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ABSTRACT

To develop more effective user-oriented learning techniques for  the Web,  we 

need to be able to identify a meaningful session unit from which we can learn. 

Without this, we could have a high risk to mix up the different user’s activity in the 

web.  We are  interested  to  detect  boundaries  of  sequences  between  related 

sessions that would group the activities for a learning purpose. But identification 

of user session is not always easy where logged on and cookie information is not 

available. 

The  problem  of  predicting  user  access  in  web  pages  has  recently  gets  a 

significant  attention.  Several  algorithms  have  been  proposed,  which  find 

important applications, like user profiling, web perfecting, design of adaptive web 

sites,  etc.  In  all  these  applications  the  main  issue  is  the  development  of  an 

effective prediction system. Because of its importance in reducing user perceived 

latency present in every Web-based application, which is a usability issue. 

This thesis paper describes a data mining technique for identify user sessions 

from huge amount of web log data and a web system, which makes prediction 

about the user target page by using those sessions to guide the user in World 

Wide Web.
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CHAPTER I

1.1 Introduction

It is impressive to have adaptive techniques for Web based information retrieval 

system (IRSs), where increase use of the Web, amount of information available, 

and variety of regular user, which meets individual user needs effectively. This is 

very important to track individual user and their activities in the web when we are 

doing user oriented learning.  For this necessity,  we need to identify series of 

request that is made by a user within a unit amount of time. Which, we refer as 

Session.  This  paper  focuses  on  the  temporal  ordering  of  activities  clustered 

according  to  similar  request  made  to  the  server  to  identify  user’s  session 

boundary.

Again,  Modeling and predicting user’s access in the Web has attracted lot  of 

research interest. It has been improve the web performance through caching and 

prefetching, recommend related pages, improve search engines and personalize 

the browsing in a web site. The core issue of this research is development of a 

system that deduces the future user access. The approach is, use user history to 

make prediction about future. This system can be easily adapted to the related 

topics  like  related  topics,  user  profiling,  recommender  systems,  design  of 

adaptive web sites, etc. 

The main objective of this research is, identify the user session and using those 

session as input to develop a system, which will run on server, predict the next 

request of the user. Thus reduce user perceived latency as well as offer a better 

web usability.
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CHAPTER II

Methodology

2.1 Session Identification

If we view a user with an interest in a specific topic as acting in a particular role, 

then it is not unreasonable to assume that the activities in the same session are 

likely to correspond to one role. That means, if we notice the web behavior of a 

user,  we can see that  in any particular  time period,  user is interested in one 

specific topic. As a result we can say consecutive request for that user in the 

given period is similar.  Now we can set  session boundary by grouping those 

similar requests. 

Doing clustering on the requested URL field of server logs can do now grouping 

of  similar  requests.  But  there  are  some  problems.  Errors  occur  when  two 

adjacent  activities  for  related  search  statements  are  allocated  into  different 

sessions. Alternatively errors occur when unrelated activities are allocated into 

the same session.

2.2 Predict the future request

Web servers are in better place in making predictions about future references, 

since  they  log  a  significant  part  of  requests  by  all  Internet  clients  for  the 

resources they own. We are talking about a system, which will predict the user 

next request. 

Whenever we are ready with the identified session, we can use those session as 

input of that predictive system. Our main topology is, make the system richer with 

time by feeding those session. The proposed architecture is given below,
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Fig 2.1: Architecture of predictive system

When a  client  makes any request  to  server,  server  stores  that  request  as  a 

server log entry. We are taking that request from server log and identify sessions 

and use those session in the predictive system. Now what the predictive system 

does is, for the first time it creates a graph using those identified sessions. Where 

each  node  is  a  web  page  containing  some  other  attributes.  And  an  edge 

represents the link from go to one page from another. And after that it  keeps 

update the graph by calculating the probability and generating new edges and 

nodes. 
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So from here we can tell that, with the more time the predictive system run in 

server, it will give more effective result. After getting the result from the predictive 

system we are able to guide or feedback the user by the request-serving module.

Before  go  to  the  experiment,  discussion  about  web  log  format  and  some 

algorithm is necessary.

Web  log  or  server  log  follows  a  standard  format.  Each  of  servers  can  use 

different web log format. But there are must be some common fields. A typical 

configuration for the access log might have following fields.

IP Address.

Date.

Time.

Method- Get/Post.

Requested URL.

Referred Page.

User Agent (Browser).

Web Caching is a problem in this case. When a page is loaded locally without 

making any request to the server (e.g. when we do refresh) that is called cached 

page. Now this is a noticeable problem because we don’t have any log entry for 

that request in server side. But we can follow a series of steps to overcome from 

caching problem. The main principle is,  if the referring page file of a session is 

not part of the previous page file of that session, the user must have accessed a 

cached page. The steps are,

Step 1: Form a table with the web logs.
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Step 2:  Sort all users based on their IP address and the browser type.

Step 3: Calculate session using heuristics (Timeout).

Step 4: Do path competition

Now in  Step 3,  we are assuming that,  if  the difference between consecutive 

requests from same user is 30 minutes, they are not grouped in same session. 

In Step 4 (Path Competition), 

Fig 2.2: Path competition

Assume that in a given moment, we have 6 log entries (marked 1 in figure 2.2) 

and a graphical  representation of the web logs (marked 2 in figure 2.2).  Now 

consecutive requests came from user (marked 3 in figure 2.2). If we notice, then 

after 4th request D to F, we are jumping directly C to F although we don’t have 

any path. So we can say confidently between 4th and 5th request user made more 

3 requests (marked 4 in figure 2.2).

1 2

3 4
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2.3 Algorithm for predictive system:

Page source = session [0];

boolean edgeFound=false;

for each web logs i in session

Page destination=session[i];

edgeFound= getEdge(source,destination);

if(edgefound= =true)

increment the value of edge usage;

else

create a new edge between the source and destination;

increment the value of edge usage;

updatePrababilityMatrix(source);

source=destination;

edgeFound=false;

end for

updatePrababilityMatrix(source)

edges[]=getOutgoingEdges(source);

for each edge i in edges[]

totalRequest += edges[i].getUsage();

end for

for each edge i in edges[]

destination=edges[i].getConnectedTo(edges[i]);

prMatrix[source][destination]= edges[i].getUsage()/totalRequest;

end for
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CHAPTER III

Experiment

In  my  thesis  experiments  consisted  of  two  stages:  automatically  detecting 

session boundaries then use those session to predict  the future request  of  a 

user. 

3.1 Data

For experiment the data I have used are raw web log entry. Each web log entry 

contains  those  fields,  which  are  described  earlier  in  this  paper.  For  session 

identification and making prediction about the future request,  experiments are 

done on 5600 web log entries.

3.2 Session identification

For session identification, the experiment was done in MATLAB. As we discussed 

before  I  will  do  clustering  on  web  logs  to  identify  sessions,  so  I  have used 

Kmeans clustering and hierarchical  clustering in MATLAB by feeding the web 

logs as input. After doing this two type of clustering I visualize the result by doing 

silhouette plot in MATLAB.

Now we need to about the term “silhouette”. It’s a plot tool in MATLAB, which 

displays a measure of how close each point in one cluster is to points in the 

neighboring clusters.  This measure ranges from +1, indicating points that  are 

very distant from neighboring clusters, through 0, indicating points that are not 

distinctly in  one cluster  or  another,  to  –1.  That  means each entry with  more 

positive silhouette value, have more isolated from other classes.
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Before clustering we need to specify the number of classes as a parameter. Now 

here complexity arises because we don’t know the actual number of users. We 

assumed in our experiment, that we have 5 users, who made all the requests. So 

to fix that parameter we assigned the value 5 on it.

3.3 Predicting the Future request

The experiment for predicting future request is made by JAVA. The system works 

as follows,

Suppose  a  user  start  his  session  by  going  to  www.A1.com which  is  the 

homepage. And from the homepage he goes to B1. The second requested URL 

will looks like www.A1.com/B1. From B1 he goes to C1 and then again backs to 

the  page  B1.  So  3rd and  4th requested  URL  respectively  looks  like 

www.A1.com/B1/C1 and  www.A1.com/B1.  Initially  the  predictive  system  will 

create a graph as following,

Fig 3.1: Example of creating graph from user request - 1

A1

B1

C1

http://www.A1.com/B1
http://www.A1.com/B1/C1
http://www.A1.com/B1
http://www.A1.com/
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Now consider a situation where graph is already created like follows,

  

Fig 3.2: Example of creating graph from user request - 2

For same session, it will just update the graph for the last request by creating a 

new edge from C1 to B1.

Every time graph is updated, it recalculates the number of an edge is used to go 

from one particular source to destination. Assume that the edge use to go from 

homepage (A1) to B1 is n times. Now for any further request form homepage to 

B1, the graph will update itself by incrementing the value of edge usage n+1, 

instead creating a new edge.

To make my idea clearer, the sample resulting graph of my experiment is shown 

on  below,  where  we  updated  the  graph  by  using  only  10  sessions. 

www.smsync.com is the home page, so represented as root in the graph. Any 

further request from root to any pages are the inter nodes of the graph. Leaves 

are only those pages or files, from where we didn’t get any request. Each edge is 

labeled with number of time used.

A1

B1

C1

http://www.smsync.com/
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Fig 3.3: Graph from user request – 1

The actual graph of my experiment is shown in the result section Fig 4.7. 

I have used a probability matrix to predict the future request. Every time when we 

updating the graph, probability matrix should updated simultaneously. Each edge 

holds the information about the number of time it is used to go from one page to 

another. The outgoing edge from a node holds important concept. Which is, we 

can go only those pages from a node, where out going edges of that node let us 

go. So the sum of all outgoing edges usage, is the total number of requests are 

made from that particular node. Now how we can predict the future request by 

using that probability matrix in my experiment is shown below,
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Fig 3.4: Graph from user request – 2

From the figure 3.4 above we can see that, from root www.smsync.com, we can 

go  Default.asp,  smartsync,  smartsyncpro,  downloads,  smartsync.css,  and 

images. 

So total request from the root is, 4+20+43+45+171+180= 418

Now probability to go from root to,

File name Probability

Default.asp, 3/413 0.00726

smartsync.css, 20/413 0.0484

smartsync, 43/413 0.104

smartsyncpro, 171/413 0.414

downloads, 45/413 0.109

images, 180/413 0.4358

Total 1.00

Table 3.1: Calculation for updating probability matrix

http://www.smsync.com/
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Now from root,  images have the higher  probability  to  go,  which is  04358.  In 

probability  matrix  each  rows represents  sources  and  columns  represents  the 

destinations.

For root, the probability matrix entries will be,

Pr [www.smsync.com] [Default.asp] = 0.00726

Pr [www.smsync.com] [smartsync.css] = 0.0484

Pr [www.smsync.com] [smartsync] = 0.104

Pr [www.smsync.com] [smartsyncpro] = 0.414

Pr [www.smsync.com] [downloads] = 0.109

Pr [www.smsync.com] [images] = 0.4358

Now  notice  we  cannot  go  www.smsync.com to  history.asp.  In  that  case  the 

probability matrix entry will be,

Pr [www.smsync.com] [Default.asp] = 0.00

According to the calculation, sum of each row must be equal to 1.00.

http://www.smsync.com/
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CHAPTER IV

Result

4.1 Session Identification

I have done Kmeans and hierarchical clustering respectively on requested URL, 

requested  time  and  bytes  downloaded  to  identify  the  session  boundary.  The 

result of my experiment for session identification is given below, 

K-Means Clustering On Requested URL: 
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Fig 4.1: K-Means clustering on requested URL
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Hierarchical Clustering On Requested URL:
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Fig 4.2: Hierarchical clustering on requested URL

K-Means Clustering On Requested Time:
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Fig 4.3: K-Means clustering on requested time
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Hierarchical Clustering On Requested Time:
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Fig 4.4: Hierarchical clustering on requested time

K-Means Clustering On Byte Downloaded:
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Fig 4.5: K-Means clustering on byte downloaded
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Hierarchical Clustering On Byte Downloaded:
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Fig 4.6: Hierarchical clustering on byte downloaded

4.2 Predictive System

The output of the predictive system can be described by following ways,

Partial portion of textual representation of the graph is given below,

AVG Time Stayed In smartsync.css Is 20.0

 -> smartsync.css -> www.smsync.com

AVG Time Stayed In Default.asp Is 7.0

 -> Default.asp -> www.smsync.com

AVG Time Stayed In features.asp Is 13.0

 -> features.asp -> smartsyncpro -> www.smsync.com
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The page smartsync.css is the child node of  www.smsync.com, where average 

time of 20 sec user stayed in this page. For the page Default.asp is also similar 

to  the  smartync.css.  features.asp  is  the  child  of  smarsynctpro  and  which  is 

further child of www.smsync.com, where user stayed average time of 13 sec.

In my experiment, I calculated most viewed page, most pressed button and the 

pages in which user spent their time most.

Most Viewed Pages, page 1 : smartsync.css
page 2 : Default.asp
page 3 : screenshots.asp

Most Pressed Button, page 1 : sep.gif
page 2 : davespick.gif
page 3 : 5star-logo10.gif

Most Time spent in, page 1 : smartsync.css
page 2 : Default.asp
page 3 : features.asp

It is possible in my predictive system to generate all the possible paths to go from 

root to any particular destination page based on the previous learning.  

If I set the destination smartsync.css, then the predictive systems result is given 
below,

Give Page Name to See The Path : smartsync.css

By 7 Way We Can Reach To smartsync.css

-> www.smsync.com -> smartsync.css       
Total used: 20

-> www.smsync.com -> smartsync -> smartsync.css      
Total Used : 2

 -> www.smsync.com -> smartsyncpro -> downloads -> smartsync.css 
Total Used : 9

 -> www.smsync.com -> smartsyncpro -> smartsync.css        
Total Used : 5

http://www.smsync.com/
http://www.smsync.com/
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 -> www.smsync.com -> smartsyncpro -> history.asp -> smartsync.css 
Total Used : 3

 -> www.smsync.com -> smartsyncpro -> screenshots.asp -> smartsync.css 
Total Used : 2

 -> www.smsync.com -> smartsyncpro -> features.asp -> smartsync.css 
Total Used : 2

Now I want to show the result of predicting future request. I trained the system by 

training  data,  which  are  web  logs.  After  training,  I  used  641  number  of  web 

request as input. The predictive system will predict the request and check each 

time with the given input whether it is correct or not. I am showing for 6 inputs 

among 641.  

Expected Request = /images/support.gif
Actual Request = /images/support.gif
HIT

Expected Request = /downloads/Default.asp
Actual Request = /downloads/Default.asp
HIT

Expected Request = /smartsync/screenshots.asp
Actual Request = /smartsyncpro/Default.asp
MISS

Expected Request = /images/screenshot.gif
Actual Request = /images/screenshot.gif
HIT

Expected Request = /smartsyncpro/screenshots.asp
Actual Request = /smartsyncpro/screenshots.asp
HIT

Expected Request = /images/visa.gif
Actual Request = /smartsync/history.asp
MISS

After processing all 641 requests in my experiment, I have hit rate and miss rate. 

Which is given below, 

Total Request: 641
Total Hit: 436
Total miss: 205
Hit Rate: 68.0%
Miss Rate: 32.0%
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Fig 4.7: Part of the actual graph
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CHAPTER V

Discussions

For  user  session  identification,  I  did  Kmeans  and  hierarchical  clustering  on 

Requested URL, Requested time and byte downloaded. The result is plotted with 

respect to silhouette value. For requested URL when I did Kmeans clustering fig-

4.1,  all  requests  are clustered well,  because all  requests  of  each class have 

positive silhouette value. That means all classes are properly separated from one 

another.

But when I did hierarchical clustering on the requested URL fig-4.2, the result I 

found is not that good. Because all request of class 3 has negative  silhouette 

value. So requests of class 3 are not properly isolated from other classes. One 

another noticeable thing is,  number of request in class 1,4 and 5 is very low 

compare to class 2 and 4. So classes are not properly balanced too.   

Same way if we see the remaining results of my experiment fig-4.3 to fig-4.6, we 

can  say  that  Kmeans  clustering  have  more  effective  result  than  hierarchical 

clustering.

In my experiment the actual graph based on which I have took decisions is given 

in fig-4.7. Now I want to show an interesting part, where I tried to find the entire 

possible path that can be used to go from one page to another destination page. 

The  experiment  will  suggest  us  the  best  path  to  take  (1st path).   In  my 

experiment, to suggest best the path, I have done the calculation based on the 

number of times that path is used. If we notice then we can see, user used that 

path most which is the shortest (1st path). 

I have shown previously the hit ratio and the miss ratio, where I tried predicting 

the next request of the user. Hit ratio is 68% and miss ratio is 32%. 68% of hit 

ratio  is  not  that  effective.  But  one  think  I  should  say,  that  in  my experiment 
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number of web pages, the content of the web pages, and the number of link in a 

web page are all unknown. The system will learn these information with time. So 

situation like this 68% of hit ration is not that bad also. Again based on time this 

system will learn more, thus hit ration will increase. The data I have used in my 

experiments is not widely available. 68% of hit ratio could be result of using lower 

quality data.
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CHAPTER VI

Conclusion

In this paper, I  have presented a method for detecting session boundaries by 

using a minimal amount of user information that is typically available in web logs.

In my paper I have talked about two errors that can be occurred when we are 

identifying the user session.  One is,  two adjacent  activities for  related search 

statements are allocated into different sessions. Another is unrelated activities 

are allocated into the same session. In future work, I intend to explore methods 

of  improving  automatic  session  boundary  detection  by  reducing  percentages 

errors.

We considered the problem of predictive Web prefetching,  that  is,  of  deriving 

users’  future  requests  for  Web documents  based  on  their  previous  requests. 

Predictive  prefetching  suits  the  Web’s  hypertextual  nature  and  reduces 

significantly the perceived latency. Web prefetching has common characteristics 

with other Web applications that involve prediction of user accesses, like user 

profling, recommender systems and design of adaptive web sites.  Hence, the 

proposed method can be easily extended to these kinds of applications.
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