
 1

WEB MINING FOR BETTER WEB USABILITY

Golam Mostafiz
Student ID: 03201078

Department of Computer Science and Engineering

December 2007

BRAC University, Dhaka, Bangladesh

 2

DECLARATION

I hereby declare that this thesis is based on the results found by myself.
Materials of work found by other researcher are mentioned by reference. This
thesis, neither in whole nor in part, has been previously submitted for any
degree.

Signature of Signature of
Supervisor Author

 3

ACKNOWLEDGMENTS

Special thanks to Dr. Mumit Khan, who is my supervisor and helped me

out whenever I faced difficulty regarding my thesis. And also thanks to Shahid M.

Asif, who gave me the initial concept of web usability.

 4

ABSTRACT

To develop more effective user-oriented learning techniques for the Web, we

need to be able to identify a meaningful session unit from which we can learn.

Without this, we could have a high risk to mix up the different user’s activity in the

web. We are interested to detect boundaries of sequences between related

sessions that would group the activities for a learning purpose. But identification

of user session is not always easy where logged on and cookie information is not

available.

The problem of predicting user access in web pages has recently gets a

significant attention. Several algorithms have been proposed, which find

important applications, like user profiling, web perfecting, design of adaptive web

sites, etc. In all these applications the main issue is the development of an

effective prediction system. Because of its importance in reducing user perceived

latency present in every Web-based application, which is a usability issue.

This thesis paper describes a data mining technique for identify user sessions

from huge amount of web log data and a web system, which makes prediction

about the user target page by using those sessions to guide the user in World

Wide Web.

 5

TABLE OF CONTENTS

 Page

TITLE……………...1

DECLARATION…...2

ACKNOWLEDGEMENTS...3

ABSTRACT………..4

TABLE OF CONTENTS...….5

LIST OF TABLES………………………………………………………………...6

LIST OF FIGURES……………………………………………………………….6

CHAPTER I. INTRODUCTION…………………………………………………7

CHAPTER II. METHODOLOGY…………………………………………………8

2.1 Session Identification…………………………………………………8

2.2 Predicting The Next Request………………………………………..8

2.3 Algorithm Of Predictive System……………………………………12

CHAPTER III. EXPERIMENT…………………………………………………..13

3.1 Data……………………………………………………………………13

3.2 Session Identification…………………………………………………13

3.2 Predicting The Next Request……………………………………….14

 6

CHAPTER IV. RESULT………………………………………………………….19

4.1 Session Identification…………………………………………………19

4.2 Predicting The Next Request……………………………………….22

CHAPTER V. DISCUSSION.……………………………………………………26

CHAPTER VI. CONCLUSION…………………………………………………..28

LIST OF REFERENCES..…29

LIST OF TABLES

Table 3.1: Calculation for updating probability matrix…………………………17

LIST OF FIGURES

Fig 2.1: Architecture of predictive system………………………………………9

Fig 2.2: Path competition…………………………………………………………11

Fig 3.1: Example of creating graph from user request – 1……………………14

Fig 3.2: Example of creating graph from user request –2…………………….15

Fig 3.3: Graph from user request – 1……………………………………………16

Fig 3.4: Graph from user request – 2……………………………………………17

Fig 4.1: K-Means clustering on requested URL………………………………..19

Fig 4.2: Hierarchical clustering on requested URL…………………………….20

Fig 4.3: K-Means clustering on requested time………………………………...20

Fig 4.4: Hierarchical clustering on requested time……………………………..21

Fig 4.5: K-Means clustering on byte downloaded………………………………21

Fig 4.6: Hierarchical clustering on byte downloaded…………………………...22

Fig 4.7: Part of the actual graph…………………………………………………..25

 7

CHAPTER I

1.1 Introduction

It is impressive to have adaptive techniques for Web based information retrieval

system (IRSs), where increase use of the Web, amount of information available,

and variety of regular user, which meets individual user needs effectively. This is

very important to track individual user and their activities in the web when we are

doing user oriented learning. For this necessity, we need to identify series of

request that is made by a user within a unit amount of time. Which, we refer as

Session. This paper focuses on the temporal ordering of activities clustered

according to similar request made to the server to identify user’s session

boundary.

Again, Modeling and predicting user’s access in the Web has attracted lot of

research interest. It has been improve the web performance through caching and

prefetching, recommend related pages, improve search engines and personalize

the browsing in a web site. The core issue of this research is development of a

system that deduces the future user access. The approach is, use user history to

make prediction about future. This system can be easily adapted to the related

topics like related topics, user profiling, recommender systems, design of

adaptive web sites, etc.

The main objective of this research is, identify the user session and using those

session as input to develop a system, which will run on server, predict the next

request of the user. Thus reduce user perceived latency as well as offer a better

web usability.

 8

CHAPTER II

Methodology

2.1 Session Identification

If we view a user with an interest in a specific topic as acting in a particular role,

then it is not unreasonable to assume that the activities in the same session are

likely to correspond to one role. That means, if we notice the web behavior of a

user, we can see that in any particular time period, user is interested in one

specific topic. As a result we can say consecutive request for that user in the

given period is similar. Now we can set session boundary by grouping those

similar requests.

Doing clustering on the requested URL field of server logs can do now grouping

of similar requests. But there are some problems. Errors occur when two

adjacent activities for related search statements are allocated into different

sessions. Alternatively errors occur when unrelated activities are allocated into

the same session.

2.2 Predict the future request

Web servers are in better place in making predictions about future references,

since they log a significant part of requests by all Internet clients for the

resources they own. We are talking about a system, which will predict the user

next request.

Whenever we are ready with the identified session, we can use those session as

input of that predictive system. Our main topology is, make the system richer with

time by feeding those session. The proposed architecture is given below,

 9

Fig 2.1: Architecture of predictive system

When a client makes any request to server, server stores that request as a

server log entry. We are taking that request from server log and identify sessions

and use those session in the predictive system. Now what the predictive system

does is, for the first time it creates a graph using those identified sessions. Where

each node is a web page containing some other attributes. And an edge

represents the link from go to one page from another. And after that it keeps

update the graph by calculating the probability and generating new edges and

nodes.

Web
Client

I
N
T
E
R
N
E
T

Server Log
File

Session
Identification

Predictive System
(Predict the next request)

Request Serving
Module

 10

So from here we can tell that, with the more time the predictive system run in

server, it will give more effective result. After getting the result from the predictive

system we are able to guide or feedback the user by the request-serving module.

Before go to the experiment, discussion about web log format and some

algorithm is necessary.

Web log or server log follows a standard format. Each of servers can use

different web log format. But there are must be some common fields. A typical

configuration for the access log might have following fields.

IP Address.

Date.

Time.

Method- Get/Post.

Requested URL.

Referred Page.

User Agent (Browser).

Web Caching is a problem in this case. When a page is loaded locally without

making any request to the server (e.g. when we do refresh) that is called cached

page. Now this is a noticeable problem because we don’t have any log entry for

that request in server side. But we can follow a series of steps to overcome from

caching problem. The main principle is, if the referring page file of a session is

not part of the previous page file of that session, the user must have accessed a

cached page. The steps are,

Step 1: Form a table with the web logs.

 11

Step 2: Sort all users based on their IP address and the browser type.

Step 3: Calculate session using heuristics (Timeout).

Step 4: Do path competition

Now in Step 3, we are assuming that, if the difference between consecutive

requests from same user is 30 minutes, they are not grouped in same session.

In Step 4 (Path Competition),

Fig 2.2: Path competition

Assume that in a given moment, we have 6 log entries (marked 1 in figure 2.2)

and a graphical representation of the web logs (marked 2 in figure 2.2). Now

consecutive requests came from user (marked 3 in figure 2.2). If we notice, then

after 4th request D to F, we are jumping directly C to F although we don’t have

any path. So we can say confidently between 4th and 5th request user made more

3 requests (marked 4 in figure 2.2).

1 2

3 4

 12

2.3 Algorithm for predictive system:

Page source = session [0];

boolean edgeFound=false;

for each web logs i in session

Page destination=session[i];

edgeFound= getEdge(source,destination);

if(edgefound= =true)

increment the value of edge usage;

else

create a new edge between the source and destination;

increment the value of edge usage;

updatePrababilityMatrix(source);

source=destination;

edgeFound=false;

end for

updatePrababilityMatrix(source)

edges[]=getOutgoingEdges(source);

for each edge i in edges[]

totalRequest += edges[i].getUsage();

end for

for each edge i in edges[]

destination=edges[i].getConnectedTo(edges[i]);

prMatrix[source][destination]= edges[i].getUsage()/totalRequest;

end for

 13

CHAPTER III

Experiment

In my thesis experiments consisted of two stages: automatically detecting

session boundaries then use those session to predict the future request of a

user.

3.1 Data

For experiment the data I have used are raw web log entry. Each web log entry

contains those fields, which are described earlier in this paper. For session

identification and making prediction about the future request, experiments are

done on 5600 web log entries.

3.2 Session identification

For session identification, the experiment was done in MATLAB. As we discussed

before I will do clustering on web logs to identify sessions, so I have used

Kmeans clustering and hierarchical clustering in MATLAB by feeding the web

logs as input. After doing this two type of clustering I visualize the result by doing

silhouette plot in MATLAB.

Now we need to about the term “silhouette”. It’s a plot tool in MATLAB, which

displays a measure of how close each point in one cluster is to points in the

neighboring clusters. This measure ranges from +1, indicating points that are

very distant from neighboring clusters, through 0, indicating points that are not

distinctly in one cluster or another, to –1. That means each entry with more

positive silhouette value, have more isolated from other classes.

 14

Before clustering we need to specify the number of classes as a parameter. Now

here complexity arises because we don’t know the actual number of users. We

assumed in our experiment, that we have 5 users, who made all the requests. So

to fix that parameter we assigned the value 5 on it.

3.3 Predicting the Future request

The experiment for predicting future request is made by JAVA. The system works

as follows,

Suppose a user start his session by going to www.A1.com which is the

homepage. And from the homepage he goes to B1. The second requested URL

will looks like www.A1.com/B1. From B1 he goes to C1 and then again backs to

the page B1. So 3rd and 4th requested URL respectively looks like

www.A1.com/B1/C1 and www.A1.com/B1. Initially the predictive system will

create a graph as following,

Fig 3.1: Example of creating graph from user request - 1

A1

B1

C1

http://www.A1.com/B1
http://www.A1.com/B1/C1
http://www.A1.com/B1
http://www.A1.com/

 15

Now consider a situation where graph is already created like follows,

Fig 3.2: Example of creating graph from user request - 2

For same session, it will just update the graph for the last request by creating a

new edge from C1 to B1.

Every time graph is updated, it recalculates the number of an edge is used to go

from one particular source to destination. Assume that the edge use to go from

homepage (A1) to B1 is n times. Now for any further request form homepage to

B1, the graph will update itself by incrementing the value of edge usage n+1,

instead creating a new edge.

To make my idea clearer, the sample resulting graph of my experiment is shown

on below, where we updated the graph by using only 10 sessions.

www.smsync.com is the home page, so represented as root in the graph. Any

further request from root to any pages are the inter nodes of the graph. Leaves

are only those pages or files, from where we didn’t get any request. Each edge is

labeled with number of time used.

A1

B1

C1

http://www.smsync.com/

 16

Fig 3.3: Graph from user request – 1

The actual graph of my experiment is shown in the result section Fig 4.7.

I have used a probability matrix to predict the future request. Every time when we

updating the graph, probability matrix should updated simultaneously. Each edge

holds the information about the number of time it is used to go from one page to

another. The outgoing edge from a node holds important concept. Which is, we

can go only those pages from a node, where out going edges of that node let us

go. So the sum of all outgoing edges usage, is the total number of requests are

made from that particular node. Now how we can predict the future request by

using that probability matrix in my experiment is shown below,

 17

Fig 3.4: Graph from user request – 2

From the figure 3.4 above we can see that, from root www.smsync.com, we can

go Default.asp, smartsync, smartsyncpro, downloads, smartsync.css, and

images.

So total request from the root is, 4+20+43+45+171+180= 418

Now probability to go from root to,

File name Probability

Default.asp, 3/413 0.00726

smartsync.css, 20/413 0.0484

smartsync, 43/413 0.104

smartsyncpro, 171/413 0.414

downloads, 45/413 0.109

images, 180/413 0.4358

Total 1.00

Table 3.1: Calculation for updating probability matrix

http://www.smsync.com/

 18

Now from root, images have the higher probability to go, which is 04358. In

probability matrix each rows represents sources and columns represents the

destinations.

For root, the probability matrix entries will be,

Pr [www.smsync.com] [Default.asp] = 0.00726

Pr [www.smsync.com] [smartsync.css] = 0.0484

Pr [www.smsync.com] [smartsync] = 0.104

Pr [www.smsync.com] [smartsyncpro] = 0.414

Pr [www.smsync.com] [downloads] = 0.109

Pr [www.smsync.com] [images] = 0.4358

Now notice we cannot go www.smsync.com to history.asp. In that case the

probability matrix entry will be,

Pr [www.smsync.com] [Default.asp] = 0.00

According to the calculation, sum of each row must be equal to 1.00.

http://www.smsync.com/

 19

CHAPTER IV

Result

4.1 Session Identification

I have done Kmeans and hierarchical clustering respectively on requested URL,

requested time and bytes downloaded to identify the session boundary. The

result of my experiment for session identification is given below,

K-Means Clustering On Requested URL:

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

Silhouette Value

C
lu

st
er

Fig 4.1: K-Means clustering on requested URL

 20

Hierarchical Clustering On Requested URL:

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1

2

345

Silhouette Value

C
lu

st
er

Fig 4.2: Hierarchical clustering on requested URL

K-Means Clustering On Requested Time:

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

Silhouette Value

C
lu

st
er

Fig 4.3: K-Means clustering on requested time

 21

Hierarchical Clustering On Requested Time:

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

Silhouette Value

C
lu

st
er

Fig 4.4: Hierarchical clustering on requested time

K-Means Clustering On Byte Downloaded:

0 0.2 0.4 0.6 0.8 1

1

2

3

4
5

Silhouette Value

C
lu

st
er

Fig 4.5: K-Means clustering on byte downloaded

 22

Hierarchical Clustering On Byte Downloaded:

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

123

4

5

Silhouette Value

C
lu

st
er

Fig 4.6: Hierarchical clustering on byte downloaded

4.2 Predictive System

The output of the predictive system can be described by following ways,

Partial portion of textual representation of the graph is given below,

AVG Time Stayed In smartsync.css Is 20.0

 -> smartsync.css -> www.smsync.com

AVG Time Stayed In Default.asp Is 7.0

 -> Default.asp -> www.smsync.com

AVG Time Stayed In features.asp Is 13.0

 -> features.asp -> smartsyncpro -> www.smsync.com

 23

The page smartsync.css is the child node of www.smsync.com, where average

time of 20 sec user stayed in this page. For the page Default.asp is also similar

to the smartync.css. features.asp is the child of smarsynctpro and which is

further child of www.smsync.com, where user stayed average time of 13 sec.

In my experiment, I calculated most viewed page, most pressed button and the

pages in which user spent their time most.

Most Viewed Pages, page 1 : smartsync.css
page 2 : Default.asp
page 3 : screenshots.asp

Most Pressed Button, page 1 : sep.gif
page 2 : davespick.gif
page 3 : 5star-logo10.gif

Most Time spent in, page 1 : smartsync.css
page 2 : Default.asp
page 3 : features.asp

It is possible in my predictive system to generate all the possible paths to go from

root to any particular destination page based on the previous learning.

If I set the destination smartsync.css, then the predictive systems result is given
below,

Give Page Name to See The Path : smartsync.css

By 7 Way We Can Reach To smartsync.css

-> www.smsync.com -> smartsync.css
Total used: 20

-> www.smsync.com -> smartsync -> smartsync.css
Total Used : 2

 -> www.smsync.com -> smartsyncpro -> downloads -> smartsync.css
Total Used : 9

 -> www.smsync.com -> smartsyncpro -> smartsync.css
Total Used : 5

http://www.smsync.com/
http://www.smsync.com/

 24

 -> www.smsync.com -> smartsyncpro -> history.asp -> smartsync.css
Total Used : 3

 -> www.smsync.com -> smartsyncpro -> screenshots.asp -> smartsync.css
Total Used : 2

 -> www.smsync.com -> smartsyncpro -> features.asp -> smartsync.css
Total Used : 2

Now I want to show the result of predicting future request. I trained the system by

training data, which are web logs. After training, I used 641 number of web

request as input. The predictive system will predict the request and check each

time with the given input whether it is correct or not. I am showing for 6 inputs

among 641.

Expected Request = /images/support.gif
Actual Request = /images/support.gif
HIT

Expected Request = /downloads/Default.asp
Actual Request = /downloads/Default.asp
HIT

Expected Request = /smartsync/screenshots.asp
Actual Request = /smartsyncpro/Default.asp
MISS

Expected Request = /images/screenshot.gif
Actual Request = /images/screenshot.gif
HIT

Expected Request = /smartsyncpro/screenshots.asp
Actual Request = /smartsyncpro/screenshots.asp
HIT

Expected Request = /images/visa.gif
Actual Request = /smartsync/history.asp
MISS

After processing all 641 requests in my experiment, I have hit rate and miss rate.

Which is given below,

Total Request: 641
Total Hit: 436
Total miss: 205
Hit Rate: 68.0%
Miss Rate: 32.0%

 25

Fig 4.7: Part of the actual graph

 26

CHAPTER V

Discussions

For user session identification, I did Kmeans and hierarchical clustering on

Requested URL, Requested time and byte downloaded. The result is plotted with

respect to silhouette value. For requested URL when I did Kmeans clustering fig-

4.1, all requests are clustered well, because all requests of each class have

positive silhouette value. That means all classes are properly separated from one

another.

But when I did hierarchical clustering on the requested URL fig-4.2, the result I

found is not that good. Because all request of class 3 has negative silhouette

value. So requests of class 3 are not properly isolated from other classes. One

another noticeable thing is, number of request in class 1,4 and 5 is very low

compare to class 2 and 4. So classes are not properly balanced too.

Same way if we see the remaining results of my experiment fig-4.3 to fig-4.6, we

can say that Kmeans clustering have more effective result than hierarchical

clustering.

In my experiment the actual graph based on which I have took decisions is given

in fig-4.7. Now I want to show an interesting part, where I tried to find the entire

possible path that can be used to go from one page to another destination page.

The experiment will suggest us the best path to take (1st path). In my

experiment, to suggest best the path, I have done the calculation based on the

number of times that path is used. If we notice then we can see, user used that

path most which is the shortest (1st path).

I have shown previously the hit ratio and the miss ratio, where I tried predicting

the next request of the user. Hit ratio is 68% and miss ratio is 32%. 68% of hit

ratio is not that effective. But one think I should say, that in my experiment

 27

number of web pages, the content of the web pages, and the number of link in a

web page are all unknown. The system will learn these information with time. So

situation like this 68% of hit ration is not that bad also. Again based on time this

system will learn more, thus hit ration will increase. The data I have used in my

experiments is not widely available. 68% of hit ratio could be result of using lower

quality data.

 28

CHAPTER VI

Conclusion

In this paper, I have presented a method for detecting session boundaries by

using a minimal amount of user information that is typically available in web logs.

In my paper I have talked about two errors that can be occurred when we are

identifying the user session. One is, two adjacent activities for related search

statements are allocated into different sessions. Another is unrelated activities

are allocated into the same session. In future work, I intend to explore methods

of improving automatic session boundary detection by reducing percentages

errors.

We considered the problem of predictive Web prefetching, that is, of deriving

users’ future requests for Web documents based on their previous requests.

Predictive prefetching suits the Web’s hypertextual nature and reduces

significantly the perceived latency. Web prefetching has common characteristics

with other Web applications that involve prediction of user accesses, like user

profling, recommender systems and design of adaptive web sites. Hence, the

proposed method can be easily extended to these kinds of applications.

 29

LIST OF REFERENCES

1. Ay¸se G¨oker and Daqing He, Analysing Web Search Logs to Determine Session
Boundaries for User-Oriented Learning, School of Computer and Mathematical
Sciences,The Robert Gordon University

2. Balabanovic M., Shoham Y., and Yun Y.: An Adaptive Agent for Automated Web
Browsing. Tech. Rep. CS-TN-97-52, Dept. of Comp. Sci., Stanford University

3. Alexandros Nanopoulos, Dimitris Katsaros, Yannis Manolopoulos, Effective Prediction of
Web-user Accesses, Data Engineering Lab, Department of Informatics Aristotle
University, Thessaloniki 54006, Greece

4. Judy Kay and Andrew Lum ,Creating User Models from Web Logs School of Information
Technologies University of Sydney, NSW, 2006 Australia

	WEB MINING FOR BETTER WEB USABILITY
	Golam Mostafiz
	Department of Computer Science and Engineering

	December 2007
	BRAC University, Dhaka, Bangladesh
	DECLARATION
	ACKNOWLEDGMENTS
	Table of Contents
	LIST OF TABLES………………………………………………………………...6
	CHAPTER II. METHODOLOGY…………………………………………………8
	CHAPTER III. EXPERIMENT…………………………………………………..13
		
	CHAPTER IV. RESULT………………………………………………………….19
	LIST OF TABLES
	Table 3.1: Calculation for updating probability matrix…………………………17
					
				
	Fig 2.1: Architecture of predictive system………………………………………9
	Fig 2.2: Path competition…………………………………………………………11
	CHAPTER I
	1.1 Introduction

	CHAPTER II
	Step 1: Form a table with the web logs.
	3.2 Session identification
	Total used: 20
	HIT
	HIT
	MISS
	HIT
	HIT
	MISS

	
	CHAPTER V
	Discussions

