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Abstract

Solving University Course Scheduling Problem Using Genetic

Algorithm and analyzing results with Other Algorithms

A study on course timetabling problem which is a combinatorial optimiza-

tion NP-hard problem. The aim of this thesis is to find optimal or near optimal

solution of course scheduling for Computer Science And Engineering Department Of

BRAC University. Different solution methods for course timetabling exists hence in

this thesis Genetic Algorithms is used to generate feasible solution and Q-learning is

action for evaluating results. Experimental data sets are parsed from a given struc-

ture. Different constraints are handled with discrete fitness evaluation. Schedule

conflicts are handled after producing random generation. Finally, results are tested

according to their performance and presented with a feasible representation mode.
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Chapter 1

Introduction

An inevitable problem that every University has to solve by any mean is

to schedule its courses. More specifically, individual departments are responsible for

doing this task. It is very much time consuming to meet all the constraints while

making the schedule manually. Automated timetabling is a task to provide optimal

or near optimal solutions within a short period of time ensuring a quality schedule

using different optimization techniques.

The problem can be defined as a task where a number of University courses’

related events are to be allocated in limited resources under a set of constraints. Vi-

olation of the constraints should be kept as minimum as possible even though it is

considered and proved as NP-complete problem.

Different types of scheduling problem are described in literature which

are very much similar to this problem. Examination scheduling, lab scheduling,

job scheduling e.t.c. shows similar behavior in functionality and complexity. Each

problem varies along with their constraints.
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1.1 Objectives

In this thesis paper different semester’s course schedules from BRAC Uni-

versity CSE department are observed, studied and analyzed for defining patterns

and assemble data. Genetic algorithm is used to provide solution under constraints

and Q learning is implemented to check whether the solution is fair enough or not.

So in short the objective of this thesis are:

• Collection and processing of raw data from different sources.

• Analysis and group them into different sets of data according to the criteria

they need to be sorted.

• Implementation of Genetic Algorithm to generate solution

• Evaluate fitness and continue until fitness is acceptable.

• validation and comparison of obtained results.

9



Chapter 2

Scheduling

Scheduling refers to the set of rules and mechanisms to maintain the order

of our everyday work.Different institutions have different policies to make up their

own schedule based on their requirements. On the contrary, in our everyday life

from morning till evening, we all have to go through a certain schedule to perform

our work orderly. So, it is inevitable issue to all. A timetable is such a model that

could be educational, transport, job, sports or even anything which needs to be

satisfied under certain constraints during allocation.

According to, Anthony Wren(1996)[22] scheduling can be defined ”Time

tabling is the allocation, subject to constraints, of given resources of objects being

placed in space-time, in such a way as to satisfy as nearly as possible a set of desir-

able objectives.” [2]

As being an NP-complete problem, no method is able to solve it avoiding

polynomial amount of time.[7][2]
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2.1 Non-Academic Scheduling

There are several tasks which are very important to be organized in the

parameter of time. Any kind of violation could be disasters in this type of schedul-

ing. Economic,social even life threatening situation could be arisen. Some of these

kinds of scheduling are:

• Airport Scheduling

• Sports Scheduling

• Traffic Scheduling

• Employee Scheduling

2.2 Academic Scheduling

Different types of models can be found in use of academic scheduling which

behaves several ways in their characteristics. Most of the models are handling aca-

demic scheduling chaos. Most common models for academic scheduling are :

• School Scheduling is one of the most important phenomenon of educational

structure. To manage the resources of school ,the authority provides an opti-

mal schedule maintaining the constraints. Basically,every year due to change

of students number,number of class room, teachers number the schedule might

have changed. The authority’s main focus is to provide an optimal schedule

for the school by analyzing it’s previous data.

• College Scheduling is similar to the school scheduling. But, over here the
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management have to be more careful to generate this schedule. Rather than

school, in college there are more subjects, extra curricular activities, the man-

agement gets into trouble to fix up an optimal routine . On the other hand,

each college subject consists of two parts and each part has it’s own lab as

well as theory class. So, the management usually try to complete one part in

a year and another part in next year. As a result they have to provide at least

two different routine to perform this task.

• University Scheduling is another major scheduling on regarding platform.

Different Universities have their own way to provide their own routines. Some

University Provide yearly routines and few university provides semester rou-

tine(consists of consecutive few months) depending on the resources of their

curriculum.

• Exam Scheduling topic comes at the end of a semester or a term ; so that,

the authority can know about students progress. From it’s they can also take

decision where to progress and also think about the improvement of their

providing routine so that student can make the best use of that schedule.For

this reason, all the educational institutions generates their own schedule by

considering student,instructors and management’s suitable times.

• Lab Scheduling is a part of curriculum design. Without hindering other

schedule the authority also provide a schedule for performing lab work.Every

educational institutions have their own lab schedule according to their willing.

When they generates this routine they mainly focus on to manage atleast one

day to perform that lab work.
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Chapter 3

Algorithms

3.1 Genetic Algorithm

Computational models belong to evolutionary Algorithms class as well Ar-

tificial Intelligence. A Function optimizer works on basis of natural evolution like

Selection, Crossover, Mutation, and Inheritance which is also used solving complex

optimization problems comparatively for bigger search spaces. A Genetic Algorithm

has many steps maintaining few consequences. First of , it generates a random pop-

ulation using different parametric data and condition. At the next step, it evaluates

the fitness and select them for further steps. Finally, It(GA) manipulates some of

it’s offspring for better fitness if needed.
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3.1.1 Selection

Reproduction (or selection) is an operator that makes more copies of better

strings in a new population. Reproduction is usually the first operator applied on a

population. During each successive generation, a proportion of existing population

is selected to breed a new generation. Individual solutions are selected through

fitness-based process, where fitter solutions are typically more likely to be selected.

Selection methods rate the fitness of each individual and preferentially select the

best solution.
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Common Methods of Selection are:

• Roulette wheel method.

• Tournament selection.

• Stochastic remainder selection.

We are using Roulette wheel for our research work.

Roulette wheel Selection:

The ith string in the population is selected with a probability proportional to fi.Since

the population size is usually kept fixed in a simple Genetic Algorithm, thus the sum

of the probability of each string being selected for the mating pools must be one.

Therefore, the probability for selecting the string is [8]

Pi =
fi∑n
i=1 fi
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Roulette wheel pseudo code:

f o r a l l members o f populat ion

sum += f i t n e s s o f t h i s i n d i v i d u a l

end f o r

f o r a l l members o f populat ion

p r o b a b i l i t y = sum of p r o b a b i l i t i e s +

( f i t n e s s / sum)

sum of p r o b a b i l i t i e s += p r o b a b i l i t y

end f o r

loop u n t i l new populat ion i s f u l l

do t h i s twice

number = Random between 0 and 1

f o r a l l members o f populat ion

i f number > p r o b a b i l i t y

but l e s s than next p r o b a b i l i t y

then you have been s e l e c t e d

end f o r

end

c r e a t e o f f s p r i n g

end loop

3.1.2 Crossover

A crossover operator is used to recombine two strings to get a better string.

The next step after selection is crossover which generates a second generation pop-

ulation of solutions from those selected through selection.

Some Common types of Crossover:[19] [8]

• One site crossover
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• Two site crossover

• Trade of Uniform Crossover(TOUC).

Currently, in our research work we are using one site crossover. Crossover is ad-

vantageous over the conventional method because through crossover we can easily

exchange the information in the timetable which makes it optimal and effective as

per the requirements.

3.1.3 Mutation

Mutation adds new information in a random way to the genetic search pro-

cess and ultimately helps to avoid getting trapped at local optima. It is an operator

that introduces diversity in the population whenever the population tends to become

homogeneous due to repeat use of reproduction and crossover operators.[15][13]

3.2 Simulated Annealing

3.2.1 Background From Physics

From the solid state physics, we first come to know about annealing process

from where the simulated annealing algorithm is introduced. First, a solid gets high

temperature and then again it comes back to it’s normal state. The solid particles

achieve higher mobility due to increase higher temperature. Different locations can

be reached around the solids by the particles because the temperature gets lower slow

enough. There is term called Metropolis loop which indicates a repeating procedure

which runs till the thermal equilibrium is achieved.
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In the solid state physics, solid matters have characteristics to be at energy state E

with temperature T . The probability of remaining at state E is [2]

P (E) = (
1

Z(T )
∗ e

es
KZ∗T )

Here, KZ is Boltzmann constant and the temperature dependent normalization fac-

tor is Z(T ).

3.2.2 SA Pseudo code

In pseudo code Simulated annealing can be written as [2]

⇒ Random initial solution S = S0

⇒ Select an initial Temperature T = T0 > 0

⇒ Select a Temperature reduction rate α

⇒ loop

⇒ loop

⇒ S ′ = NeighborhoodSearching(S)

⇒ δ = F (S ′)− F (S)

⇒ if(δ <= 0 or exp(− δ
T
< rand[0, 1]))

⇒ S = S ′

⇒ end if

⇒ until Temperature normal

⇒ T = CoolingSchedule(t)

⇒ until stop condition = true
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3.2.3 Neighborhood Search

One of the key components of simulated annealing method is neighborhood

searching which performs to find out next possible solution set.

• Firstly,it search for randomly chosen neighbors as solution. This part is called

simple searching neighborhood.

• Secondly, the algorithm goes for swapping the neighbors as per needed.

• Finally, the method runs with the searching and the swapping both.

3.2.4 Cost Calculation

Cost calculation depends on problem definition, as the problems varies

cost calculation parameters also changes. For scheduling purpose, we consider cost

in three types:[2]

• Search Cost

• Swap Cost

• Constraint Cost

Search Cost

In neighborhood structure, for each solution set different types of complexity comes

up like data structures and run time complexity. This leads us the search cost.

Swap Cost

When a huge number of solution set needs to be swapped among neighborhood,
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it charges a cost function and get added to the total cost.

Constraint Cost [2]

Several types of constraints we face in scheduling problem and each constraint allows

cost due to violation. If time slot constraint is violated then the cost

F1 = w1

n∑
i=1

Ti

For Instructor assignment violation,

F2 = w2

m∑
i=1

Ii

For Course violation,

F3 = w3

r∑
i=1

Ci

For slot violation,

F4 = w4

p∑
i=1

Si

For soft constraint violation,

F5 = w5

q∑
i=1

Sci

For Room Conflict,

F6 = w6

u∑
i=1

Ri

So in total the cost for schedule by simulated annealing would be[2]

F = F1 + F2 + F3 + F4 + F5 + F6
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3.2.5 Cooling Schedule

It’s an optimization algorithm which uses heuristic values. In every step

of iteration, the new temperature is being calculated using previous temperature

multiplied by cooling rate. This process runs for the whole schedule until the energy

comes down to normal for the timetable.

3.3 Q-Learning

[3][20] Q learning, a form of reinforcement learning in which the agent

learns to assign values to state-action pairs. We need first to make a distinction

between what is true of the world and what the agent thinks is true of the world.

First let’s consider what’s true of the world. If an agent is in a particular state and

takes a particular action, we are interested in any immediate reinforcement that’s

received but also in future reinforcements that result from ending up in a new state

where further actions can be taken, actions that follow a particular policy. Given a

particular action in a particular state followed by behavior that follows a particular

policy, the agent will receive a particular set of reinforcements. This is a fact about

the world. In the simplest case, the Q-value for a state-action pair is the sum

of all of these reinforcements, and the Q-value function is the function that maps

from state-action pairs to values. But the sum of all future reinforcements may be

infinite when there is no terminal state, and besides, we may want to weight the

future less than the here-and-now, so instead a discounted cumulative reinforcement

is normally used: future reinforcements are weights by a value gamma between 0

and 1. A higher value of gamma means that the future matters more for the Q-value

of a given action in a given state.

If the agent knew the Q-values of every state-action pair, it could use this

information to select an action for each state. The problem is that the agent initially
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has no idea what the Q-values of any state-action pairs are. The agent’s goal, then,

is to settle on an optimal Q-value function, one which that assigns the appropriate

values for all state/action pairs. But Q-values depend on future reinforcements, as

well as current ones. How can the agent learn Q-values when it only seems to have

access to immediate reinforcement? It learns using these two principles, which are

the essence of reinforcement learning:

• If an action in a given state causes something bad to happen, learn not to do

that action in that situation. If an action in a given state causes something

good to happen, learn to do that action in that situation.

• If all actions in a given state cause something bad to happen, learn to avoid

that state. That is, don’t take actions in other states that would lead you to

be in that bad state. If any action in a given state causes something good to

happen, learn to like that state.

The second principle is the one that makes the reinforcement learning magic hap-

pen. It permits the agent to learn high or low values for particular actions from

a particular state, even when there is no immediate reinforcement associated with

those actions. For example, in our time Scheduling problem, the agent receives a

reward when it reaches the goal from the random state. It now knows that the path

is a good one to go to because you can get rewarded in only one move from it.

Mathematical Explanation

Here is the mathematical detail. First, consider the optimal Q-value function, the

one that represents what’s true of the world.

Q∗(xt, ut) = r(xt, ut) + γmax
ut+1

Q∗(xt+1, ut+1)

22



That is, the optimal Q-value of for a particular action in a particular state is the

sum of the reinforcement received when that action is taken and the discounted best

Q-value for the state that is reached by taking that action[1][2]. The agent would like

to approach this value for each state-action pair. At any given time during learning,

the agent stores a particular Q-value for each state-action pair. At the beginning

of learning, this value is random or set at some default. Learning should move it

closer to its optimal value. In order to do this, the agent repeatedly takes actions in

particular states and notes the reinforcements that it receives. It then updates the

stored Q-value for that state-action pair using the reinforcement received and the

stored Q-values for the next state. Assuming the Q-values are stored in a lookup

table, the agent could use one of these update equations:

Qnew(Xt, Ut) = (1− η)Qold(xt, ut) + η[r(xt, ut) + γmax
ut+1

Qold(xt+1, ut+1)]

The first equation sets the Q-value to be the sum of the reinforcement received and

the discounted best Q-value for the next state. But this is usually a bad idea be-

cause the information just received may be faulty for one reason or another. It is

better to update more gradually, to use the new information to move in a particular

direction, but not to make too strong a commitment. The second update equation

reflects this strategy. There is learning rate, which controls the learning step size,

that is, how fast learning takes place. The new Q-value for the state and action is

the weighted combination of the old Q-value for that state and action and what the

new information would lead us to believe. Later we will see how a neural network

can replace the lookup table for storing Q-values.

Q-Learning Algorithm

Q-Learning learns the optimal policy even when actions are selected according to a

more exploratory or even random policy. The procedural form of the algorithm is:
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Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

choose a from s using policy derived from Q

Take action a, observe r,s’

Q(s, a) = Q(s, a) + α[r + γmaxα, Q(s′, a′)−Q(s, a)]

s = s’;

until s is terminal.

This procedural approach can be translated into plain English steps as fol-

lows:

• Initialize the Q-values table, Q(s, a).

• Observe the current state, s.

• Choose an action, a, for that state based on one of the action selection policies.

• Take the action, and observe the reward, r, as well as the new state, s’.

• Update the Q-value for the state using the observed reward and the maximum

reward possible for the next state. The updating is done according to the

formula and parameters described above.
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• Set the state to the new state, and repeat the process until a terminal state is

reached.

Simplified: The transition rule of Q learning is a very simple formula:

Q(state, action) = R(state, action) + gamma * Max[Q(next state, all actions)]

The gamma parameter has a range of 0 to 1 (0 <= gamma < 1), and ensures the

convergence of the sum. If gamma is closer to zero, the agent will tend to consider

only immediate rewards. If gamma is closer to one, the agent will consider future

rewards with greater weight, willing to delay the reward.

The Q-Learning algorithm goes as follows:

• Set the gamma parameter, and environment rewards in matrix R.

• Initialize matrix Q to zero.

• For each episode: Select a random initial state.

While the goal state hasn’t been reached.

• Select one among all possible actions for the current state.

• Using this possible action, consider going to the next state.

• Get maximum Q value for this next state based on all possible actions.

• Compute: Q(state, action) = R(state, action) + gamma * Max[Q(next state,

all actions)]

• Set the next state as the current state.

Implementation and Result

Q-learning is a technique for letting the AI learn by itself by giving it reward or

punishment. We have implied this method for a simple sector of our Time Schedul-
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ing Project. Suppose, we have taken all the room numbers of a university, we used

all of them as a state. Our example shows the Q-learning used for path finding

to get the exact goal which is the appropriate room. According to the method it

learns where it should go from any state. The process starts at a random place, it

keeps memory of the score while it explores the area, whenever it reaches the goal,

we repeat with a new random start. After enough repetitions the score values will

be stationary (convergence). In this example the action outcome is deterministic

(transition probability is 1) and the action selection is random. The score val-

ues are calculated by the Q-learning algorithm Q(s,a). The image shows the states

(Room1,Room2,Room3,Room4,Room5,Room6) possible actions from the states and

the reward given.

Step-1

We set reward 50 to only the nearby states of goal, rest all are 0.

Step-2

According to the algorithm we find the reward and choose path with maximum value

which reaches to the goal.
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3.4 Human Machine Interaction

Human machine interaction is a method which finds a solution using an-

other solution. First of all, the method finds one single solution which can be feasible

enough to use further. Then , it improves the solution manually.This model is based

on mainly approximation and modification. The shortcomings of this method is the

cost of computation which is very high on basis of different parameter.
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Chapter 4

Problem Definition

University course timetabling is one of the most difficult and time consum-

ing problem to solve. Here,events like course,seminar,sessions etc are to be assigned

in different resources like time slots, participants/lecturer/instructor and rooms.The

fact is this allocation must maintain different types of constraints which could be

divided into two categories which are:[8][13]

• Hard Constraints: These types of constraints are never to be violated by

any mean. Usually these types of constraint are very carefully defined so that

if any sudden critical situation arise could be handled in shortest possible time.

Some of the hard constraints we define in our thesis are:

– One room can not be assigned more than one courses in single time slot.

– One lecturer is allowed to take one class at a time.

– Teachers must be assigned according to their specialization and prefer-

ence.

• Soft Constraints: Some constraints are maintained in scheduling, violation

of which are not that much disastrous. Maintaining these constraints enrich

the quality of the timetabling.
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– Teachers preferable time slots to be assigned .

– Back to back classes for teachers are suggested to avoid.

– Senior teachers should get highest priority for assigning courses and slot.

The quality of auto-generated University Course Schedule depends on how many

constraints they meet. It is quite impossible to fulfill all of them.

4.1 Problem for BRAC University

As a leading University in Bangladesh which is ensuring higher education,

it has some unique facilities, rules and regulation . Some times rules are helpful

for avoiding complexity. Sometimes it makes things more complicated in certain

criteria. As, being private university government facilities are absent in here. So,

apparently hundred percent of it’s resources are provided and ensured by the au-

thority and trusty board. As a new university, comparing to other government and

traditional university like Dhaka University, BUET, Rajshahi University and many

more universities, it does not have a great establish alumni association. So, Schol-

arship from outside university are very rare. As a result, University has limited

options to arrange events like class, seminar and academic facilities outside the reg-

ular timing. Another Problem is BRAC University does not have any permanent

campus and departments do not have buildings for their own operation. They are

just overlapping each other for every aspects of resources.

4.1.1 Constraints for BRAC University

BRAC University is an open credit university where different credits courses

are being offered to be taken by . But restrictions are defined as prerequisite. Stu-

dents are free to take any courses according to the curriculum but they have to
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ensure that prerequisite for that particular course is being completed. On the other

hand, authority holds the responsibility to make schedule such a way so that stu-

dents do not have to mess up with the schedule due to prerequisite hazards. So,

section number of higher courses actually depend on lower courses of university.

So. according to the number of sections for particular course refers the need of

instructors.

4.1.2 Multidimensional representation

The Scheduling problem is easy to describe in a multidimensional view.

Here, resources like rooms and time slots can easily be identified. In a particular

day for one particular slot all the rooms which are permitted for one department

are available. So, One unit cube of the three dimensional view represents a unique

allowable resource.[19]

Some particular components are :
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• every courses are to be taught three hours per week. This time is divided into

two equals time slots.

• one teacher is assign for each section of a particular course .

• lecturers should be available according to their designated time into assigned

room.

4.1.3 Resources of BRAC University

To define the problem by set of resources and events,first we need to clarify

each and every set of needed components. For n number of courses if m number of

lecturers are available where q numbers of rooms to be designated into several time

slots than a schedule problem can be well defined. So, to define in mathematical

expression lets assume the needed sets like:

Set of n Courses, C = {c1, c2, c3, ..., cn}

Set of Sections for corresponding courses, S = {s1, s2, s3, ..., sn}

Here, course maps to section.

Set of m Lecturers, L = {l1, l2, l3, ..., lm}

Set of q Rooms,R = {r1, r2, r3, ..., rq}

Set of i ∗ j Time slots,T = Σ{ti, dj} Where i = slots/day; j = days/week So

the problem is defined with 5 tuples [6][4] [8][9]

f(x) =< C, S, L,R, T >

According to the definition we designed our chromosomes for the implementation of

Genetic Algorithm to produce new routine.
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Chapter 5

Problem Solving Approach

In an on going semester BRAC University needs to prepare a whole new

schedule for upcoming semester. Most of the time maximum teachers remains un-

changed. So, it is pretty much predictable that teachers are going to take more or

less same courses in next semester.There are several causes for having changes in

new schedule like

• The number of student increase in each semester.

• Arrival of Ramadan.

• Arrival of new teachers.

• Offering new courses.

• Number of rooms

• Recovery of leaving teacher

In making of new schedule different approaches are introduced by the per-

son/s who is/are responsible for it. What if one single approach can solved all these

headache and ensure a new time table which is acceptable at a high fitness scales?

In this thesis, we try to represent such an approach in an organized manner so that

the preparations of a new schedule can be well understood.
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5.1 Genetic Algorithm Approach

5.1.1 Chromosome Encoding

As discussed before, to solve the scheduling problem using GA, we needed

to encode the data set into sets of Chromosomes [11]. We defined each Chromo-

some with six parts.

Instructor Course Section Room Day Time

For easier manipulation we merged days and Time into one as Time Slot.

Instructor Course Section Room Time Slot

We use String encoding for the Chromosomes, like for Instructor we use his/her

three length initial; for Course a six length course id; Section for any course would

be a digit a per need; Rooms will be encoded as their name given by the university to

identify according to building floor and room number; and time slot will be denoted

according to their number. Now, we define different data sets according to the need

for Chromosome encoding.[13][5]

5.2 Data Set

To do so first of all, we need to establish a parameter according to the prob-

lem definition which will be resonating to BRAC University curriculum for CSE. One

of the most reliable sources for collecting the relative data set is the routine which

is provided by the department before each semester’s registration to the students.

In these routines the facts are clearly indicated that which teacher is going to take

which courses in which time and in which room the class will take place. for es-

tablishing the data set we need we collected ten consecutive routines from fall 2012

to fall 2015. From them eight routines have been discarded because most of the
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data from the earlier routines became unusable due to a lot of inevitable changes in

administrative and objective structure of the department. Our most valuable data

set has come from latest four semester(Fall 2014,Spring 2015,Summer 2015 and Fall

2015).

Room Set

After analysis of collected data we found a set of rooms from several buildings which

are frequently used for different classes. We defined the set as R which we have the

cardinality Rn. It is need to be cleared that no lab room are included as we have

not focused about lab scheduling of corresponding courses.[11][5]

Instructor Set

We also made an analysis on another resource which we need for scheduling is in-

structors. For instructors the defined set is I as we used in here. An analytic survey

over CSE department of BRAC University is found that junior instructors are not

allocated to take theory classes for certain period of time which varies instructor to

instructor. So, again we ”Redefine” our instructor set a functional instructor set,

If which has cardinality IM . We clearly state that If includes those instructor who

are allocated one or more theory classes for one particular semester.[11][5]

Course Set

A predefined set which is designed by BRAC University Curriculum for CSE includ-

ing necessary and elective courses; which we denote as C. Few years back where

we were fresh graduate students, noticed that some of the necessary courses were

being offered in attractive semester. In an explanation lets talk about the course

”Database System” which course id is CSE 370 in BRAC University. If this course

was being offered in Fall semester then it would be offered in Fall semester on corre-

sponding year where summer semester is skipped to offer the course. As a growing
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university students numbers are counting up in each semester. Recently we found

that this skip methodologies now in action only for some elective courses and not

applicable for necessary courses. The cardinality of course set is defined by the

BRAC University curriculum for CSE is CP . [11][5]

Time set

In general BRAC University goes functional for five days a week for undergraduate

program. Each day has theory class periods, starts at 8.00am and ends at 6.30pm,

one hour twenty minutes span for each and after every class period, ten minutes

break for next class. Counting One and half hour a unit time period for one theory

class we got seven(7) slots for one day and 7 ∗ 5 = 35 time slots for a week [6] [11].

Day/Time T1 T2 T3 T4 T5 T6 T7

Day 1 0 1 2 3 4 5 6

Day 2 7 8 9 10 11 12 13

Day 3 14 15 16 17 18 19 20

Day 4 21 22 23 24 25 26 27

Day 5 28 29 30 31 32 33 34

5.3 Probability Analysis

The chance of an event to occur for an experiment is the probability of that

event. If an event can occur in A number of ways and total number of outcomes is

B then probability of event E is

P (E) = A/B

An important fact is, there are courses which can be taught by different
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number of instructors and there also can be courses which is taught by only one

particular teacher. In that case

P (Instructor|Course) = 1

For the case of multiple instructors for one course which have multiple sections:-

lets assume that,

a = number of sections

b = number of instructors could be assigned

Probability of an Instructor to be assigned for a particular Course is :-

P (Instructor|Course) = f(a, b) =
1∑
i=a

1

iC1 ∗ bC1

We see that each courses could have multiple sections to allow all the stu-

dents who want to take the course for that particular semester. If course Ci has

number of sections Si then total number of instances for the courses to be offered

by the department for a particular semester is

N =
n∑
i=1

Ci ∗ Si, n ∈ R

As we have N number of instances of courses to be assigned within 35

slots where we have Rn number of rooms, we can allocate maximum Rn course

instances for one slot. A slot could be remain empty means no course instance is

assigned on that particular slot. Another important point is one course instance

should be allocated for three hours a week, which indicates two different time slots

in 35 slots which are to be assigned. Under this circumstances total instances for

courses becomes double means 2 ∗N is waiting for designated slots. So, for one slot
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the probability to be assigned for one course instance is

P (Course|Slot) =
1

(35 ∗Rn)C1 ∗ (2 ∗N)C1

We experienced in our University that one or two rooms always kept free for any

urgent need. For satisfying this constraint we kept three rooms reserved, so that if

any clash happens only due to same room then it can be solved up to three clashes.

At this pint the probability gets revised as

P (Course|Slot) =
1

(35 ∗ (Rn − 3))C1 ∗ (2 ∗N)C1
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Chapter 6

Data Manipulation

To get result from raw data we need to collect corresponding data from

BRAC University and store them into Database according to defined data set. We

kept the facility to upload previous schedule and process them into raw data. When

a previous routine is uploaded to the database in csv format our program then ex-

tract the necessary data and analyze them to insert into appropriate tables. Before

that the whole set of data from the csv file is stored into a table called Raw Data.

This Table is not actually relational but a virtual source for other tables which are

dynamically enrich with necessary data from this Raw Data table. Some of the

tables are manipulated in such a way that they are created at run time; if previously

the table existed containing data the whole table get dropped before creating new

one. In this way we avoided duplicate data.

Along with database, we needed appropriate programming where our necessary

algorithm(which is Genetic algorithm)is being implemented. We also needed pro-

gramming for comparison purpose where different algorithms (Simulated Annealing

and Q-Learning) are used. For these type of implementation where bunch of data

sets are being handled within a single manipulation at one single time of the pro-

cess we needed object oriented programming. Mainly Encapsulation property is

required.
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Finally , we would like to present our prepared schedule from the implementation

results in different ways. Such as in csv format or using a traditional GUI(Graphical

User Interface) designed as formal academic routine.

6.1 The Database

6.1.1 System Architecture

We used MySQL Database for necessary data storing purpose. When main

program starts it provides data to designed data structure and after processing them

when the program generates a temporary schedule which to be justified by compar-

ison program several times to get a final result; then the result get stored again in

database for further use and after getting a fair enough fitness for overall schedule

a completely new schedule file will be generated.
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6.1.2 Database Schema

Relational tables are in action to reduce redundancy and faster access to

the data. Some tables are predefined and some tables are temporary, as they are dy-

namically created and dropped. Population table is completely dependent to other

table to be created. When the main program starts at that moment previously

crated population table gets dropped and completely new table gets crated for new

population from where new results come out.

6.2 Program

The whole task was divided into different modules where each and ev-

ery module has different functions to perform. From parsing previous routine into

raw data to generating a brand new routine every step works as a interconnected

dependent network.the steps can be shown in a listed manner like:
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• Data Analysis

– Parse previous Schedule

– Fetch into raw data

– Categorize and store in different tables

• Random Population Generation

– Select Course

– Select Random Instructor

– Assign appropriate Section number

– Select Random Room

– Select random Slot

Instructor Course Section Room Day Time

• Fitness Evaluation[19][5]

– Course Fitness (increasing Order Course ID)

– Teacher Fitness (Priority Value)[5]

– Slot Fitness (anti-proportional to Slot Number)

fitness = Cvalue ∗ Pvalue ∗ (35− Svalue).

• Conflict Identification

– Teacher Conflict // same teacher assigned for more than one courses in
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same slots

– Room Conflict // more than one class allocated in one room in same slots

• GA

– Filter //based on fitness and Conflicts

– Mutation // if conflict is only for room in same slot

– Crossover // if conflict is for same teach in same slot

– Offspring Selection // based on fitness evaluation after Mutation and

Crossover

• Second Generation Population

– Calculate total fitness

– Compare with previously generated new Schedule fitness

– Update new Schedule if new fitness is higher than previous one
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6.2.1 Filter Mechanism

Filtering process filters all fit enough chromosomes on the basis of Instruc-

tors. It only checks if one particular teacher is assigned twice or more in single time

slot. If such hard constraint violation is identified, the conflicted chromosomes can

not pass through the filtering process.

6.2.2 Crossover Mechanism

Single point Crossover is used in this paper.After filtering process Crossover

process goes for the left conflicted chromosomes. At first it checks either the conflict

is for Instructor or not, if for instructor then the crossover point is only the instructor

part. If the conflict is not for Instructor it goes for crossover exit point.

6.2.3 mutation Mechanism

After Filter and Crossover process the main program(GA) checks whether

any room conflict is present or not. If room constraint violation number is less than

or equal to present available room number then Mutation process only mutates

room part of the Chromosomes. Otherwise the process seeks for available rooms in

other slots and mutates room part and slot part of that corresponding Chromosome

accordingly.
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Chapter 7

Result Representation

When the program runs for the very first time a new schedule file is pro-

duced and it happens in shorter time comparatively as the result has a fitness value

which is to compare only with itself. From the second time run of the program

and onward runtime increase. Every time the fitness of a newly generated schedule

is higher than the last kept schedule only then the new one gets saved as a new

schedule.

7.1 New Schedule

The schedule which is generated by the procedure discussed earlier can be

represented in a tabular format. The results are shown in this paper are obtained

from 15 times execution of the main program. Each time the program generates a

better fitness schedule than the previous one it takes more execution time. If we

gather the run time in a table then the comparison comes clear.

No. E1 E2 E3 E4 E5 E6 E7 E8

Runtime 31.7 15.4 16.2 28.8 16.4 16.2 16.5 16.6

E9 E10 E11 E12 E13 E14 E15

16.5 29.5 22.9 18.9 16.03 16.03 15.3
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From the execution time we can have a prediction on each generation either it is a

good one, can bee accepted or comparatively bad one and be rejected. In the tab-

ular format, we tried to show a detail information for a class where slots, courses,

instructors, sections are arranged according to their correspondence.

If we represent the schedule in a raw manner including all related data like chromo-
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some fitness, chromosome number and all other, then the representation would be

like below:

ChromosomeInstructor Course Section Room Slot Fitness

1 MAH CSE320 5 UB30603 0 3185

2 ACH CSE330 3 UB30601 0 10500

3 TBA CSE350 1 UB30303 0 0

4 DMH CSE423 1 UB10304 1 18360

5 TBA CSE250 1 UB30503 1 0

6 TBA CSE350 2 UB30502 1 0

7 TAA CSE330 4 UB30501 2 495

8 JIU CSE341 1 UB30503 2 11880

9 TBA CSE251 1 UB30303 2 0

10 DIP CSE110 3 UB10304 3 96

11 NUS CSE220 1 UB30303 3 384

12 TBA CSE103 1 UB30603 3 0

13 MMD CSE320 4 UB10303 4 1612

14 AAR CSE110 6 UB40301 4 1860

15 MIK CSE320 3 UB30501 4 2821

16 ZAR CSE422 2 UB30303 5 15600

17 ADR CSE491 1 UB10304 5 19200

18 TBA CSE162 1 UB30603 5 0

19 MHR CSE330 5 UB30503 6 2610

20 MKR CSE360 1 UB30502 6 1160
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21 TBA CSE250 3 UB10303 6 0

22 DIP CSE110 5 UB30501 7 42

23 AAR CSE110 2 UB10304 7 1680

24 MSN CSE111 2 UB30601 7 168

25 SLI CSE220 4 UB30503 7 168

26 MMM CSE331 1 UB30303 7 1344

27 TBA CSE250 2 UB40301 7 0

28 MMD CSE421 3 UB10303 8 2700

29 RAK CSE221 1 UB30501 8 189

30 BIS CSE101 7 UB10304 8 39

31 MSN CSE260 3 UB30603 8 429

32 MMM CSE221 5 UB30601 8 567

33 MAM CSE230 4 UB30303 8 2080

34 MMD CSE101 2 UB10304 9 48

35 NUS CSE220 3 UB30303 9 312

36 AIZ CSE260 2 UB40301 9 286

37 NAT CSE321 2 UB30503 9 728

38 HOS CSE370 3 UB30601 9 5040

39 TBA CSE460 2 UB10303 9 0

40 MAH CSE101 3 UB10303 10 77

47



41 MSN CSE260 1 UB10304 10 363

42 JIU CSE341 4 UB30601 10 3960

43 HOS CSE370 2 UB40301 10 10500

44 IFF CSE420 1 UB30503 10 600

45 SKZ CSE421 2 UB30502 10 12500

46 KHR CSE461 2 UB10303 11 13920

47 SRT CSE331 2 UB30601 11 160

48 ACH CSE340 2 UB30501 11 3400

49 ZAR CSE422 1 UB30603 11 12480

50 HOS CSE370 4 UB10304 11 4200

51 TBA CSE460 1 UB30303 11 0

52 KHR CSE461 1 UB30601 12 13340

53 MAH CSE320 2 UB40301 12 819

54 MSA CSE111 3 UB30501 12 720

55 MSN CSE260 5 UB30503 12 297

56 MMM CSE221 2 UB30502 12 483

57 DMH CSE423 2 UB30603 12 12420

58 KHR CSE101 1 UB30601 13 440

59 MHR CSE340 5 UB10304 13 816

60 MSA CSE111 1 UB10303 13 1760
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61 TRH CSE470 4 UB30603 13 240

62 HAL CSE330 6 UB30303 13 360

63 HOS CSE370 1 UB30501 13 9240

64 MMD CSE320 7 UB30603 14 364

65 MAH CSE320 5 UB30601 14 3185

66 MSN CSE111 4 UB10303 14 252

67 NUS CSE220 5 UB30502 14 252

68 HAL CSE330 2 UB40301 14 945

69 ACH CSE330 3 UB30501 14 10500

70 TBA CSE350 1 UB30303 14 0

71 MMD CSE320 1 UB10304 15 1040

72 RAK CSE221 4 UB30603 15 140

73 AAR CSE110 4 UB30501 15 360

74 TRH CSE470 1 UB40301 15 180

75 JIU CSE341 2 UB10303 15 7200

76 MKR CSE470 2 UB30601 15 360

77 DMH CSE423 1 UB30303 15 18360

78 TBA CSE250 1 UB30503 15 0

79 TBA CSE350 2 UB30502 15 0

80 MAH CSE101 10 UB10304 16 35
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81 BIS CSE321 1 UB10303 16 210

82 SLI CSE220 2 UB30502 16 30

83 MMM CSE471 1 UB30501 16 1767

84 TAA CSE330 4 UB30303 16 495

85 JIU CSE341 1 UB30503 16 11880

86 ADR CSE391 1 UB30603 16 8360

87 IFF CSE420 2 UB30601 16 456

88 TBA CSE251 1 UB40301 16 0

89 MMD CSE410 1 UB30503 17 368

90 DIP CSE110 3 UB10304 17 96

91 MHR CSE330 1 UB30501 17 1620

92 NUS CSE220 1 UB30303 17 384

93 HAL CSE230 1 UB40301 17 432

94 MAM CSE230 2 UB30502 17 640

95 JIU CSE341 3 UB30601 17 1440

96 TBA CSE103 1 UB30603 17 0

97 KHR CSE461 3 UB10304 18 9860

98 MMD CSE320 4 UB10303 18 1612

99 MHR CSE340 1 UB30503 18 306

100 AAR CSE110 6 UB40301 18 1860
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101 HAL CSE230 3 UB30502 18 72

102 MIK CSE320 3 UB30501 18 2821

103 ZAR CSE331 3 UB30603 18 5440

104 AKC CSE470 3 UB30601 18 510

105 MMD CSE101 9 UB10304 19 8

106 DIP CSE110 1 UB30603 19 6

107 MHR CSE101 6 UB30501 19 12

108 BIS CSE321 3 UB30601 19 672

109 MSA CSE111 5 UB10303 19 1280

110 TRH CSE221 3 UB30303 19 112

111 ZAR CSE422 2 UB40301 19 15600

112 ADR CSE491 1 UB30503 19 19200

113 TBA CSE162 1 UB30502 19 0

114 KHR CSE101 8 UB10304 20 20

115 DIP CSE101 4 UB30502 20 1

116 RAK CSE101 5 UB30501 20 15

117 MHR CSE330 5 UB30503 20 2610

118 AIZ CSE260 4 UB30603 20 11

119 SRT CSE310 1 UB30303 20 180

120 MIK CSE320 6 UB40301 20 1365
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121 MKR CSE360 1 UB30601 20 1160

122 TBA CSE250 3 UB10303 20 0

123 DIP CSE110 5 UB30501 21 42

124 AAR CSE110 2 UB10304 21 1680

125 MSN CSE111 2 UB30601 21 168

126 SLI CSE220 4 UB30503 21 168

127 MMM CSE331 1 UB30303 21 1344

128 TBA CSE250 2 UB40301 21 0

129 MMD CSE421 3 UB10303 22 2700

130 RAK CSE221 1 UB30501 22 189

131 BIS CSE101 7 UB10304 22 39

132 MSN CSE260 3 UB30603 22 429

133 MMM CSE221 5 UB30601 22 567

134 MAM CSE230 4 UB30303 22 2080

135 MMD CSE101 2 UB10304 23 48

136 NUS CSE220 3 UB30303 23 312

137 AIZ CSE260 2 UB40301 23 286

138 NAT CSE321 2 UB30503 23 728

139 HOS CSE370 3 UB30601 23 5040

140 TBA CSE460 2 UB10303 23 0
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141 MAH CSE101 3 UB10303 24 77

142 MSN CSE260 1 UB10304 24 363

143 JIU CSE341 4 UB30601 24 3960

144 HOS CSE370 2 UB40301 24 10500

145 IFF CSE420 1 UB30503 24 600

146 SKZ CSE421 2 UB30502 24 12500

147 KHR CSE461 2 UB10303 25 13920

148 SRT CSE331 2 UB30601 25 160

149 ACH CSE340 2 UB30501 25 3400

150 ZAR CSE422 1 UB30603 25 12480

151 HOS CSE370 4 UB10304 25 4200

152 TBA CSE460 1 UB30303 25 0

153 KHR CSE461 1 UB30601 26 13340

154 MAH CSE320 2 UB40301 26 819

155 MSA CSE111 3 UB30501 26 720

156 MSN CSE260 5 UB30503 26 297

157 MMM CSE221 2 UB30502 26 483

158 DMH CSE423 2 UB30603 26 12420

159 KHR CSE101 1 UB30601 27 440

160 MHR CSE340 5 UB10304 27 816
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161 MSA CSE111 1 UB10303 27 1760

162 TRH CSE470 4 UB30603 27 240

163 HAL CSE330 6 UB30303 27 360

164 HOS CSE370 1 UB30501 27 9240

165 MMD CSE320 7 UB30603 28 364

166 MSN CSE111 4 UB10303 28 252

167 NUS CSE220 5 UB30502 28 252

168 HAL CSE330 2 UB40301 28 945

169 ACH CSE340 4 UB30501 28 2380

170 MMD CSE320 1 UB10304 29 1040

171 RAK CSE221 4 UB30603 29 140

172 AAR CSE110 4 UB30501 29 360

173 TRH CSE470 1 UB40301 29 180

174 JIU CSE341 2 UB10303 29 7200

175 MKR CSE470 2 UB30601 29 360

176 MAH CSE101 10 UB10304 30 35

177 BIS CSE321 1 UB10303 30 210

178 SLI CSE220 2 UB30502 30 30

179 MMM CSE471 1 UB30501 30 1767

180 ADR CSE391 1 UB30503 30 8360
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181 IFF CSE420 2 UB30603 30 456

182 MMD CSE410 1 UB30503 31 368

183 MHR CSE330 1 UB30501 31 1620

184 HAL CSE230 1 UB40301 31 432

185 MAM CSE230 2 UB30502 31 640

186 JIU CSE341 3 UB30601 31 1440

187 KHR CSE461 3 UB10304 32 9860

188 MHR CSE340 1 UB30503 32 306

189 HAL CSE230 3 UB40301 32 72

190 ZAR CSE331 3 UB30502 32 5440

191 AKC CSE470 3 UB30603 32 510

192 MMD CSE101 9 UB10304 33 8

193 DIP CSE110 1 UB30603 33 6

194 MHR CSE101 6 UB30501 33 12

195 BIS CSE321 3 UB30601 33 672

196 MSA CSE111 5 UB10303 33 1280

197 TRH CSE221 3 UB30303 33 112

198 KHR CSE101 8 UB10304 34 20

199 DIP CSE101 4 UB30502 34 1

200 RAK CSE101 5 UB30501 34 15

201 AIZ CSE260 4 UB30603 34 11

202 SRT CSE310 1 UB30303 34 180

203 MIK CSE320 6 UB40301 34 1365
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Course Allocation Per Instructor

In this figure, each and every teacher are represented in x− axis and number of

courses allocated to them plotted in y− axis. In two different graph we can see one

particular teacher can have different number of courses which are randomly allo-
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cated to them. The courses for which no teachers are assigned for them the count

is 0.

Chromosomes Fitness
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A fitness for chromosomes indicates the probability to be selected for next phase of

the routine from a randomly generated population. The graph is plotted such a way

that x− axis represented particular course allocated to teacher and y− axis repre-

sents fitness value for them. If the new population has higher total fitness regarding

the old one only then the resulted routine will be updated.

Number of Courses Assigned Per Slot
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Along with X axis slots are plotted and along with Y axis number of allocations are

plotted in the figure. This graph helps us to find out the demand of a slot according

to the corresponding count. Also it becomes very useful for modifying mutation

design of the main program.

7.2 Result Comparison

Results from Simulated Annealing gets lower fitness than the Genetic Algo-

rithm generated Schedule most of the time. For comparing the results two different

fitness were calculated. One from Genetic Algorithm generated result and another

from Simulated Annealing generated result. Finally the comparing fitness will be

calculated by using formula:-

Cf =
(GAfitness − SAfitness)

GAfitness
∗ 100%

If comparing fitness Cf is positive then Genetic Algorithm has produced better re-

sult than the Simulated Annealing process, and if the Cf is negative then Simulated

Annealing is better in Scheduling.for every routine generation Genetic Algorithm

and Simulated annealing has run simultaneously same number of times times as Ge-

netic Algorithm count and in about more than 100 times run Simulated Annealing

gives one better result than Genetic Algorithm.
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Chapter 8

Future Work

Our study was only over Computer Science and Engineering Department

of BRAC University to find and optimal solution of course scheduling. There are

lots of scope over all the departments to be included under one schedule generation

project. We are eager to implement many other features in our next work. Some

are like:

• For further optimization and better fitness and hybrid model can be proposed.

• The shortcomings after further analysis is to be overcome.

• As we overlooked lab and exam scheduling the scope is open for these two

categories to be integrated.

• Enrich User Interface for better performance and prepared version for remote

devices.

• Secure data by decentralizing and distributing in different databases.
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Chapter 9

Conclusion

In this paper, our main focus was to design a procedure, based on Genetic

algorithm for generating a schedule for BRAC University CSE Department auto-

matically. There are a lot of works done on this type of scheduling before but the

main difference from them is, our work is only for BRAC University CSE department

where we used our BRAC life experience and modified the algorithm accordingly

to get a better and feasible schedule. We also developed our selection process in

such unique way that the main program would need to run crossover and mutation

process less amount of times, which increases the convergence rate of new sched-

ules and decrease the new schedule generation time. Finally we tried to compare

our results with other heuristic algorithms to ensure the acceptance of the newly

generated schedule.
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