
 1

OPERATING SYSTEM`S SECURITY: LINUX

A Thesis
Submitted to the Department of Computer Science and Engineering

of
BRAC University

by

Mehedi Al Mamun
ID: 01101072

In Partial Fulfillment of the
Requirements for the Degree

Of

Bachelor of Science in Computer Science

August 14th 2005

 2

DECLARATION

I hereby declare that this thesis is based on the results found by myself.

Materials of work found by other researcher are mentioned by reference. This
thesis, neither in whole nor in part, previously submitted for any degree.

Signature of Signature of
Supervisor Author

 3

ACKNOWLEDGMENTS

I want to give special thanks to Dr. Mumit Khan. Without his help, It would be

impossible for me to complete my thesis. I would also like to thanks to all of

my friends specially Md.Zahurul Islam , Zahiduzzaman for supporting me to
do this work successfully. Finally I am grateful to S.M Mahbubuzaman,

Assistant system Administrator of BRAC University for helping me with

necessary equipments.

 4

ABSTRACT

I propose a comprehensive investigation of the security issues in the
Linux Operating System. Linux is an open source operating system and

frequently used by both individual users and corporate users. The goal of

this project is to conduct a thorough understanding of how Linux provides

the standard security model known as CIA, or Confidentiality, Integrity, and

Availability.

 5

TABLE OF CONTENT

Topic

PAGE

Declaration ii
Acknowledgements iii
Abstract iv

Table of content v

List of figure vii

CHAPTER 1. INTRODUCTION

 1.1 Introduction to Information Security …………………………………1

 1.2 Security Model CIA ………………………………………………….. .1

CHAPTER 2. LINUX OPERATING SYSTEM …………………………………. .2

 2.1 Brief History Of Linux ………………………………………………....3

 2.2 Linux Architecture……………………………………………………...3

 2.2.1 Network Services Module…………………………………….. 5

 2.2.2 Device Drivers Modules ……………………………………….6
 2.3 Differences Between Linux and MS-DOS …………………………..7

CHAPTER 3. PHYSICAL SECURITY …………………………………………...8

 3.1 BIOS Security …………………………………………………………9

 3.2 Boot Loader Security …………………………………………………9
 3.2.1 Linux booting process ……………………………………….9

 3.2.2 Securing boot process ………………………………………9

 3.2.2.1 Reasons for securing boot ………………………….9
 3.2.2.2 LILO security …………………………………………10

 3.2.2.3 GRUB security ………………………………………10
 3.3 Users and Groups …………………………………………………..11

 3.3.1 Managing user accounts …………………………………….12

 6

 3.3.2 Passwords ……………………………………………………. .13

 3.3.3 Guest accounts privilege………………………………..…… 14

 3.4 File Systems Security …………………………………………………14

CHAPTER4.NETWORK SCEURITY ……………………………………………18

 4.1 Network File System ……………………………………………………..19

 4.1.1 Important daemon of NFS……………………………………….19

 4.1.2 Securing NFS ……………………………………………………20
 4.2 Network Information System(NIS) ……………………………….……..20

 4.2.1 Important daemon of NIS…………………..…………………. 21

 4.2.2 Securing NIS ……………………………………………………..21

 4.3 Domain Name Systems(DNS)……………………………….………….. 22
 4.3.1 How DNS works ...……………………………………………..22

 4.3.2 Securing DNS ……………………………………………………24

 4.4 HTTP Server ………………………………………………………………..25

 4.4.1 Apache HTTP server ……………………………………………25

 4.4.2 Apache HTTP server’s security ………………………………...25
 4.5 Email Security ……………………………………………………………...30

 4.5.1 Sendmail ………………………………………………………...…30

 4.5.2 Securing Email ………………………………………………...…..31

 4.5.2.1 Why Email security needed ………………………………….31

 4.5.2.2 Securing Email with GnuPG ……………………………...31
CHAPTER 5.CONCLUSION …………………………………………………… 32

 5.1 Conclusion ………………………………………………………………….33

LIST OF

REFERENCES……………………………………………………………………34

CHAPTER 6.
APPENDICES………………………………………………………………….….36

 7

LIST OF FIGURES

Figure PAGE

Figure 2.1 Linux Kernel Architecture…………………………………………….. 4

Figure 2.2 Linux kernel’s Network service module…………………………….. .5

Figure 2.3 Linux kernel’s Device drivers module……………………………….. 6
Figure 4.1 The Structure of DNS name space ………….……………………..23
Figure 4.2 SSL Protocol Stack ………………………………………...…………26

Figure 4.3 SSL Record Protocol Operation …...………………………………. 27

Figure 4.4 SSL Handshake Protocol ..………………………………………….28

Figure- 4.5 Email Process ………………………………………………………30

 8

1.1 Introduction to Information Security

Information security covers a wide area of computing and information

processing. Right now every large organization, university’s, industries that

depends on computer systems and networks to conduct daily transactions

and access crucial information regard their data as an important part of their

assets. A number of people are using their computers to gain access to the
resources that the Internet has to offer. Peoples all around the world are

frequently uses credit card, online banking. There is nothing difference

between when a thief steal money from houses and a hacker knows our bank

account number with password. That is one example why information security

is needed but there are many other aspects with Information security .
 Computer Security: "A computer is secure if you can depend on it and

its software to behave as you expect"[6]. Through out this thesis paper I

discusses as a software of operating system how Linux provides information

security.

1.2 Security Model CIA

The major technical areas of computer security are usually represented

by the initials CIA, confidentiality, integrity, and authentication or availability.

Confidentiality means that information cannot be access by unauthorized
parties. Confidentiality is also known as secrecy or privacy. Sensitive

information must be available only to a set of pre-defined individuals.

Unauthorized transmission and usage of information should be restricted.

Integrity means that information is protected against unauthorized
changes that are not detectable to authorized users. Unauthorized users

should be restricted from the ability to modify or destroy sensitive information .

 Authentication means that users are who they claim to be. Availability

means that resources are accessible by authorized parties any time that it is

needed. Availability is a warranty that information can be obtained with an
agreed-upon frequency and timelines[9,11].

 9

2.1 Brief History Of Linux

 Linux is quite possibly the most important free software . It has

developed into an operating system for business, education, and personal
productivity. What makes Linux so different is that it is a free implementation

of UNIX. It was and still is developed cooperatively by a group of volunteers,

primarily on the Internet, who exchange code, report bugs, and fix problems in
an open-ended environment.

Linux is developed primarily by Linus Torvalds at the University of

Helsinki in Finland, with the help of many UNIX programmers and wizards

across the Internet. Linux was developed by the GNU project of the Free

Software Foundation in Cambridge, Massachusetts, U.S.A. However,
programmers from all over the world have contributed to the growing pool of

Linux software.

Linux was originally developed as a hobby project by Linus Torvalds. It

was inspired by Minix, a small UNIX system developed by Andy Tanenbaum.

The very early development of Linux mostly dealt with the task-switching
features of the 80386 protected-mode interface, all written in assembly code.

On October 5, 1991, Linus announced the first ``official'' version of Linux,

which was version 0.02.

2.2 Linux Architecture

Linux kernel is monolithic. It is a large, complex do-it-yourself program,

composed of several logically different components(or subsystems). The

architectural style of the Linux kernel is close to Data Abstraction style at the

highest level. The kernel is composed of subsystems that maintain internal
representation consistency by using a specific procedural interface. On the

other hand, layered styles for Linux as a whole and within the subsystems of

the Linux kernel[16].

 10

 Figure 2.1 Linux Kernel Architecture

In Linux architecture, each layer provides a service to the layer above it

and serves to the client below. Benefits of this style of architecture is that this
design supports increasing levels of abstraction and enhancement as

changes to the functionality of one layer affects at most two others. Linux

kernel includes the middle layer kernel modules and two interface layers

system call interface and architecture-dependent code, which provide

interface between the user applications, kernel modules, and hardware. For
instance, the system call interface layer provides an interface between the

virtual file system and the user level programs that need to access a file

system. Similarly, the architecture-dependent interface provides an interface

between the virtual file system and the disk that it must access. The kernel
modules layer conceptually composed of six major subsystems: the process

 11

scheduler, the memory management, the virtual file systems, the network

management, inter-process communication management and the device

drivers. These subsystems interact with each other using procedure calls and
shared data structures[16].

2.2.1 Network Services Module

The network subsystem allows Linux systems to connect to other

systems over a network. There are a number of possible hardware devices
that are supported, and a number of network protocols that can be used. The

network subsystem abstracts both of these implementation details so that

user processes and other kernel subsystems can access the network without

necessarily knowing what physical devices or protocol is being used[16].

Figure 2.2 Linux kernel’s Network service module

The network services module follows a very simple layered architecture

style. It provides access to several networking standards and a variety of

network hardware. The network services manager interfaces with the TCP/IP

protocol drivers which in turn interface with the necessary device drivers
required to make use of the attached networking hardware[16].

The network resource manager also communicates with the IPC

manager in order to provide support for IPC through sockets. The network

 12

subsystem uses the process scheduler to suspend and resume processes

while waiting for hardware requests to complete. In addition, the network

subsystem supplies the virtual file system with the implementation of a logical
file system leading to the virtual file system depending on the network

interface and having data and control flow with it. Thus provides a common

interface for user applications[16].

2.2.2 Device Drivers Modules

The device driver layer is responsible for presenting a common

interface to all physical devices such as graphics cards, network cards, hard
disks etc. The Linux kernel has three types of device driver: character, block,

and network. The two types relevant to the file subsystem are character and

block devices. Character devices must be accessed sequentially; typical

examples are tape drives, modems, and mice. Block devices can be

accessed in any order, but can only be read and written to in multiples of the
block size[16].

 Figure 2.3 Linux kernel’s Device drivers module

Each device can be accessed as though it was a file in the file system

(this file is referred to as a device special file). Since most of the kernel deals

with devices through this file interface, it is relatively easy to add a new device
driver by implementing the hardware-specific code to support this abstract file

 13

interface. The Linux kernel uses a buffer cache to improve performance when

accessing block devices. All access to block devices occurs through a buffer

cache subsystem. The buffer cache greatly increases system performance by
minimizing reads and writes to hardware devices[16].

2.3 Differences Between Linux and MS-DOS

It is important to understand the differences between Linux and other

operating systems, like MS-DOS, OS/2, and the other implementations of
UNIX for personal computers. First of all, Linux coexists happily with other

operating systems on the same machine.It can run MS-DOS and OS/2 along

with Linux on the same system without problems.

 MS-DOS does not fully utilize the functionality of 80386 and 80486
processors. On the other hand, Linux runs completely in the processor's

protected mode, and utilizes all of its features. Linux can directly access all

the available memory and beyond, with virtual RAM. Linux provides a

complete UNIX interface which is not available under MS-DOS. We can easily

develop and port UNIX applications to Linux, but under MS-DOS it is limited to
a subset of UNIX functionality. MS-DOS is inexpensive compared to other

commercial operating systems and has a strong foothold in the personal

computer world. Linux however, is free.

 14

 3.1 BIOS Security

An Operating System is needed security from its booting up to shutting
down. If an attacker has access to the BIOS, nothing will be remain safe.

Whenever an operating system is boot up it is very important whether an

unauthorized user has full physical access to computer. The BIOS is the
lowest level of software that configures or manipulates of x86 based

hardware. LILO and other Linux boot methods access the BIOS to determine

how to boot up Linux machine.

We can set BIOS password to prevent from unauthorized physical

access. To prevent changes to BIOS Settings BIOS password is needed

.Some examples are, disallow booting from floppy drives and passwords to
access some BIOS features. Many x86 BIOS’s also allow to specify various

other good security settings.

3.2 Boot Loader Security

At this moment we prevents an illegal user to change the BIOS settings

by setting BIOS password. But In Linux Operating System there is an option

to change the root password during booting. The two common boot loaders
for Linux are LILO (Linux Loader) and GRUB (Grand Unified Boot loader).

3.2.1 Linux booting process

The boot process of Linux on a Intel i386 architecture has following steps:

 A Linux Loader is placed at the first sector read by the bios.

 The kernel is loaded.

 Init is started and executes various scripts.

3.2.2 Securing boot process

3.2.2.1 Reasons for securing boot loader

The following are the primary reasons for protecting a LINUX boot loader.

1. Prevent Access to Single User Mode

 15

 If an attacker can boot into single user mode , he becomes the root

user and a root user can change anything to his own way which is directly

threat to a secure operating system.
2. Prevent Access to the GRUB Console

 If an illegal user get access to GRUB editor, he can change its

configuration or he can get information by using cat command.

 3. Prevent Access to Non-Secure Operating Systems-

 If the system is using dual booting, any body can select an operating
system which is less secure than Linux which ignores access controls and file

permissions[11].

3.2.2.2 LILO security

LILO is the Linux boot loader, it handles all the tasks of getting the
kernel into memory and bootstrapping them machine into something that

resembles a useful computing device. To secure LILO we have to set a

password, and use the restricted keyword. We can also set security on a per

image basis, or adding a password directive in to the global section of its
confiuration file. Add a passwords directive to /etc/lilo.conf file.

 password= <my password >

If we want to allow booting a kernel without password verification, but

do not want to allow users to add arguments without password add restricted
keyword below the password line[11].

 image=/boot/vmlinuz-<version>
 password=<thisisapassword>
 restricted

3.2.2.3 Grub security

 GRUB adds an extra level of security by supporting MD5 encryption for

the password in the configuration file. To generate an encrypted password,
run the command
 $ /sbin/grub-md5-crypt

 16

When prompted for password type a password and it will return an

MD5 hash of the password. Next edit the /boot/grub/grub.conf and set the

MD5 hash value of password[11].
 password –md5<password-hash>

3.3 Users and Groups

User accounts are important to verify the identity of the person using a
computer system. By verifying the accounts of user the system is able to

determine if the user is permitted to log into the system and, if so, which

resources the user is allowed to access.

There are three types of users:

i) Root
ii) Normal users

iii) System users

 The superuser, normally named root ,has complete control over the

entire system. The root user can access all files on the system and the root
user is generally the only user who can execute certain programs .The root

has a user ID 0.Any account with a user ID of 0 is a root user, even if the
username is not root.

Normal users are users who can log in. Normal users usually have a

home directory and can create and manipulate files in their home directory
and in other directory. Normal users typically have restricted access to files

and directories on the machine and as a result they cannot perform many

system-level functions.

System users don’t login. They are accounts that are used for specific

purposes and are not allowed by a specific person. For example user nobody
and lp. The user nobody is the user who typically handle the http request and

lp handles print request.

Groups are logical constructs that can be used to cluster user accounts

together for a specific purpose. Careful group creation and assignment of

privileges, access to restricted resources can be maintained for those who
need them and denied to others. The user who creates a file is assigned as

the owner and group owner. The file is also assigned separate read, write,

 17

and execute permissions for the owner, the group, and everyone else. The

owner of a file can be changed only by the root user. The group to which a file

belongs can be changed by root or by the owner of the file if the owner is part
of the group being added to the file.

For security purposes we should be aware at least the following:

 Login activity

 Authorization information

 Authentication information

 Commands users have run

 Restarts and shutdowns of the system

 Network transactions records

3.3.1 Managing user accounts

Linux provides a large number of tools including account permissions,

passwords, account aging, adding and deleting of users, etc. Following
commands are useful to manage user and group.

chage - change user password expiry information

 groups - print the groups a user is in

 newusers - update and create new users in batch

 passwd - update a user's authentication tokens(s)

 nologin - prevent non-root users from log into the system

 su - run a shell with substitute user and group IDs

 useradd - Create a new user or update default new user information

 userdel - Delete a user account and related files

 18

 usermod - Modify a user account

 chgrp - change the group ownership of files

 chown - change the user and group ownership of files

 gpasswd - administer the /etc/group file

 groupadd - Create a new group

 groupdel - Delete a group

 groupmod - Modify a group

 groups - print the groups a user is in

 grpck - verify integrity of group files

 pwconv - convert to and from shadow passwords

 pwunconv - convert to and from shadow passwords

 grpconv - convert to and from shadow passwords

 grpunconv- convert to and from shadow passwords

 vipw - edit the password or group files

 vigr - edit the password or group files

3.3.2 Passwords

Password is one of the most important security features and basic

means of authentication. It is important to set secure, unguessable
passwords. Password security is the most critical means to protect system

from compromise. An effective well-chosen password is always desirable not
be compromised the system.

Linux have several characteristics of password storing mechanism.

 i) In a file that is readable only by root.

 19

 ii) In a one way hash format.

Following guideline should be maintain for strong password

 Use of shadow passwords.

 Do not use only words or numbers.

 Do not use recognizable words.

 Do not use hacker terminology.

 Do not use personal Information.
 Do not invert recognizable words.

 Make the password at least eight characters long.

 Mix upper and lower case letters.

 Mix letters and numbers.
 Include non-alphanumeric characters.

3.3.3 Guest accounts privilege

 Guest accounts on servers don't have to be set up with the same

privilege as those of regular users. If these guests only need to run a few
programs or access a collection of local files, then enable them to do just this

and nothing more.

3.4 File Systems Security

File systems security is important to keep a system safe. By changing
important file like server configuration, network configuration and system

configuration a machine can be compromised. A file system is the methods

and data structures that an operating system uses to keep track of files on a

disk or partition that is, the way the files are organized on the disk. The
central concepts of Linux file systems are super block, inode, data block,

directory block, and indirection block. The super block contains information

about the file system as a whole, such as its size. An inode contains all

information about a file, except its name. The name is stored in the directory,

together with the number of the inode. A directory entry consists of a filename
and the number of the inode which represents the file. The inode contains the

numbers of several data blocks, which are used to store the data in the file.

 20

There is space only for a few data block numbers in the inode, however, and if

more are needed, more space for pointers to the data blocks is allocated

dynamically. These dynamically allocated blocks are indirect blocks; the name
indicates that in order to find the data block, one has to find its number in the

indirect block first.

Linux chooses to have a single hierarchal directory structure.

Everything starts from the root directory, represented by /, and then expands

into sub-directories instead of having so-called 'drives'. On the other hand,
Linux sorts directories descending from the root directory according to their

importance to the boot process. Another reason for this unified file system is

that Linux caches a lot of disk accesses using system memory while it is

proper commands. This will shut down the system in a decent way which will
thus, guarantee the integrity of files.

/bin Essential command binaries

/boot Static files of the boot loader

/dev Device files

/etc Host-specific system configuration
/lib Essential shared libraries and kernel modules

/mnt Mount point for mounting a filesystem temporarily

/opt Add-on application software packages

/sbin Essential system binaries

/tmp Temporary files
/usr Secondary hierarchy

/var Variable data

 For each object in the file system, Linux stores administrative
information in a structure known as an inode. Instead, they have indices

(numbers) indicating their positions in the array of inodes.

Each inode generally contains:

 The location of the item's contents on the disk, if any

 The item's type (e.g., file, directory, symbolic link)

 21

 The item's size, in bytes, if applicable

 The time the file's inode was last modified

 The time the file's contents were last modified

 The time the file was last accessed (the atime) for read (), exec (), etc

 A reference count: the number of names the file has

 The file's owner (a UID)

 The file's group (a GID)

 The file's mode bits (also called file permissions or permissionbits)

 Linux separates access control on files and directories according to

three characteristics: owner, group, and other. There is always exactly one

owner, any number of members of the group, and everyone else. Any user
will be able to view contents of a file and edit by setting read ,write

permission of a file.

Following table is the list file protection command with chmod [6].

 Table– 3.1 Linux File protection command

Command Meaning
chmod 400 file To protect a file against accidental overwriting.
chmod 500
directory

To protect from accidentally removing, renaming or moving
files from this directory.

chmod 600 file A private file only changeable by the user who entered this
command.

chmod 644 file A publicly readable file that can only be changed by the
issuing user.

chmod 660 file Users belonging to group can change this files, others don't
have any access to it at all.

chmod 700 file Protects a file against any access from other users, while the
issuing user still has full access.

chmod 755
directory

For files that should be readable and executable by others,
but only changeable by the issuing user.

chmod 775 file Standard file sharing mode for a group.
chmod 777 file Everybody can do everything to this file.

 22

4.1 Network File System

NFS is the standard way Linux machines can share files over the
network. A client can mount directories of a server and thereafter the files are

accessible just as if they were local disk storage. It works for a large

organization, University or other institutions where information need to keep a

common palace so that everybody can read, write as privileged.

Administrative data can kept in one host and easy to maintain. The virtual file
system (VFS) interface is the mechanism used by NFS to transparently and

automatically redirect all access to NFS-mounted files to the remote server.

NFS clients use the remote procedure call (RPC) suite of network application

helper programs to mount remote file systems. If the mount cannot occur
during the default RPC timeout period, then the client retries the mount

process until the NFS number of retires has been exceeded.

 To configure NFS server we have to edit /etc/exports file. A sample

exports file is shown below-

 #/etc/exports
 /data/files *(ro,sync)
 /home 192.168.1.0/24(rw,sync)
 /data/test *.my-site.com(rw,sync)

4.1.1 Important daemon of NFS

 NFS isn't a single program, but a suite of interrelated programs that

work together to get the job done.

 Portmap: is a server that converts RPC program numbers into DARPA

protocol port numbers. It must be running in order to make RPC calls. When

an RPC server is started, it will tell portmap what port number it is listening to,
and what RPC program numbers it is prepared to serve. When a client wishes

to make an RPC call to a given program number, it will first contact portmap

on the server machine to determine the port number where RPC packets
should be sent. Portmap must be started before any RPC servers are

invoked. Normally portmap forks and dissociates itself from the terminal like
any other daemon. By default, portmap listens to TCP port 111 on which an

initial connection is made. This is then used to negotiate a range of TCP

 23

ports, usually above port 1024, to be used for subsequent data transfers. We

need to run portmap on both the NFS server and client[12].

nfs: It Starts the RPC processes needed to serve shared NFS file
systems. The nfs daemon needs to be run on the NFS server only[12].

nfslock : It Used to allow NFS clients to lock files on the server via RPC

processes. The nfslock daemon needs to be run on both the NFS server and

client[12].

4.1.2 Securing NFS

 Before implementing an NFS server first we have to secure the

PORTMAP services. The PORTMAP service is a dynamic port assignment

daemon for RPC services. It has weak authentication mechanisms and has
the ability to assign a wide range of ports for the services it controls. For these

reasons, it is difficult to secure.

 Linux provides a number of way to secure the PORTMAP, for this we

have to do following things
 Protect portmap With TCP Wrappers.

 Protect portmap With iptables.
 Remote root user of client can act like a local root user. To prevent this

never use no_root_squash option so that the power of the remote root user

become to the lowest local user[11].
Specify the client list in the /etc/exports file which are allowed to export

file from server.

4.2 Network Information System(NIS)

NIS stands for Network Information Service. It is an RPC service called
ypserv which is used in conjunction with portmap and other related services to

distribute maps of usernames, passwords, and other sensitive information to

any computer within its domain.

4.2.1 Important daemon of NIS

 An NIS server is comprised of several applications. They include the
following:

 24

ypserv: The ypserv daemon is typically activated at system startup.

ypserv runs only on NIS server machines with a complete NIS database. On

other machines using the NIS services, have to run ypbind as client. ypbind
must run on every machine which has NIS client processes; ypserv may or

may not be running on the same node, but must be running somewhere on

the net- work. On startup or when receiving the signal SIGHUP, ypserv

parses the /etc/ypserv.conf file[12].

 Ypbind: It is the main daemon at client side and finds the server for
NIS domains and maintains the NIS binding information. The client could

get the information over RPC from ypbind. The binding files resides in the

directory /var/yp/bind. After a binding has been established, ypbind will send

YPPROC_DOMAIN requests to the current NIS server at 20 seconds
intervals. If it doesn’t get an response or the NIS server tells that he doesn’t

has this domain any longer, ypbind will search a new NIS server. All 15

minutes ypbind will check, if the current NIS server is the fastest. At startup

or when receiving signal SIGHUP, ypbind parses the file /etc/yp.conf and tries

to use the entries for its initial binding[12].
yppasswdd: It Also called the yppasswdd service, this daemon allows

users to change their NIS passwords[12].

ypxfrd: It Also called the ypxfrd service, this daemon is responsible for

NIS map transfers over the network[12].

4.2.2 Securing NIS

1. Use LDAP(Light weight Directory Access Protocol)

NIS is rather insecure by today’s standards. It has no host

authentication mechanisms and passes all of its information in clear text,

including password hashes. As a result, extreme care must be taken to set up
a network that uses NIS. So instead of NIS use LDAP which overcomes the

problems of NIS.

2. Use a Password-Like NIS Domain Name and Hostname

 Any machine within an NIS domain can use commands to extract
information from the server without authentication, as long as the user knows

the NIS server's DNS hostname and NIS domain name. To make access to

 25

NIS maps harder for an attacker, create a random string for the DNS

hostname. Similarly, create a different randomized NIS domain name. This

will make it much more difficult for an attacker to access the NIS server[11].

3. Assign Static Ports and Use iptables Rules

All of the servers related to NIS can be assigned specific ports except

for rpc.yppasswdd the daemon that allows users to change their login

passwords. Assigning ports to the other two NIS server daemons, rpc.ypxfrd
and ypserv, allows to create firewall rules to further protect the NIS server

daemons from intruders[11].

4.3 Domain Name Systems(DNS)

4.3.1 How DNS works

 Domain Name System (DNS) is the invention of a hierarchical domain-

based naming scheme and a distributed database system for implementing

this naming scheme. It is primarily used for mapping hostnames and e-mail
destinations to ip addresses but can be used for other purposes. Linux uses

Berkley Internet Name Domain (BIND) for name resolution.

 DNS is distributed database is indexed by domain names. Each domain

name is essentially just a path in a large inverted tree, called the domain
name space. The tree's hierarchical structure shown in figure 4.1. The tree

has a single root at the top. DNS simply calls it "the root"[5].

 26

Figure- 4.1 The Structure of DNS name space

A domain is simply a subtree of the domain name space. The domain

name of a domain is the same as the domain name of the node at the very

top of the domain. Every domain whether it is a single host or a top-level

domain, can have a set of resource records associated with it. For a single

host, the most common resource record is just its IP address, but many other
kinds of resource records also exist. When a resolver gives a domain name to

DNS, what it get back are the resource records associated with that name.

Thus the primary function of DNS is to map domain names onto resource

records[5].

 To avoid the problems associated with having only a single source of
information, the DNS name space is divided into non overlapping zones. Each

zone contains some part of the tree and also contains name servers holding

the information about that zone. Normally a zone will have one primary name

server, which gets its information from a file on its disk and one or more

secondary name servers, which get their information from the primary name
server. A sample zone files for my-site.com is shown follow[13].

 zone” my-site.com” IN{
 type master;
 file ”my-site.com.db”;
 allow-query{any};
 };

 27

4.3.2 Securing DNS

DNS can reveal a lot about the nature of the domain. For this we

should take some precautions to hide some of the information for the shake

of security. The host command does one DNS query at a time but the dig

command is much more powerful. When given the right parameters it can
download the entire contents of domain’s zone file. This may not seem like an

important security threat at first glance, but it is. Anyone can use this
command to determine all server’s ip address and from the names determine

what type of server it is and then launch an appropriate cyber attack. Without

master and slave servers zone transfer should be disabled. We can do this by
applying the allow-transfer directive to the global options section of

named.conf file[8].

 options{
 allow-transfer{none;}; }

 In order to prevent unauthorized access to the named daemon, BIND

uses a shared secret key method which is used to grant privileges to hosts.

An identical key must be present in both /etc/named.conf and rndc

configuration file, /etc/rndc.conf[13].

 BIND support advanced features DNSSEC, which stands for DNS

Security Extensions, is a method by which DNS servers can verify that DNS
data is coming from the correct place, and that the response is unmodified. It

is a public/private key system. This means that the owner of a DNS zone has

a private key and a public key. Using the private key to digitally sign a zone

will allow anyone with the zone's public key to verify that the data is

authentic[13].

4.4 HTTP Server

4.4.1 Apache HTTP server

A web server provides services through HTTP protocol. Usually the
server receive a request from client for specific resource and returns the

resource as a response. Linux uses Apache HTTP server as a web server.

 28

Apache is a modular and process based server. This implies that only the

most basic functionality is included in the core server and the server forks

itself a number of times to answer simultaneous requests. The children are
isolated from each other. This is reliable if a module misbehaves, the parent

process kills that child and it only affects the request being served, not the

server as a whole[15].

4.4.2 Apache HTTP server’s security

The number of individuals and companies with internet access is

expanding rapidly. As a result businesses are interested about setting up

facilities on the web for electronic commerce. But the reality is that the

Internet and the Web are extremely vulnerable to compromises of various

sorts. As businesses wake up to this reality the demand for secure Web
services grows. Using regular HTTP communications between a browser and

a web server are sent a plaintext, which could be intercepted and read by

someone along the route between the browser and the server.

Apache HTTP server has strong security policy which provides by the
mod_ssl and openssl packages. It supports Transport Layer Security and

Secure Socket Layer. The Secure Sockets Layer/Transport Layer Security

protocols allow data between the Web server and client to be encrypted[14].

 SSL provides following three basic security functions.

1. Authentication: SSL supports server-only, client/server, and
anonymous authentication.

2. Confidentiality: SSL uses public-key cryptography for secure key

exchange, and symmetric-key encryption for bulk-cipher.

3. Message integrity: SSL uses cryptographic hash-based message

authentication codes (MAC).
Secure Sockets Layer (SSL) is transport layer approach to Web

security; SSL uses TCP/IP to provide a reliable, general purpose security

service to upper-layer protocols. SSL is not a single protocol but rater two

layers of protocol as illustrated in following figure.

 29

 Figure 4.2 SSL Protocol Stack

The SSL Record Protocol provides basic security services to various
higher-layer protocols. Three higher-layer protocols are defined as part of SSL

the handshake Protocol, the Change Cipher Spec Protocol and the Alert

protocol.

 Figure 4.3 SSL Record Protocol Operation

The SSL Record Protocol takes an application message to be

transmitted, fragments the data into manageable blocks,opt6ionally

compresses the data, applies a MAC, encrypts, adds a header and transmits

the resulting in a TCP segment. Received data are decrypted, verified,

Other Services

 30

decompressed and reassembled and then delivers to higher level users.

Figure 4.3 illustrates the overall operation of the SSL Record Protocols[2].

 Change Cipher Spec Protocol is one of the three SSL-specific
protocols that use SSL Record Protocol . It consists of a single message

which consists of single byte with the value 1.The sole purpose of this

message is to cause the pending state to be copied into the current state

which updates the cipher suite to be used on this connection[2].

 SSL Alert Protocol is used to alerts the peer entity. This protocols
alerts about unexpected_message, bad_recordmac, decompression_failure,

illegal_parameter[2].

Handshake Protocol is the most complex part of SSL. This protocol

allows the server and client to authenticate each other and to negotiate an
encryption and MAC algorithm and cryptographic keys to be used to protect

data sent in an SSL record. The handshake Protocol is used before any

application data is transmitted. The Handshake Protocol consists of a series

of message exchanged by client and server, shown in Figure -4.4[2].

 Figure 4.4 SSL Handshake Protocol

The initial exchange needed to establish a logical connection between

client and server. The exchange can be viewed as having four phases.

 31

1. Establish Security Capabilities : This phase is used to initiate a

logical connection and to establish the security capabilities. The exchanged is

initiated by the client which sends a client_hello message with Version,
Random, Session ID, CipherSuite, Compression Method parameters. Client

sends a list of cryptographic algorithm in decreasing order of preference. After

sending the client_hello message the client waits for the server_helo

message, which contains the same parameters as the client_hello message.

In the server_hello message Version field contains the lower version
suggested by the client and highest supported by the server. The Random

field is generated by the server and is independent of client’s Random field.

The CipherSuite field contains the single cipher suite selected by the server

from those proposed by the client[2].

2.Server Authentication and Key Exchange : The server begins this

phase by sending its certificate, if it needs to be authenticated.The message

contains one or a chain of X.509 certificates. A server_key_exchange

message may be sent if it is required.The certificate_request message
includes two parameters, certificate_type and certificate_authorities.The final

message server_done message which is sent by server to indicate the end of

the server hello and associated messages. After sending this message, the

server will wait for a client response[2].

3. Client Authentication and Key Exchange : After receipt of the
server_done message the client begins this phase by sending a certificate

message. Next client_key_exchange message is sent. Finally send

certificate_verify message to provide explicit verification of a client

certificate[2].

4. Finish : This phase completes the setting up of a secure
connection[2].

For key exchanges SSL Protocols used following protocols[2].
o RSA key exchange when certificates are used.

o Diffie-Hellman key exchange for exchanging keys without
 certificates.

 For data transfer following algorithm are uses[2].

 32

o RC4 with 40-bit keys

o RC4 with 128-bit keys

o RC2 with 40 bit key
o DES with 40 bit key

o DES with 56 bit key

o Triple-DES with 168 bit key

o Idea (128 bit key)

o Fortezza (96 bit key)

4.5 Email Security

4.5.1 Sendmail

Electronic mail(email) is the most heavily used network-based

application. An e-mail message, just like a letter sent through regular mail

begins with a sender and ends with a receiver. In between these two people

are many postal workers who ensure that the letter is properly handled. Email

works similar fashion and although there are not many people between the
sender and receiver programs perform the same function. These programs

use network protocols to do the job of ensuring that the message goes from

sender to receiver. An email applications fall into at least one of three

classifications are Mail Transfer Agent (MTA), Mail Delivery Agent (MDA) and

Mail User Agent(MUA).The purposes of a MTA is to transfer mail between two
MTA’s and MDA used for transfer mail from mail server to client inbox .MUA

allows a user to read and compose email messages.

 33

 Figure- 4.5 Email Process

Linux uses three kinds of MTA’s, Sendmail, Postfix and Fetchmail. In
my thesis I uses Sendmail as a MTA.

 Sendmail uses SMTP(Simple Mail Transfer Protocol) to transfer email.

which case it will process any queued mail and then quit; or it can be run as a
persistent background dæmon. If Sendamil running as a dæmon, it listens for
incoming SMTP connections on TCP port 25 and periodically tries to send any

outbound messages in its queue directory /var/spool/mqueue. If it's being

invoked on the fly, it attempts to deliver the outbound message it's been

invoked to send and/or checks /var/spool/mqueue for other pending outbound

messages.

4.5.1 Securing Email

 4.5.1.1 Why Email security needed

When a email message send over the internet it may passes several

points. This gives chance to an attacker to read the message or even alter it.
Some times message may be lost or other people send message as a

duplicate person. But we never want to this vulnerability. So we need to

secure our email.

Sender
s

User
interfa

Mail Transfer Program(MTA)

Internet
 Mail BoxB

Receivers
Computer

Mail Server

 34

4.5.1.2 Securing Email with GnuPG

 We can secure email by GnuPG(GNU Privacy Guard).GnuPG is tool
for secure communication and data storage. It can be used to encrypt data

and to create digital signatures. It includes an advanced key management

facility. It provides data integrity services for messages and data files by using

these core technologies:

 digital signatures

 encryption

 compression

 radix-64 conversion

Encryption: GnuPG uses public key encryption to provide

confidentiality. With public-key encryption, the object is encrypted using a

symmetric encryption algorithm. Each symmetric key is used only once. A

new "session key" is generated as a random number for each message. Since

it is used only once, the session key is bound to the message and transmitted
with it. To protect the key, it is encrypted with the receiver's public key. The

sequence is as follows:

 1.The sender creates a message.

2.The sender generates a random number to be used as a session key for
this message only.

3.The session key is encrypted using each recipient's public key. These

"encrypted session keys" start the message.

4.The sender encrypts the message using the session key, which forms the
remainder of the message.

 5.The receiver decrypts the session key using the recipient's private key.

6.The receiver decrypts the message using the session key. If the message

was compressed, it will be decompressed.

 35

Digital signature: The digital signature uses a hash code or message digest

algorithm, and a public-key signature algorithm.

Compression: It compress the message after applying the signature but
before encryption.

Radix-64 conversion: It provides the service of converting the raw 8-bit binary

octet stream to a stream of printable ASCII characters, called Radix-64

encoding or ASCII Armor.

 36

 5.1 Conclusion

Linux operating systems security is extremely good. It has a number of

option to provides information security. A number of tools is available for Linux

to secure system. Sometimes default configuration of Linux is not secure .So

we have to careful when we install it and turnoff all the unused port and

unnecessary services. By using Linux it is possible to establish standard

security policy CIA.

 37

 LIST OF REFERENCES

[1] Brian Hatch, James Lee and George Kurtz, “HACKING LINUX EXPOSED:

LINUX SECUITY SECRETS & SOLUTION”.
[2]William Stallings, “Cryptography and Network Security”.

[3] William R.Cheswick, Steven M.Bellovin,Aviel D.Rubin,”Firewalls and

Internet Security”

[4] Andrew S.Tanenbaum,”Computer Networks”.
[5] Cricket Liu and Paul Albitz, ”DNS And BIND”

[6] http://www.anotherleveldesigns.com/asp/networking/puis/ch01_01.htm

[7] http://www.faqs.org/docs/linux_intro/

[8] http://www.linuxhomenetworking.com/

[9] http://web.interhack.com/publications/whatis-security.pdf.
[10] http://www.linuxsecurity.com/docs/securityadminguide/

[11] www.redhat.com/docs/manuals/ linux/RHL-9-Manual/security-guide/

[12] linux.com.hk/PenguinWeb/manpages.jsp

[13] www.redhat.com/docs/manuals/ linux/RHL-9-Manual/ref-guide/

[14] www.redhat.com/docs/manuals/ linux/RHL-9-Manual/custom-guide/
 [15] http://apache.hpi.uni-potsdam.de/document/

Multitasking_architecture.html

[16] http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

[17] howtos.linux.com/guides/ Linux-Filesystem-Hierarchy/foreward.shtml

[18] www.tldp.org/LDP/sag/html/sag.html

 38

6.1 Linux Server Configuration

/etc/sysconfig/network-scripts/ifconfig-eth0

DEVICE=eth0
IPADDR=172.16.1.3
#172.16.255.255
NETMASK=255.255.0.0
BOOTPROTO=none
ONBOOT=yes
#optional
USERCTL=no
PEERDNS=no
TYPE=Ethernet

NETWORK=172.16.0.0
BROADCAST=172.16.255.255

#etc/sysconfig/network

NETWORKING=yes
HOSTNAME=mehedi.ac

NISDOMAIN=bunix

YPSERV_ARGS="-p 834"

Mehedi.ac Mamun.ac

172.16.1.3 172.16.1.4

Server

Clie

Figure- My

 39

YPXFRD_ARGS="-p 835"
YPBIND_ARGS="-p 840"

#/etc/hosts

127.0.0.1 localhost.localdomain localhost
172.16.1.3 mehedi.ac mehedi

#/etc/exports

/home *(rw,sync)

#/etc/named.conf

options {
 directory "/var/named";
 listen-on { 127.0.0.1/32; 172.16.1.0/24; };
};

controls {
 inet 127.0.0.1 allow { localhost; } keys { rndckey; };
};

zone "." IN {
 type hint;
 file "named.ca";
};

zone "localhost" IN {
 type master;
 file "localhost.zone";
 allow-update { none; };
};

zone "0.0.127.in-addr.arpa" IN{
 type master;
 file "named.local";
 allow-update { none; };
};

zone "my-site.com" IN {
 type master;
 allow-query { any;};
 file "db.my-site.com";
};

 40

zone "1.16.172.in-addr.arpa" IN {
 type master;
 file "db.172.16.1";
 allow-query{any;};
};

include "/etc/rndc.key";

#/var/named/db.my-site.com

$TTL 86400
$ORIGIN my-site.com.
@ 1D IN SOA @ admin (
 42 ; serial (d. adams)
 3H ; refresh
 15M ; retry
 1W ; expiry
 1D) ; minimum

 1D IN NS @

 IN MX 10 my-site.com.
 1D IN A 172.16.1.3

#/var/named/db.172.16.1

$TTL 86400
@ IN SOA my-site.com. admin.my-site.com. (
 1997022700 ; Serial
 28800 ; Refresh
 14400 ; Retry
 3600000 ; Expire
 86400) ; Minimum
 IN NS my-site.com.

3 IN PTR my-site.com.

#etc/httpd/conf/httpd.conf

ServerTokens OS
ServerRoot "/etc/httpd"
PidFile run/httpd.pid
Timeout 300
KeepAlive Off
MaxKeepAliveRequests 100
KeepAliveTimeout 15

 41

<IfModule prefork.c>
StartServers 8
MinSpareServers 5
MaxSpareServers 20
MaxClients 150
MaxRequestsPerChild 1000
</IfModule>

<IfModule worker.c>
StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0
</IfModule>

<IfModule perchild.c>
NumServers 5
StartThreads 5
MinSpareThreads 5
MaxSpareThreads 10
MaxThreadsPerChild 20
MaxRequestsPerChild 0
</IfModule>

Listen 80
Include conf.d/*.conf

LoadModule access_module modules/mod_access.so
LoadModule auth_module modules/mod_auth.so
LoadModule auth_anon_module modules/mod_auth_anon.so
LoadModule auth_dbm_module modules/mod_auth_dbm.so
LoadModule auth_digest_module modules/mod_auth_digest.so
LoadModule include_module modules/mod_include.so
LoadModule log_config_module modules/mod_log_config.so
LoadModule env_module modules/mod_env.so
LoadModule mime_magic_module modules/mod_mime_magic.so
LoadModule cern_meta_module modules/mod_cern_meta.so
LoadModule expires_module modules/mod_expires.so
LoadModule headers_module modules/mod_headers.so
LoadModule usertrack_module modules/mod_usertrack.so
LoadModule unique_id_module modules/mod_unique_id.so
LoadModule setenvif_module modules/mod_setenvif.so
LoadModule mime_module modules/mod_mime.so
LoadModule dav_module modules/mod_dav.so
LoadModule status_module modules/mod_status.so
LoadModule autoindex_module modules/mod_autoindex.so
LoadModule asis_module modules/mod_asis.so

 42

LoadModule info_module modules/mod_info.so
LoadModule dav_fs_module modules/mod_dav_fs.so
LoadModule vhost_alias_module modules/mod_vhost_alias.so
LoadModule negotiation_module modules/mod_negotiation.so
LoadModule dir_module modules/mod_dir.so
LoadModule imap_module modules/mod_imap.so
LoadModule actions_module modules/mod_actions.so
LoadModule speling_module modules/mod_speling.so
LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_module modules/mod_alias.so
LoadModule rewrite_module modules/mod_rewrite.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
<IfModule prefork.c>
LoadModule cgi_module modules/mod_cgi.so
</IfModule>
<IfModule worker.c>
LoadModule cgid_module modules/mod_cgid.so
</IfModule>
ExtendedStatus On

Section 2: 'Main' server configuration

User apache
Group apache
ServerAdmin admin@my-site.com
ServerName www.my-site.com:80

UseCanonicalName Off
DocumentRoot "/var/www/html"
<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>

<Directory "/var/www/html">
AllowOverride None
Order allow,deny
Allow from all
</Directory>
<LocationMatch "^/$>
 Options -Indexes
 ErrorDocument 403 /error/noindex.html
</LocationMatch>

<IfModule mod_userdir.c>
 UserDir disable
</IfModule>

 43

DirectoryIndex index.html index.html.var
AccessFileName .htaccess
<Files ~ "^\.ht">
 Order allow,deny
 Deny from all
</Files>
TypesConfig /etc/mime.types
DefaultType text/plain
<IfModule mod_mime_magic.c>
 MIMEMagicFile conf/magic
</IfModule>

HostnameLookups ON
ErrorLog logs/error_log
LogLevel warn
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
CustomLog logs/access_log combined
ServerSignature On
Alias /icons/ "/var/www/icons/"
<Directory "/var/www/icons">
 Options Indexes MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
Alias /manual "/var/www/manual"
<Directory "/var/www/manual">
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

<IfModule mod_dav_fs.c>
 # Location of the WebDAV lock database.
 DAVLockDB /var/lib/dav/lockdb

</IfModule>

<IfModule mod_cgid.c>

Scriptsock run/httpd.cgid

 </IfModule>

 44

<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>

<IfModule mod_negotiation.c>
<IfModule mod_include.c>
 <Directory "/var/www/error">
 AllowOverride None
 Options IncludesNoExec
 AddOutputFilter Includes html
 AddHandler type-map var
 Order allow,deny
 Allow from all
 LanguagePriority en es de fr
 ForceLanguagePriority Prefer Fallback
 </Directory>

</IfModule>
</IfModule>

