-13 J to write a bit and the trend is to reduce it, in order for the power 

dissipation to reduce [12]. 

Quantum limit is associated with E/f where, E is the thermal energy and f is the frequency. Currently 

CMOS is operating higher than the quantum limit and if the scale reaches to 100nm then it is expected 

the limit is approached as E is decreased and f is increased. 

 

2.1.2.8 Design Limitations 

Due to the scaling down of MOSFETs lead to the discovery of its design limitations. MOSFET does 

not work effectively when it is scaled to only around 30nm. The limit is because of the fact of Zener 

breakdown at source/substrate junction [12]. Leakage at gate also starts to surface and it becomes very 

difficult to have control over the channel. 
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2.2 Carbon Nanotube (CNT) 

Carbon nanotubes were first discovered in 1991 by S. Lijima, also known as the father of carbon 

nanotubes. Carbon nanotubes are formed when graphene layers are folded into a seamless cylindrical 

form. Carbon nanotubes are quasi-one-dimensional and look like long thin cylinders of carbon with 

diameters of about 1nm. There are two types of carbon nanotubes depending on their composure. 

When the nanotube is composed of several shells of carbon, it is known as multi wall nanotube 

(MWNT). On the other hand, when only one shell composes the nanotube it is known as single wall 

nanotube (SWNT). Carbon nanotubes display a versatile range of properties which has attracted 

researchers all around the globe. They are good conductors of heat, electricity and also display 

semiconducting characteristics. Carbon nanotubes can be metallic, semiconducting or insulating 

depending on their rolling helicity most importantly and then on its length and diameter. What is 

fascinating is the fact that carbon nanotubes require no doping. The bandgap can also be varied just by 

changing the diameter of the nanotube. Bandgap decreases with increasing diameter. Carbon 

nanotubes have a very high current density; individual tubes are able to carry currents at a higher 

density than most metals and other semiconductors. Carbon nanotubes are also inert and this makes 

them very compatible with other materials. Currently, SWNTs are synthesized by one of three 

different techniques: pulsed laser vaporization, arc discharge growth, or chemical vapor deposition 

(CVD) on supported or gas phase catalysts. Transition metals in their nanoscales are used as catalysts 

in the processes. Pure carbon nanotubes are highly polarizable, smooth-sided structures, they tend to 

aggregate into parallel bundles that are held together by non-covalent interactions of approximately 

0.5 eV per nanometer. These substantial Van der Waals cohesive forces are sufficient to bundle the 

nanotubes in raw samples. This makes it really difficult to separate and collect individual tubes for 

further research or device construction. One of the greatest needs in nanotube research and 

commercialization is the development of effective methods for obtaining samples of SWNTs with 

uniform electronic character. Ultrasonic agitation in surfactant solution followed by ultracentrifugation 

can often give stable suspensions that are rich in individual nanotubes. However, physical separation 

of the semiconducting and metallic species is much more difficult particularly for larger batch sizes. 

Obtaining SWNT samples of specific (n, m) types is the most difficult goal and it is one of the major 

factors disrupting the commercialization of carbon nanotubes [17].  
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Figure 2.5: Single Wall Nanotube (SWNT)  

 

 
 

 

Figure 2.6: Multi Wall Nanotube (MWNT)  

 

2.2.1 Physical Structure of CNT 

SWNTs are more pliable than their multi-walled counterparts and can be twisted, flattened and bent 

into small circles or around sharp bends without breaking [18]. They can be conducting, like metal or 

semiconducting, which means that the flow of current through them can be controlled by varying an 

electrical field. Whereas, multi-walled carbon nanotubes are basically like Russian dolls made out of 
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SWNTs concentric cylindrical graphitic tubes. In these more complex structures, the different SWNTs 

that form the MWNT may have quite different structures (length and chirality). MWNTs are typically 

100 times longer than they are wide and have outer diameters mostly in the tens o f nanometers. 

Although it is easier to produce significant quantities of MWNTs than SWNTs, their structures are less 

well understood than single-wall nanotubes because of their greater complexity and variety. 

Multitudes of exotic shapes and arrangements, often with imaginative names such as bamboo-trunks, 

sea urchins, necklaces, or coils, have also been observed under different processing conditions. The 

variety of forms may be interesting but also has a negative side—MWNTs always (so far) have more 

defects than SWNTs and these diminish their desirable properties [18]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Graphene sheet [14] and rolling graphene sheet to create carbon nanotube [19]. 

 

A SWNT is described as a graphene sheet rolled up into a cylindrical shape with axial symmetry, 

exhibiting a spiral conformation called chirality [18]. Graphene has a hexagonal structure, and rolling 

up the graphene sheet in different directions and diameter would yield the nanotubes with different 

symmetries, which induces different electronic structures. Since electronic properties of SWNTs 

depend on their structures, it is very important to find a way to specify the geometric structure of a 

SWNT. As shown in Fig. 2.7, we can roll up the graphene sheet alone vector OA, which is 

perpendicular to the nanotube axis in the direction of OB. Here, we can see that O, A, B and B‘ are 

four crystallographically equivalent sites. By rolling up the paper plane and making OB overlap with 

AB‘, we get a seamless single-walled tubular structure. Then it would be straightforward to define the 
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vectors Ch =OA as chiral vector and T=OB as translational vector. If we use a1 and a2 as the base 

vectors of graphene 2-D crystal lattice, we can have the chiral vector as [20]: 

Ch = na1+ma2 = (n, m)                        (2.3) 

0 ≤ m ≤ n. 

The way the graphene sheet wraps can be represented by a pair of indices (n, m) called the chiral 

vector. The relationship between n and m defines three categories of CNTs. Arm chair (n = m) and 

chiral angle equal to 30°); zigzag (n = 0 or m = 0 and chiral angle equal to 0°); and chiral (other values 

of n and m and chiral angles lie between 0 and 30°) [21] [22] [23]. These are shown in figure 2.8 

 

Ch= a/√n
2
 +m

2
 +n  (2.4) 

Where, a = 2.49 Å.  

dt(diameter)=  Ch / π  (2.5) 

θ(chiral angle)=arc cos (2n+m/2√n
2
 +m

2
 +nm)  (2.6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 2.8: 3D model of the three types of single walled carbon nanotubes [21]. 
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Table 2.2: Young‘s modulus, Tensile strength, and density of carbon nanotubes compared with other 

materials [21] 

Material Young's Modulus(Gpa) Tensile Strength (Gpa) Density (g/cm3) 

Single wall nanotube 1054 150  

Multi wall nanotube 1200 150 2.6 

Steel 208 0.4 7.8 

Epoxy 3.5 0.005 1.25 

Wood 16 0.008 0.6 
 

 
 
Table 2.3: Some parameters for carbon nanotubes [21] 
 

 
Average diameter of SWNTs 1.2-1.4 nm 

Distance from opposite carbon atoms (Line 1) 2.830 Å 

Analogous carbon atom separation (Line 2) 2.456 Å 

Parallel carbon bond separation (Line 3) 2.450 Å 

Carbon bond length (Line 4) 1.420 Å 

C-C tight bonding overlap energy ~ 2.50 eV 

Group symmetry (10, 10)                                C5V 

Interlayer spacing:  

(n, n) Armchair   3.380 Å 

(n, 0) Zigzag    3.410 Å 

(2n, n) Chiral    3.390 Å 

Optical properties  

Fundamental gap:  

For (n, m); n-m is divisible by 3 [Metallic]   0 eV 

For (n, m); n-m is divisible by 3 

[Semiconducting]   ~0.5 eV 

Maximum current density   1013 A/m2 

Thermal transport  

Thermal conductivity (room temperature)    ~ 2000 W/m K 

Phonon mean free path   ~ 100 nm 

Relaxation time    ~ 10-11 s 

Elastic behavior  

Young's modulus (SWNT)     ~ 1 TPa 
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2.2.2 SWNT Characteristics of Electrical Transport  

A determination of the band structure allows for the calculation of an energy dependent Drude 

conductivity for the graphene sheet that constitutes a nanotube surface, as . Here the 

elastic scattering length (le) of the carriers is proportional to the electron-phonon scattering and 

generally increases with decreasing temperature .One characterize the electrical conductivity in two 

regimes: 

 Low temperatures (kBT<EF), where in the conductivity equation above, the energy (E) 

replaced by EF (the Fermi energy).The conductivity in this regime is metallic. A finite zero-

temperature value, the magnitude of which is determined by the static disorder, is obtained.  

 High temperatures (kBT>EF), where in the conductivity equation, the energy (E) is replaced 

by kBT. The conductivity, and the carrier density, is then directly proportional to T. 

At the very outset, it is not trivial to measure the intrinsic resistance of a SWNT. Any contact in 

addition to those at the two ends of the tube can destroy the one-dimensional nature of the SWNT and 

make a true interpretation difficult. Theoretically, for a strictly one-dimensional system the Landauerm 

formula predicts an intrinsic resistance, independent of the length is equal to h/e
2
 (1/T (Ef)). Assuming 

perfect transmission through ideal Ohmic contacts, i.e., T (EF) equal to one. This contact resistance 

arises from an intrinsic mismatch between the external contacts to the wire (which are of higher 

dimensionality) and the one-dimensional nanotube system and is always present. When one takes 

individually into account both the two-fold spin and band degeneracy of a nanotube the intrinsic 

resistance (Rint) now becomes: (Rint)= h/4e
2
(1/T(Ef)), which again seems length independent [24] [25]. 

 

However, in the above discussion, we have not yet considered the contribution of the external 

contacts. When we consider the transmission (T) through the contacts into the one dimensional 

channel and then to the next contact, T=le/le+L, where le is the mean free path length for scattering and 

L is the length of the one-dimensional conductor. The resistance is now equal to: 

                                                (2.7) 

The first term represents Rint while the second term denotes an Ohmic resistance (ROhmic) associated 

with scattering. In the presence of dynamically scattering impurities, such as acoustical or optical 

phonons, which are inevitably present at any temperature above 0 K, the Ohmic resistance should 

definitely be considered. It is interesting to consider the limiting cases of a large mean free path (le→ 

infinity) or a small tube (L→ 0) i.e., in the ballistic regime, when the Ohmic resistance is seen to 
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vanish. Finally, the material resistance of the contacts contributes an additional term: Rc. The total 

resistance as measured in an external circuit would now be: R = Rint +ROhmic +Rc. These 

considerations imply that a minimum resistance of h/4 (∼6.5 kohm) is present in a SWNT with a 

single channel of conduction. In practice however, imperfect contacts (which lead to T<1) and the 

presence of impurities lead to larger resistance values, while deviations from strict one-dimensionality 

or multiple channels of conduction (as in a MWNT) could lead to smaller numbers for the 

resistance[24]. 

 

2.3 Carbon Nanotube field effect Transistor 

2.3.1 Structure of CNTFET 

The first carbon nanotube field-effect transistors were reported in 1998. These were simple devices 

fabricated by depositing single-wall CNTs (synthesized by laser ablation) from solution onto oxidized 

Si wafers which had been pre-patterned with gold or platinum electrodes. The electrodes served as 

source and drain, connected via the nanotube channel, and the doped Si substrate served as the gate. A 

schematic of such a device is shown in Fig. 2.9 Clear p-type transistor action was observed, with gate 

voltage modulation of the drain current over several orders of magnitude. The devices displayed high 

on-state resistance of several MΩ, low transconductance (-Ins) and no current saturation, and they 

required high gate voltages (several volts) to turn them on [1] [12]. 

 

 

 

 

 

 

 

Figure 2.9: Early CNTFET structure [12]. 

 

Following these initial CNTFET results advances in CNTFET device structures and processing 

yielded improvements in their electrical characteristics. Rather than laying the nanotube down upon 

the source and drain electrodes, relying on weak van der Waals forces for contact, the electrodes were 

patterned on top of previously laid down CNs [2]. In addition to Au, Ti and CO were used, with a 

thermal annealing step to improve the metal/nanotube contact. In the case of Ti, the thermal 
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processing leads to the formation of TiC at the metal/nanotube interface, resulting in a significant 

reduction in the contact resistance - from several MΩ to – 30 kΩ. On-state currents ~1 μA were 

measured, with transconductance - 0.3 μS. All early CNTFET were p-type, i.e., hole conductors. 

Whether this was due to contact doping or doping by the adsorption of oxygen from the atmosphere 

was initially unclear. N-type conduction was achieved by doping from an alkali (electron donor) gas 

and by thermal annealing in vacuum. Doping by exposure to an alkali gas involves charge transfer 

within the bulk of the nanotube, analogous to doping in conventional semiconductor materials [25]. 

On the other hand, annealing a CNTFET in vacuum promotes electron conduction via a completely 

different mechanism: the presence of atmospheric oxygen near the metal/nanotube contacts affects the 

local bending of the conduction and valence bands in the nanotube by way of charge transfer, and the 

Fermi level is pinned close to the valence band, making it easier for injection of holes. When the 

oxygen is desorbed at high temperatures, the Fermi level may line up closer to the conduction band, 

allowing injection of electrons. Contrary to the case of bulk doping, there is no threshold voltage shift 

when going from p-type to n-type by thermal annealing. In addition, it is possible to achieve an 

intermediate state, in which both electron and hole injection are allowed, resulting in ambipolar 

conduction. The ability to make both p-type and n-type CNTFETs enabled the first carbon nanotube 

CMOS circuits. These were demonstrated by Derycke et al., who built simple CMOS logic gates, 

including an inverter in which the two CNTFETs were fabricated using a single carbon nanotube. 

Subsequently, more complex CN-based circuits have been built as well [1]. Carbon nanotube field 

effect transistor (CNTFETs) uses semiconducting carbon nanotube as the channel. Both p-channel and 

n-channel devices can be made from nanotubes. The physical structure of CNTFETs is very similar to 

that of MOSFETs and their I-V characteristics and transfer characteristics are also very promising and 

they suggest that CNTFETs have the potential to be a successful replacement of MOSFETs in 

nanoscale electronics. Of course, there are some distinct properties of CNTFETs, such as: 

 The carbon nanotube is one-dimensional, which greatly reduces the scattering probability. As a 

result the device may operate in ballistic regime.  

 The nanotube conducts essentially on its surface where all the chemical bonds are saturated 

and stable. In other words, there are no dangling bonds which form interface states. Therefore, 

there is no need for careful passivation of the interface between the nanotube channel and the 

gate dielectric, i.e. there is no equivalent of the silicon/silicon dioxide interface. 

 The Schottky barrier at the metal-nanotube contact is the active switching element in an 

intrinsic nanotube device.  
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Because of these unique features CNTFET becomes a device of special interest. The field effect 

transistors made of carbon nanotubes so far can be classified into two types: 

a) Back gate CNTFET  

b) Top gate CNTFET  

 

2.3.2 Back Gate CNTFET 

CNTFET was first demonstrated in 1998 by Tans et al. [26] to show a technologically exploitable 

switching behavior and this work marked the inception of CNTFET research progress. In this structure 

a single SWNT was the bridge between two noble metal electrodes on an oxidized silicon wafer. The 

silicon oxide substrate can be used as the gate oxide and adding a metal contact on the back makes the 

semiconducting CNT gateable. Here the SWCNT plays the role of channel and the metal electrodes 

act as source and drain. The heavily doped silicon wafer itself behaves as the back gate. These 

CNTFETs behaved as p-type FETs with an I (on) / I (off) ratio~10
5
 [27]. This suffers from some of the 

limitations like high parasitic contact resistance (≥1Mohm), low drive currents (a few nanoamperes), 

and low transconductance gm ≈ 1nS. To reduce these limitations the next generation CNTFET 

developed which is known as top gate CNTFET. 

 

2.3.3 Top Gate CNTFET 

To get better performance Wind et al. proposed the first top gate CNTFET in 2003 [27]. In the first 

step, single-walled carbon nanotubes are solution deposited onto a silicon oxide substrate. Then by 

using either atomic force microscope or scanning electron microscope the individual nanotubes are 

located. After which, source and drain contacts are defined and then patterned using high resolution 

electron beam lithography. High temperature annealing reduces the contact resistance and also 

increases union between the contacts and CNT. A thin top-gate dielectric is then deposited on top of 

the nanotube, either via evaporation or atomic layer deposition. Finally, the top gate contact is 

deposited on the gate dielectric. Arrays of top-gated CNTFETs can be fabricated on the same Silicon 

wafer, since the gate contacts are electrically isolated from each other, unlike in the back-gated case. 

Also, due to the thinness of the gate dielectric, a larger electric field can be generated with respect to 

the nanotube using a lower gate voltage. These advantages mean top-gated devices are generally 

favored over back-gated CNTFETs, regardless of their more complex fabrication process [28]. 
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Figure 2.10: (a) Back gate CNTFET [29], (b) Top gate CNTFET [Source- Internet image]. 

 

Table 2.4: Comparison between Back gate CNTFET and Top gate CNTFET [29] 

Parameters Back gate CNTFET Top gate CNTFET 

   

Threshold voltage -12V -0.5V 

   

Drain current Of the order of nanoampere Of the order of microampere 

   

Transconductance 1nS 3.3µS 

   

I(on)/I(off) 10
5
 10

6
 

   

 

2.3.4 Schottky-barrier (SB) CNTFET 

Normally, a potential barrier known as Schottky barrier (SB) exists at every contact between metal and 

semiconductor. The barrier height is determined by the filling of metal-induced gap states. These 

states become available in the energy gap of semiconductor due to interface formed with the metal. 

The SB is controlled by the difference of the local work functions of the metal and the carbon 

nanotube. SB is also extremely sensitive to changes of local environment at the contact [30]. For 

example, gas adsorption changes the work function of metal surfaces. Since this device employs metal 

as its source/drain terminals and has Schottky barrier at its terminal contact between nanotube and 

metal, therefore it is called Schottky-barrier CNTFET (SB-CNTFET). Diagram of SB-CNTFET is 

shown in Figure 2.11.  
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Figure 2.11 Diagram of a SB-CNTFET [12]. 

 

SB-CNTFET works on the principle of direct tunneling through the Schottky barrier at the source-

channel junction. The barrier width is controlled by the gate voltage and hence the transconductance of 

the device depends on the gate voltage. At low gate bias, large barrier limits the current in the channel. 

As gate bias is increased, it reduces the barrier width, which increases quantum mechanical tunneling 

through the barrier, and therefore increases current flow in transistor channel. In SB-CNTFET, the 

transistor action occurs by modulating the transmission coefficient of the device [4] [10] [31] [32]. 

 

SB-CNTFET shows very strong ambipolar conduction particularly when the gate oxide thickness is 

reduced even the Schottky barrier is zero [31]. This type of conduction causes leakage current to 

increase exponentially with supply voltage especially when the nanotube diameter is large, which 

results in limiting device potential. Thus, ambipolar conduction must be reduced in order to improve 

the performance of SB-CNTFET. One of the solutions is to increase the gate oxide thickness. If the 

gate oxide thickness is high, there is no ambipolar conduction exists when Schottky barrier is zero. 

Hence, the leakage current is reduced and as a result, the transistor performance is improved. Another 

alternative is to build asymmetric gate oxide, which is has been proposed recently, in order to suppress 

the ambipolar conduction [32] [30]. 

 

Another issue regarding on SB-CNTFET is that this type of transistor suffers from metal-induced-gap 

states which limit minimum channel length and thus increases source to drain tunneling. SB-CNTFET 

is also unable to place gate terminal close to source because it can increase parasitic capacitance. 
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2.3.5 MOSFET-like CNTFET 

The structure of this device is slightly dissimilar to SB-CNTFET since it uses heavily doped terminals 

instead of metal. This was formed in order to overcome problems in SB-CNTFET and operates like 

MOSFET. Unlike SB-CNTFET, source and drain terminals are heavily doped like MOSFET and 

hence it is called as MOSFET-like CNTFET. This device, as shown in Figure 2.12, operates on the 

principle of modulation the barrier height by gate voltage application. The drain current is controlled 

by number of charge that is induced in the channel by gate terminal. 

 

This type of transistor has several advantages over SB-CNTFET. This device is able to suppress 

ambipolar conduction in SB-CNTFET. It also provides longer channel length limit because the density 

of metal-induced-gap-states is significantly reduced. Parasitic capacitance between gate and source 

terminal is greatly reduced and thus allows faster operation of the transistor. Faster operation can be 

achieved since length between gate and source/drain terminals can be separated by the length of 

source to drain, which reduces parasitic capacitance and transistor delay metric. It operates like SB-

CNTFET with negative Schottky barrier height during on-state condition and thus it delivers higher 

on-current than SB-CNTFET. Previous work has shown that this type of device gives higher on-

current compared to SB-CNTFET and therefore it can justify the upper limit of CNTFET 

performance. Based on the device performance, it is obvious that this device can be used to investigate 

the ballistic transport in CNTFET [33] [34]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: MOSFET-like CNTFET [35]. 
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2.3.6 Vertical CNTFET (V-CNTFET) 

The latest development in CNTFET progress could be the initiation of vertical CNTFET. This 

structure with surround-gated is suggested by Choi et al. in 2004 [12]. The transistor size can be as 

small as the diameter of carbon nanotube which corresponds to tera-level CNTFET and density of 10
12

 

elements per cm
-2

.The vertical CNTFET is prepared through the following steps: nano-pore formation 

by anodization followed by synthesizing the carbon nanotube, metal-electrode formation, oxide 

deposition and patterning and finally gate electrode formation. The silicon oxide was deposited at the 

top of aligned carbon nanotube by electron gun evaporation and followed by holes formation of e-

beam patterning and chemical etching. The silicon oxide deposition process is then followed by 

deposition of top gate electrode. The structure of vertical CNTFET is illustrated in Figure 2.13. In this 

structure, each carbon nanotube is electrically attached to bottom electrode, source, upper electrode 

(drain) and gate electrode is put around the carbon nanotube. Each cross point of source and drain 

electrodes corresponds to a transistor element with a single vertical carbon nanotube. The number of 

carbon nanotube in transistor depends on the hole-diameter of gate oxide. The vertical CNTFET 

allows higher packing densities that can be achieved since source and drain areas can be arranged on 

top of each other [36]. On the other hand, real 3-D structures can be made possible because the active 

devices are no longer bound to the surface of mono-crystalline silicon wafer.  

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Structure of Vertical CNTFET [2] 
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2.4 Introduction to Graphene 

Taking the shape of sheer thin, almost transparent like one atom thick Graphene composed of pure 

carbon. It has extraordinary tensile strength being 100 times compared to that of steel despite of being 

so light [37]. It also possesses sheer electrical and thermal conductivity [38]. First isolated in a lab in 

2004 [39]. Such qualities as mentioned herewith make it highly potential for flexible conductors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Unit cell of graphene. A) Image of bulk graphene, with a unit cell show in the inset. B) 

Unit cell of graphene demonstrating its four nearest neighbors [40]. 

The allotrope of carbon, graphene has a 2-dimensional property. Mainly it consists of a lattice 

structure of carbon atoms in the sp
2
 hybridization state. As depicted in figure 2.14 [41] each unit of 

graphene lattice cell contains two carbon atoms that contributes one extra electron each to this vast 

ocean of electron. In the atomic lattice the carbon atoms are closely packed in a typical sp
2 

bonded 

atomic-scale chicken wire (hexagonal) pattern. If stated plainly graphene is just a thick one-atom layer 

of graphite. The basic structure of other allotropes of carbon, charcoal, carbon nanotube and fullerenes 

constitute are the same.  
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Scientists initially were not atoned with the idea of separating graphene sheets despite of it being 

known that graphite comprised of hexagonal carbon sheets layered on top of one another. A revolution 

was brought about by Konstantin Novoselov, Andre Geim when they along with their collaborators 

put forward that a layer could be separated from graphite and such few layers could electrically 

characterized. Their electrical measurement for a single layer was published in July 2005 and as such 

introduced the scientific fraternity to the graphene concept. [34] Figure 2.15 shows three separate 

structures made of honeycomb lattice. 

 

 

 

 

 

 

 

 

Figure 2.15: Structures made of graphene - fullerene molecules, carbon nanotubes, and graphite can 

all be thought of as being formed from graphene sheets, i.e. single layers of carbon atoms arranged in 

a honeycomb lattice [42]. 

2.4.1 Synthesis of Graphene 

For decades in order to improve mass production techniques to generate high quality graphene 

rigorous research has been going on [43]. Since the invention of x-ray diffraction crystallography the 

graphite structure is widely known. Solution based exfoliation of graphite gave a unreasonable idea 

about the atomic planes of carbon [44]. In order to get monolayers in solution Boehm put forward the 

concept of lowering exfoliated graphite oxide [45]. Several successful venture accounts of producing 

monolayers of carbon in graphitic structures, on various carbides [46] [47] [48] and transition metal 

surfaces, [48-53] are there, of which the most praiseworthy is Van Bommel‘s journey with SiC [54]. 

Since the tightly bound metallic surfaces interrupt the perpendicular pi-orbitals, with SIC being a 

special case, these studies did not reinforce the observation for any electronic properties. Synthesis 

techniques can be categorized into micromechanical exfoliation, solution-based and chemically 

assisted exfoliation, chemical synthesis, epitaxial growth through sublimated SiC surfaces, and the 
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pyrolysis of hydrocarbons on metal surfaces. In aspect of quality, processability, scalability & cost 

each has its own pros, cons and distinctive features. 

 

2.4.1.1 Exfoliation  

2.4.1.1.1 Mechanical Cleavage 

Using this technique bulk graphite can be isolated into single atomic planes. Before the ‗Scotch tape 

Method‖ [54-57] was introduced scrutinizing isolated layers of graphene was nonviable. 

Micromechanical cleavage of bulk graphite often been used to produce graphene samples of high 

quality also termed peeled graphene. To pare layer off highly oriented pyrolytic graphite it uses 

adhesive tape, which is then pulverized onto a proper substrate which is generally oxidized silicon. 

This technique induce low output and largely used for the study of underlying properties of ballistic 

transport, carrier mobility, thermal conductivity and the likes. This method is not feasible and efficient 

although it produces quality graphene layers [57-63]. 

2.4.1.1.2 Solution and Chemical Exfoliation  

This particular technique has the capability of producing graphene in bulk. By installing reactants 

between layers than causes the cohesive Van Der Waals force [64] to weaken, bulk graphite is 

intercalated. Successful high-quality, single-layer graphene sheets, stably suspended in organic 

solvents were produced by Dai‘s group in steps of chemical intercalation, reintercalation, and 

sonication[65]. Expandable graphite firstly is suspended in sulfuric & nitric acid, where the exfoliated 

particles are still thick. This step is subsequently followed by oleum treatment with tetra-butyl alcohol 

reintercalation to ensure the graphene is of high quality. Next sonification is done based on AFM 

measurement immersed in a surfactant solution. Sonicating graphite powder in N-

methylpyrroidone[66] a liquid exfoliation process came into being which helps produce graphene. 

Weeks of low power sonification to avoid damage to graphene sheets generate high concentration (up 

to 1.2 mg/mL up to 4 wt %) of monolayer graphene [67]. Sonication-free, mild dissolution of graphite 

by synthesizing well-documented GICs bearded large graphene flakes and ribbon [68]. 

 

 

 

 



Page | 41  
 

 

 

 

 

 

Figure 2.16: Exfoliated graphene. a) Optical microscopy image of a very large micromechanically 

exfoliated (tape method) monolayer of graphene. Note the considerable contrast for the single atomic 

layer. b) Photograph of dispersed graphene by ultrasonic exfoliation of graphite in chloroform and (c) 

that deposited on a bendable film [69]. 

 

2.4.1.1.3 Oxidation and Reduction  

A more potent technique which provides high yields of graphene is to synthesize graphite oxide first 

followed with exfoliation into monolayers, followed by the removal of oxygen groups by 

reduction[71- 72]. Huge numbers of negative charges are carried by every single oxidized flake that 

repel each other. The Brodie, Staudenmeier and Hummers methods are the three most familiar ways to 

oxidize graphite. Of all these the Hummers method has become the most popular subject to some 

slight modification in producing graphite oxide, for its comparatively lesser reaction time and the 

absence of toxic byproducts[72]. As a result of oxidation the interlayer gap increases from 0.34 nm to 

more than 0.6 nm, with delicate van der Waals forces in between layers. Exfoliation is generally 

suplemented with sonication[73], generating single layers of graphene oxide[74] which are water 

soluble without aid of surfactants to form unfaltering colloidal system. Using chemical [75], thermal 

[76], electrochemical [77] or electromagnetic flash [78], laser-scribe techniques [79], etc the GO is 

then minimized. 
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Figure 2.17: Synthesis of graphene by oxidation and reduction. Graphene oxide and reduced graphene 

oxide showing the remaining oxygen-rich functional groups after reduction [69]. 

2.4.1.2 Chemical Vapor Deposition  

The Chemical vapor deposition technique demonstrates great potential of scalability for production of 

single and multi layered graphene films. Wafer size graphene films have developed on both single and 

poly crystalline, invariably, in transition metal surfaces in high temperature such as of methane[80-84] 

a result of pyrolysis of hydrocarbon precursors. Layers of graphene are variably dependent on carbon 

solubility of the substrate. Metals with high carbon solubility, the atoms of carbon can disintegrate at 

high temperature and as a result precipitate onto the surface of the metal to form develop into single or 

multilayered graphite films upon cooling. Films with such non uniform structures ranging from 1-10 

layers along with mono layer domain integrate up to several micrometers in diameters on nickel [85-

87] substrate [88].The rate of cooling and hydrocarbon gas concentration dictates the thickness and 

crystal ordering. Moreover, low carbon solubility in few transition metals like copper [89] and 

platinum [90] allows complete monolayer presentation [91]. 

2.4.1.3 Chemical Synthesis  

Through bottom-up organic synthesis a controlled production of graphene can be achieved. It can be 

composed of as a interconnected pattern of polycyclic aromatic hydrocarbons (PAHs) which are tiny 

two dimensional segments of graphene. Due to its high flexibility and compatibility with different 

organic synthesis techniques [92] this way of doing is appealing. The pioneers in this field are Mullen 

& his coworkers announcing synthesis of nanoribbon like PAHs with lengths over 30 nm [93-94]. 

Lately the biggest stable colloidal graphene quantum dots were synthesized with the help of a 
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benzene-based chemical route which composed of 132, 168 & 170 mixture of carbon atoms [95-96]. 

Due to the decreasing solubility however the graphene dots are inhibited in size resulting in increased 

size and more side reactions which are still now the main hurdle for organic synthesis of controllable 

shapes, sizes and edge structured graphene molecules.  

 

2.4.2 Properties of Graphene 

2.4.2.1 Structure  

Due to a closely packed periodic aray of atoms and of carbon a sp
2
 orbital hybridization - a 

combination of orbitals px and py that constitute the ϭ-bond graphene is basically a steadfast material. 

It has three ϭ-bonds and one π-bond. Final pz electron makes up the π-bond, and is key to the half-

filled band that allows free-moving electrons[98].The structure of isolated single layered graphene i.e 

atomic structure was studied with the help of transmission electron microscopy (TEM) suspended on a 

metallic bar grid[98] upon sheets of graphene. The expected honeycomb lattice resulted the electron 

diffraction patterns. 

 

2.4.2.2 Electronic  

Graphene is a semi-metal or zero-gap semiconductor. It is distinguished from other condensed matter 

systems as a result of four electronic properties. 

 

2.4.2.2.1 Electronic spectrum  

Electrons that proliferate due to graphenes honeycomb lattice structure produce quasi-particles by 

losing their mass and that which is illustrated by a 2D analogue of the Dirac equation rather than the 

Schrödinger equation for spin-1⁄2particles[99][100]. 

 

2.4.2.2.2 Dispersion Relation  

Using a conventional tight-bonding model given the electron energy with wave vector k the dispersion 

relation is [101][102]. 

 

 

 

With the nearest-neighbor hopping energy γ0 ≈ 2.8 eV and the lattice constant a ≈ 2.46 Å. The 

conduction and valence bands equate to the different signs; touch each other at six points, "K-values" 
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of the two-dimensional hexagonal Brillouin zone. Of these six points two are independent which the 

rest are symmetrical. Around the K points the energy relies directly on the wave vector as is the case 

to a relativistic particle [101][103].Since an elementary cell of lattice has a two basis atom, the wave 

function has an effective 2-spinor structure.  

As a matter of which even the true spin,at low energy, the electrons can be stated by an equation that is 

equivalent to the massless Dirac equation. Thus, the holes and the electrons are are known as Dirac 

fermions and the six corners are called Dirac points.As a consequence, at low energies, even 

neglecting the true spin, the electrons can be described by an equation that is formally equivalent to 

the massless Dirac equation. Hence, the electrons and holes are called Dirac fermions and the six 

corners are called the Dirac points[98].This pseudo-relativistic description is restricted to vanishing 

rest mass M0, which leads to interesting extra features[101][105]: 

 

The Fermi velocity in graphene here is illustrated as  vF ~ 106 m/s (.003 c) which in the Dirac theory 

substitutes the velocity of light; ⃗  is the vector of the Pauli matrices, is the two-component wave 

function of the electrons, and E denotes their energy[99]. 

The equation is as describing the linear dispersion relation is: 

 

 the wavevector k is measured from the Dirac points. The equation uses a pseudospin matrix formula 

that describes two sublattices of the honeycomb lattice [103].  

 2.4.2.2.3 Single-atom wave propagation  

Waves of electron in a graphene proliferate within a single layer of atom thus making them vulnerable 

in the vicinity of materials such high-κ dielectrics, superconductors and ferromagnetic. 

2.4.2.2.4 Electronic Transport  

Results derived from transport measurement imply that at room temperature graphene has tremendous 

high electron mobility, with values exceeding 15,000 cm
2
·V

-1
·s

-1
[106].Moreover the measured 

symmetrical conductances highlights that hole and electron mobilities are almost the same [100].This 

mobility is free of temperature in between the range of 10k and 100k [107-109] pointing that the main 

scattering mechanism is defect scattering. Intrinsically room temperature mobility is limited to 
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200,000 cm
2
·V

-1
·s

-1
 at a carrier density of 1012 cm

-2
 by the scattering of the acoustic phonons of 

graphene, later on which was presented and exceeds that of copper[111]. 

The peripheral resistivity should be in order of 10
-6

 Ω·cm for the graphene sheet. This is lower than 

the familiar resistivity at room temperature.  The corresponding resistivity of the graphene sheet 

should be in the order of 10
-6

 Ω·cm. this is lowered than the typical resistivity at room temperature. 

Graphene on SiO2 substrates, scattering of electrons by optical phonons of the substrate, however, is 

greater in effect than scattering by phonons of graphene. Thus limiting the mobility to 40,000 cm
2
·V

-

1
·s

-1
 [109]. 

In epitaxial graphene of 40-nanometer wide nanoribbons the change in electrical resistance is distinct. 

The predictions are surpassed by a factor of 10 by the conductance of the ribbon. Like the optical 

waveguides or quantum dots the ribbons behave in much similar way, facilitating the undisrupted flow 

of electrons along the ribbon edges. For copper the resistance improves in proportion to length as 

electrons jolt into impurities [113- 114]. 

Dominated by two modes transport basically of which one being ballistic and temperature independent 

whereas the other thermally agile. The ballistic electrons replicate those in cylindrical carbon 

nanotubes. Transport is dominated by two modes. One is being ballistic and temperature independent, 

while the other is thermally activated. Ballistic electrons resemble those in cylindrical carbon 

nanotubes. at a particular length- ballistic mode at 16 micrometers and the other at 160 nanometers 

(1% of the former length) [113] there is a sudden increase in resistance. 

By encraving into silicon carbide wafers on the edge of the 3-dimensional structure the ribbons were 

natured. When these wafers are heated as a preference the silicons are washed away along the edges, 

ideally at 1000 degree Celsius, forming nanoribbons the structure of which is determined by the motif 

of the 3-dimensional surface. The nanoribbons had the ideal edges, tempered y the fabrication process. 

Measurement of electron mobility exceeding one million is equivalent to a sheet resistance of one ohm 

per square which is two orders lower in magnitude compared to 2-dimensional graphene [113]. Even 

at room temperature graphene electrons can connect micrometer distances without scattering [99]. 

 

Graphene demonstrates the least conductivity on the order of 4e
2
/h, despite of zero carrier density at 

the Dirac points. However the cause of this minimum density is still vague, although, taking ruffling 

of the graphene sheets or ionized impurities in the SiO2 substrate may result local carrier puddles that 

aid conduction [100]. Numerous theories imply that the minimum conductivity should be 4e
2
/(πh); 
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however most measurement are of the order 4e
2
/h or greater[106] and relies on impurity 

concentration[115]. 

Graphene with near zero carrier density shows positive while negative photoconductivity at high 

carrier density. Induced by changes of both Drude weight and carrier scattering rate such interplay 

mainly controls it [116].  

  

Graphene can be withdraw to an undoped state by gently heating [115][117] Graphene doped with 

different gaseous species (both acceptors and donors). For concentrations of more than 1012 cm
-2

 for 

dopant carrier mobility shows no identifiable change [114]. Mobility can be reduced 20 times 

[115][118] if graphene is doped with potassium in ultra-high vacuum at low temperature. The 

reduction in mobility is reversible on heating the graphene thus getting rid of the potassium. 

 

As Graphene is two dimensional, there are chances of charge fractionalization to take place (In low 

dimensional system where the usual charge of single pseudoparticles is less than a single quantum 

[119]). Thus it may be an ideal material for constructing quantum computers with the help of anionic 

circuits [121]. 

 

2.4.2.3 Thermal   

In terms of thermal conductivity graphene is perfect. Recently its thermal conductivity was measured 

and is way higher than the values observed for other carbon structures like carbon nanotubes, graphite 

and diamond (> 5000 W·m
-1

·K
-1

) in room temperature. Graphenes ballistic thermal conductance is 

isotropic that is same in every direction. Being a 3D version of Graphene, graphite demonstrates 

thermal conductivity which is 5 times smaller (1000 W·m
-1

·K
-1

). Elastic waves propagating in the 

graphene lattice termed phonons generally guide the whole phenomenon. Thermal conductivity studies 

have crucial implications in electronic devices that are graphene based. Thermal conductivity reaches 

600 W·m
-1

·K
-1

 on a substrate too [111]. 

 

2.4.3 Energy Bandstructure of Graphene 

In contrast to the regular three dimensional structure graphenes electronic structure is very much 

unorthodox. The sic double cones on the Fermi surface is characteristic at illustrated in fig 2.18. Fermi 

surface as such is found at the cones adjoining points in undoped graphene. As the density of material 

is zero at that point, the intrinsic electrical conductivity is usually lower of the conductance quantum 

σ~e
2
/h; exact prefactor still debatable. However, with the means of an electric field the Fermi level can 
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be adjusted so that the material shifts either to p-doped(with holes) or n-doped(with electrons) 

dependent on the applied fields‘ polarity. Graphene too can be dopped applying the adsorption 

process. For doped graphene the electrical conductivity can be largely high and probably may be 

higher than copper at room temperature [70]. 

 

The dispersion relation in case of electrons and holes is linear in proximity to the Fermi Level. The 

curvature of the energy bands gives the effective masses; this equals to zero effective mass. The 

equation is similar to the Dirac equation for describing the excitation in graphene for mass less 

fermions which travel at constant speed. The cones connecting points are thus termed Dirac points 

[70]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.18: E-k diagram of graphene. The energy, E, for the excitations in graphene as a function of 

the wave numbers, kx and ky, in the x and y directions. The black line represents the Fermi energy for 

an undoped graphene crystal. Close to this Fermi level the energy spectrum is characterized by six 

double cones where the dispersion relation (energy versus momentum, ħk) is linear. This corresponds 

to massless excitations [70]. 

 

2.4.4 Band gap opening in Graphene devices  

Several ways that can be taken into consideration before inducing a bandgap in graphene. i)lateral 

confinement, i.e, utilizing grpahene nanoribbons as material for FET channels, II)the usage of bilayer 
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graphene that has a perpendicular electric field consisting of a gap tunable iii) utilizing epitaxial 

graphene on SiC iv) graphene functionalization or doping. 

 

There are a number of different ways that can be considered for inducing a bandgap in graphene: i) 

lateral confinement, i.e., using graphene nanoribbons as material for FET channels, ii) the use of 

bilayer graphene, that has a gap tunable with a perpendicular electric field, iii) the use of epitaxial 

graphene on SiC, iv) graphene functionalization or doping. Through evaluation by modeling we will 

further discuss the possibilities of these options. [123] 

 

2.4.4.1 Graphene nanoribbons  

As can be inferred from from fig 2.19 Nanocarbons offer a remarkable upperhand over 

carbonnanotubes: by virtue of relaxation, all nanoribbons have a semiconducting gap [122]. 

 

  

 

 

 

 

 

 

Figure 2.19: Energy gap as a function of the chiral number in zigzag carbon nanotubes (2n,0) [black] 

and in zigzag carbon nanoribbons (2n, 0) [white] [123]. 

 

2.4.4.2 Bilayer graphene FETs and Tunnel FETs 

By applying a vertical electric field as suggested theoretically [124,125] the bandgap in bilyaer 

graphene can be altered and observed [126,127]. This aspect opens a new prospect: the bandgap for 

any device becomes large when required can be made possible i.e. the device should be turned off. 
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2.4.4.3 Epitaxial graphene on SiC 

Graphene layer grown as a result of epitaxy on a SiC substrate if measured by angle-resolved photo-

emission spectroscopy can demonstrate a gap of around 0.26 eV as evident in recent experiments 

[128]. However, there is still need of further experiment but the point made is promising as epitaxial 

graphene on SiC is good for wafer scale fabrication. By exploring design with semi-analytical model 

[129]. The chances of putting the material to use have been evaluated. For Vdd = 0.25 V An 

ION/IOFF ratio of up to 60 is attainable but the channel bandgap (in eV) has to be more than the 

supply voltage (in V), or else strong interband tunneling will take place. For smaller Vds large current 

modulation is quite possible but considering digital applications the Vgs swing must be equivalent to 

the applied Vds. 

 

2.4.4.4 Functionalized Graphene  

Of the many vitalizing options chemical functionaliztion of Graphene sheets or nanoribbons are 

encouraging for tuning bandstructure and electronic properties. Conductance variations of up to six 

orders in magnitude are attainable through reversible chemical modifications (probably 

hydrogenation) as per latest experiments indicating the possibility of realizing memory elements 

[130]. The experimental demonstration of Graphene [131],  a two-dimensional hydrocarbon with a gap 

of 4-5 eV attained by hydrogenation of graphene via plasma treatment  further manifested that 

chemical functionalizing is a  feasible route toward bandgap engineering of graphene based materials. 

However, suitable technique to achieve good ohmic contains and to preserve high mobility (exceeding 

100 cm
2
/Vs) are still required. 

 

2.5 Graphene Nanoribbon 

Graphene nanoribbon (GNR) can be considered as a cut off from a graphene sheet. A chirality vector 

defines how the stripr is to be cut off and this vector is distinct from CNT‘s. Like CNT‘s GNR‘s do 

have periodic boundary conditions, as matter of which GNR has no closed form solution and thus 

must be numerically determined. The following examples are based on armchair edge and zigzag edge 

GNRs, which are similar to zigzag and armchair CNTs [132]. 
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2.5.1 GNR Structure  

The plainest way to define a graphene nanoribbon is to take of it as strip cut off from a graphene sheet 

with a specific chiral vector as previously mentioned.  With the chiral vector it would point out the 

direction and magnitude of the GNR‘s width. For Graphene the basis vectors are a1 and a2, and these 

basis vectors too makes it up for the CNT chirality vector. Although the origin of these vectors are not 

critical for CNT, but is for the GNR‘s for conditions of absence periodic. 

As it has been mentioned already, the simplest way of defining a graphene nanoribbon is to think of it 

as a strip cut off from a graphene sheet that follows a specific chiral vector. The chiral vector would 

indicate the direction and magnitude of the width of the GNR. The basis vectors for graphene are a1 

and a2, and that these vectors make the basis vectors for the CNT chirality vector. Although the origin 

of these vectors is not very important for CNT, it is crucial for GNRs due to the absence periodic 

boundary conditions. The following figure would demonstrate this fact [132].   

 

  

 

 

 

 

 

 
Figure 2.20: Affect of the origin of the GNR chiral vector [132]. 

A continuous infinite set of chiral vectors and their origins define every GNR. Here a specific genre of 

GNR will be discussed which with the aid of integer GNR chiral vectors can be defined with basis 

a1/2 and a2/2 with origin at either atom a or atom b of a graphene unit cell. A is the left-hand atom 

whereas b is the right-hand atom for a graphene unit cell. Consider these GNRs as A-type and B-type 

in case of this example.  In Fig 2.20, GNR 1 is A-type, and GNR 2 is B-type. With the same 

convention, the GNR chiral vector can be defined as: 
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In Equation 2.10 the subscript A/B represents the origin of the GNR chirality vector and is either value 

A or B. The quantities n and m in this equation must be integers. The transport vector of the GNR is 

perpendicular and equal in magnitude to the chiral vector. Fig 2.21 shows examples of the GNR chiral 

and transport vectors. It is indispensible that there are few constraints on the indices that will result 

stable structures. In most situations, n & m must be even. The chiral vector will not identify to a 

carbon atom in case n & m are not even.  If m is equal to zero, then n may be odd or even. Secondly, if 

n is equal to m, then they may be odd or even [132]. 

 

 

 

 

 

 

 

 

Figure 2.21: Examples of GNR chiral and transport vectors [132]. 

As numerous methods are used, it is crucial not to point out that this is the undeniable method for 

defining GNR. One popular method as proposed by Ezawa does a good job of defining physically 

realizable GNRs. With these method two zigzag lines in a zigzag edge GNR which is m hexagons long 

is firstly defined. An integer multiples of translation vector supersede the chain to create the ultimate 

nanoribbon structure. Direct comparison has not been made in this paper as no definite relationship to 

the simple indexing method exists [132]. 

 

2.5.2 Production of Graphene nanoribbon  

Large volume of width controlled GNRs [133] can be produced by a process known as graphite 

nanotomy. Applying sharp diamond knife on graphite nanoblock are fabricated. These blocks later on 

can be exfoliated to yield GNRs. Another way would be ‗unzipping‘ or cut open of the nanotubes 

[134]. Using the action of potassium permanganate and sulfuric acid solution multi-walled carbon 

nanotubes were unzipped [135]. Another method is through plasma etching of nanotubes partially 
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embedded in polymer film [136]. Lately using ion implantation followed by vaccum or laser annealing 

[137-139]. Graphene nanoribbons have been nurtured onto SiC. 

 

2.5.3 Electronic Structure of GNR 

The edge structures determine the electronic states of GNRs. The localized state with non-bonding 

molecular orbitals near the Fermi energy is made possible by zigzag edges. They are expected to have 

substantial changes in optical & electronic properties as a result of quantization. 

As the tight binding theory anticipates based on computation that zigzag GNR are always metallic 

whereas armchairs can either be metallic or semiconducting, dependent on the armchair nanoribbons 

width. When it comes Discrete Fourier Transforms calculations it shows armchair nanoribbons are 

semiconducting consisting of an energy gap inversely proportional to the GNR width [143]. With 

decreasing GNR width experiments corroborate that energy gaps increase. Control edge oriented 

graphene nanoribbons have been created by scanning tunneling microscope (STM) lithography [142]. 

It revealed energy gaps up to 0.5 eV in a 2.5 nm wide armchair ribbon. 

 

Zigzag nanoribbons exhibit spin polarized edges and are metallic. Due to an unusual antiferromagnetic 

coupling at carbon atoms of opposite edge this gap opens up. The size of this gap is inversely 

proportional to the width of the ribbon and can be recounted to the spatial distribution properties of 

edge wave functions in terms of behavior, and the exchange characteristics that creates the spin 

polarization is mostly local character. As a result in zigzag GNR the quantum confinement, inter-edge 

super exchange, and intra-edge direct exchange interactions are critical mostly for magnetism and its 

bandgap is controlled by alkaline adatoms [144].  Zigzag GNRs edge magnetic moment and bandgap 

are inversely proportional to the electron concentration. 

 

Numerical simulation [145] of tight binding derived via ViDES [146] demonstrates transistors are 

affected by field harnessing GNR for its compliance as channel material with ITRS stipulation for next 

generation devices.  

 

Graphene nanoribbons high electrical, thermal conductivity and 2D structure & low noise make GNRs 

considerate alternative for integrated circuit interconnects to copper. By changing the width of GNRs 

at certain points along the ribbon researchers are investigating the creation of quantum confinement 

[147].  As graphene nanoribbons contains semi conductive properties it can be taken as a alternative to 

silicon semiconductors [148]  capable of sustaining microprocessor clock speeds in the vicinity of 1 
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THz [149]. with width less than 10 nm field-effect transistors came into being with GNR – 

"GNRFETs" – with an ION/IOFF ratio >10
6
 at room temperature [150,151]. 

 

2.5.4 Graphene Transistors 

In 2004 Manchester group reported a graphene MOS device.  Doped silicon substrate as the black gate 

and a 300-nm SiO2 layer underneath the graphene are used as black-gate dielectric. To manifest 

concepts such back gate devices are useful but are susceptible to large parasitic capacitances and thus 

cannot be integrated with various components. Thus, graphene transistor requires a top gate structure. 

The top gate for a graphene MOSFET was first reported in 2007, and since then there has been 

immense progress.  Research in graphene is still in its premature days; graphene MOSFETs has the 

potential to compete with devices that are result of years of research and investment. 

 

Top gated graphene MOSFETs have been created with the help of exfoliated graphene, the ones that 

grow on nickel and copper and epitaxial graphene. Channels for these top-gated graphene transistors 

have been created by making use of large area graphene, which does not contain a bandgap so that 

these transistors can be switched off. 

 

As shown in fig 2.23a large area graphene transistors demonstrate a distinct current-voltage transfer 

characteristic. The type of carrier and its density (electrons or holes) in the channel is largely 

controlled by the potential difference between channel and the gates (top-gate and/or back-gate). 

Electron accumulation in the channel (n-type channel) is a result of large positive gate voltages while 

the large negative gate voltages assist a p-type channel. Two branches of the transfer characteristics 

arise from this behavior segregated by the Dirac point (Fig. 2.23a). Several points determine the 

position of the Dirac point; the differentiation between the work functions of the gate and the 

graphene, the type and density of the charges at the interfaces at the top and bottom of the channel 

(Fig. 2.21), and any doping of the graphene. For MOSFET devices the reported on-off ratios with 

large area graphene channels are in 2-20 range. 

 

Reports of graphene MOSFETs with gigahertz capabilities have come out lately where these 

transistors have large area channels of exfoliated and epitaxial graphene. Currently the fastest 

graphene transistor that Is in existence is a MOSFET that has a 240-nm gate with a cut off frequency 

fT = 100 GHz, which compared to best silicon MOSFETs having similar gate lengths is quite higher 

(as is the cut-off frequency of 53 GHz reported for a device with a 550-nm gate. A drawback of all 
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radio frequency graphene MOSFETs reported so far is the unsatisfying saturation behavior (only weak 

saturation or the second linear regime), which has an adverse impact on the cut-off frequency, intrinsic 

gain and other merits for radiofrequency devices. However, while operating with weakly saturated 

current to outdone silicon MOSFETs is undoubtedly splendid. 

 

One way of introducing a bandgap into graphene for logic applications is the creation of graphene 

nanoribbons. Nanoribbon MOSFETs with back-gate control and having widths of even less than 5 nm, 

have been operated as p-channel devices and that showed on–off ratios of up to 106. Such high ratios 

have been obtained despite simulations showing that edge disorder leads to an undesirable decrease in 

the on-currents and a simultaneous increase in the off-current of nanoribbon MOSFET. This, and other 

evidence of a sizeable bandgap opening in narrow nanoribbons, provides sufficient proof that 

nanoribbon FETs are highly suitable for logic applications. However, due to their relatively thick 

back-gate oxide of these devices, voltage swings of several volts were needed for switching, which is 

significantly more than the swings of 1 V and less needed to switch Si CMOS devices. Additionally, 

CMOS logic requires both n-channel and p-channel FETs with well-controlled threshold voltages, and 

graphene FETs that has all these properties have not yet been reported [152].  

Recently, the fabrication of the first graphene nanoribbon MOSFETs with topgate control has been 

reported. These transistors feature a thin high-dielectric-constant (high-k) top-gate dielectric (1–2 nm 

of HfO2), a room-temperature on–off ratio of 70 and an outstanding transconductance of 3.2 mS μm-1 

(which is higher than the transconductance reported for state-of-the-art silicon MOSFETs and III-V 

HEMTs) [152].  

Investigation of graphene bilayer MOSFETs have been carried out experimentally and also device 

simulation has been performed. Although the on–off ratios seen so far (100 at room temperature and 

2,000 at low temperature83) are too small for logic applications, they note a significant 

improvement(of about a factor of 10) over MOSFETs in which the channel is made of large-area 

gapless graphene [152].  

We now return to the discussion of two-dimensional nature of graphene. According to theory of 

scaling a thin channel region allows short-channel effects to be suppressed and thus makes it feasible 

to scale MOSFETs to very short gate lengths. The two dimensional nature of graphene means that the 

thinnest possible channel can be obtained by using graphene, so graphene MOSFETs should be more 

scalable than their competitors. However, it should be noticed that scaling theory is valid only for 

transistors with channels semiconducting in nature and does not apply to graphene MOSFETs with 

gapless channels. Thus, the scaling theory does describe nanoribbon MOSFETs, which not only have a 

bandgap but which have significantly lower mobility than large area graphene, as discussed. Given 
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that the high published values of mobility relate to gapless large-area graphene, the most attractive 

characteristic of graphene for use in MOSFETs, especially those required to switch off, is probably its 

ability to scale to shorter channels and higher speeds, rather than its mobility [152]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22: Structure and evolution of graphene MOSFETs. (a) Schematics of different graphene 

MOSFET types: back-gated MOSFET (left); top-gated MOSFET with a channel of exfoliated 

graphene or of graphene grown on metal and transferred to a SiO2-covered Si wafer (middle); top-

gated MOSFET with an epitaxial-graphene channel (right). The channel shown in red can consist of 

either large-area graphene or graphene nanoribbons. (b) Progress in graphene MOSFET development 

compared with the evolution of nanotube FETs [70]. 
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Figure 2.23: Direct-current behaviour of graphene MOSFETs with a large-area-graphene channel. 

Typical transfer characteristics for two MOSFETs with large-area-graphene channels. The on–off 

ratios are about 3 (MOSFET 1) and 7 (MOSFET 2), far below what is needed for applications in logic 

circuits. Unlike conventional Si MOSFETs, current flows for both positive and negative top-gate 

voltages [70]. 

 

2.6 Summary:  

The limitation of conventional Si-MOSFET, properties of carbon nanotube, types of carbon nanotube, 

characteristics of Carbon nanotube, properties of graphene, synthesis of graphene, band structure of 

graphene and properties of graphene nanoribbon have already been discussed. The production 

techniques and electronic structure of GNR are also covered in this chapter. It is found that the 

performance properties of CNT and GNR have given a higher performance properties compared to 

conventional properties. Each type transistor is modeled in difference way based on the structure of 

the transistor. This discussion includes different types of CNTFET from starting CNT technology, 

operation of CNTFET and types of CNTFET based on this operation. Also, various types of graphene 

transistors are discussed in this chapter and some details about their operation and properties are also 

given. 
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Chapter 3 

RESULTS AND CHARACTERIZATIONS OF 

CNTFET AND GNRFET USING NANOTCAD 

ViDES 

 
 
 
 

This chapter will explain the methodology used in this project, simulation model used for simulation 

study, simulation result obtained, comparing those results with other reliable research group‘s results 

and finally making summary, analysis and discussion on the result. 

 

3.1 The Model 

This research implicates simulation based study to investigate the effect on I-V characteristic by 

changing different parameters of CNTFET and GNRFET. This python based simulation study is 

carried out based on the self-consistent solution of the 3-D Poisson and Schrödinger equations with 

open boundary conditions within the non-equilibrium Green‘s function formalism and a tight-binding 

Hamiltonian [155]. The model is built for a Schottky barrier field effective transistor in order to 

investigate ballistic transport in CNTFET and GNRFET. The goal is to modify the MATLAB code 

such a way to investigate the effect on I-V characteristics by changing major parameters of CNTFET 

and GNRFET and also focused the result on 2D plot. 

 

3.1.1 Model Physics and the Process of Calculation 

The potential profile in the 3-D simulation domain obeys the Poisson equation 

[156]

 

Where,  is Electric potential,  is dielectric constant,  is fixed charge,  is concentration 

of ionized donor and  is concentration of ionized acceptor. 
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The electron and hole concentrations (n and p, respectively) are computed by solving the Schrödinger 

equation with open boundary conditions by means of the NEGF formalism [157]. A tight-binding 

Hamiltonian with an atomistic (pz orbitals) real-space basis for CNT [158] and GNR [159] has been 

used with a hopping parameter t = 2.7 eV. 

 

Green‘s function can be expressed as: 

G (E) = [EI – H – ΣS - ΣD] – 1                                                                                (3.2) 

 

Where, E is the energy, I is the identity matrix, H is Hamiltonian, ΣS is self-energy of the source and 

ΣD is self-energy of the drain. Transport here is assumed to be ballistic. 

 

The length and chirality of CNT or GNR are now defined and the coordinates in the 3-D domain of 

each carbon atom are then computed [160]. After that, the 3-D domain is discredited so that a grid 

point is defined in correspondence with each atom, while a user-specified grid is defined in regions not 

including the CNT or GNR. 

 

 

A point charge approximation is assumed, i.e., all the free charge around each carbon atom is spread 

with a uniform concentration in the elementary cell including the atom. Assuming that the chemical 

potential of the reservoirs is aligned at the equilibrium with the Fermi level of the CNT or GNR, and 

given that there are no fully confined states, the electron concentration is 

 

While the hole concentration is  

 

Where,  is coordinate of carbon site, f is Fermi-Dirac factor, 

|ψS|
2 

is probability that states injected by the source reach the carbon site ( ), 

|ψD|
2
 is probability that states by the drain reach the carbon site ( ), 

EFS is Fermi level of the source and EFD is Fermi level of the drain. 

The current is computed as 
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Where q is the electron charge, h is Planck‘s constant, and (E) is the transmission coefficient 

computed as 

                                                

Where Tr is the trace operator. In the present model, we only deal with the one-dimensional (1-D) 

transport between source and drain reservoirs, while the leakage gate current has not be taken into 

account. For the considered devices with channel length of a few nanometers, it can be shown that the 

gate current is negligible with respect to the drain current. 

 

Detail discussion about the physics and mathematical calculation of modeling is provided in 

Appendix A. Figure 3.1 describes the total calculation procedure that is done in the simulation. 

 

Table 3.1: Parameters and physical constants used in the simulation. 

Input Parameters Default Values  

Gate Insulator Thickness, t (nm) Boltzmann’s Constant, k= 1.8  10
-23

 J/K 

 Planck’s constant,h= 6.63  10
-23

  

Relative dielectric constant, εr Reduced Planck’s constant, ħ= 1.05 10-34 

Temperature, T (K)   

Gate Voltage, VG(V) Mass of electron, m0= 9.11  10
-31

 kg  

Drain Voltage, VD(V) Source Fermi level, Ef=  0.32eV  

 Overlap integral of tight bonding C-C model, 

 ς= 2.7 eV  

Channel Length, Lch(nm) Charge of an electron, q=1.6  10
-19

 C 

Chiral axis,(n,0) Permittivity of free space, ε0= 8.854 10-12 

 C-C bond length, ac-c= 1.42  10
-10

 m  
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Figure 3.1: Flow-chart of the self-consistent 3D Poisson-Schrodinger solver [155]. 
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3.2 Result and Analysis 

From the simulation different parameter changing effect on I-V characteristics of CNTFET and 

GNRFET is shown. Result started with varying contact temperature effect, dielectric constant effect, 

and also chirality changing effect on Graphene nanoribbon field effect transistor and Carbon nanotube 

based field effect transistor. The GNRFET and CNTFET structure that considered for the simulation is 

shown in Fig 3.2. 

 

For studying the various effects, perfectly patterned 15nm long N=12 armchair GNR having chirality 

(6, 0) and a 15nm long zigzag CNT having chirality (13, 0) are used as the default channel materials in 

the simulation due to their similar bandgaps. The default relative dielectric constant for both the FETs 

is taken to be 3.9. The default gate oxide thickness is 1.5nm and lateral spacing is 0.5nm. The default 

contact temperature is taken to be 300K. This default values are used in the simulation if the user does 

not specify the values of the parameters mentioned above. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: (a) Structure of GNRFET [179] (b) Structure of CNTFET [Source-internet image]. 
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3.2.1 Effect of Contact Temperature 

Now the concern is the effect of changing contact temperature on the transfer and output 

characteristics of graphene nanoribbon and carbon nanotube FET. Figure 3.3 and 3.4 deals with the 

contact temperature changing effect. The simulation is carried out at contact temperatures 77K, 100K, 

200K, 300K, 350K and 400K. 

 

In Fig 3.3, both GNR FET and CNT FET display ambipolar characteristics. The on-state drain currents 

are similar for both GNRFET and CNTFET. Both the FETS have off-state leakage currents which are 

almost of the same order of magnitude. It is observed that for different contact temperatures the drain 

current remains same for different gate voltages because of the ballistic consideration of the model. 

 

The effect of changing contact temperatures on the output characteristics for both the FETs is shown 

in Fig 3.4. As the contact temperature varied between 77K and 400K, there is a small increase in the 

on-state drain current for each FET. This is increase is due to the decrease in channel resistance of the 

channel materials. Fig 3.5 shows the how the resistance of graphene nanoribbon decreases as contact 

temperature is increased from 198K to 373K studied by Huaqing Xie et al [161]. At any particular 

contact temperature, the on-state drain current of GNRFET is higher compared to the on-state drain 

current of CNTFET. The GNRFET has drain current in the order of 10
-6

 and the drain current of 

CNTFET has an order of 10
-7

. In Figure 3.4, At VD=0.35V, GNRFET has a current of 1.93×10
-6

 A at 

T=400K while the CNTFET has a current of 7.63×10
-7

 A. Thus, we can conclude that the channel 

resistance of graphene nanoribbon is lower compared to the channel resistance of carbon nanotube at 

any particular contact temperature resulting in a higher on-state drain current for GNR. The off-state 

leakage current for both GNRFET and CNTFET can be found by extrapolation of the output 

characteristics graphs and it can be concluded that the GNRFET will have a higher off-state leakage 

current than CNTFET. 

 

Fig 3.6 shows the schematic of a FET based on GNR arrays patterned by BCP lithography [162].Fig 

3.6 (c) and (d) shows its transfer and output characteristics recorded by Son et al in the contact 

temperature range 100K-300K. It is observed in the figure that as the contact temperature of the 

patterned FET increases, its ambipolar behavior decreases. It is seen in Fig 3.3 (a) that for the GNR 

SBFET simulated in this thesis paper, the ambipolar behavior decreases with increasing contact 

temperature. Thus it can be concluded that ambipolar behavior decreases with increasing contact 
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temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for 

different contact temperatures at VD = 0.5 V. 
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Figure 3.4: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for 

different contact temperatures at VG = 0.5 V. 
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Figure 3.5: Dependence of resistance on contact temperature of graphene nanoribbon [161]. 
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Figure 3.6: (a) Schematic of a FET based on GNR arrays patterned by Block Copolymer lithography 

and (b) the corresponding SEM image. In (b), the contrast difference in the channel between the GNR 

arrays and the bare silica is evident. (c) I DS - V DS curves of the GNR array FET with a 9 nm ribbon 

width recorded at different gate voltages. (d) I DS - V G curves of the GNR array FET with a 9 nm 

ribbon width recorded at V DS = 100 mV in the contact temperature range of 100–300 K [162]. 
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Figure 3.7: Combined ID vs. VG characteristics of Graphene Nanoribbon FET and Carbon Nanotube 

FET at T= 400K and VD = 0.5 V. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Combined ID vs. VD characteristics of Graphene Nanoribbon FET and Carbon Nanotube 

FET at T= 400K and VG = 0.5 V. 
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3.2.2 Effect of Relative Dielectric Constant 

At this stage of report now the concern is to investigate the effect on GNRFET and CNTFET transfer 

and output characteristics by changing the dielectric constant. Naturally SiO2 is used as a gate oxide 

material which has a dielectric constant of 3.9. But other material can be used as an oxide material for 

better performance. At this case dielectric constant will change definitely. Figure 3.9 shows the results 

of changing dielectric constant studied by Rasmit Sahoo et al [164]. 

 

Because of scaling, bulk Si MOSFET suffers from many limitations like short channel effect, 

tunneling etc. To overcome these limitations many solutions were proposed by different researchers. 

Use of high dielectric material as gate insulator was one of the proposed solutions [163-167]. Keeping 

this in eye it is tried to see the effect of using different dielectric materials as gate insulator in 

GNRFET and CNTFET. In this case the dielectric constant is changed within a range of 3.9 to 15.9 

and interval is 4 keeping other parameter constant. At this inspect the temperature is kept at 300K 

which was a subject of change in our previous experiment. In Fig 3.10, the transfer characteristics of 

GNRFET and CNTFET are shown for different values of relative dielectric constant. Both the FETs 

show ambipolar characteristics. From the figure, it is observed that transfer characteristics for both 

GNRFET and CNTFET are similar. It is seen that as the relative dielectric constant is increased, the 

on-state drain current at any particular voltage increases. For GNRFET, at VG=0.5V the value of drain 

current at k=3.9 is 5.72×10
-7

 A and at k=15.9 is 2.56×10
-6

 A. For CNTFET, at VG=0.5V the value of 

drain current at k=3.9 is 6.08×10
-7

 A and at k=15.9 is 1.57×10
-6

 A. 

 

Fig 3.11 shows the output characteristics of the FETs for different values of relative dielectric 

constant. When the value of relative dielectric constant is 3.9, the off-state leakage current of CNTFET 

is observed to be lower than the off-state current of GNRFET. The on-state drain current of GNRFET 

at k=3.9 is of the order of 10
-6

A and that of CNTFET is of the order of 10
-7

A. As the value of relative 

dielectric constant increases, both the off-state leakage current and the on-state drain current increases 

for both GNRFET and CNTFET. The GNRFET has a higher saturation current compared to the 

CNTFET. For k=15.9, the current in the GNRFET is 5µA and the current in the CNTFRT is 2.33 µA 

at VD=0.55V. It is clear from the plot is that the saturation current increases for increasing dielectric 

constant but degree of this positive effect reduces as going for higher dielectric material [166] . This 

means that going for higher and higher dielectric material the increment in ID with respect to k 

reduces. These results also match with the result of Rasmita Sahoo et al Fig 3.9 [164]. 
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Figure 3.9: Dielectric constant changing effect investigated by Rasmita Sahoo et al. which satisfied 

simulation result [164]. 

 

 

Figure 3.10: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for 

different relative dielectric constant at VD = 0.5 V. 
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Figure 3.11: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for 

different relative dielectric constant at VG = 0.5 V. 
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Figure 3.12: ID vs. VG characteristics of Graphene Nanoribbon FET and Carbon Nanotube FET for 

relative dielectric constant of 11.9 at VD = 0.5 V. 

 

 

 

 

 

Figure 3.13: ID vs. VD characteristics of Graphene Nanoribbon FET and Carbon Nanotube FET for 

relative dielectric constant of 11.9 at VG = 0.5 V. 
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Again we check the dielectric effect by varying contact temperature and observed that, as the contact 

temperature increases on state drain current and off state leakage current also increase for both 

GNRFET and CNTFET. 

 

 

 

 

Figure 3.14: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in 

different contact temperatures for relative dielectric constant k = 3.9 at VD = 0.5 V. 



Page | 73  
 

 

 

Figure 3.15: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in 

different contact temperatures for relative dielectric constant k = 3.9 at VG= 0.5 V. 
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Figure 3.16: ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in 

different contact temperatures for relative dielectric constant k = 11.9 at VD = 0.5 V. 
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Figure 3.17: ID vs. VD characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET in 

different contact temperatures for relative dielectric constant k = 11.9 at VG = 0.5 V. 
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3.2.3 Effect of Chirality 

Now the discussion will relate the changing effect of chirality on GNRFET and CNTFET. Actually 

chirality relates with the diameter and diameter changing effect is very important for FET. That‘s why 

chirality changing effect is very important for any Graphene Nanoribbon or Carbon Nanotube based 

design. The equation that relates chirality and diameter is: 

                                        

Where, m and n is the chiral axis (n, m). Here n should be always greater than m. The width of 

Graphene Nanoribbon is equal to the perimeter of the Carbon Nanotube [168]. 

 

The energy bandgap of the CNT is inversely proportional to the nanotube diameter (Egap α 

1/Diameter) and also inversely proportional to the width of the GNR (Egap α 1/Width). Since the drain 

current of CNFET is dependent on the total charge that filled up the first subband, therefore it is 

possible that the drain current too depends on the diameter of CNT [169]. So ultimately the drain 

current depends on the chirality. In this experiment it will observe one chiral axis changing effect that 

is n. When it is changing n we will keep m value constant and the range of n value should be such a 

value that is always greater than m value to observe the effect on output. Other parameter will 

maintain their default value as like previous experiment. 

Fig 3.18 shows the transfer characteristics of both GNR FET and CNT FET for different chirality. In 

Fig 3.18 (a), variation in ID vs. VG graph is seen for different chiralities of Graphene Nanoribbon. 

Graphene Nanoribbon can be metallic or semiconducting [170]. It is metallic when N= 3M-1, where M 

is an integer and N=2n. Hence, the gate voltage has little control over the drain currents as shown in in 

Fig 3.18(a). It is observed that for semi-conducting GNRs, the bandgap decreases with increasing 

chirality as width increases. In Fig 3.18(b) the ambipolar characteristics decreases and drain current 

increases as CNT diameter increases with increasing chirality. Comparing Fig 3.18(a) and Fig 3.18(b) 

it is seen that the order of the drain current of GNR FET is greater than the order of the drain current 

of CNT FET.  

 

The output characteristics of GNRFET and CNTFET for different chirality are shown in Fig 3.19. In 

Fig 3.19 (a) the Graphene Nanoribbons have significantly higher off-state leakage currents compared 

to the Carbon nanotubes shown in Fig 3.19 (b).  
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(a) 

 

(b) 

 

Fig 3.18 ID vs. VG characteristics of (a) Graphene Nanoribbon FET (b) Carbon Nanotube FET for 

different chirality at 400K VD = 0.5 V. 
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(a) 

 

(b) 

 

Fig 3.19: ID vs. VG characteristics of (a) Graphene Nanoribbon SBFET (b) Carbon Nanotube SBFET 

for different chirality at 400K and VG = 0.5 V. 
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3.3 Summary 

This research primarily investigates the dependence of the transfer and output characteristics of 

GNRFET and CNTFET with respect to contact temperature, relative dielectric constant and chirality. 

A comparative analysis of the transfer and output characteristics between the GNRFET and CNTFET 

is done in this chapter. Also, the results of contact temperature dependence of sub-10 nm Graphene 

Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography are given in 

this paper and are compared to the contact temperature dependence of the GNRFET simulated in this 

research paper. The results of changing chirality of both GNRFET and CNTFET are observed. The 

transfer and output characteristics of the simulated GNRFET and CNTFET for relative dielectric 

constant with respect to contact temperature also observed in this chapter.  

 

So, to summarize the results: 

 

 The drain current increases only slightly with respect to contact temperature for both GNRFET 

and CNTFET.  

 

 For both the transistors, the saturation current increases with respect to relative dielectric 

constant. 

 

 For a specific relative dielectric constant, on state drain current increases with increasing 

contact temperature for both GNRFET and CNTFET. 

 

 Ambipolar behavior decreases with respect to diameter of CNT and width of GNR for 

semiconducting transistors.  

 

 The drain current is directly proportional to the diameter (CNT) or width (GNR) for both 

semiconducting GNRFET and CNTFET 

 

 GNRFET has comparatively higher drain current than CNTFET.  
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Chapter 4 

CONCLUSION 

 

4.1 Conclusion 

Of the most promising nanoscale device transistors currently grapheme and carbon nanotube are 

leading the way. Substantial research has been carried out on these materials and their accompanying 

devices. As a result the understanding of these devices has improved and has thus led to drastic 

improvements. The drawback faced by the present silicon MOSFESTs on the face of scaling has 

opened up avenues for a new range of devices and their application in logic circuit device which can 

significantly produce improved performance. Grapheme and carbon transistors that are of ideal quality 

are capable of providing significant performance and energy utility over regular CMOS technology. 

However high defect rates and material irregularity due to confinement of fabrication techniques are 

the setbacks faced by such nanoscale devices. Graphene and carbon nanotube exhibit electronic 

properties like high mobility which is remarkable and due to its scale it makes it possible to design 

high performance standard devices. 

 

A detailed comparative analysis is undertaken between grapheme nanoribbon field-effect transistor 

and carbon nanotube field-effect transistor as part of this research paper. In this analysis three distinct 

parameters set are varied for each transistor. They are contact temperature, relative dielectric constant, 

and chirality. For each parameter varied for each transistor ID vs.VG curves and ID vs. VD curves are 

obtained for comparison purpose. 

 

When it comes to the results the initial analysis demonstrates the effect of changing contact 

temperature on both transistor types. The transfer characteristic for contact temperature is very much 

similar since a ballistic transport has been assumed in our model. Additionally the output 

characteristics for GNRFET and CNTFET here a slight increase in drain current is visible with a rise 

in contact temperature. In contrast to CNTFET a higher drain current is observed for GNRFET. 

 

The effects of changing relative dielectric constant on GNRFET and CNTFET are demonstrated in the 

second analysis. On-state drain current rises in relation to dielectric constant for both the FETs in 



Page | 81  
 

terms of both transfer and output characteristics. For both the transistors the transfer characteristics are 

the same whereas when it comes to output characteristics grapheme nanoribbon transistor possess a 

drain current that is higher. Thus we can infer from this analysis that performance of both grapheme 

nanoribbon and carbon nanotube transistors will improve with materials of higher relative dielectric 

constant. 

 

The third part of our result and analysis section compares the changing effects of chirality of the two 

transistors. The diameter increases with respect to chirality. For GNR and CNT it is observed that gate 

voltage has only slight control over the drain current. For semiconducting FETs, it is observed that 

bandgap decreases with increasing diameter or width. As a result, drain current increases with respect 

to diameter or width. Lastly, the results obtained in this simulation are compared to the results of other 

research groups. 

 

The changing effects of chirality of two transistors are compared in the third part of our outcome. 

Moreover the diameter increases in terms of chirality. In terms of semiconducting FETs it is evident 

that bandgap reduces with increase in diameter or width as a result of which the drain current also 

increases in that respect. 

 

In the end after examination it can be said that grapheme nanoribbon and carbon nanotube field effect 

transistors has remarkable potential in the electronic industry and can be used to embark in a new era 

of electronics. 

 

4.2 Future work: 

There remain a large number of areas of graphene nanoribbon and carbon nanotube transistor 

modeling that can be explored further and which offer further scopes for improvement and 

development. The following would be the future prospects of this research: 

 

 In future, the study can expand our study to the effects of varying transconductance and 

conductance of GNRFET and CNTFET.  

 GNRFET and CNTFET with doped reservoirs can be modeled and simulate these transistors to 

make comparative analysis between these two transistors. 

 In the future the performances of the GNRFET and CNTFET and GNRFET and CNTFET with 

doped reservoirs can be compared to determine which type of structure is better. 
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 Expanding comparison of GNRFET and CNTFET to traditional MOSFET to get a clearer 

picture of the performance of these transistors compared to MOSFET. 

 Lastly, GNRFET and CNTFET can be modeled using different model physics and make 

simulation for each structure and make comparison between each model performances. 
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Appendix A 

 

Numerical Implementation 

The Green‘s function is computed by means of the Recursive Green‘s Function (RGF) technique [174, 

175]. Particular attention must be put in the definition of each self-energy matrix, which can be 

interpreted as a boundary condition of the Schrödinger equation. In particular, in our simulation we 

have considered a self-energy for semi-infinite leads as boundary conditions, which enables to 

consider the CNT/GNR as connected to infinitely long CNTs/GNRs at its ends. 

 

In addition, contacts are considered for both CNT and GNR following a phenomenological approach 

described in [176]. 

 

From a numerical point of view, the code is based on the Newton-Raphson (NR) method with a 

predictor/corrector scheme [177]. In Fig. 3.1 we sketched a flow-chart of the whole code. In particular, 

the Schrödinger /NEGF equations are solved at the beginning of each NR cycle, starting from an 

initial potential ̃ and the charge density in the CNT /GNR and SNWT is kept constant until the NR 

cycle converges (i.e. the correction on the potential is smaller than a predetermined value). The 

algorithm is then repeated cyclically until the norm of the difference between the potential computed 

at the end of two subsequent NR cycles is smaller than a predetermined value. 

 

Some convergence problems however may be encountered using this iterative scheme. Indeed, since 

the electron density is independent of the potential within a NR cycle, the Jacobian is null for points of 

the domain including carbon atoms/SNWT region, losing control over the correction of the potential. 

We have used a suitable expression for the charge predictor, in order to give an approximate 

expression for the Jacobian at each step of the NR cycle. To this purpose, we have used an exponential 

function for the predictor In particular, if n is the electron density the electron density ni at the i-th step 

of the NR cycle can be expressed as  

      

 

Where  and  are the electrostatic potentials computed at the first and ith step of the NR cycle, 

respectively, and VT is the thermal voltage. Same considerations follow for the hole concentration. 
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Since the electron density n is extremely sensitive to small changes of the electrostatic potential 

between two NR cycles, the exponential function acts in the overall procedure as a dumping factor for 

charge variations. In this way, convergence has been improved in the subthreshold regime and in the 

strong inversion regime. Convergence is still difficult in regions of the device where the charge is not 

compensated by fixed charge, where the right-hand term of the Poisson equation is considerably large. 

 

An under-relaxation of the potential and of the charge can also be performed in order to help 

convergence. In particular, three different under-relaxations can be performed inside ViDES : 

 

• Relaxation on the potential at each NR cycle 

 

• Relaxation on the potential at the end of each NR cycle 

  

• Relaxation of the charge density ρNEGF computed by the NEGF modules 
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Appendix B 
 
 

B.1 Pyhthon script for simulating transfer characteristics of CNT 
 

SBFET 

 

from NanoTCAD_ViDES import * 

 
# I define the nanotube 
CNT=nanotube(13,15);  

 
# I create the grid  

 
x=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])) 
y=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])); 

 
grid=grid3D(x,y,CNT.z,CNT.x,CNT.y,CNT.z); 

 
#I define the contacts 
CNT.contact='Schottky' 

 
# Now I define the gate regions 
top_gate=gate("hex",grid.xmax,grid.xmax,grid.ymin,grid.ymax,grid.zmi n,grid.zmax) 
bottom_gate=gate("hex",grid.xmin,grid.xmin,grid.ymin,grid.ymax,grid. zmin,grid.zmax) 

 

# I take care of the solid 

SiO2=region ("hex",-2, 2,-2, 2, grid.gridz [0], grid.gridz [grid.nz-1]); 

SiO2.eps=3.9; 
 

 
# I create the interface 
p=interface3D(grid,top_gate,bottom_gate,SiO2);  

 
# I work in the mode space, using 2 modes 
p.modespace="yes"   
CNT.Nmodes=2;  

 
# Vds = 0.5 V 
CNT.mu2=-0.5;  

 
# I start the Vgs sweep. In particular 0<=Vgs<=1.25 V, with  

# with 0.25V as voltage step  

Vgmin=0.0; 

Vgmax=1.25; 

Vgstep=0.25; 

 
#I create the vectors in which I store the data vg=zeros (20); 
current=zeros(20); 
counter=0;  
Vgs=Vgmin;  
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while (Vgs<=Vgmax): 
 

# I set the Fermi level of the top and bottom gate top_gate.Ef=-Vgs;  
set_gate (p, top_gate); 
bottom_gate.Ef=-Vgs; set_gate 
(p,bottom_gate); 

 
#If the first voltage, then I computes the initial solution if (Vgs==Vgmin): 

 
# I compute the initial solution 
p.normpoisson=1e-3; 

 
solve_init (grid, p, CNT); 

 
p.normpoisson=1e-1; 
p.normd=5e-2; 

 
solve_self_consistent (grid, p, CNT); 

vg[counter]=Vgs; current[counter]=CNT.current(); 

counter=counter+1; Vgs=Vgs+Vgstep; 
 
 

tempo=[vg,current] 

savetxt ("transfer1.out",transpose(tempo)); 

 

B.2 Pyhthon script for simulating transfer characteristics of GNR 
 

SBFET 

 

from NanoTCAD_ViDES import * 

 
# The width of the nanoribbon is 1.37 nm, and it is 15 nm long GNR=nanoribbon(6,15);  

 
# I create the grid  

 
xg=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])) yg=nonuniformgrid(array([-
1,0.3,0,0.2,1.37,0.2,2.37,0.3])); grid=grid3D(xg,yg,GNR.z,GNR.x,GNR.y,GNR.z); 

 
# I define Schottky contacts 
GNR.contact='Schottky'  

 
# Now I define the gate regions  

 
top_gate=gate("hex",grid.xmax,grid.xmax,grid.ymin,grid.ymax,grid.zmi n,grid.zmax) 
bottom_gate=gate("hex",grid.xmin,grid.xmin,grid.ymin,grid.ymax,grid. zmin,grid.zmax) 
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# I take care of the solid 

SiO2=region ("hex",-2, 2,-2, 2, grid.zmin, grid.zmax); 

SiO2.eps=3.9; 
 

 
#I create the interface 
p=interface3D (grid, top_gate, bottom_gate, SiO2); 
 
 
 
# Vds = 0.5 V 
GNR.mu2=-0.5;  
 
# I start the Vgs sweep. In particular 0<=Vgs<=1.25 V, with   
# with 0.25V as voltage step   
Vgmin=0.0; 
Vgmax=1.25; 

Vgstep=0.25; 

 
#I create the vectors in which I store the data 
vg=zeros(20);  
current=zeros(20); 
 
counter=0; 

Vgs=Vgmin; 

while (Vgs<=Vgmax): 
 

# I set the Fermi level of the top and bottom gate top_gate.Ef=-Vgs;  
set_gate(p,top_gate); bottom_gate.Ef=-
Vgs; set_gate(p,bottom_gate); 

 
#If the first voltage, then I compute the initial solution if (Vgs==Vgmin): 

 
# I compute the initial solution p.normpoisson=1e-3; 

 
solve_init(grid,p,GNR); 

 
p.normpoisson=1e-1; p.normd=5e-
2;  
solve_self_consistent(grid,p,GNR); vg[counter]=Vgs; 

current[counter]=GNR.current(); counter=counter+1; 

Vgs=Vgs+Vgstep; 
 
 
tempo=[vg,current] 
savetxt("transfer2.out",transpose(tempo)); 
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B.3 Pyhthon script for simulating output characteristics of CNT 
 

SBFET 

 

from NanoTCAD_ViDES import * 

 
# I define the nanotube 
CNT=nanotube(13,15);  

 
# I create the grid  

 
x=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])); 
y=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])); 
grid=grid3D(x,y,CNT.z,CNT.x,CNT.y,CNT.z); 

 
#I define the contacts 
CNT.contact='Schottky' 

 
# Now I define the gate regions top_gate=gate("hex",2,2,-2,2,grid.gridz[0],grid.gridz[grid.nz-
1]) bottom_gate=gate("hex",-2,-2.5,-2,2,grid.gridz[0],grid.gridz[grid.nz-1]) 

 

# I take care of the solid 

SiO2=region("hex",-2,2,-2,2,grid.gridz[0],grid.gridz[grid.nz-1]); 

SiO2.eps=3.9; 
 

 
# I create the interface 
p=interface3D(grid,top_gate,bottom_gate,SiO2);  

 

 
# I work in the mode space, using 2 modes 
p.modespace="yes"   
CNT.Nmodes=2;  

 

 

# I set set Vgs= 0.5V  
 

top_gate.Ef=-0.5; 
set_gate(p,top_gate); 
bottom_gate.Ef=-0.5; 
set_gate(p,bottom_gate); 

 
p.normpoisson=1e-3; 
solve_init(grid,p,CNT); 

 
# I start the Vds sweep. In particular 0.05<=Vds<=0.55 V, with  

# with 0.1V as voltage step  
Vdsmin=0.05; 

Vdsmax=0.55;  
Vdstep=0.1; 

 
Np=int(abs(Vdsmin-Vdsmax)/Vdstep)+1; vg=zeros(Np);  
current=zeros(Np);  
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p.underel=0.1; 
 
counter=0;  
Vds=Vdsmin; 

while (Vds<=Vdsmax): 

 
CNT.mu2=-Vds; 
p.normpoisson=1e-1; p.normd=5e-
3; 

 
solve_self_consistent(grid,p,CNT); vg[counter]=Vds; 
current[counter]=CNT.current(); 

 
# I save the output files if (rank==0):  

string="./datiout/Phi%s.out" %Vds; savetxt(string,p.Phi); 

string="./datiout/ncar%s.out" %Vds; 

savetxt(string,p.free_charge); a=[CNT.E,CNT.T]; 

string="./datiout/T%s.out" %Vds; 

savetxt(string,transpose(a)); 

string="./datiout/jayn%s.out" %Vds; 

fp=open(string,"w"); 
 

string2="%s" %current[counter]; fp.write(string2);  
fp.close(); 

counter=counter+1; 

Vds=Vds+Vdstep; 
 

 

tempo=[vg,current] 

savetxt("idvd1.out",transpose(tempo)); 
 

 

B.4 Pyhthon script for simulating output characteristics of GNR 
SBFET 
 
 
from NanoTCAD_ViDES import * 

 
# The width of the nanoribbon is 1.37 nm, and it is 15 nm long GNR=nanoribbon(6,15);  
 
# I create the grid  
 
xg=nonuniformgrid(array([-2,0.3,0,0.2,2,0.3])) yg=nonuniformgrid(array([-
1,0.3,0,0.2,1.37,0.2,2.37,0.3])); grid=grid3D(xg,yg,GNR.z,GNR.x,GNR.y,GNR.z); 

 
# I define Schottky contacts 
GNR.contact='Schottky'  
 

# Now I define the gate regions  
 
top_gate=gate("hex",grid.xmax,grid.xmax,grid.ymin,grid.ymax,grid.zmin, grid.zmax) 
bottom_gate=gate("hex",grid.xmin,grid.xmin,grid.ymin,grid.ymax,grid.zm in,grid.zmax) 

 
# I take care of the solid SiO2=region("hex",-2,2,-2,2,grid.zmin,grid.zmax); 

SiO2.eps=3.9; 
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# I create the interface p=interface3D(grid,top_gate,bottom_gate,SiO2);  
 

 

# I set Vgs= 0.5V  
 
top_gate.Ef=-0.5; set_gate(p,top_gate); 
bottom_gate.Ef=-0.5; 
set_gate(p,bottom_gate); 

 
p.normpoisson=1e-3; 
solve_init(grid,p,GNR); 
 

 
# I start the Vds sweep. In particular 0.05<=Vds<=0.55 V, with  

# with 0.1V as voltage step  

 
Vdsmin=0.05; 
Vdsmax=0.55; 
Vdstep=0.1; 
 
Np=int(abs(Vdsmin-Vdsmax)/Vdstep)+1; 
vg=zeros(Np);  
current=zeros(Np);  
p.underel=0.1; 
 
counter=0;  
Vds=Vdsmin;  
while (Vds<=Vdsmax): 

 
GNR.mu2=-Vds; 
p.normpoisson=1e-1; 
p.normd=5e-3; 

 
solve_self_consistent(grid,p,GNR); vg[counter]=Vds; 
current[counter]=GNR.current(); 

 
# I save the output files if (rank==0):  

string="./datiout/Phi%s.out" %Vds; savetxt(string,p.Phi); 

string="./datiout/ncar%s.out" %Vds; 

savetxt(string,p.free_charge); a=[GNR.E,GNR.T]; 

string="./datiout/T%s.out" %Vds; 

savetxt(string,transpose(a)); string="./datiout/jayn%s.out" 

%Vds; fp=open(string,"w"); 
 

string2="%s" %current[counter]; fp.write(string2);  
fp.close(); 

counter=counter+1; 
Vds=Vds+Vdstep; 

 

 
tempo=[vg,current] 
savetxt("idvds2.out",transpose(tempo)); 
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NanoTCAD ViDES main python script 

# 
======================================================================  
=============== 
 
# Copyright (c) 2010-2012, G. Fiori, G. Iannaccone, University of Pisa  
 
#  

# This file is released under the BSD license.   
# See the file "license.txt" for information on usage and  
 
# redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.  
 
#  

======================================================================   
===============  
 
from numpy import * 
 
from NanoTCAD_ViDESmod import * from 
section import * 
 
import sys import 
types 
 
writeout("\n") 

writeout("------------------------------------------------------------ 

-------\n") 

writeout(" NanoTCAD ViDES ") 

writeout(" Version 1.4 (rel-1-4)") 

writeout(" Last Modified 29 Aug 2013") 

writeout(" Copyright (C) 2004-2013 \n") 

writeout("------------------------------------------------------------  
-------\n") 

writeout("\n") 

 
NEmax=5e3; 
DIGIT_PRECISION=20; 
max_number_of_cores_on_a_server=8; 

 
#I check if mpi4py is installed on the machine or not try:  

from mpi4py import MPI 
mpi4py_loaded = True  
sizeMPI = MPI.COMM_WORLD.Get_size() except 

ImportError:  
mpi4py_loaded = False 

 
 
 
#I check if pylab is installed on the machine or not try:  

if (mpi4py_loaded): 
 

if (sizeMPI<=max_number_of_cores_on_a_server): from pylab 
import * 
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pylab_loaded = True  
else:  

 
from pylab import * 
pylab_loaded = True  

#except ImportError: except 
Exception:  

pylab_loaded = False 
 

writeout("pylab not installed on this machine or not set up correctly DISPLAY 
variable") 

 

#definition of constants 

kboltz=1.3807e-23 hbar=1.05459e-34 

m0=9.1095e-31 q=1.60219e-19 

eps0=8.85e-12 

 

#Slater-Costner parameter for sp3d5s* tight-binding Hamiltonian in Si thop_Si=array([-1.95933,-
4.24135,-1.52230,3.02562,3.15565,-2.28485,-0.80993,4.10364,-1.51801,-1.35554,2.38479,-
1.68136,2.58880,-1.81400]); onsite_Si=array([-
2.15168,4.22925,4.22925,4.22925,13.78950,13.78950,13.78950,13.78950,13  
.78950,19.11650]); 
 
def MPIze(channel): 
 

if (mpi4py_loaded): del 
channel.E; 

 
channel.E=zeros(NEmax); 
Eupper_save=channel.Eupper; 
Elower_save=channel.Elower; 
vt=kboltz*channel.Temp/q; 

 
sizeMPI = MPI.COMM_WORLD.Get_size() if 
(mpi4py_loaded): 

 
rank = MPI.COMM_WORLD.Get_rank() 
channel.rank=rank;  

# I compute the maximum and the minimum  

# of the energy interval  
 

if ((channel.Eupper>900)&(channel.Elower<-900)): 
Eupper=max(max(channel.mu1,max(- 

 
channel.Phi)),channel.mu2)+0.5*channel.gap()+10*vt; 

Elower=min(min(channel.mu1,min(-  
channel.Phi)),channel.mu2)-0.5*channel.gap()-10*vt; else:  

Eupper=channel.Eupper;  
Elower=channel.Elower; 

# string="Eupper and Elower %s %s " %(Eupper,Elower)  
 
# if (rank==0): writeout(string) 

E=arange(Elower,Eupper,channel.dE); 
arraydim=size(E)/sizeMPI;  

 
excess=size(E)-sizeMPI*arraydim if (rank<excess):  

channel.Elower=E[rank*(arraydim+1)]; 
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channel.Eupper=E[(rank+1)*(arraydim+1)-1]; else:  
channel.Elower=E[(rank-

excess)*arraydim+excess*(arraydim+1)];  
if (rank==(sizeMPI-1)): 

channel.Eupper=E[size(E)-1]; 
 

else: channel.Eupper=E[(rank-excess+1)*arraydim-  
1+excess*(arraydim+1)]; 

 
# string="Inizio rank %s %s %s" 
%(rank,channel.Elower,channel.Eupper)  
 
# writeout(string) 

channel.charge_T();   
#writeout("Finito rank "),rank,channel.Elower,channel.Eupper;  

 
# I send the charge and the transmission coefficient if (rank!=0):  

temp=array(channel.charge); 
 

MPI.COMM_WORLD.Send([temp, MPI.DOUBLE],dest=0,tag=11); del temp; 

 
NPE=zeros(1,int); 
NPE[0]=int(ceil((channel.Eupper-  

channel.Elower)/channel.dE))+1; 
 

#size(arange(channel.Elower,channel.Eupper,channel.dE)); #int((channel.Eupper-
channel.Elower)/channel.dE); #size(nonzero(channel.E)); 
temp=array(channel.T[:NPE[0]]); temp2=array(channel.E[:NPE[0]]);  

# NPE[0]=size(temp); 
 

MPI.COMM_WORLD.Send([NPE, MPI.INT],dest=0,tag=10); 
MPI.COMM_WORLD.Send([temp, MPI.DOUBLE],dest=0,tag=12); 
MPI.COMM_WORLD.Send([temp2, MPI.DOUBLE],dest=0,tag=14); 
#writeout("Spedito rank "),rank 

 
del temp; del 
temp2;  

else: 
 

channel.charge=array(channel.charge); 
NNEE=int(ceil((channel.Eupper-  

channel.Elower)/channel.dE))+1; 

#size(arange(channel.Elower,channel.Eupper,channel.dE)); 

# NNEE=((channel.Eupper-channel.Elower)/channel.dE);  
# size(nonzero(channel.E)); 

channel.T=array(channel.T[:NNEE]); 

channel.E=array(channel.E[:NNEE]); 

for i in range(1,sizeMPI): 
 

temp=empty(size(channel.charge),dtype=double); 
MPI.COMM_WORLD.Recv([temp,  

MPI.DOUBLE],source=i,tag=11); 
 

channel.charge=channel.charge+temp; del temp; 
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NPE=empty(1,int); 
 

MPI.COMM_WORLD.Recv([NPE, MPI.INT],source=i,tag=10); 
temp=empty(NPE[0],dtype=double); MPI.COMM_WORLD.Recv([temp, 

MPI.DOUBLE],source=i,tag=12); 
 

temp2=empty(NPE[0],dtype=double); 
MPI.COMM_WORLD.Recv([temp2,  

MPI.DOUBLE],source=i,tag=14);  
channel.T=concatenate((channel.T,temp)); 

 
channel.E=concatenate((channel.E,temp2)); del temp; 

 
del temp2; #writeout("Preso rank "),i 

 
channel.charge = MPI.COMM_WORLD.bcast(channel.charge, root=0)  
channel.T = MPI.COMM_WORLD.bcast(channel.T, root=0) 
channel.E = MPI.COMM_WORLD.bcast(channel.E, root=0) 

channel.Eupper=Eupper_save; 

channel.Elower=Elower_save; 

# MPI.Finalize(); 

else: 

writeout("*********************************") 

writeout("MPI not installed on this machine") 

writeout("*********************************") 

return; 

 
def MPIze_kt(channel): if 

(mpi4py_loaded): 

 
kmin_save=channel.kmin; 
kmax_save=channel.kmax; 
vt=kboltz*channel.Temp/q; 

 
sizeMPI = MPI.COMM_WORLD.Get_size() if 
(mpi4py_loaded): 

 
rank = MPI.COMM_WORLD.Get_rank() 
channel.rank=rank;  

# I compute the maximum and the minimum  

# of the wave-vector kt  
 

kt_max=channel.kmax; 
kt_min=channel.kmin; 

 
if (rank==0): writeout("kt_max, kt_min"),kt_max,kt_min 

k=arange(kt_min,kt_max,channel.dk); arraydim=size(k)/sizeMPI; 

channel.kmin=k[rank*arraydim]; 

 
if (rank==(sizeMPI-1)): 

channel.kmax=k[size(k)-1]; 
 

else: channel.kmax=k[(rank+1)*arraydim-1]; 
 

channel.charge_T(); 
 

NE=size(channel.E); 
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# I send the charge and the transmission coefficient if (rank!=0): 
 

temp=array(channel.charge); MPI.COMM_WORLD.Send([temp, 

MPI.DOUBLE],dest=0,tag=11); del temp; 
 
 

temp=array(channel.T); 
 

MPI.COMM_WORLD.Send([temp, MPI.DOUBLE],dest=0,tag=12); del temp; 
else:  

channel.charge=array(channel.charge); 
 

channel.T=array(channel.T); for i in 
range(1,sizeMPI): 

 
temp=empty(size(channel.charge),dtype=double); 
MPI.COMM_WORLD.Recv([temp, 

MPI.DOUBLE],source=i,tag=11); 
 

channel.charge=channel.charge+temp; del temp; 
temp=empty(NE,dtype=double); 
MPI.COMM_WORLD.Recv([temp,  

MPI.DOUBLE],source=i,tag=12); 
 

channel.T=channel.T+temp; del temp; 

 
channel.charge = MPI.COMM_WORLD.bcast(channel.charge, root=0) channel.T = 
MPI.COMM_WORLD.bcast(channel.T, root=0) channel.kmin=kmin_save;  
channel.kmax=kmax_save; 

# MPI.Finalize();  
 

else: 
 

writeout("*********************************") 
writeout("MPI not installed on this machine") 
writeout("*********************************") 

return; 

 
def set_gate(interface,gate): 

interface.boundary_conditions[gate.index]=gate.Ef; 
 
def solve_init(grid,interface,channel): 

 
# I get the rank if 
(mpi4py_loaded):  

channel.rank = MPI.COMM_WORLD.Get_rank()  

# I set the rank  

if (mpi4py_loaded): 
 

rank = MPI.COMM_WORLD.Get_rank() 
interface.rank=rank;  

else: 

interface.rank=0; 
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# I first give an estimation of the density of states   
# when computing the flat band potential in the regions   
# where the fixed_charge is not equal to zero, assuming   
# full ionization  

 
# I save the temperature, mu1, mu2, the potential, n, Nc, Eupper, Elower   

# temp_save=channel.Temp;  
 

mu1_save=channel.mu1; 
mu2_save=channel.mu2; 
Nc_save=channel.Nc; 
Eupper_save=channel.Eupper; 
Elower_save=channel.Elower; 

 
boundary_conditions_save=copy(interface.boundary_conditions); 
normpoisson_save=interface.normpoisson; 

 
interface.normpoisson=1e-3; 

# I impose a low-temperature, so to compute the LDOS, instead of 

the 
 

# LDOS multiplied by the Fermi-Dirac 
name=grid.__class__.__name__; 
name_channel=channel.__class__.__name__; if 
(name=="grid3D"): 

 
if (name_channel=="multilayer_graphene"): channel.Nc=8; 

 
x_save=channel.x y_save=channel.y 
z_save=channel.z 
channel.atoms_coordinates();  

else: 

channel.Nc=6; 

channel.Phi=zeros(channel.n*channel.Nc); 

channel.mu1=0; 

channel.mu2=0; 

vt=kboltz*channel.Temp/q; 

channel.Eupper=channel.gap()+10*vt; 

channel.Elower=0; 

# I compute the NEGF  

# if (interface.modespace=="yes"):  

# channel.mode_charge_T();  

# else:  

# if (interface.MPI=="yes"):  

# MPIze(channel);  
# else: 

channel.charge_T(); 
 

# 

N1D=abs(sum(channel.charge))/(6*channel.Nc)/(3*channel.acc)*1e9; 

Ec=channel.gap()*0.5; 
 
N1D=sum(abs(channel.charge))/(6*channel.n)/(4*channel.acc)*1e9*exp(Ec/ 

vt); 
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# return N1D  

 
# I compute the mean z: if atoms have a z-coordinate > zmean => I impose the 

electrochemical potential mu2   
# if atoms have a z-coordinate < zmean => I impose the electrochemical 

potential mu1  
 

zmean=(grid.zmin+grid.zmax)*0.5; 
indexS=nonzero((abs(interface.fixed_charge)>1e-   

20)&(grid.z3D<zmean)); indexD=nonzero((abs(interface.fixed_charge)>1e-   
20)&(grid.z3D>=zmean));  

potential=zeros(grid.Np);  
 
argoS=(abs(interface.fixed_charge[indexS])*grid.surf[indexS,5]/N1D); 
 
argoD=(abs(interface.fixed_charge[indexD])*grid.surf[indexD,5]/N1D); 

 

potential[indexS]=(vt*(log(exp(argoS)-
1))+Ec)*sign(interface.fixed_charge[indexS])+mu1_save; 

potential[indexD]=(vt*(log(exp(argoD)-
1))+Ec)*sign(interface.fixed_charge[indexD])+mu2_save; 

 
interface.boundary_conditions[indexS]=potential[indexS]; 
interface.boundary_conditions[indexD]=potential[indexD]; 

 

 
solve_Poisson(grid,interface); elif 

(name=="grid2D"):  
channel.Nc=8; 

channel.Phi=zeros(channel.n*channel.Nc);  
channel.mu1=0; 

channel.mu2=0; 

vt=kboltz*channel.Temp/q; 

channel.Eupper=channel.gap()+10*vt; 

channel.Elower=0; 

# I compute the NEGF  

# if (interface.modespace=="yes"):  

# channel.mode_charge_T();  

# else:  

#if (interface.MPI_kt=="yes"): 
 

# MPIze_kt(channel); #else: 
channel.charge_T(); 

 
Ec=channel.gap()*0.5; 

 
N1D=sum(abs(channel.charge))/(8*channel.n)/(8*channel.acc)*1e9*exp(Ec/ 

vt); 

 
# I compute the mean z: if atoms have a z-coordinate > zmean => I impose the 

electrochemical potential mu2 
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# if atoms have a z-coordinate < zmean => I impose the electrochemical 
potential mu1  

ymean=(grid.ymin+grid.ymax)*0.5; 
indexS=nonzero((abs(interface.fixed_charge)>1e-  

20)&(grid.y2D<ymean)); indexD=nonzero((abs(interface.fixed_charge)>1e-  
20)&(grid.y2D>=ymean)); 
 

potential=zeros(grid.Np); 
argoS=(abs(interface.fixed_charge[indexS])/N1D); 
argoD=(abs(interface.fixed_charge[indexD])/N1D); 

 

potential[indexS]=(vt*(log(exp(argoS)-
1))+Ec)*sign(interface.fixed_charge[indexS])+mu1_save; 

potential[indexD]=(vt*(log(exp(argoD)-
1))+Ec)*sign(interface.fixed_charge[indexD])+mu2_save; 

 
# potential[indexS]=Ec;  

# potential[indexD]=Ec;  

 
interface.boundary_conditions[indexS]=potential[indexS]; 
interface.boundary_conditions[indexD]=potential[indexD]; 

 
solve_Poisson(grid,interface); 

 
#going back to the old values 
channel.Nc=Nc_save 
channel.mu2=mu2_save; 
channel.mu1=mu1_save; 
channel.Eupper=Eupper_save; 
channel.Elower=Elower_save; 

 
interface.boundary_conditions=boundary_conditions_save; 
interface.normpoisson=normpoisson_save; 

 
if (name_channel=="multilayer_graphene"): 

channel.x=x_save 
 

channel.y=y_save 
channel.z=z_save 

 
del x_save,y_save,z_save #deleting 

the save variables del 
 
mu1_save,mu2_save,Nc_save,Eupper_save,Elower_save,boundary_conditions_ save; 
 

return; 
 
 
def solve_self_consistent(grid,interface,channel): normad=1e30; 
 
# Phiold=1.0*interface.Phi; 

interface.Phiold=interface.Phi.copy(); counter=1; 
 
 

if (mpi4py_loaded): 
 

rank = MPI.COMM_WORLD.Get_rank() else:  
rank=0; 
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while (normad>interface.normd):  
# I pass the potential in correspondence of the  

 
# atoms of the material for which I compute the NEGF 
channel.Phi=interface.Phi[grid.swap]   
# I compute the NEGF  

 
# channel.Phi=zeros(size(grid.swap));   
# savetxt("Phi.before",interface.Phi[grid.swap]);  

 
if (interface.modespace=="yes"): 

channel.mode_charge_T(); 
else: 

 
if (interface.MPI=="yes"): 

MPIze(channel); 
 

elif (interface.MPI_kt=="yes"): 
MPIze_kt(channel); 

 
else: channel.charge_T(); 

 
# savetxt("Phi.temp2",interface.Phi);  
 
# a=[channel.E,channel.T];  

# savetxt("T.temp",transpose(a));  
 

if (rank==0): 

writeout("--------------------------------------------") 

string=" CURRENT = %s A/m" 

%(channel.current()); 

writeout(string); 

writeout("--------------------------------------------") 
 

# I pass back the free_charge term to  

# the 3D domain  

interface.free_charge[grid.swap]=channel.charge 

 
if (rank==0): savetxt("ncar.ini",interface.free_charge); 

savetxt("Phi.ini",interface.Phi); 

 
# I solve Poisson 
solve_Poisson(grid,interface);  

# normad=sqrt(sum((interface.Phiold-interface.Phi)**2));  

# Phiold=zeros(grid.Np);  

normad=max(abs(interface.Phiold-interface.Phi)) 

 
interface.Phi=interface.Phi+(interface.underel)*(interface.Phiold-interface.Phi) 
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del interface.Phiold;  
# del Phiold;   
# Phiold=1.0*interface.Phi;   

interface.Phiold=interface.Phi.copy();  
 

if (rank==0): print() 
 

string="Iteration # %s; ||Phi-Phiold||2 = %s" %(counter,normad) 
 

if (rank==0): writeout(string) if (rank==0): 
print() counter=counter+1; 

 
if (counter>600): return; 

 
 
 
 
def solve_Poisson(grid,interface): 

name=grid.__class__.__name__; if 
(name=="grid3D"): 

 
solvePoisson(grid,interface); elif 

(name=="grid2D"): 
 

solvePoisson2D(grid,interface); elif 
(name=="grid1D"): 

solvePoisson1D(grid,interface);  
interface.Phi=array(interface.Phi) 

return; 
 
def nonuniformgrid(argu): 

#This is a wrapper for the nonuniformgridmod function 
 

#so to convert both the argument and the output to numpy arrays #I convert the argument in 
an array  
argarr=array(argu); 

out=nonuniformgridmod(argarr); 
 

# I return a pyarray 
outarr=array(out); return outarr; 

 
#Fermi-Dirac Function def 
Fermi(x):  

return 1/(1+exp(x)); 

 
def delete_class(class_obj): 

del_class(class_obj); del class_obj;  
return; 

 
# This is the class for the nanotube class nanotube: 

acc=0.144; 
 

def __init__(self,n,L): self.Nc=int(4*(floor((floor(L/nanotube.acc)-1)/3))+2); 
self.n=n; 
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self.Phi=zeros(n*self.Nc); 
 

self.Eupper=1000.0; 

self.Elower=-1000.0; self.dE=1e-

3; self.thop=-2.7; self.eta=1e-5; 

self.mu1=0; self.mu2=0; 

self.Temp=300; 

self.contact="doped"; 

self.E=zeros(NEmax); 

self.T=zeros(NEmax); 

self.charge=zeros(self.n*self.Nc);  
self.Nmodes=n;  
self.x=zeros(n*self.Nc);  
self.y=zeros(n*self.Nc); 

 
self.z=zeros(n*self.Nc); 
self.L=int(self.Nc/2+((self.Nc-1)- 

 
self.Nc*0.5)*0.5)*nanotube.acc; 

self.atoms_coordinates(); self.rank=0; 

def gap(self): 
 

return abs(2*self.acc*self.thop*pi/(self.n*sqrt(3)*self.acc)); def atoms_coordinates(self):  
CNT_atoms_coordinates(self); 
self.x=array(self.x); self.y=array(self.y); 
self.z=array(self.z); return; 

 
def charge_T(self): CNT_charge_T(self); 

self.E=array(self.E); self.T=array(self.T); 
self.charge=array(self.charge); return; 

 
def mode_charge_T(self): 

CNTmode_charge_T(self); 

self.E=array(self.E); self.T=array(self.T); 
self.charge=array(self.charge); return 

 
def current(self): vt=kboltz*self.Temp/q; 

E=self.E; 
 

T=self.T; arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E- 
 
self.mu2)/vt))*self.dE; return 

sum(arg); 
 

 
# This is the class for the nanoribbon class GNRphonon: 
 
 

def __init__(self,dimer): 
 

self.N=1000; # number of points qx (longitudinal direction) while (((((self.N)-
1)%(dimer/2))!=0) | (((self.N)%2)==0)):  

(self.N)+=1; 
 

self.dimer=dimer; # numero dimer lines self.rank=0;  
self.phi=0.0; # channel potential (midgap) self.numberAC=2; # number of AC modes 
of different simmetry 

 
considered (=2: LA+TA, =1: only LA) self.Ecutoff=1.0; # 

cutoff energy  
self.delta=2; # integer: it specifies the sampling along the kx direction  
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self.deltak=0; 
 

self.kyE=zeros(dimer); # transverse electron wavevector self.qy=zeros(dimer); # 
transverse phonon wavevector self.kx=zeros(self.N); # longitudinal electron 
wavevector self.qx=zeros(self.N); # longitudinal phonon wavevector self.qx0=0.0; # 
fixed value for qx (computation of graphene  

branches) 
 

self.qy0=0.0; # fixed value for qy (computation of graphene branches) 
 

self.kxup=0; # maximum value for kx (computation of rates) self.kxdown=0; # 
minimum value for kx (computation of rates) self.dim1=self.N;  
self.dim2=dimer; 

self.dim3=6; 

self.mmin=0; 

self.mmax=dimer-1; 

self.kxmin=0; 

self.kxmax=0;  
self.Phi_r1=39.87*10.0;  # first neighbors 

self.Phi_ti1=17.28*10.0; 

self.Phi_to1=9.89*10.0; 

self.Phi_r2=7.29*10.0;   # second neighbors 
 

self.Phi_ti2=-4.61*10.0; self.Phi_to2=-0.82*10.0; 

self.Phi_r3=-2.64*10.0; # third neighbors 

self.Phi_ti3=3.31*10.0; self.Phi_to3=0.58*10.0; 

self.Phi_r4=0.10*10.0; # fourth neighbors 

self.Phi_ti4=0.79*10.0; self.Phi_to4=-0.52*10.0; 
 

self.energyE=zeros((self.dim1,(2*self.dim2))) # GNR electron  
curves 
 

self.energyP2D=zeros((self.dim1,(self.dim2*self.dim3))) # GNR phonon subbranches 
 

self.minAC=zeros((self.dim2,3));# minimum of the acoustic subbranches  
self.Egraphene=zeros(self.dim3); # graphene 
self.rateAA=zeros((self.dim1,self.dim2)); 
self.rateAE=zeros((self.dim1,self.dim2)); 
self.rateOA=zeros((self.dim1,self.dim2)); 

 
 

self.rateOE=zeros((self.dim1,self.dim2)); self.Dac=4.5*(1.60219e-19); # deformation 
potential value (eV) self.temp=300; # temperature (K) 

 
self.thop=2.7; # hopping parameter (eV) self.aCC=0.144e-9; 
# lattice constant (m) 

 
def electron_GNR(self): electron_GNR(self); 

self.kx=array(self.kx); self.kyE=array(self.kyE); 
self.energyE=array(self.energyE); return; 

 
def phonon_GNR(self): 

phonon_GNR(self); 
self.qx=array(self.qx); 
self.qy=array(self.qy);  
self.energyP2D=array(self.energyP2D); 
return; 

 
def phonon_graphene(self): phonon_graphene(self); 

self.Egraphene=array(self.Egraphene); return; 
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def rateACABS(self): rateACABS(self); 
self.rateAA=array(self.rateAA); return; 

 
def rateACEM(self): rateACEM(self); 

self.rateAE=array(self.rateAE); return; 

 
def rateOPTABS(self): rateOPTABS(self); 

self.rateOA=array(self.rateOA); return; 
 

def rateOPTEM(self): rateOPTEM(self); 
self.rateOE=array(self.rateOE); return; 

 
# This is the class for the nanoribbon class nanoribbon:  

acc=0.144; 
 

def __init__(self,n,L): self.Nc=int(4*(int((int(L/nanoribbon.acc)-1)/3))+2); 
self.n=n;  
self.Phi=zeros(n*self.Nc); 

 
self.Eupper=1000.0; 
self.Elower=-1000.0; 
self.dE=1e-3; self.thop=-2.7; 
self.eta=1e-5; self.mu1=0; 
self.mu2=0; 
self.Temp=300;  
self.contact="doped";  
self.E=zeros(NEmax);  
self.T=zeros(NEmax); 

self.charge=zeros(self.n*self.Nc); 

self.defects="no";  
self.roughness="no"; 

 
self.rank=0; self.atoms_coordinates(); 

 
def atoms_coordinates(self): 

GNR_atoms_coordinates(self); 
self.x=array(self.x); self.y=array(self.y); 
self.z=array(self.z); return;  

def gap(self): 
 

return GNRgap(self); def 
charge_T(self): 

 
GNR_charge_T(self); self.E=array(self.E); 
self.T=array(self.T); 
self.charge=array(self.charge); return; 

 
def current(self): vt=kboltz*self.Temp/q; 

E=array(self.E); T=array(self.T); 
 

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-
self.mu2)/vt))*self.dE 

return sum(arg); 

 
# This is the class for the graphene class graphene:  

acc=0.144; 

n=1; 
 

def __init__(self,L): self.Nc=int(4*(floor((floor(L/graphene.acc)-1)/3))); 
self.Phi=zeros(self.Nc);  
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self.Ei=zeros(self.Nc); 
 

self.Eupper=1000.0; self.Elower=-1000.0; 
self.delta=sqrt(3)*graphene.acc; 
self.kmax=pi/self.delta; self.kmin=0; 

 
self.dk=0.1; self.dE=1e-3; 

self.thop=-2.7; self.eta=1e-8; 

self.mu1=0.0; self.mu2=0.0; 

self.Temp=300; 

self.E=zeros(NEmax); 

self.T=zeros(NEmax);  
self.charge=zeros(self.Nc); 

 
self.rank=0; self.atoms_coordinates(); 

self.gap(); self.T2D="no" 

 
def atoms_coordinates(self): 

GNR_atoms_coordinates(self); 
self.y=array(self.z); 
self.x=zeros(size(self.y)); del self.z; 

 
return; def 

gap(self):  
return 0;  

def charge_T(self): 
 

# Number of slices and atoms 
slices=self.Nc;   
atoms=1;  

 
# I define the vector of the k-wave vector 
kvect=arange(self.kmin,self.kmax,self.dk)   
# I start defining the Hamiltonian for the graphene flake 
h=zeros((2*slices,3),dtype=complex);   
h[0][0]=1;  

 
for i in range(1,slices+1): h[i][0]=i   

h[i][1]=i  
 

kk=1; 
 

for ii in range(slices+1,2*slices): if ((ii%2)==1):  
h[ii][0]=kk; 

h[ii][1]=kk+1; 

h[ii][2]=self.thop; 

kk=kk+1; 

 
# I then compute the charge and the T for each energy and k and perform the integral  
i=0; 

k=self.kmin; 
 

H = Hamiltonian(atoms, slices) if 
(self.T2D=="yes"): 

EE=arange(self.Elower,self.Eupper,self.dE);  
kvect=arange(self.kmin,self.kmax+self.dk,self.dk);  
X,Y=meshgrid(EE,kvect); 

 
Z=zeros((size(EE),size(kvect))) while 
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(k<=(self.kmax+self.dk*0.5)):  
if (self.rank==0): writeout("----------------------------------") 

 
string=" kx range: [%s,%s] " %(self.kmin,self.kmax); if (self.rank==0): 
writeout(string)  
string=" iteration %s " %i; 

if (self.rank==0): writeout(string); 
 

if (self.rank==0): writeout("----------------------------------")  
flaggo=0;  
kk=1; 

# I fill the Hamiltonian for the actual wavevector k in the cycle 
 

for ii in range(slices+1,2*slices): if ((ii%2)==0):  
h[ii][0]=kk;  
h[ii][1]=kk+1; 
if ((flaggo%2)==0): 

 
h[ii][2]=self.thop+self.thop*exp(k*self.delta*1j); 
 

else: h[ii][2]=self.thop+self.thop*exp(-  
k*self.delta*1j); 

flaggo=flaggo+1; 

kk=kk+1; 
 

H.Eupper = self.Eupper; 

H.Elower = self.Elower; 

H.rank=self.rank; 

H.H = h 

H.dE=self.dE; 

H.Phi=self.Phi; 

H.Ei=-self.Phi; 

H.eta=self.eta; 

H.mu1=self.mu1; 

H.mu2=self.mu2; 

H.Egap=self.gap(); 
 

# I then compute T and the charge for the actual kx H.charge_T()  
 

# I sum up all the contribution  
 

if (i==0): self.E=H.E; 
 

# the factor 2 is because I integrate over kx>0 
self.T=H.T*(2*self.dk/(2*pi)); 
self.charge=H.charge*(2*self.dk/(2*pi)); 

else: 
 

# the factor 2 is because I integrate over kx>0 
self.T=self.T+H.T*(2*self.dk/(2*pi)); 
self.charge=self.charge+H.charge*(2*self.dk/(2*pi)); 

 
if (self.T2D=="yes"): 

Z[:,i]=H.T[:size(EE)]; 
k=k+self.dk  
i=i+1; 
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if (self.T2D=="yes"): 

 
plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower',  

extent=[self.kmin,self.kmax,self.Elower,self.Eupper])  
show() 

 
del H; self.E=array(self.E); 
self.T=array(self.T)*1e9; 

 
self.charge=array(self.charge)*1e9; del kvect,h; 
return; 

 

def current(self): vt=kboltz*self.Temp/q; 
E=array(self.E); T=array(self.T); 

 
arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE  
return sum(arg); 

 
# This is the class for the graphene bilayer class 
bilayer_graphene: 
 

acc=0.144; 
acc_p=0.35; n=2; 

 
def __init__(self,L): self.Nc=int(4*(floor((floor(L/bilayer_graphene.acc)-1)/3))); self.n=2; 

 
self.Phi=zeros(bilayer_graphene.n*self.Nc); 
self.Ei=zeros(bilayer_graphene.n*self.Nc); self.Eupper=1000.0; 

 
self.Elower=-1000.0; 
self.delta=sqrt(3)*bilayer_graphene.acc; 
self.kmax=pi/self.delta; 
self.kmin=0; 

 
self.dk=0.1; self.dE=1e-3; 

self.thop=-2.7; self.tp=-0.35; 

self.eta=1e-8; self.mu1=0.0; 

self.mu2=0.0; self.Temp=300; 

self.E=zeros(NEmax); 

self.T=zeros(NEmax); 
 

self.charge=zeros(bilayer_graphene.n*self.Nc); self.rank=0; 
 

self.atoms_coordinates(); self.gap(); 

self.T2D="no" 

 
def atoms_coordinates(self): n_save=self.n; 

 
self.n=1; GNR_atoms_coordinates(self); 
ydown=array(self.z); yup=ydown-self.acc*0.5; 
NN=size(ydown);  
kkk=0; 

 
self.y=zeros(2*NN); for i in 
range(0,NN):  

self.y[kkk]=ydown[i];  
self.y[kkk+1]=yup[i]; 

kkk=kkk+2; 
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self.x=zeros(size(self.y)); i=linspace(0,size(self.y)-1,size(self.y)) 

i_even=nonzero((i%2)==0); i_odd=nonzero((i%2)==1); 

self.x[i_even]=0; self.x[i_odd]=bilayer_graphene.acc_p; del 

self.z,i,i_even,i_odd; self.n=n_save; 
 

 
return; def gap(self):  
# This is an rough exstimation of  

# the Energy gap: for sure this is  

# the largest attainable value, within  

# the pz tight-binding model  
 

return abs(self.tp); def charge_T(self):  
# Number of slices and atoms slices=self.Nc; 
atoms=self.n;  

 
# I define the vector of the k-wave vector 
kvect=arange(self.kmin,self.kmax,self.dk)   
# I start defining the Hamiltonian for the bilayer graphene h=zeros((4*slices+2*(slices/4)-
2,3),dtype=complex); h[0][0]=1;  

 
for i in range(1,2*slices+1): h[i][0]=i   

h[i][1]=i  

h[i][2]=0.0;  
 

# I then compute the charge and the T for each energy  

# and k and perform the integral  

i=0;  
k=self.kmin; 

 
H = Hamiltonian(atoms, slices) if 
(self.T2D=="yes"):  

EE=arange(self.Elower,self.Eupper,self.dE); 

kvect=arange(self.kmin,self.kmax+self.dk,self.dk); 

X,Y=meshgrid(EE,kvect); 
 

Z=zeros((size(EE),size(kvect))) while 
(k<=(self.kmax+self.dk*0.5)): 

 
 

if (self.rank==0): writeout("----------------------------------") 
 

string=" kx range: [%s,%s] " %(self.kmin,self.kmax); if (self.rank==0): 
writeout(string); 
string=" k: %s " %k;  
if (self.rank==0): writeout(string);  
if (self.rank==0): writeout("----------------------------------") 

 
# ------------------------------------------------- 

# BEGINNING OF THE HAMILTONIAN DEFINITION  
# FOR THE GRAPHENE BILAYER   
# ------------------------------------------------- 

 
# I work on the bottom graphene layer kk=1; 
flaggo=0; 

 
for ii in range(2*slices+1,3*slices): if ((ii%2)==1):  
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h[ii][0]=kk; 

h[ii][1]=kk+2; 

h[ii][2]=self.thop; 

kk=kk+2; 

else: 

h[ii][0]=kk; 

h[ii][1]=kk+2; 

if ((flaggo%2)==0): 
 
h[ii][2]=self.thop+self.thop*exp(k*self.delta*1j); 
 

else: h[ii][2]=self.thop+self.thop*exp(-  
k*self.delta*1j); 

kk=kk+2; 

flaggo=flaggo+1; 

 
# I work on the top graphene layer kk=2;  
flaggo=1; 

 
for ii in range(3*slices,4*slices-1): if ((ii%2)==0):  

h[ii][0]=kk; 

h[ii][1]=kk+2; 

h[ii][2]=self.thop;  
kk=kk+2; 

else: 

h[ii][0]=kk; 

h[ii][1]=kk+2; 

if ((flaggo%2)==0): 
 
h[ii][2]=self.thop+self.thop*exp(k*self.delta*1j); 

else: 
 
 

h[ii][2]=self.thop+self.thop*exp(-  
k*self.delta*1j);  

kk=kk+2;  
flaggo=flaggo+1; 

 

 
# I now work on the perpendicular hopping parameter kk=3;  

 
for ii in range(4*slices-1,4*slices+int(slices/2)-2): h[ii][0]=kk;   

h[ii][1]=kk+3;  

h[ii][2]=self.tp;   
kk=kk+4;  

 
# -------------------------------------------------   
# END OF THE HAMILTONIAN   
# -------------------------------------------------  

 
H.Eupper = self.Eupper; H.Elower = 
self.Elower; H.H = h 
H.rank=self.rank; H.dE=self.dE; 
H.Phi=self.Phi; 
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ind_even=arange(0,size(H.Phi),2); 
ind_odd=ind_even+1; H.Ei[ind_even]=- 

 
(self.Phi[ind_even]+self.Phi[ind_odd])*0.5; H.Ei[ind_odd]=-

(self.Phi[ind_even]+self.Phi[ind_odd])*0.5; H.Ei_flag="no" 
 

H.eta=self.eta; 

H.mu1=self.mu1; 

H.mu2=self.mu2; 

H.Egap=self.gap(); 
 
# return H.H 

 
# I then compute T and the charge for the actual kx H.charge_T()  

 
# I sum up all the contribution  

 
if (i==0): self.E=H.E; 

 
# the factor 2 is because I integrate over kx>0 
self.T=H.T*(2*self.dk/(2*pi)); 
self.charge=H.charge*(2*self.dk/(2*pi)); 

 
# self.charge=H.charge; else: 
 

# The spin is taken into account in the integral for 

the current 
 

# the factor 2 is because I integrate over kx>0 
self.T=self.T+H.T*(2*self.dk/(2*pi)); 

 
 

# 2 because I take into account  
 

# that I integrate over kx>0 
self.charge=self.charge+H.charge*(2*self.dk/(2*pi));  

 
if (self.T2D=="yes"): 

Z[:,i]=H.T[:size(EE)];  
k=k+self.dk  
i=i+1; 

 
if (self.T2D=="yes"): 

 
plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower',  

extent=[self.kmin,self.kmax,self.Elower,self.Eupper])  
show() 

 
del H; self.E=array(self.E); 
self.T=array(self.T)*1e9;  
self.charge=array(self.charge)*1e9; 

 
# self.charge=array(self.charge); del kvect,h;  

return; 

 

def current(self): vt=kboltz*self.Temp/q; 
E=array(self.E); T=array(self.T); 

 
arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-
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self.mu2)/vt))*self.dE 
return sum(arg); 

 
 
# This is the class for the general Hamiltonian class Hamiltonian:  

def __init__(self, n, Nc): self.Nc=Nc;  
self.n=n; 

self.x=zeros(n*self.Nc); 

self.y=zeros(n*self.Nc); 

self.z=zeros(n*self.Nc); 

self.Phi=zeros(n*self.Nc); 

self.Ei=zeros(n*self.Nc); 
 

self.Eupper=1000.0; 

self.Elower=-1000.0; 

self.dE=0.001; self.eta=1e-8; 

self.mu1=0; self.mu2=0; 

self.Temp=300; 

self.E=zeros(NEmax); 

self.T=zeros(NEmax); 

self.charge=zeros(n*self.Nc);  
self.Egap=0;  
self.rank=0; 

 
# if this flag is set to "yes" then Ei=-Phi self.Ei_flag="yes" 

 
# The +1 will be then replaced by the number of orbitals per atoms in the nearest neighbourgh 
approximation   
# self.H=zeros((((Nc*n)*(Nc*n+1)/2),2+100+10));  
 

def current(self): vt=kboltz*self.Temp/q; 
E=array(self.E); T=array(self.T); 

 
arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE 
 

return sum(arg); def 
charge_T(self):  

if (self.Ei_flag=="yes"): self.Ei=-
self.Phi;  

H_charge_T(self); self.E=array(self.E); 
self.T=array(self.T); 
self.charge=array(self.charge); 

 
def gap(self): return 0.5;  

# This is the class for the zincblend structures  
 
# This is the class for the zincblend structures class Zincblend:   

def __init__(self, material, sqci, tilt, edge, zmax): self.material = material   
if self.material == 'Si':  

 
self.aux = [-2.15168, 4.22925, 

19.11650, 

13.78950, -

1.95933, -

4.24135, -

1.52230, 

3.02562, 
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3.15565, -

2.28485, -

0.80993, 

4.10364, -

1.51801, -

1.35554, 

2.38479, -

1.68136, 

2.58880, -

1.81400,  
] 

 
self.skparameters = array(self.aux, dtype=float) self.a0 = 5.431  
self.flag = 0 

 

 

if self.material == 'Ge': self.aux = [-1.95617, 

5.30970, 19.29600, 13.58060, -1.39456, -3.56680, -

2.01830, 2.73135, 2.68638, -2.64779, -1.12312, 

4.28921, -1.73707, -2.00115, 2.10953, -1.32941, 

2.56261, -1.95120 

] 
 

self.skparameters = array(self.aux, dtype=float) self.a0 = 5.6575  
self.flag = 0 

 

if self.material == 'InAs': self.aux = [ -5.500420, 

4.151070, -0.581930, 6.971630, 19.710590, 

19.941380, 13.031690, 13.307090, -1.694350, -

4.210450, -2.426740, -1.159870, 2.598230, 2.809360, 

2.067660, 0.937340, -2.268370, -2.293090, -0.899370, 

-0.488990, 4.310640, -1.288950, -1.731410, -

1.978420, 2.188860, 2.456020, -1.584610, 
2.717930, -
0.505090  
] 

 
self.skparameters = array(self.aux, dtype=float) self.a0 = 6.0583  
self.flag = 1 

 
self.sqci=sqci;  
self.tilt=tilt;  
self.edge=edge; 

self.zmax=zmax; 
 

layers = int(4*self.zmax/(self.a0) + 1) 

 
if (rank==0): writeout("prima="), layers 

 
if layers%4==1: layers-

=1  
elif layers%4==2: layers-=2 

 
elif layers%4==3: layers+=1 
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if layers%4!=0: 
 

writeout("INTERRUPT AT WIRE"), material, parameters[0][i] 
writeout("NUMBER OF SLICES NOT MULTIPLE OF 4")  
quit() 

 
layers += 8 

self.L = (self.a0/4)*(layers-1) 

self.n_aux = int((4*self.edge/self.a0)*(4*self.edge/self.a0)) 

+ 10; 
 

#forse se ci si leva il +10 non cambia nulla (provare) self.Nc_aux = 
int((4*self.zmax/self.a0)) + 10; self.zmax=self.L 

 
self.atoms=zeros(1); 

self.slices=zeros(1); 

self.max=zeros(1); 

self.rank=0; 

self.deltae=20.0; 
 

self.ics = zeros(self.n_aux*self.Nc_aux); self.ipsilon = 
zeros(self.n_aux*self.Nc_aux); self.zeta = 
zeros(self.n_aux*self.Nc_aux); self.H_aux=zeros(  

(self.Nc_aux*self.n_aux)*((self.Nc_aux*self.n_aux+1)/2)*(2+100)); 

 
self.H=zeros((((self.Nc_aux*self.n_aux)*(self.Nc_aux*self.n_aux+1)/2), 2+100)); 
 

self.Zinc(); 
self.n = int(self.atoms[0]); self.Nc= 
int(self.slices[0]); self.x = self.ics; 

 
self.y = self.ipsilon; self.z = 
self.zeta; 

 
self.Phi=zeros(self.n*self.Nc);  
self.Ei=zeros(self.n*self.Nc); 

 
self.Eupper=1000.0; 

self.Elower=-1000.0; 

self.dE=0.001; self.eta=1e-8; 

self.mu1=0; self.mu2=0; 

self.Temp=300; 

self.E=zeros(NEmax); 

self.T=zeros(NEmax);  
self.charge=zeros(self.n*self.Nc); 

 
self.Egap=0; def 

gap(self):  
return 0; 

 
def current(self): vt=kboltz*self.Temp/q; 

E=array(self.E); T=array(self.T); 
 

arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-
self.mu2)/vt))*self.dE 
 

return sum(arg); def 
charge_T(self):  
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H_charge_T(self); self.E=array(self.E); 
self.T=array(self.T); 
self.charge=array(self.charge); return;  

def Zinc(self): 
 

writeout(self.skparameters) 

# quit()  
 

Zinc(self); 

# self.zeta = array(self.zeta);  

# ics1 = []  

# ipsilon1 = []  

# zeta1 = []  

# i = 0  

# j = 0  

# k = 0  

# temp = self.zeta[0]- self.a0   
# zeta1.append(temp)  

# aux = []  

# for ln in self.zeta:  

# if (self.zeta[i]- self.a0) == temp: 

# #temp = self.zeta[i]- self.a0  
# i = i + 1  
# j = j + 1  
# else: 
# zeta1.append(self.zeta[i]- self.a0) 

# temp = self.zeta[i]- self.a0  
# i = i + 1  
# aux.append(j)  
# j=1;  
# 
# print aux  

# print self.zeta  
 

 
# for i in range (100): #print zeta1  
 
# print 'slices =', int(self.slices[0])  

# print 'atoms =', int(self.atoms[0])  
 
# zeta2 = []  

# for i in range (int(self.slices[0])):  

# for j in range(int(self.atoms[0])): 

# zeta2.append(zeta1[i]) 

# 
 
# print 'ECCOLO' #print 

zeta2  

 

# self.zeta = zeta2 #print 

self.zeta H_back = []  
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i = 0  

j = 0  
 

bound = int(self.max[0]/102) 
writeout(bound) 

 
for i in range ( bound ): row = []  

for j in range(102): row.append(self.H_aux[j + 102*i]) 
 

H_back.append(row) #print 
row  
del row 

 
 

 

#print H_back[40] 
 

new = array(H_back, dtype=complex) 

 
self.H = new 

 
# print self.H[17]  
 
# quit()  
 

return; 

 

def ciccione(vettore,n,Nc,z,a0): ics1 = [] 
 

ipsilon1 = [] zeta1 = [] 
 

i = 0 j = 0 k 
= 0 

 
temp = z[0]- a0 z1=[]; 
z1.append(temp) aux = [] 

 
for ln in arange(0,n*Nc): if (z[i]- a0) == 

temp: 
 

#temp = self.zeta[i]- self.a0 i = i + 1  
j = j + 1 else: 

 
z1.append(z[i]- a0) temp = 
z[i]- a0 

 
i = i + 1 aux.append(j) 
j=1; 

 
# TODO: the following sum is equal to the total number of  

# atoms, really present in the simulated nanowire  

# 

# Ntot_atoms=sum(aux[:Nc]) 

# 

# 

array2 = [] 
 

for i in range(Nc): k=0; 
if (aux[i]==n): 
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for j in arange(sum(aux[:i]),sum(aux[:i])+n): 
array2.append(vettore[j])  

else: 
 

for j in arange(sum(aux[:i]),sum(aux[:i])+aux[i]): 
array2.append(vettore[j]); 

 
for j in arange(sum(aux[:i])+aux[i],sum(aux[:i])+n): array2.append(0) 

 
return array(array2, dtype=float); 

 
 
class grid3D:  

def __init__(self,*args): 
 

# I initialize the rank if 
(mpi4py_loaded):   

rank = MPI.COMM_WORLD.Get_rank() else:   
rank=0;   

# args is a tuple and len(args) return   
# the number of arguments   
# the number of arguments can be either 3 or 6   
# if 3, the first three inputs are the grid along the  

# x,y,z axis   
# if 6, the first three inputs are the grid along the   
# x,y,z axis, while the last three inputs are the x-y-z   
# coordinates of the atoms  

 
if (len(args)>3): xg=around(args[0],5); 

yg=around(args[1],5); 
zg=around(args[2],5); 
xC=around(args[3],5); 
yC=around(args[4],5); 
zC=around(args[5],5); 
npC=size(xC); 

else:  
xg=around(args[0],5); 

yg=around(args[1],5); 

zg=around(args[2],5); 

npC=0; 

 
#I create the grid if (npC!=0): 

 
#find the unique values for xC,yC and zC uxC=unique(xC);  
uyC=unique(yC); 

uzC=unique(zC); 

 
# I find the only the additional values which are in xg and not in uxC 

 
# the same for the other axis 
exg=intersect1d(setxor1d(xg,uxC),xg); 
eyg=intersect1d(setxor1d(yg,uyC),yg); 
ezg=intersect1d(setxor1d(zg,uzC),zg); 

 
if (npC!=0): x=unique(concatenate((uxC,xg),1)); 

y=unique(concatenate((uyC,yg),1)); 
z=unique(concatenate((uzC,zg),1));  
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else: 

x=xg; 

y=yg; 

z=zg; 

 
# I start to compute the volume associated to each grid point X,Y=meshgrid(x,y); 

 

#Number of points 

nx=size(x); ny=size(y); 

nxy=nx*ny; nz=size(z); 
Np=nxy*nz; 

 
string="Number of grid points %s " %Np if (rank == 0): 
writeout(string) 

 

 

######################################################################  
############## 
 

#I create the Volume elements using the sorted grid xd=avervect(x);  
yd=avervect(y); 

zd=avervect(z); 

X,Y=meshgrid(x,y); 

X,Z=meshgrid(x,z); 
 

XD,ZD=meshgrid(xd,zd); 

surfxz=XD*ZD; 

YD,ZD=meshgrid(yd,zd); 

surfyz=YD*ZD; 

XD,YD=meshgrid(xd,yd); 

surfxy=XD*YD; 

 
#The volumes for the sorted grid are finally computed 
a,b=meshgrid((XD*YD).flatten(),zd); dVes=abs((a*b).flatten()); 

 
if (rank == 0): writeout("Volumes computed") 

 

 

###################################################################### 

############## 
 

# I create the dist vectors 
dists=zeros((Np,6));  

 
# I take care of dists[:,1] i=arange(0,nx);   
ip1=i+1; ip1[nx-1]=nx-1; 
xdistp=x[ip1]-x[i];  

 
dists[:,1]=meshgrid(meshgrid(xdistp,y)[0].flatten(),z)[0].flatten(); del ip1,xdistp; 
 

# I take care of dists[:,0] 
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im1=i-1; 
im1[0]=0;  
xdistm=x[i]-x[im1]; 

 
dists[:,0]=meshgrid(meshgrid(xdistm,y)[0].flatten(),z)[0].flatten(); del i,im1,xdistm; 

 
# I take care of dists[:,3] j=arange(0,ny); 

 
jp1=j+1; jp1[ny-1]=ny-1; 
ydistp=y[jp1]-y[j]; 

 
dists[:,3]=meshgrid(meshgrid(x,ydistp)[1].flatten(),z)[0].flatten(); del jp1,ydistp; 

 
# I take care of dists[:,2] jm1=j-1; 

 
jm1[0]=0; ydistm=y[j]-y[jm1]; 

 
dists[:,2]=meshgrid(meshgrid(x,ydistm)[1].flatten(),z)[0].flatten(); del j,jm1,ydistm; 

 
# I take care of dists[:,5] k=arange(0,nz); 

 
kp1=k+1; kp1[nz-1]=nz-1; 
zdistp=z[kp1]-z[k]; 

 
dists[:,5]=meshgrid(meshgrid(x,y)[1].flatten(),zdistp)[1].flatten(); del kp1,zdistp; 

 
# I take care of dists[:,4] km1=k-1;  
km1[0]=0; zdistm=z[k]-
z[km1]; 

 
dists[:,4]=meshgrid(meshgrid(x,y)[1].flatten(),zdistm)[1].flatten(); del k,km1,zdistm; 
 
 

 

###################################################################### 

############## 

#Now I work on the surfaces 
 

surfs=zeros((Np,6)); 

 
#surf 0 XD,YD=meshgrid(xd,yd) 
##YD[:,0]=0; 
a,b=meshgrid(YD.flatten(),zd) 
surfs[:,0]=abs((a*b).flatten()); #surf 1 

 
XD,YD=meshgrid(xd,yd) ##YD[:,nx-1]=0; 
a,b=meshgrid(YD.flatten(),zd) 
surfs[:,1]=abs((a*b).flatten()); #surf 2  
XD,YD=meshgrid(xd,yd)  
##XD[0,:]=0; 

 
a,b=meshgrid(XD.flatten(),zd) 
surfs[:,2]=abs((a*b).flatten()); #surf 3 

 
XD,YD=meshgrid(xd,yd) ##XD[ny-1,:]=0; 
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a,b=meshgrid(XD.flatten(),zd) 
surfs[:,3]=abs((a*b).flatten()); #surf 4 

 
XD,YD=meshgrid(xd,yd) 
a,b=meshgrid((XD*YD).flatten(),z) 
surfs[:,4]=abs(a.flatten()); ##surfs[0:nx*ny-
1,4]=0; 

 
#surf 5 XD,YD=meshgrid(xd,yd) 

 
a,b=meshgrid((XD*YD).flatten(),z) 
surfs[:,5]=abs(a.flatten()); ##surfs[(nz-
1)*(nx*ny):nz*nx*ny,5]=0; 

 
if (rank == 0): writeout("Surfaces created") 

 
 

 

###################################################################### 

############## 
 

#Now I have to go back to the unsorted grid. #I create the sorted 
and unsorted coordinates #vectors as a function of the index 

 

#sorted positions x3Ds=meshgrid(meshgrid(x,y)[0].flatten(),z)[0].flatten(); 
y3Ds=meshgrid(meshgrid(x,y)[1].flatten(),z)[0].flatten(); 
z3Ds=meshgrid(meshgrid(x,y)[1].flatten(),z)[1].flatten(); 

 
#unsorted positions 

 
if (npC!=0): xtemp=unique(concatenate((uxC,xg),1)); 

ytemp=unique(concatenate((uyC,yg),1)); 
ztemp=unique(concatenate((uzC,zg),1)); 

 
if (rank == 0): writeout("I work on the swap array"); NpC=size(xC); 

 

 
swap=array(arange(0,NpC),int); for i in 
range(0,NpC):  

ixC=nonzero(xtemp==xC[i])[0][0];  
iyC=nonzero(ytemp==yC[i])[0][0]; 
izC=nonzero(ztemp==zC[i])[0][0]; 

ii=ixC+iyC*nx+izC*nx*ny;  
swap[i]=ii; 

 
 

 

######################################################################  
############## 
 

# I now fill the attributes of the istance of the grid class self.x3D=x3Ds;  
self.y3D=y3Ds  
self.z3D=z3Ds 
self.dVe=dVes; 

self.surf=surfs; 

self.dist=dists; 
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self.nx=nx; 

self.ny=ny; 

self.nz=nz; 

self.Np=Np; 

self.gridx=x; 

self.gridy=y; 
 

self.gridz=z; if 
(npC!=0):  

self.swap=swap; 

self.xmin=min(x); 

self.xmax=max(x);  
self.ymin=min(y); 

self.ymax=max(y); 

self.zmin=min(z); 

self.zmax=max(z); 

return; 
 
class grid2D: 

def __init__(self,*args): 

 
# I initialize the rank if 
(mpi4py_loaded):   

rank = MPI.COMM_WORLD.Get_rank() else:   
rank=0;  

 
# args is a tuple and len(args) return  

# the number of arguments  

# the number of arguments can be either 2 or 4   
# if 2, the first two inputs are the grid along the  

# x,y axis  

# if 4, the first two inputs are the grid along the  

# x,y axis, while the last two inputs are the x-y  
# coordinates of the atoms if 
(len(args)>2):  

xg=around(args[0],5);  
yg=around(args[1],5); 

xC=around(args[2],5); 
yC=around(args[3],5);  
npC=size(xC);  

else:  
xg=around(args[0],5);  
yg=around(args[1],5); 

npC=0; 

 
#I create the grid if (npC!=0):  

#find the unique values for xC,yC and zC uxC=unique(xC); 
uyC=unique(yC); 

 
# I find the only the additional values which are in xg and not in uxC 

 
# the same for the other axis 
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exg=intersect1d(setxor1d(xg,uxC),xg); 
eyg=intersect1d(setxor1d(yg,uyC),yg); 

 
if (npC!=0): x=unique(concatenate((uxC,xg),1)); 

y=unique(concatenate((uyC,yg),1));  
else: 

x=xg; 

y=yg; 
 

 

#Number of points 
nx=size(x); ny=size(y); 
nxy=nx*ny; Np=nxy; 

 
string="Number of grid points %s " %Np if (rank == 0): 
writeout(string) 

 

 

###################################################################### 

############## 
 

#I create the Volume elements using the sorted grid xd=avervect(x);  
yd=avervect(y); 

X,Y=meshgrid(x,y); 
 

XD,YD=meshgrid(xd,yd); 

surfxy=XD*YD; 
 

if (rank == 0): writeout("Volumes computed") 
 

 

######################################################################  
############## 
 

# I create the dist vectors 
dists=zeros((Np,4));  

 
# I take care of dists[:,1] i=arange(0,nx);   
ip1=i+1; ip1[nx-1]=nx-1; 
xdistp=x[ip1]-x[i];  

 
dists[:,1]=meshgrid(xdistp,y)[0].flatten(); del ip1,xdistp;  

 
# I take care of dists[:,0]  

 
im1=i-1; 
im1[0]=0; 

 
xdistm=x[i]-x[im1]; dists[:,0]=meshgrid(xdistm,y)[0].flatten() 
del i,im1,xdistm; 

 
# I take care of dists[:,3] j=arange(0,ny);   
jp1=j+1; jp1[ny-1]=ny-1; 
ydistp=y[jp1]-y[j];  

 
dists[:,3]=meshgrid(x,ydistp)[1].flatten() del jp1,ydistp;  
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# I take care of dists[:,2]  
 

jm1=j-1; 
jm1[0]=0; 

 
ydistm=y[j]-y[jm1]; dists[:,2]=meshgrid(x,ydistm)[1].flatten(); 
del j,jm1,ydistm; 

 

 

###################################################################### 

############## 

#Now I work on the surface 

 
XD,YD=meshgrid(xd,yd) 
surfs=(XD*YD).flatten(); 

 
if (rank == 0): writeout("Surface created") 

 
 

 

###################################################################### 

############## 

#Now I have to go back to the unsorted grid. 

 
#I create the sorted and unsorted coordinates #vectors as a function 
of the index 

 
#sorted positions 
x2Ds=meshgrid(x,y)[0].flatten(); 
y2Ds=meshgrid(x,y)[1].flatten(); 

 
#unsorted positions 

 
if (npC!=0): xtemp=unique(concatenate((uxC,xg),1)); 

ytemp=unique(concatenate((uyC,yg),1)); 

 
if (rank == 0): writeout("I work on the swap array"); NpC=size(xC); 

 
swap=array(arange(0,NpC),int); for i in 
range(0,NpC):  

ixC=nonzero(xtemp==xC[i])[0][0]; 

iyC=nonzero(ytemp==yC[i])[0][0]; 

ii=ixC+iyC*nx; 

swap[i]=ii; 
 
 

 

###################################################################### 

############## 
 

# I now fill the attributes of the istance of the grid class self.x2D=x2Ds;  
self.y2D=y2Ds 

self.surf=surfs;  
self.dist=dists; 

self.nx=nx; 
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self.ny=ny; 

self.Np=Np; 

self.gridx=x; 
 

self.gridy=y; if 
(npC!=0):  

self.swap=swap; 

self.xmin=min(x); 

self.xmax=max(x); 

self.ymin=min(y); 

self.ymax=max(y); 

return; 
 
class grid1D: 

def __init__(self,*args): 

 
# I initialize the rank if 
(mpi4py_loaded):  

rank = MPI.COMM_WORLD.Get_rank() else:  
rank=0; 

 
# args is a tuple and len(args) return   
# the number of arguments   
# the number of arguments can be either 1 or 2   
# if 1, the first input is the grid along the  

# x axis   
# if 2, the first input is the grid along the   
# x axis, while the second input is the x   
# coordinates of the atoms  

 
if (len(args)>1): xg=around(args[0],5);  

xC=around(args[1],5); # attenzione: modificato il  
28/5/2011  

npC=size(xC);  
else:  

xg=around(args[0],5); 
npC=0; 

 
#I create the grid if (npC!=0): 

 
#find the unique values for xC 
uxC=unique(xC); 

 
# I find the only the additional values which are in xg and not in uxC  
exg=intersect1d(setxor1d(xg,uxC),xg); 

 
if (npC!=0): x=unique(concatenate((uxC,xg),1)); 
else: 

x=xg; 

 

#Number of points 
nx=size(x); Np=nx;  
if (rank == 0): print(("Number of grid points ",Np)) 



Page | 131  
 

###################################################################### 

############## 
 

# I create the dist vectors 
dists=zeros((Np,4));  

 
# I take care of dists[:,1] i=arange(0,nx);  

 
ip1=i+1; ip1[nx-1]=nx-1; 
xdistp=x[ip1]-x[i]; 
dists[:,1]=xdistp; del 
ip1,xdistp;  

 

 
# I take care of dists[:,0] im1=i-1;  
im1[0]=0; xdistm=x[i]-x[im1]; 
dists[:,0]=xdistm; del 
i,im1,xdistm; 

 

 

######################################################################  
############## 
 

#Now I have to go back to the unsorted grid. #I create the sorted 
and unsorted coordinates #vectors as a function of the index 

 
if (npC!=0): xtemp=unique(concatenate((uxC,xg),1)); 

 
if (rank == 0): print("I work on the swap array"); NpC=size(xC);  
swap=array(arange(0,NpC),int); for i in 
range(0,NpC):  

ixC=nonzero(xtemp==xC[i])[0][0]; 

ii=ixC; 

swap[i]=ii; 
 
 

 

###################################################################### 

############## 
 

# I now fill the attributes of the istance of the grid class self.x=x;  
self.dist=dists; 

self.nx=nx; 

self.Np=Np; 
 

self.gridx=x; if 
(npC!=0):  

self.swap=swap; 

self.xmin=min(x); 

self.xmax=max(x); 

return; 
 
class region: 
 

def __init__(self,*args): 
self.name="none"; 
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self.geometry="hex"; 
self.eps=3.9; self.rho=0; 

 
if (args[0]=="hex"): if 

(len(args)>5):  
self.xmin=args[1]; 

self.xmax=args[2]; 

self.ymin=args[3]; 

self.ymax=args[4];  
self.zmin=args[5];  
self.zmax=args[6]; 

 
elif ((len(args)>3)&(len(args)<=5)): 

self.xmin=args[1]; self.xmax=args[2]; 
self.ymin=args[3]; self.ymax=args[4]; 

 
elif (len(args)<=3): 

self.xmin=args[1]; 
self.xmax=args[2]; 

 
def set_material(self,material): if 

(material.lower()=="sio2"):  
self.eps=3.9;  
self.mel=0.5;  
self.met=0.5; 
self.Egap=8.05; 

self.chi=0.95; 

self.mhole=0.42 
 

if (material.lower()=="si"): self.eps=11.8; 
self.mel=0.916; self.met=0.19; 
self.Egap=1.124519; self.chi=4.05; 
self.mhole=0.549; 

class gate: 
 

def __init__(self,*args): 
self.geometry="hex"; self.Ef=0; 
self.wf=4.1; 

 
if (args[0]=="hex"): if 

(len(args)>5):  
self.xmin=args[1]; 

self.xmax=args[2]; 

self.ymin=args[3]; 

self.ymax=args[4]; 

self.zmin=args[5]; 

self.zmax=args[6]; 
 

elif ((len(args)>3)&(len(args)<=5)): 
self.xmin=args[1]; self.xmax=args[2]; 
self.ymin=args[3]; self.ymax=args[4]; 

 
elif (len(args)<=3): 

self.xmin=args[1]; 
self.xmax=args[2]; 

 
if (args[0]=="cyl"): self.xc=args[1]; 

self.yc=args[2]; 
self.radius=args[3]; 
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self.geometry="cyl" if 
(args[0]=="trapz"): 
self.xmin=args[1]; 
self.xmax=args[2];  

self.y1=args[3];  
self.z1=args[4];  
self.y2=args[5];  
self.z2=args[6];  
self.y3=args[7];  
self.z3=args[8]; 
self.y4=args[9]; 

self.z4=args[10];  
self.geometry="trapz" 

 
class interface3D:  

def __init__(self,*args): 

 
# I set the rank if 
(mpi4py_loaded):   

rank = MPI.COMM_WORLD.Get_rank() 
self.rank=rank;   

else:  

self.rank=0;  

 
# I compute the number of arguments (classes) Narg=size(args);  

 
# I first find the index of the class grid igrid=-10;  

 
for i in range(0,Narg): 

name=args[i].__class__.__name__ if 
(name=="grid3D"):  

igrid=i;  

# If no grid class is specified I exit  

if (igrid==-10): 
 

writeout("ERROR: grid not passed to structure") return; 

 
# I create the arrays to be used 
self.eps=zeros(args[igrid].Np);  

 
# I create the vector, where the boundary conditions  

# are specified:  

# if 2000   : inner point  

# if 1001   : Neumann 1  

# if 1002   : Neumann 2  

# if 1003   : Neumann 3  

# if 1004   : Neumann 4  

# if 1005   : Neumann 5   
# if 1006   : Neumann 6  

# if <= 1000: Fermi level of the gate  
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# I start defining all the points as inner points  

self.boundary_conditions=2000*ones(args[igrid].Np); 
 

 

###################################################################### 

######################### 
# Now I impose the Neumann Boundary conditions on   
# the surfaces delimiting the 3D domain  

 
######################################################################  
######################### 

 
# I take care of Neumann1 
indexNeu1=nonzero(args[igrid].x3D==min(args[igrid].gridx)); 
self.boundary_conditions[indexNeu1]=1001;  

 
# I take care of Neumann2 
indexNeu2=nonzero(args[igrid].x3D==max(args[igrid].gridx)); 
self.boundary_conditions[indexNeu2]=1002;  

 
# I take care of Neumann3 
indexNeu3=nonzero(args[igrid].y3D==min(args[igrid].gridy)); 
self.boundary_conditions[indexNeu3]=1003;  

 
# I take care of Neumann4 
indexNeu4=nonzero(args[igrid].y3D==max(args[igrid].gridy)); 
self.boundary_conditions[indexNeu4]=1004  

 

 

# I take care of Neumann5 and Neumann6 
indexNeu5=nonzero(args[igrid].z3D==min(args[igrid].gridz)); 
self.boundary_conditions[indexNeu5]=1005; 
indexNeu6=nonzero(args[igrid].z3D==max(args[igrid].gridz)); 
self.boundary_conditions[indexNeu6]=1006;  

 

 

###################################################################### 

######################### 

# I check to which class the args belongs to  

# and I proceed accordingly  
 
###################################################################### 

######################### 

 
for i in range(0,Narg): 

name=args[i].__class__.__name__ 
 

# I check if the class is a gate if (name=="gate"): 
 

#I check if the geometry is an hexahedron if 
(args[i].geometry=="hex"):  

# I find the indexes of the 3D grid which belongs 

to the gate 
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# with hex geometry 
 
 
index=nonzero((args[i].xmin<=args[igrid].x3D)&(args[i].xmax>=args[igri  
d].x3D)& 
 
(args[i].ymin<=args[igrid].y3D)&(args[i].ymax>=args[igrid].y3D)& 

 
(args[i].zmin<=args[igrid].z3D)&(args[i].zmax>=args[igrid].z3D)); 

self.boundary_conditions[index]=args[i].Ef; args[i].index=index; 
if (args[i].geometry=="trapz"): 

# I find the indexes of the 2D grid which belongs 

to the gate 
 

# with trapezoidal geometry if 
(args[i].y2==args[i].y1):  

m1=(args[i].z2-args[i].z1)/(args[i].y2-  
args[i].y1+1e-3) 
 

else: m1=(args[i].z2-args[i].z1)/(args[i].y2-  
args[i].y1) 
 

if (args[i].y3==args[i].y2): m2=(args[i].z3-
args[i].z2)/(args[i].y3-  

args[i].y2+1e-3) 
 

else: m2=(args[i].z3-args[i].z2)/(args[i].y3-  
args[i].y2) 
 

if (args[i].y4==args[i].y3): m3=(args[i].z4-
args[i].z3)/(args[i].y4-  

args[i].y3+1e-3) 
 

else: m3=(args[i].z4-args[i].z3)/(args[i].y4-  
args[i].y3) 
 

if (args[i].y4==args[i].y1): m4=(args[i].z4-
args[i].z1)/(args[i].y4-  

args[i].y1+1e-3) 
 

else: m4=(args[i].z4-args[i].z1)/(args[i].y4-  
args[i].y1) 
 

 
index=nonzero((args[igrid].z3D>=(m1*(args[igrid].y3D-
args[i].y1)+args[i].z1))& 

 

(args[igrid].z3D>=(m2*(args[igrid].y3D-args[i].y2)+args[i].z2))& 

(args[igrid].z3D<=(m3*(args[igrid].y3D-args[i].y3)+args[i].z3))& 

(args[igrid].z3D<=(m2*(args[igrid].y3D-args[i].y1)+args[i].z1))& 

 
(args[i].xmin<=args[igrid].x3D)&(args[i].xmax>=args[igrid].x3D)); 

self.boundary_conditions[index]=args[i].Ef; args[i].index=index; 
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elif (name=="region"):  
if (args[i].geometry=="hex"):  

# I find the indexes of the 3D grid which belongs  
to the gate 

# with hex geometry 
 
index=nonzero((args[i].xmin<=args[igrid].x3D)&(args[i].xmax>=args[igri  
d].x3D)& 
 
(args[i].ymin<=args[igrid].y3D)&(args[i].ymax>=args[igrid].y3D)& 
 
(args[i].zmin<=args[igrid].z3D)&(args[i].zmax>=args[igrid].z3D)); 
 

self.eps[index]=args[i].eps; elif 
(name=="grid3D"):  

#dummy line name; 
else: 

 
writeout("ERROR: Unrecognized input") return; 

 

 

###################################################################### 

######################### 

# I fill the field of the interface class 
 
###################################################################### 

######################### 

 

#self.boundary already filled #self.eps already 
filled self.Phiold=zeros(args[igrid].Np) 
self.Phi=zeros(args[igrid].Np); 
self.normpoisson=1e-3; self.tolldomn=1e-1; 
self.underel=0; 

 
self.free_charge=zeros(args[igrid].Np); 
self.fixed_charge=zeros(args[igrid].Np); self.normd=5e-2; 

self.modespace="no" 
 

self.MPI="no" 
self.MPI_kt="no" return; 

 
class interface2D: 

def __init__(self,*args): 

 
# I set the rank if 
(mpi4py_loaded):  

rank = MPI.COMM_WORLD.Get_rank() 
self.rank=rank;  

else: 

self.rank=0; 
 
 

# I compute the number of arguments (classes) Narg=size(args);  
 

# I first find the index of the class grid igrid=-10;   
for i in range(0,Narg): 
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name=args[i].__class__.__name__ if 
(name=="grid2D"):   

igrid=i;   
# If no grid class is specified I exit  
if (igrid==-10): 

 
writeout("ERROR: grid not passed to structure") return; 

 
# I create the arrays to be used 
self.eps=zeros(args[igrid].Np);  

 
# I create the vector, where the boundary conditions  

# are specified:  

# if 2000   : inner point  

# if 1001   : Neumann 1  

# if 1002   : Neumann 2  

# if 1003   : Neumann 3  

# if 1004   : Neumann 4  

# if <= 1000: Fermi level of the gate  

 
# I start defining all the points as inner points 
self.boundary_conditions=2000*ones(args[igrid].Np);  

 

 

###################################################################### 

######################### 

# Now I impose the Neumann Boundary conditions on  

# the surfaces delimiting the 3D domain  
 
###################################################################### 

######################### 

 
# I take care of Neumann1 
indexNeu1=nonzero(args[igrid].x2D==min(args[igrid].gridx)); 
self.boundary_conditions[indexNeu1]=1001;  

 
# I take care of Neumann2 
indexNeu2=nonzero(args[igrid].x2D==max(args[igrid].gridx)); 
self.boundary_conditions[indexNeu2]=1002;  

 
# I take care of Neumann3 
indexNeu3=nonzero(args[igrid].y2D==min(args[igrid].gridy)); 
self.boundary_conditions[indexNeu3]=1003;  

 
# I take care of Neumann4 
indexNeu4=nonzero(args[igrid].y2D==max(args[igrid].gridy)); 

 
self.boundary_conditions[indexNeu4]=1004 
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######################################################################  
#########################  

# I check to which class the args belongs to   
# and I proceed accordingly  

 
###################################################################### 

######################### 

 
for i in range(0,Narg): 

name=args[i].__class__.__name__ 
 

# I check if the class is a gate if (name=="gate"):  
#I check if the geometry is an hexahedron if 
(args[i].geometry=="hex"):  

# I find the indexes of the 2D grid which belongs 

to the gate 

# with hex geometry 
 
index=nonzero((args[i].xmin<=args[igrid].x2D)&(args[i].xmax>=args[igri 

d].x2D)& 

 
(args[i].ymin<=args[igrid].y2D)&(args[i].ymax>=args[igrid].y2D)); 

self.boundary_conditions[index]=args[i].Ef; args[i].index=index; 
 

#I check if the geometry is an cylindrical if 
(args[i].geometry=="cyl"):  

# I find the indexes of the 2D grid which belongs 

to the gate 
 

# with cyl geometry 
index=nonzero(((args[i].xc- 

 
args[igrid].x2D)**2+(args[i].yc-
args[igrid].y2D)**2)<(args[i].radius)**2); 
 

self.boundary_conditions[index]=args[i].Ef; 
args[i].index=index;  

elif (name=="region"): 

if (args[i].geometry=="hex"): 

# I find the indexes of the 2D grid which belongs 

to the gate 

# with hex geometry 
 
index=nonzero((args[i].xmin<=args[igrid].x2D)&(args[i].xmax>=args[igri 

d].x2D)& 
 
(args[i].ymin<=args[igrid].y2D)&(args[i].ymax>=args[igrid].y2D)); 
 

self.eps[index]=args[i].eps; elif 
(name=="grid2D"):  

#dummy line name; 
 
 

else: 
 

writeout("ERROR: Unrecognized input") return; 
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######################################################################  
#########################  

# I fill the field of the interface class 
 
###################################################################### 

######################### 

 

#self.boundary already filled #self.eps already 
filled self.Phiold=zeros(args[igrid].Np) 
self.Phi=zeros(args[igrid].Np); 
self.normpoisson=1e-3; self.tolldomn=1e-1; 
self.underel=0; 

 
self.free_charge=zeros(args[igrid].Np); 
self.fixed_charge=zeros(args[igrid].Np); self.normd=5e-2; 
self.modespace="no" 

 
self.MPI="no" 
self.MPI_kt="no" return; 

 
class interface1D: 

def __init__(self,*args): 

 
# I set the rank if 
(mpi4py_loaded):  

 
rank = MPI.COMM_WORLD.Get_rank() 
self.rank=rank;   

else:  

self.rank=0;  

 
# I compute the number of arguments (classes) Narg=size(args);  

 
# I first find the index of the class grid igrid=-10;   
for i in range(0,Narg): 

name=args[i].__class__.__name__ if 
(name=="grid1D"):   

igrid=i;  

# If no grid class is specified I exit  

if (igrid==-10): 
 

print("ERROR: grid not passed to structure") return; 

 
# I create the arrays to be used 
self.eps=zeros(args[igrid].Np); 

 
 

self.mel=zeros(args[igrid].Np);  
self.met=zeros(args[igrid].Np);  
self.chi=zeros(args[igrid].Np); 

 
self.Egap=zeros(args[igrid].Np); 
self.fixed_charge=zeros(args[igrid].Np); 
self.mhole=zeros(args[igrid].Np); 
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# I create the vector, where the boundary conditions   
# are specified:   
# if 2000   : inner point   
# if 1001   : Neumann 1  
# if 1002   : Neumann 2   
# if <= 1000: Fermi level of the gate  

 
# I start defining all the points as inner points 
self.boundary_conditions=2000*ones(args[igrid].Np);  

 

 

###################################################################### 

######################### 

# Now I impose the Neumann Boundary conditions on  

# the surfaces delimiting the 3D domain  
 
###################################################################### 

######################### 

 
# I take care of Neumann1 
indexNeu1=nonzero(args[igrid].x==min(args[igrid].gridx)); 
self.boundary_conditions[indexNeu1]=1001;  

 
# I take care of Neumann2 
indexNeu2=nonzero(args[igrid].x==max(args[igrid].gridx)); 
self.boundary_conditions[indexNeu2]=1002;  

 
 

 

###################################################################### 

######################### 

# I check to which class the args belongs to  

# and I proceed accordingly  
 
###################################################################### 

######################### 

 
for i in range(0,Narg): 

name=args[i].__class__.__name__  
# I check if the class is a gate if (name=="gate"):  

#I check if the geometry is an hexahedron if 
(args[i].geometry=="hex"):  

# I find the indexes of the 2D grid which belongs 

to the gate 
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# with hex geometry 
 
index=nonzero((args[i].xmin<=args[igrid].x)&(args[i].xmax>=args[igrid]  
.x)); 
 

self.boundary_conditions[index]=args[i].Ef; 
args[i].index=index;  

elif (name=="region"): 
 

if (args[i].geometry=="hex"): 
dist=avervect(args[igrid].x)*1e-9;  
# I find the indexes of the 2D grid which belongs 

to the gate 

# with hex geometry 
 
index=nonzero((args[i].xmin<=args[igrid].x)&(args[i].xmax>=args[igrid]  
.x));  

self.eps[index]=args[i].eps; 

self.mel[index]=args[i].mel; 

self.met[index]=args[i].met; 

self.chi[index]=args[i].chi; 
 

self.Egap[index]=args[i].Egap; 
self.fixed_charge[index]=args[i].rho*dist[index]; 
self.mhole[index]=args[i].mhole; 

 
elif (name=="grid1D"): #dummy 

line  
name; 

else: 
 

print("ERROR: Unrecognized input") return; 
 

 

###################################################################### 

######################### 

# I fill the field of the interface class 
 
###################################################################### 

######################### 

 

#self.boundary already filled #self.eps already 
filled self.Phiold=zeros(args[igrid].Np) 
self.Phi=zeros(args[igrid].Np); 
self.normpoisson=1e-3; self.tolldomn=1e-1; 
self.underel=0; 

 
self.free_charge=zeros(args[igrid].Np); self.normd=5e-2;  
self.modespace="no" 

 
self.MPI="no" 
self.MPI_kt="no" return; 
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def dope_reservoir(grid,interface,channel,molar_fraction,bbox): 
name=grid.__class__.__name__;  
if (name=="grid3D"): 

xmin=bbox[0]; 

xmax=bbox[1]; 

ymin=bbox[2]; 

ymax=bbox[3]; 

zmin=bbox[4]; 

zmax=bbox[5]; 
 
 
index=nonzero((xmin<=grid.x3D[grid.swap])&(xmax>=grid.x3D[grid.swap])& 
 
(ymin<=grid.y3D[grid.swap])&(ymax>=grid.y3D[grid.swap])& 

 
(zmin<=grid.z3D[grid.swap])&(zmax>=grid.z3D[grid.swap])) 

interface.fixed_charge[grid.swap[index]]=molar_fraction; 
 

elif (name=="grid2D"): 
xmin=bbox[0]; 
xmax=bbox[1]; 
ymin=bbox[2]; 
ymax=bbox[3]; 

 

 

index=nonzero((xmin<=grid.x2D[grid.swap])&(xmax>=grid.x2D[grid.swap])& 
 
(ymin<=grid.y2D[grid.swap])&(ymax>=grid.y2D[grid.swap])) 

 
interface.fixed_charge[grid.swap[index]]=molar_fraction/channel.delta* 1e9; 
 

elif (name=="grid1D"): 
xmin=bbox[0]; 
xmax=bbox[1]; 

 

 

index=nonzero((xmin<=grid.x[grid.swap])&(xmax>=grid.x[grid.swap])); 

 
interface.fixed_charge[grid.swap[index]]=molar_fraction/(channel.delta z*channel.deltay)*1e18; 
# MODIFICATO IL 6/6/2011: aggiunto il deltay e deltaz 
 

return index; 
 
class Device: 
 

def __init__(self): self.Nregions=1; 
self.regions=[]; 
self.E=zeros(NEmax); 

 
def test(self): return self.E; 

 
def test_var_args(farg, *args): writeout("formal arg:"), 

size(args) for arg in args: 
writeout("another arg:"), arg 
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def avervect(x):  
# This function compute the length of  

 
# the Voronoi segment of a one-dimensional array x nx=size(x);   
xd=zeros(nx);  

 
xini=x[0]; xd[0]=abs(x[0]-x[1])*0.5; 
for i in range(1,nx-1):  

 
xd[i]=abs((x[i+1]-x[i-1])*0.5); xd[nx-

1]=abs(x[nx-1]-x[nx-2])*0.5 return xd;  
 
def save_format_xyz(outputfile,x,y,z,atom): 

 
if sys.version > '3': import 

subprocess;  
else: 

import subprocess 
 

out=[x*10,y*10,z*10] 

fp=open(outputfile,"w"); 

fp.write(str(size(x))); 

fp.write("\n"); 

fp.write("\n");  
for i in range(0,size(x)): 

 
string="%s %s %s %s" %(atom,out[0][i],out[1][i],out[2][i]); fp.write(string); 

 
fp.write(" "); 
fp.write("\n"); 

fp.close()  
return; 

 
"""def convert_pdb(filename,thop): 

fp=open(filename,"r");  
hh=[]; 

atoms=0; 

i=0;  
x=[]; 

y=[]; 

z=[]; 

h=[]; 
 

h.append([1,0,0]); for line in 
fp:  

hh.append(line); atoms=atoms+(hh[i].split()).count('HETATM'); 
 

if 
 
(((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')== 1)):  

x.append((hh[i].split())[5]); 
y.append((hh[i].split())[6]); 

z.append((hh[i].split())[7]); 

 
h.append([int((hh[i].split())[1]),int((hh[i].split())[1]),0]); if 

((hh[i].split()).count('CONECT')==1): 
 

a=(hh[i].split()); 
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NPV=size(a)-1  
for j in range(0,NPV): a1=int(a[1]); 

 
if (a1<int(a[j+1])): h.append([a1,int(a[j+1]),thop]) 

 
if ((hh[i].split()).count('CRYST1')==1): a=(hh[i].split()); 

 
if (double(a[1])>=100): deltax=0.0;  
else: 

 
deltax=double(a[1])/10.0; if 

(double(a[2])>=100):  
deltay=0.0; 

else: 
 

deltay=double(a[2])/10.0; if 
(double(a[3])>=100):  

deltaz=0.0; 

else: 

deltaz=double(a[3])/10.0; 
 

 

i=i+1; 

fp.close() 

H=array(h,dtype(complex)); 

x=array(x,dtype(float))/10.0; 

y=array(y,dtype(float))/10.0; 

z=array(z,dtype(float))/10.0; 

return H,x,y,z,deltax,deltay,deltaz;""" 
 
def create_H_from_xyz(x,y,z,orbitals,onsite,thop,d_bond,Nbond): 

# WE ASSUME THAT:  
 
#  

# 1) TRANSPORT IS IN THE Z DIRECTION  

# 2) THE STRUCTURE IS COMPOSED BY THE SAME TYPE OF ATOMS  
 

# 3) ALONG THE Z-DIRECTION THE STRUCTURE IS PERIODIC WITH PERIOD 
EQUAL TO 4 SLICES   
#  
 

# I find the minimum and maximum coordinates at the border  
 

# so to take care of the passivation of the atoms at the borders xmin=min(x);   
xmax=max(x);  

ymin=min(y);  
ymax=max(y);  
zmin=min(z);  
zmax=max(z); 

 
# I compute the number of slices (ASSUMPTION 2) 
Nc=int(size(unique(z)));  
#  I have already computed n at the beginning  
# n=int(size(nonzero(z==zmin))); 

 
# I compute the number of atoms in the first 4 slices temp=unique(z); 
Natom_slices=size(nonzero(z<=temp[3]));  
del temp; 
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# I check the maximum number of atoms on each slice; u=unique(z);  
Nuz=size(u); n=-1;  
for i in range(0,Nuz): 

nnew=size(nonzero(z==u[i])); if 
(nnew>=n):  

n=nnew; 

del i; 
 

# Now I start doing though stuff 

# I fill x,y and z with dummy atoms 

# If it is a dummy atom, the coordinate is equal to dummy_coord 
 

dummy_coord=10000; 

xa=[];  
ya=[]; 

za=[]; 

k=0; 

for i in range(0,Nuz): 

# print ya 

nnew=size(nonzero(z==u[i])); 

for j in range(0,nnew): 

xa.append(x[k]); 

ya.append(y[k]); 

za.append(z[k]); 

k=k+1; 

if (nnew<n): 

for j in range(nnew,n):  
xa.append(dummy_coord); 

ya.append(dummy_coord); 

za.append(dummy_coord); 

# k=k+1; 
 

del x,y,z,u,i 

x=array(xa,dtype(float)); 

y=array(ya,dtype(float)); 

z=array(za,dtype(float)); 
 

del xa,ya,za 
 

Np=size(x); 
 

Ncol_max=10; 
NN=zeros((Np,Ncol_max),dtype(int)); border=[] 

 
# I first find the Nearest Neighbour for i in 
range(0,Np): 

 
ind=nonzero((sqrt((x-x[i])**2+(y-y[i])**2+(z-z[i])**2)<=d_bond)&(sqrt((x-

x[i])**2+(y-y[i])**2+(z-z[i])**2)>1e-10))[0];  
if (size(ind)>Ncol_max):  

print()  
writeout("ERROR IN create_H_from_xyz subroutine in  

NanoTCAD_ViDES.py file")  
writeout("Use a larger value for Ncol_max") 
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print() 

exit(0); 

# print i 

NN[i,0]=i+1; 
 

NN[i,1:size(ind)+1]=ind+1; 
NPV=size(nonzero(NN[i,:]))-1; if 
(NPV<Nbond): 

border.append(i); 
 

 
# Now I work on the Hamiltonian atoms=0;  
i=0; 

h=[]; 

 
# I fill the h list with the number of orbitals ll=[orbitals,0];  
fill=zeros(orbitals**2); 

 
h.append(ll+list(fill)) del ll,i 

 
 
 
 
 

# I take care of the diagonal elements for i in 
range(0,Np): 

 
if ((x[i]<dummy_coord)): if 

(orbitals>1): 
 

# (ASSUMPTION 1) if i in 
border: xfn=zeros(4); 

yfn=zeros(4); zfn=zeros(4); 
 

if (z[i]==zmin): NPV=size(nonzero(NN[i+4*n,:]))-1; 
xfn=x[NN[i+n*4,1:NPV+1]-1]; 
yfn=y[NN[i+n*4,1:NPV+1]-1]; 
zfn=z[NN[i+n*4,1:NPV+1]-1]; 
xp=x[i+n*4];  
yp=y[i+n*4]; 

 
zp=z[i+n*4]; elif 

(z[i]==zmax): 
 

NPV=size(nonzero(NN[i-4*n,:]))-1; xfn=x[NN[i-
n*4,1:NPV+1]-1]; yfn=y[NN[i-n*4,1:NPV+1]-1]; 
zfn=z[NN[i-n*4,1:NPV+1]-1]; xp=x[i-n*4]; 

 
yp=y[i-n*4]; zp=z[i-
n*4]; 

 
else: NPV=size(nonzero(NN[i,:]))-1; 

xfn=x[NN[i,1:NPV+1]-1]; 

yfn=y[NN[i,1:NPV+1]-1]; 

zfn=z[NN[i,1:NPV+1]-1]; xp=x[i]; 
 

yp=y[i]; 

zp=z[i]; 
 

deltae=20.0; 
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tempM=Sipassivation(xp,yp,zp,NPV,xfn,yfn,zfn,deltae); 

# print tempM 

# print x[i],y[i],z[i] 

# print xfn 

# print yfn 

# print zfn  
# exit(0); 

B=zeros((10,10)); 

B[:4,:4]=tempM.reshape(4,4); 
 
h.append([i+1,i+1]+list((diag(onsite)+B).flatten())); 

# 
 
h.append([i+1,i+1]+list((diag(onsite)).flatten())); del B,tempM,xfn,yfn,zfn;  

else: 

 
h.append([i+1,i+1]+list((diag(onsite)).flatten())); else:  

h.append([i+1,i+1]+list(fill));  
else: 

# If the atom is dummy then I mark it with the 77777 value  
 

# Right now it works only for one orbital 
h.append([i+1,i+1]+list(77777*ones(orbitals**2)));  

 

 

# I take care of the off-diagonal elements  
for i in range(0,Np): NPV=size(nonzero(NN[i,:]))-1; 

 

 
for j in range(0,NPV): 

a1=int(NN[i,0]);  
if (a1<int(NN[i,j+1])): if 

(orbitals>1): 
 

# I compute the cosine 
module=sqrt(((double(x[a1-1])- 

 
double(x[int(NN[i,j+1])-1]))**2)+(double(y[a1-1])-
double(y[int(NN[i,j+1])-1]))**2+(double(z[a1-1])-
double(z[int(NN[i,j+1])-1]))**2);  

cosx=(-double(x[a1-1])+double(x[int(NN[i,j+1])- 
1]))/module; 

cosy=(-double(y[a1-1])+double(y[int(NN[i,j+1])-  
1]))/module;  

cosz=(-double(z[a1-1])+double(z[int(NN[i,j+1])-  
1]))/module;  
# print a1,int(NN[i,j+1]),cosx,cosy,cosz,module 

# input=hstack((array([cosx,cosy,cosy]),thop)); 

# print input 

# matrix_thop=Simatrix(input); 

matrix_thop=Simatrix(cosx,cosy,cosz,thop); 

# print matrix_thop 

# print "----------------" 
 

h.append([a1,int(NN[i,j+1])]+list(matrix_thop)); else:  
h.append([a1,int(NN[i,j+1]),thop]) 
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H=array(h,dtype=complex); return 
H,n,Nc; 

 

def get_xyz_from_file(filename): 

fp=open(filename,"r"); xa=[] 
 

ya=[] 

za=[] 

for line in fp: 
 

if (size(line.split())>3): 
xa.append((line.split())[1]); 
ya.append((line.split())[2]); 
za.append((line.split())[3]);  

x=array(xa,dtype(float)); 

y=array(ya,dtype(float)); 
 

z=array(za,dtype(float)); del xa,ya,za  
return x,y,z; 

 

 

def convert_pdb(filename,orbitals,thop): 

# ASSUMPTION: ALL THE ATOMS ARE OF THE SAME MATERIAL  
 

# I first read the atoms coordinates  

hh=[]; 

deltax=0; 

deltay=0; 

deltaz=0;  
x=[];  
y=[];  
z=[]; 

i=0; 
 

fp=open(filename,"r"); for line in 
fp: 

 
hh.append(line); if 

 
(((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')== 1)): 
 
# ATOM_TYPE=(hh[i].split())[2]; x.append((hh[i].split())[5]); 

y.append((hh[i].split())[6]); 
z.append((hh[i].split())[7]);  

i=i+1; 
 

fp.close() del hh; 

 
# Now I work on the Hamiltonian hh=[];   
atoms=0;  

i=0;  

h=[];  

 
# I fill the h list with the number of orbitals ll=[orbitals,0];   
fill=zeros(orbitals**2);  

 
h.append(ll+list(fill)) del ll  
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# I fill the rest of the h list 
fp=open(filename,"r");   
for line in fp: hh.append(line);   

atoms=atoms+(hh[i].split()).count('HETATM'); if  
 
(((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')== 1)):  

if (orbitals>1): 

 

h.append([int((hh[i].split())[1]),int((hh[i].split())[1])]+list((diag( onsite)).flatten())); 
 

else: 
 
h.append([int((hh[i].split())[1]),int((hh[i].split())[1])]+list(fill)) 

; 
 

if ((hh[i].split()).count('CONECT')==1): a=(hh[i].split());  
NPV=size(a)-1 

 
for j in range(0,NPV): a1=int(a[1]); 

 

 
if (a1<int(a[j+1])): if 

(orbitals>1):  
# I compute the cosine 
module=sqrt(((double(x[a1-1])-  

double(x[int(a[j+1])-1]))**2)+(double(y[a1-1])-double(y[int(a[j+1])-1]))**2+(double(z[a1-1])-
double(z[int(a[j+1])-1]))**2);  

cosx=(double(x[a1-1])-double(x[int(a[j+1])-  
1]))/module;  

cosy=(double(y[a1-1])-double(y[int(a[j+1])-  
1]))/module; 

cosz=(double(z[a1-1])-double(z[int(a[j+1])- 
1]))/module;  

cosx=1;cosy=1;cosz=1; 
 

input=hstack((array([cosx,cosy,cosy]),thop)); 
matrix_thop=Simatrix(input); 
h.append([a1,int(a[j+1])]+list(matrix_thop)); 

else:  
h.append([a1,int(a[j+1]),thop]) 

 
if ((hh[i].split()).count('CRYST1')==1): a=(hh[i].split()); 

 
if (double(a[1])>=100): deltax=0.0; 
else: 

 
deltax=double(a[1])/10.0; if 

(double(a[2])>=100):  
deltay=0.0; 

else: 
 

deltay=double(a[2])/10.0; if 
(double(a[3])>=100):  

deltaz=0.0; 

else: 

deltaz=double(a[3])/10.0; 
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i=i+1; 

fp.close() 
 

H=array(h,dtype(complex)); 

x=array(x,dtype(float))/10.0; 

y=array(y,dtype(float))/10.0; 
 

z=array(z,dtype(float))/10.0; return 
H,x,y,z,deltax,deltay,deltaz; 

 
def Hamiltonian_per(H,x,y,z,deltax,deltay,deltaz,aCC,thop,k): Np=size(x); 
 

Hnew=H.copy(); 
conn_per=[]  
for ii in range(0,Np): xc=x[ii]; 

yc=y[ii]; zc=z[ii]; 

 
# Here I compare with 1.05*aCC in order to take into account numerical tollerances  
indp=nonzero(sqrt((x-xc+deltax)**2+(y-yc+deltay)**2+(z-

zc+deltaz)**2)<aCC*1.05)[0]+1;  
indm=nonzero(sqrt((x-xc-deltax)**2+(y-yc-deltay)**2+(z-zc-

deltaz)**2)<aCC*1.05)[0]+1;  
if (size(indp)>0): 

 
for j in range(0,size(indp)): 

conn_per.append([ii+1,indp[j]]);  
if (size(indm)>0): 

 
for j in range(0,size(indm)): 

conn_per.append([ii+1,indm[j]]); 

 
del ii Nconn=len(conn_per); for ii in 
range(Nconn): 

 
ind=nonzero((H[:,0]==conn_per[ii][0])&(H[:,1]==conn_per[ii][1]))[0] if (size(ind)>0): 
 

if (deltax>0): segno=sign(x[int(abs(H[ind,0]))-1]- 
 
x[int(abs(H[ind,1]))-1]); Hnew[ind,2]=H[ind,2]+thop*exp(-segno*k*deltax*1j);  

elif (deltay>0): segno=sign(y[int(abs(H[ind,0]))-1]- 
 
y[int(abs(H[ind,1]))-1]); Hnew[ind,2]=H[ind,2]+thop*exp(-segno*k*deltay*1j); 
 

else: segno=sign(z[int(abs(H[ind,0]))-1]- 
 
z[int(abs(H[ind,1]))-1]); Hnew[ind,2]=H[ind,2]+thop*exp(-segno*k*deltaz*1j);  

else: 
 

if (conn_per[ii][0]<conn_per[ii][1]): if (deltax>0): 
segno=sign(x[conn_per[ii][0]-1]-x[conn_per[ii][1]-  

1]); 

 
temp=array([conn_per[ii][0],conn_per[ii][1],thop*exp(-segno*k*deltax*1j)]); 
 

elif (deltay>0): segno=sign(y[conn_per[ii][0]-1]-y[conn_per[ii][1]-  
1]); 

 
temp=array([conn_per[ii][0],conn_per[ii][1],thop*exp(-segno*k*deltay*1j)]); 
 

else: segno=sign(z[conn_per[ii][0]-1]-z[conn_per[ii][1]- 
1]); 
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temp=array([conn_per[ii][0],conn_per[ii][1],thop*exp(-segno*k*deltaz*1j)]); 
 

Hnew=vstack([Hnew,temp]); 
 

del ii return Hnew 
 

 
class nanoribbon_fast_ohmic: acc=0.144; 
 

def __init__(self,n,L): self.Nc=int(4*(floor((floor(L/nanoribbon_fast_ohmic.acc)-  
1)/3))); 

self.n=n; 

self.Phi=zeros(n*self.Nc); 
 

self.Eupper=1000.0; 

self.Elower=-1000.0; 

self.dE=1e-3; self.thop=-2.7; 

self.eta=1e-8; self.mu1=0; 

self.mu2=0; self.Temp=300; 

self.E=zeros(NEmax); 

self.T=zeros(NEmax);  
self.charge=zeros(self.n*self.Nc); 

 
self.rank=0; self.atoms_coordinates(); 
self.defects_list=[] self.onsite_E=-1.5; 

 
def atoms_coordinates(self): 

GNR_atoms_coordinates(self); 
self.x=array(self.x); self.y=array(self.y); 
self.z=array(self.z); return;  

def gap(self): 
 

return GNRgap(self); def 
charge_T(self): 

 
M=self.Nc; 

N=self.n; 
 

t=self.thop; Energy = 
0.0 Ene = 0.0 

 
p = 0.0 d = 0.0 

 
orbitals = [1, 0] hamiltonian = [] 
zeroes = [0, 0, 0, 0] 

 
ene = [Energy, 0, 0, Ene] coupling1 = [t, 0, 
0, p] coupling2 = [t*1.12, 0, 0, p] orbitals = 
orbitals + zeroes 
hamiltonian.append(orbitals) 

 
for j in range(M): for i in range(N): 
 

n = i + 1 + j*N p = [n,n]  
p = p + ene hamiltonian.append(p) 

 
 
for j in range(1, M-1, +4): for i in range(1, N):  

n = i + 1 + j*N m = i + (j+1)*N p = 
[n,m] 
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p = p + coupling1 hamiltonian.append(p)  
# hamiltonian.append([m, n, t, p, d])  

 
for j in range(3, M-1, +4): for i in range(0, N-1):  

n = i + 1 + j*N 
 

m = i + 2 + (j+1)*N p = [n,m] 
 

p = p + coupling1 hamiltonian.append(p)  
# hamiltonian.append([m, n, t, p, d])  

 

 
# nell'if ripristinare il fattore t*1.12 for j in range(0, M-1, +4):  
 

for i in range(N): n = i + 1 + j*N   
m = i + 1 + (j+1)*N  

if i == 0: 

p = [n,m] 
 

p = p + coupling2 hamiltonian.append(p) 
 

# hamiltonian.append([m, n, t*1.12, p, d]) else : 
 

p = [n,m] 
 

p = p + coupling1 hamiltonian.append(p)  
# hamiltonian.append([m, n, t, p, d])  

 
for j in range(1, M-1, +4): for i in range(N):  

n = i + 1 + j*N 
 

m = i + 1 + (j+1)*N p = [n,m]  
p = p + coupling1 hamiltonian.append(p) 

 
# hamiltonian.append([m, n, t, p, d]) 

 # nell'if ripristinare il fattore t*1.12 
 for j in range(2, M-1, +4): 
 for i in range(N): 
 n = i + 1 + j*N 
 m = i + 1 + (j+1)*N 
 if i == (N-1): 
 p = [n,m] 

p =  p + coupling2 

hamiltonian.append(p) 
# hamiltonian.append([m, n, t*1.12, p,  

d])  
else :  

p = [n,m]  
p =  p + coupling1 

hamiltonian.append(p) 

# hamiltonian.append([m, n, t, p, d]) 

 
for j in range(3, M-1, +4): for i in 

range(N):  
n = i + 1 + j*N 

 
m = i + 1 + (j+1)*N p = [n,m] 
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p = p + coupling1 
hamiltonian.append(p)  

# hamiltonian.append([m, n, t, p, d])  
 

H = Hamiltonian(N,M) 
 

# I work on the defects 
ind=array(self.defects_list,dtype=int); 
H.H=array(hamiltonian,dtype=complex) 
H.H[ind,2]=self.onsite_E; 

 
H.Eupper = self.Eupper; H.Elower = 
self.Elower; H.rank=self.rank; 
H.dE=self.dE; H.Phi=self.Phi; 
H.Ei=-self.Phi; H.eta=self.eta; 
H.mu1=self.mu1; H.mu2=self.mu2; 
H.Egap=self.gap(); 

 
H.charge_T() 

 
self.E=array(H.E); 

self.T=array(H.T); 
 

self.charge=array(H.charge); del 
hamiltonian,H  
return; 

 

def current(self): vt=kboltz*self.Temp/q; 
E=array(self.E); T=array(self.T); 

 
arg=2*q*q/(2*pi*hbar)*T*(Fermi((E-self.mu1)/vt)-Fermi((E-

self.mu2)/vt))*self.dE  
return sum(arg); 

 
# This is the class for the solution of the 1D drift-diffusion class multisubband1D:   

def __init__(self, nx, ny, Neig): self.ny=ny;   
self.nx=nx;   
self.x=zeros(nx);   
self.y=zeros(ny);   
self.Phi=zeros(nx*self.ny);  

self.Ei=zeros(nx*self.ny);  

self.Egap=zeros(nx*self.ny);  

self.Temp=300;  

self.charge=zeros(nx*self.ny);  

self.rank=0;  

self.Neig=Neig;  

self.Psi=zeros((nx*ny,Neig));  

self.eig=zeros((ny,Neig));  
 

self.mass=zeros((nx,ny)); self.mu=100e-

4*ones(self.ny); self.genric=zeros(self.ny); 

self.n1d=zeros(self.ny); 

self.ecs=zeros(self.ny); 

self.charge_left_contact=0; 

self.charge_right_contact=0; self.tolljay=1e-

3;  
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# This is the class for the solution of the QM 1D  

class QM1D: 
 

def __init__(self, nx, Neig,gridx,p=None,charge_T=None): if charge_T is not 
None: 

 
self.charge_T=types.MethodType(charge_T,self); self.nx=nx;  

self.x=zeros(nx); 

self.ny=1; 

ny=1;  
self.Phi=zeros(nx*self.ny); 

self.Ei=zeros(nx*self.ny); 

self.Temp=300; 

self.charge=zeros(nx*self.ny); 

self.rank=0; 
self.Neig=Neig; 

self.Psi=zeros((nx*ny,Neig)); 
 

self.eig=zeros((ny,Neig)); if p is not 
None: 

 
self.Egap=p.Egap;  
self.massl=p.mel  
self.masst=p.met;  
self.massh=p.mhole 

self.chi=p.chi 
self.mass=p.mel;  

else:  
self.Egap=zeros(nx*self.ny)  
self.massl=zeros(nx*self.ny)  
self.masst=zeros(nx*self.ny) 

self.massh=zeros(nx*self.ny) 
self.chi=zeros(nx*self.ny)  
self.mass=zeros(nx*self.ny)  

self.Ef=0;  
self.x=gridx; 

 
self.ecs=zeros(self.ny); def 

charge_T(self): 
 

del self.charge self.charge=zeros(self.nx*self.ny); 
self.Ei=-self.Phi; 

 
# I compute the confined electrons 
dist=avervect(self.x) 

 
# self.Ei=4.05-self.Phi-self.chi-self.Egap*0.5 self.mass=self.massl; 

solve_schroedinger_1D(self); vt=self.Temp*kboltz/q; 
 

for i in range(0,self.Neig): self.charge=self.charge-
2*dist*1e- 

 
9*(self.Psi[:,i])**2*self.masst*m0*kboltz*self.Temp/pi/hbar**2*log(1+e xp(-(self.eig[0,i]-
self.Ef)/vt)); 
 

self.mass=self.masst; 
solve_schroedinger_1D(self); 
vt=self.Temp*kboltz/q; 

 
for i in range(0,self.Neig): self.charge=self.charge-

4*dist*1e-  
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9*(self.Psi[:,i])**2*self.massl*m0*kboltz*self.Temp/pi/hbar**2*log(1+e xp(-(self.eig[0,i]-
self.Ef)/vt));  

# I now add the holes 
 

for i in range(0,size(self.charge)): 
self.charge[i]=self.charge[i]+dist[i]*1e-  

9*(2/sqrt(pi))*2*(vt/(2*pi)*(self.massh[i]*m0/hbar)*(q/hbar))**1.5*fph alf((self.Ei[i]-
self.Egap[i]*0.5-self.Ef)/vt) 
 

return; 
 

def current(self): return 0; 
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