

1

FINITE STATE RECOGNIZER AND

STRING SIMILARITY BASED

SPELLING CHECKER FOR BANGLA

Submitted to A Thesis

The Department of Computer Science and Engineering
of

BRAC University

by

Munshi Asadullah
In Partial Fulfillment of the Requirements for the Degree

of

Bachelor of Science in Computer Science and Engineering

Fall 2007

BRAC University, Dhaka, Bangladesh

2

DECLARATION

I hereby declare that this thesis is based on the results found by me. Materials of

work found by other researcher are mentioned by reference. This thesis, neither in

whole nor in part, has been previously submitted for any degree.

Signature of Supervisor Signature of Author

3

ACKNOWLEDGEMENTS

Special thanks to my supervisor Mumit Khan without whom this work would have

been very difficult. Thanks to Zahurul Islam for providing all the support that was

required for this work. Also special thanks to the members of CRBLP at BRAC

University, who has managed to take out some time from their busy schedule to

support, help and give feedback on the implementation of this work.

4

Abstract

A crucial figure of merit for a spelling checker is not just whether it can detect misspelled words,

but also in how it ranks the suggestions for the word. Spelling checker algorithms using edit

distance methods tend to produce a large number of possibilities for misspelled words. We

propose an alternative approach to checking the spelling of Bangla text that uses a finite state

automaton (FSA) to probabilistically create the suggestion list for a misspelled word. FSA has

proven to be an effective method for problems requiring probabilistic solution and high error

tolerance. We start by using a finite state representation for all the words in the Bangla

dictionary; the algorithm then uses the state tables to test a string, and in case of an erroneous

string, try to find all possible solutions by attempting singular and multi-step transitions to

consume one or more characters and using the subsequent characters as look-ahead; and finally,

we use backtracking to add each possible solution to the suggestion list. The use of finite state

representation for the word implies that the algorithm is much more efficient in the case of non-

inflected forms; in case of nouns, it is even more significant as Bangla nouns are heavily used in

the non-inflected form. In terms of error detection and correction, the algorithm uses the statistics

of Bangla error pattern and thus produces a small number of significant suggestions. One notable

limitation is the inability to handle transposition errors as a single edit distance errors. This is not

as significant as it may seem since the number of transposition errors are not as common as other

errors in Bangla. This paper presents the structure and the algorithm to implement a Practical

Bangla spell-checker, and discusses the results obtained from the prototype implementation.

5

Table of Contents

Introduction 1
Related Works 3

Section 1: General Overview 4

1.1.Natural Language Processing (NLP)
1.1.1. Definition

1.1.2. Scopes of NLP

1.2.Word Spelling Error
1.2.1. Word Spelling Error

1.2.2. Word Error Pattern

1.2.3. Word Error Model

1.2.4. Error Detection

1.2.5. Error Correction

1.3.Spelling Checker
1.3.1. Spelling Checker

1.3.2. History

1.3.3. Design Paradigm

1.3.4. Phonological Approach

1.3.5. Some Major GNU Spelling Checkers

1.4.Finite State Machine
1.4.1. Finite State Automation

1.4.2. Advantages of FSM

1.4.3. Disadvantages of FSM

1.4.4. States: Some Concepts

1.4.5. Acceptors or Recognizers

1.4.6. Mathematical Model

1.5.Edit Distance
1.5.1. Edit Distance

1.5.2. Levenshtein Distance

1.5.3. Damerau- Levenshtein Distance

5
5

5

6
6

6

8

8

9

9
9

10

11

12

13

15
15

16

17

17

19

20

21
21

21

22

6

1.5.4. Levenshtein Edit Distance Mapping 22
Section 2: The FSR and The Spelling Checker 24

2.1.Error Tolerant Finite State Mapping

2.2.The Algorithm

2.3.Implementation
2.3.1. Error Detection

2.3.2. Suggestion Generation

2.3.3. Suggestion Ranking

2.4.Performance and Evaluation

2.5.Future Improvements

25

27

29
29

31

31

32

33

Conclusion 35

References 36

7

List of Figures

figure 1.1: A possible finite state machine implementation 15

figure 1.2: FSM example of a parser recognizing the world "nice" 19

figure 1.3: Levenshtein distance between “iCemaN” and “Human” 23

figure 2.1: Finite State Recognizer to Recognize Strings 26

figure 2.2: Spelling Checker System Block Diagram 27

figure 2.3: Process Flow Diagram of The Algorithm 28

figure 2.4: Handling Substitution Error 29

figure 2.5: Handling Deletion Error 30

figure 2.6: Handling Insertion Error 30

List of Tables

table 1.1: A basic state transition table 19

table 2.1: Some Bangla Verb Roots and Some of The Inflected Forms 25

table 2.2: Rate of Different Errors to Occur in Bengla Text 27

table 2.3: Actual Test Results on Two Different Systems 33

8

Introduction

Bangla is a complex language with a large lexicon, and it is primarily a close-

phonetic oriented language. A morphologically-based Bangla spelling checker using

string pattern comparison often produces huge number of possible solutions due to

the use of compound characters in Bangla. So, phonetic based spell checking is the

better approach for Bangla. Puspa (UzZaman and Khan, 2006) is one such phonetic

spelling checker for Bangla, which, like any phonetic based spell checkers, has its

limitations. It often fails to suggest for multiple errors in both the root and the suffix

of a word. It also produces huge number of suggestion for detectable multiple error

situations. But, as it is necessary to have minimal dictionary size for a spell-checker,

it is also important that it produces small number of relevant suggestions for a word

with around 50% error.

Error tolerant finite state recognition uses its underlying finite-state recognizer to

relate an erroneous word with is most probable solution set. Our goal is to develop a

system that can handle non-word errors in Bangla efficiently and quickly. In our

proposed system, all the possibilities are addressed while checking a non-word

error. The reason is that every character may be correct and at the same time may

be wrong, and so the better approach is to consider all possibilities and put a

threshold value to control the result size. The threshold refers to the minimum edit-

distance. The primary state table generation ensures that only the words available in

the dictionary can be produced and nothing else. The motivation behind the study is

to come up with a strong spellchecking algorithm using the finite state machine to

produce better result from the existing spell-checkers.

9

In this paper, we tried to show the improvements achieved by using Finite State

approach and the suggested algorithm and listing the results yielded by our working

prototype. Our strategy is to map all the roots and their inflected forms in a state

table and use it with the algorithm to check different types of error firstly as a single

character error, as an earlier study (Kundu and Chaudhuri, 1999 – Chaudhuri, 2001)

suggested that error length of 1 to 2 is about 74% of all Bangla non-word errors,

using the current character and a look-ahead character. If the error turns out to be

a multi-character error, multiple transitions for both the current character and the

look-ahead character will be made. If a solution can not be found then the current

states will be saved and all the previous characters are inserted, and a multi-

transition to consume the current character from the start state will be attempted.

The final attempt may lead to a distant solution but as it will have a large edit-

distance; it may eventually be left out of the solution list. On the other hand, saving

the current state before the desperate approach actually gives the ability to even

check 3 and more character error with the subsequent characters. This should cover

the vast majority of the spelling errors as 1 to 3 character errors make up 90.8% of

all Bangla non-word errors (Kundu and Chaudhuri, 1999 – Chaudhuri, 2001).

10

Related Works

There has been some activity in designing spelling checkers for Bangla and other

South Asian languages. One recent example is the work done by UzZaman and Khan

on Bangla spelling checker that uses double-metaphone called Puspa speller

(UzZaman and Khan, 2006). Approximate strings matching algorithms (Choudhury,

2001) and a direct dictionary look up method (Abdullah and Rahman, 2004) have

been used so far for the detection of typographical errors and cognitive phonetic

errors. Other many work have done on this field or in the related field. One

significant work has done on Error-tolerant Finite State Recognition with Applications

to Morphological Analysis and Spelling (Oflazer, 1996). Another significant work on

Exploring the limits of Spellcheckers: A Comparative Study in Bengali and English

(Bhatt, Choudhury, Sarkar and Basu, 2005) gives a realistic method for evaluating

spelling checkers.

11

Section 1: General Overview

12

Section 1: General

Overview

1.1. Natural Language Processing (NLP)

1.1.1. Definition

'Natural Language' (NL) is any of the languages naturally used by humans, i.e.

not an artificial or man-made language such as a programming language.

'Natural language processing' (NLP) is a convenient description for all attempts

to use computers to process natural language.

Natural language processing (NLP) is a subfield of artificial intelligence and

linguistics. It studies the problems of automated generation and understanding

of natural human languages. Natural language generation systems convert

information from computer databases into normal-sounding human language,

and natural language understanding systems convert samples of human

language into more formal representations that are easier for computer

programs to manipulate.

1.1.2. Scope of NLP

13

Over the last few decades NLP manage its distinct identity over the vast

computational spectrum, today’s computers are working with. The major fields of

interest and attention can be categorize are as follows,

 Speech synthesis: although this may not at first sight appear very

'intelligent', the synthesis of natural-sounding speech is technically complex

and almost certainly requires some 'understanding' of what is being spoken

to ensure, for example, correct intonation.

 Speech recognition: Basically the reduction of continuous sound waves to

discrete words. It is currently a dominant field in the field of NLP.

 Natural language understanding: Moving from isolated words (either

written or determined via speech recognition) to 'meaning'. This may involve

complete model systems or 'front-ends', driving other programs by NL

commands.

 Natural language generation: Generating appropriate NL responses to

unpredictable inputs. A question answering system is a perfect example of

such a system

 Text categorization: Analysis of documents and categorize them according

to its context may seem to be a great idea when thousands of people are

surfing the web for thousands of different things but it actually is more

helpful in the field if machine learning that works with other contexts of NLP

research.

 Imperfect or irregular input: Foreign or regional accents and vocal

impediments in speech; typing or grammatical errors, OCR errors in texts are

also a necessary area to work with in NLP.

 Machine translation (MT): translating one NL into another is one of the

largest areas of interest for NLP. A Lot of work is currently going on in this

field.

1.2. Word Spelling Error

1.2.1. Word Spelling Error

The word-error can belong to one of the two distinct categories, namely, non-

word error and real-word error. Let a string of characters separated by spaces or

14

punctuation marks be called a candidate string. A candidate string is a valid word

if it has a meaning. Else, it is a non-word. By real-word error we mean a valid

but not the intended word in the sentence, thus making the sentence

syntactically or semantically ill-formed or incorrect. In both cases the problem is

to detect the erroneous word and either suggest correct alternatives or

automatically replace it by the appropriate word.

1.2.2. Word Error Pattern

Errors occurred in a text depends on several factors. Of those the most

important ones are Human Factor that is, if the writer do not know the spelling

or mistyped something, Source of the document that is, whether it is a

handwritten Text or Typed on some system etc. If handwritten then which OCR

system converts it to digital text is also very important. Most OCR sources make

transcription error and humans written sources also make such mistakes as well.

Although the error type totally depends on the source of the actual document.

The errors made in handwritten text are often different or at least occurs in a

different rate than in a typed text. The errors that are in the actual document are

similar to the errors made by human.

The errors that are made purely by an OCR system are mostly pattern

recognition error. It is very common to have a substitution of a character with a

similar looking character (e.g. ‘e’ and ‘c’ or ‘m’ and ‘nn’). Considering the source

of the actual document any other types of errors may also occur. OCR systems

also produce some unusual patterns that lead to totally improbable errors.

For typed text language and keyboard layout holds the key to possible error

type. The generalized error type classification for the text written by a human is

as follows,

 Cognitive Error: When the actual spelling is unknown to the writer and the

writer tries to write it with probable spelling, this type of error occurs.

 Phonetic Error: This is a special type of cognitive error. Usually humans try

to substitute an unknown spelling with the most probable spelling that

sounds somewhat similar to the actual word. Often similar sounding

15

characters are substituted in this type of error (e.g. ‘f’ for ‘ph’ or ‘c’ for ‘k’).

e.g. “card” replaced by “kurd”.

 Typographical Error: Typos due to slip of neuron motor coordination or

may be just because a finger was placed in the wrong position usually is the

reason behind this type of error. This type of error can primarily be seen in

Typed text. The error patterns here are somewhat dependent on the

language and keyboard layout. The errors usually be seen can be categorize

as follow,

◘ Substitution Error: When the desired character in a word got replaced

by some other character that is the actual character is substituted. e.g.

Pain Psin.

◘ Insertion Error: While writing a word if a character is pressed twice or

some other character is pressed along with the original character, the

undesired character is considered to be inserted. e.g. Pain Paiin.

◘ Deletion Error: While writing a word if any or more character is missing

then it is called to be deleted and the error is considered to be a deletion

error. e.g. Painful Painfl.

◘ Transposition Error: As the name suggest, transposition errors occur

when characters have "transposed" - that is, they have switched places.

Transposition errors are almost always human in origin. The most

common way for characters to be transposed is when a user is touch

typing at a speed that makes them input one character, before the other.

This may be caused by their brain being one step ahead of their body.

e.g. Present Presetn.

All these errors can produce both real- word and non-word errors. Real-word

errors are more difficult to detect than non-word errors because the former

requires deep or shallow cortex analysis.

1.2.3. Word Error Model

In the statistical spell checking language model gives the probabilistic nature of a

correction and also the probability of that suggestion to be produced from the

given wrong word. This paper though do not suggest a statistical approach

towards spell checking, It dose get a lot of help from the error pattern study. The

16

model this paper adopts is the analysis of error pattern and thus optimizing the

underlying algorithm accordingly.

The features that are used in this model are the rate of each type of error to

occur and the rate of how many errors could occur in a word. The underlying

assumption is the error types and possible error count handling in the

descending sequence of their rate of occurrence should make the system work

faster.

1.2.4. Error Detection

Isolated word-error detection techniques can use a wide range of techniques.

The most common though is the dictionary lookup. With a wordlist with sufficient

coverage of a language and a fast dictionary lookup (typically hashing) often

provides the simplest solution to the non-word error detection problem.

However this basic technique does not scale up well for a morphologically rich

language, where a deep morphological analysis is might be necessary to avoid

false errors, i.e. in this method proper nouns are often misclassified as non-

words.

N-gram based spellcheckers does overcome some of these problems but

occasionally might fail to detect non-word errors. Real word error detection is

rather complicated and requires at least some shallow morphological knowledge

is necessary. Although, the use of word n-gram or POS-N-Gram is used in the

statistical approaches, complete understanding of the text is necessary to

achieve a high accuracy.

1.2.5. Error Correction

There are different isolated-word error correction techniques based on minimum

edit distance, similarity keys, rule based on error patterns, n-grams, probabilistic

and soft computing techniques. Among those this paper is on a method that uses

edit distance as its correction mechanism and thus edit-distance approach is

described in details in the later part of the paper.

17

The motivation behind the similarity key and some of the rule based system is to

capture and correct phonetic errors. Most typographic errors can be detected and

corrected by the edit-distance methods. Sometimes the keyboard layout is also

considered to get improved output.

Just as in the case of error detection, error correction in real-word error is also

required detailed syntactic or symmetric analysis of the text and as it is off the

context of this paper, it will not be discussed.

1.3. Spelling Checker

1.3.1. Spelling Checker

In computing terms, a spell checker or spelling checker is a design feature or a

software program designed to verify the spelling of words in a document, query,

or other context, helping a user to ensure correct spelling. A spell checker may

be implemented as a stand-alone application capable of operating on a block of

text. Spelling checkers are most often implemented as a feature of a larger

application, such as a word processor, email client, electronic dictionary or

search engine.

Simple spelling checkers operate at the word level, by comparing each word in a

given input against a vocabulary (often erroneously referred to as a dictionary).

If the word is not found within the vocabulary, it is designated erroneous, and

algorithms may be run to detect which word the user most likely meant to type.

One simple such algorithm is listing words from the dictionary with a small

Levenshtein distance from the typed word.

Spelling checkers can operate as the user enters text, notifying the user when an

error is made (usually by underlining the erroneous text). They can also operate

at the user's request, checking an entire document or email at once. A word

processor will typically offer both modes of operation.

Many spelling checkers can operate in more than one language. There are many

cases in which a user may intentionally type a word which is not within the

vocabulary of the language in which the spelling checker is operating; proper

18

nouns and acronyms are two common examples. To solve this problem, most

spelling checkers allow the user to add custom words to the spelling checker's

vocabulary. Usually the user also has the option to ignore specific errors.

1.3.2. History

The first spelling checkers were widely available on mainframe computers in the

late 1970s. The first spelling checkers for personal computers appeared for CP/M

computers in 1980, followed by packages for the IBM PC after it was introduced

in 1981. Developers such as Maria Mariani, Soft-Art, Microlytics, Proximity, Circle

Noetics, and Reference Software rushed OEM packages or end-user products into

the rapidly expanding software market, primarily for the PC but also for Apple

Macintosh, VAX, and UNIX. On the PCs, these spelling checkers were standalone

programs, many of which could be run in TSR mode from within word-processing

packages on PCs with sufficient memory.

However, the market for standalone packages was short-lived, as by the mid

1980s developers of popular word-processing packages like WordStar and

WordPerfect had incorporated spelling checkers in their packages, mostly

licensed from the above companies, who quickly expanded support from just

English to European and eventually even Asian languages. However, this

required increasing sophistication in the morphology routines of the software,

particularly with regard to heavily-inflected languages like Hungarian and

Finnish. Although the size of the word-processing market in a country like

Iceland might not have justified the investment of implementing a spelling

checker, companies like WordPerfect nonetheless strove to localize their software

for as many as possible national markets as part of their global marketing

strategy.

Recently, spell checking has moved beyond word processors as Firefox 2.0, a

web browser, has spell check support for user-written content, such as when

writing on many webmail sites, blogs, and social networking websites. The web

browser Opera and the instant messaging client Gaim also offer spell checking

support, transparently using GNU Aspell as their engine.

1.3.3. Design Paradigm

19

As already outlined, a spelling checker customarily consists of two parts: A set of

routines for scanning text and extracting words, and A wordlist (the vocabulary;

often referred to as a dictionary) against which the words found in the text are

compared.

The scanning routines sometimes include language-dependent algorithms for

handling morphology. Even for a lightly inflected language like English, word

extraction routines will need to handle such phenomena as contractions and

possessives. It is unclear whether morphological analysis provides a significant

benefit.

The wordlist might simply be a list of words, or it might also contain additional

information, such as hyphenation points or lexical and grammatical attributes.

As an adjunct to these two components, the program's user interface will allow

users to approve replacements and modify the program's operation.

One exception to the above paradigm is spelling checkers which use solely

statistics, such as n-grams, but these have never caught on. In some cases spell

checkers use a fixed list of misspellings and suggestions for those misspellings;

this less flexible approach is often used in paper-based correction methods, such

as the see also entries of encyclopedias.

1.3.4. Phonological Approach

There are several ways of looking up a word from a dictionary. One can use a flat

file to keep the dictionary or use some indexed data structure or even some

DBMS. A different approach though is to use Phonological Coding of a word to

check its correctness and generating suggestion. The two major encodings are,

Soundex and Metaphone. These encoding map the words to there compact

phonetic signature and very useful to detect phonetic errors. The detail is

necessary because the method discussed in this paper can be incorporated with

the phonological approach.

The first step is to encode all the words the dictionary has into its corresponding

phonological code. The two algorithms that are most commonly used are,

20

 Soundex: Soundex is a phonetic algorithm for indexing names by their

sound when pronounced in English. The basic aim is for names with the same

pronunciation to be encoded to the same string so that matching can occur

despite minor differences in spelling. Soundex is the most widely known of all

phonetic algorithms and is often used (incorrectly) as a synonym for

"phonetic algorithm". The Soundex code for a name consists of a letter

followed by three numbers: the letter is the first letter of the name, and the

numbers encode the remaining consonants. Similar sounding consonants

share the same number so, for example, the labial B, F, P and V are all

encoded as 1. Vowels can affect the coding, but are never coded directly

unless they appear at the start of the name. The exact algorithm is as

follows:

◘ Retain the first letter of the string.

◘ Remove all occurrences of the following letters, unless it is

the first letter: a, e, h, i, o, u, w, y

◘ Assign numbers to the remaining letters (after the first) as

follows: b, f, p, v = 1 | c, g, j, k, q, s, x, z = 2 | d, t =

3 | l = 4 | m, n = 5 | r = 6.

◘ If two or more letters with the same number were adjacent in

the original name (before step 1), or adjacent except for any

intervening h and w (American census only), then omit all but

the first.

◘ Return the first four characters, right-padding with zeroes if

there are fewer than four.

 Metaphone: Metaphone is a phonetic algorithm, an algorithm for indexing

words by their sound, when pronounced in English. Metaphone was

developed by Lawrence Philips as a response to deficiencies in the Soundex

algorithm. It is more accurate than Soundex because it "understands" the

basic rules of English pronunciation. The original author later produced a new

version of the algorithm, which he named Double Metaphone that produces

more accurate results than the original algorithm. The algorithm produces

keys as its output. Similar sounding words share the same keys and are of

variable length. A double key bases more accurate algorithm called Double

Metaphone is also available and being used.

1.3.5. Some Major GNU Spelling Checkers

21

Our prototype is designed as a open source application and a practical product

can be developed under GPL, thus some available systems needs to be

discussed.

 Ispell: Ispell is a spelling checker for UNIX that supports most Western

languages. It offers several interfaces, including a programmatic interface for

use by editors such as emacs. Unlike GNU Aspell, ispell will only suggest

corrections that are based on a Damerau-Levenshtein distance of 1; it will

not attempt to guess more distant corrections based on English pronunciation

rules.

Ispell has a very long history that can be traced back to a program that was

originally written in 1971 in PDP-10 Assembly language by R.E.Gorin, and

later ported to the C programming language and expanded by many others.

The generalized affix description system introduced by ispell has since been

imitated by other spelling checkers such as MySpell.

Like most computerized spelling checkers, ispell works by reading an input

file word by word, stopping when a word is not found in its dictionary. Ispell

then attempts to generate a list of possible corrections and presents the

incorrect word and any suggests to the user, who can then choose a

correction, replace the word with a new one, leave it unchanged, or add it to

the dictionary.

Ispell pioneered the idea of a programmatic interface, which was originally

intended for use by emacs. Other applications have since used the feature to

add spelling checking to their own interface, and GNU Aspell has adopted the

same interface so that it can be used with the same set of applications. There

are ispell dictionaries for most widely-spoken Western languages.

 GNU Aspell: GNU Aspell, usually called just Aspell, is a free software spell

checker designed to replace Ispell. It is the standard spelling checker

software for the GNU software system. It also compiles for other Unix-like

operating systems and Microsoft Windows. The main program is licensed

under the GNU Lesser General Public License (GNU LGPL), the documentation

22

under GNU Free Documentation License (GNU FDL). Dictionaries for it are

available for about 70 languages. The main maintainer is Kevin Atkinson.

 Hunspell: Hunspell is a spell checker and morphological analyzer designed

for languages with rich morphology and complex word compounding or

character encoding, originally designed for Hungarian language. It has been

the default spell checker of OpenOffice.org office suite since March 2006, and

is being incorporated into Mozilla products, such as Mozilla Thunderbird and

Mozilla Firefox. Hunspell's code base comes from MySpell spell checker.

Hunspell is free software, distributed under the terms of a GPL/LGPL/MPL tri-

license.

 MySpell: MySpell was started by Kevin Hendricks to integrate various open

source spelling checkers into the OpenOffice.org build. With a little prodding

from Kevin Atkinson, the author of Pspell and Aspell, a new spelling checker

(MySpell) was written in C++ that supported affix compression, based on

Ispell. This code has been given to Pspell and will eventually make it into a

future Pspell release after it has been integrated.

1.4. Finite State Machine

1.4.1. Finite State Automation

Finite State Machines (FSM), also known as Finite State Automation (FSA), at

their simplest, are models of the behaviors of a system or a complex object, with

a limited number of defined conditions or modes, where mode transitions change

with circumstance. Finite state machines consist of 4 main elements:

◘ States which define behavior and they may produce actions.

◘ State transitions, which are movement from one state to another.

◘ Rules or conditions that must be met to allow a state transition.

◘ Input events which are either externally or internally generated, which

may possibly trigger rules and lead to state transitions.

A finite state machine must have an initial state which provides a starting point,

and a current state which remembers the product of the last state transition.

Received input events act as triggers, which cause an evaluation of some kind of

the rules that govern the transitions from the current state to other states. The

best way to visualize a FSM is to think of it as a flow chart or a directed graph of

23

states, though as will be shown; there are more accurate abstract modeling

techniques that can be used.

figure 1.1: A possible finite state machine implementation

FSM is typically used as a type of control system where knowledge is

represented in the states, and actions are constrained by rules.

"...One of the most fascinating things about FSMs is that the very same design

techniques can be used for designing Visual Basic programs, logic circuits or

firmware for a microcontroller. Many computers and microprocessor chips have,

at their hearts, a FSM."

Finite state machines are an adopted artificial intelligence technique which

originated in the field of mathematics, initially used for language representation.

It is closely related to other fundamental knowledge representation techniques

which are worth mentioning, such as semantic networks and an extension of

semantic networks called state space.

Finite state machines is not a new technique, it has been around for a long time.

The concept of decomposition should be familiar to people with programming or

design experience. There are a number of abstract modeling techniques that may

help or spark understanding in the definition and design of a finite state

machine, most come from the area of design or mathematics.

24

Like most techniques, heuristics for when and how to implement finite state

machines are subjective and problem specific. It is clear that FSMs are well

suited to problems domains that are easily expressed using a flow chart and

possess a set of well defined states and rules to govern state transitions.

1.4.2. Advantages of FSM

 Their simplicity make it easy for inexperienced developers to implement with

little to no extra knowledge (low entry level)

 Predictability (in deterministic FSM), given a set of inputs and a known

current state, the state transition can be predicted, allowing for easy testing

 Due to their simplicity, FSMs are quick to design, quick to implement and

quick in execution

 FSM is an old knowledge representation and system modeling technique, and

its been around for a long time, as such it is well proven even as an artificial

intelligence technique, with lots of examples to learn from

 FSMs are relatively flexible. There are a number of ways to implement a FSM

based system in terms of topology, and it is easy to incorporate many other

techniques

 Easy to transfer from a meaningful abstract representation to a coded

implementation

 Low processor overhead; well suited to domains where execution time is

shared between modules or subsystems. Only the code for the current state

need be executed, and perhaps a small amount of logic to determine the

current state.

 Easy determination of the ability to reach a state, when represented in an

abstract form, it is immediately obvious whether a state is achievable from

another state, and what is required to achieve the state

1.4.3. Disadvantages of FSM

 The predictable nature of deterministic FSMs can be unwanted in some

domains such as computer games (solution may be non-deterministic FSM).

25

 Larger systems implemented using a FSM can be difficult to manage and

maintain without a well thought out design. The state transitions can cause a

fair degree of "spaghetti- factor" when trying to follow the line of execution

 Not suited to all problem domains, should only be used when a systems

behavior can be decomposed into separate states with well defined conditions

for state transitions. This means that all states, transitions and conditions

need to be known up front and be well defined

 The conditions for state transitions are ridged, meaning they are fixed (this

can be over come by using a Fuzzy State Machine (FuSM).

1.4.4. States : Some Concepts

In computer science and automata theory, a state is a unique configuration of

information in a program or machine. It is a concept that occasionally extends

into some forms of systems programming such as lexers and parsers.

Whether the automaton in question is a finite state machine, a pushdown

automaton or a full-fledged Turing machine, a state is a particular set of

instructions which will be executed in response to the machine's input. The state

can be thought of as analogous to a practical computer's main memory. The

behavior of the system is a function of,

(a) The definition of the automaton

(b) The input and

(c) The current state.

 Compatible states are states in a state machine which do not conflict for

any input values. Thus for every input, both states must have the same

output, and both states must have the same successor (or unspecified

successors) or both must not change. Compatible states are redundant if

occurring in the same state machine.

 Equivalent states are states in a state machine which, for every possible

input sequence, the same output sequence will be produced - no matter

which state is the initial state.

 Distinguishable states are states in a state machine which have at least

one input sequence which causes different output sequences - no matter

which state is the initial state.

26

A state stores information about the past, i.e. it reflects the input changes from

the system start to the present moment. A transition indicates a state change

and is described by a condition that would need to be fulfilled to enable the

transition.

An action is a description of an activity that is to be performed at a given

moment. There are several action types:

◘ Entry action: It is performed when entering the state

◘ Exit action: It is performed when exiting the state

◘ Input action: It is performed depending on present state and input

conditions

◘ Transition action: It is performed when performing a certain transition

FSM can be represented using a state diagram (or state transition diagram) as in

table 1.1. Besides this, several state transition table types are used. The most

common representation is shown below: the combination of current state (B)

and condition (Y) shows the next state (C). The complete actions information can

be added only using footnotes. An FSM definition including the full actions

information is possible using state tables.

State transition table

Current State/Condition State A State B State C

Condition X

Condition Y ... State C ...

Condition Z
table 1.1: A basic state transition table

1.4.5. Acceptors or Recognizers

There are two types of finite state machine, Acceptors/recognizers and

transducers. This paper solely concerned with acceptors or recognizers thus it

needs to be discussed elaborately.

Acceptors and recognizers (also sequence detectors) produce a binary output,

saying either yes or no to answer whether the input is accepted by the machine

27

or not. All states of the FSM are said to be either accepting or not accepting. At

the time when all input is processed, if the current state is an accepting state,

the input is accepted; otherwise it is rejected.

figure 1.2: FSM example of a parser recognizing the world "nice"

As a rule the input are symbols (characters); actions are not used. The example

in figure 1.2 shows a finite state machine which accepts the word "nice", in this

FSM the only accepting state is number 7.

The machine can also be described as defining a language, which would contain

every word accepted by the machine but none of the rejected ones; we say then

that the language is accepted by the machine. By definition, the languages

accepted by FSMs are the regular languages - that is, a language is regular if

there is some FSM that accepts it (cf. Kleene's Theorem).

The start state is usually shown drawn with an arrow "pointing at it from

nowhere" (Sipser (2006) p.34). An accept state (sometimes referred to as an

accepting state) is a state at which the machine has successfully performed its

procedure. It is usually represented by a double circle.

28

An example of an accepting state appears on the left in this diagram of a

deterministic finite automaton which determines if the binary input contains an

even number of 0s. S1 (which is also the start state) indicates the state at which

an even number of 0s has been input and is therefore defined as an accepting

state.

1.4.6. Mathematical Model

Depending on the type there are several definitions. An acceptor finite state

machine is a quintuple (Σ,S,s0,δ,F), where:

◘ Σ is the input alphabet (a finite non empty set of symbols).

◘ S is a finite non empty set of states.

◘ s0 is an initial state, an element of S. In a Nondeterministic finite state

machine, s0 is a set of initial states.

◘ δ is the state transition function:.

◘ F is the set of final states, a (possibly empty) subset of S.

1.5. Edit Distance

1.5.1. Edit Distance

In information theory and computer science, the edit distance between two

strings of characters is the number of operations required to transform one of

them into the other. There are several different algorithms to define or calculate

this metric. In many applications, it is necessary to determine the similarity of

two strings. A widely-used notion of string similarity is the edit distance: the

minimum number of insertions, deletions, and substitutions required to

transform one string into the other.

Edit distance was introduced by Levenshtein, who generalized this concept with

multiple edit operations, but did not include transpositions in the set of basic

operations. Noticeable point is a transposition error can be considered as a

substitution error with length 2.

1.5.2. Levenshtein distance

29

In information theory and computer science, the Levenshtein distance is a string

metric which is one way to measure edit distance. The Levenshtein distance

between two strings is given by the minimum number of operations needed to

transform one string into the other, where an operation is an insertion, deletion,

or substitution of a single character. It is named after Vladimir Levenshtein, who

considered this distance in 1965. It is useful in applications that need to

determine how similar two strings are, such as spell checkers.

For example, the Levenshtein distance between "kitten" and "sitting" is 3, since

these three edits change one into the other, and there is no way to do it with

fewer than three edits:

1. kitten sitten (substitution of 'k' for 's')

2. sitten → sittin (substitution of 'e' for 'i')

3. sittin → sitting (insert 'g' at the end)

It can be considered a generalization of the Hamming distance, which is used for

strings of the same length and only considers substitution edits. There are also

further generalizations of the Levenshtein distance that consider exchanging two

characters as an operation, like in the Damerau-Levenshtein distance algorithm.

This is also known as classic edit distance and the method described in this paper

uses this edit distance while ranking its outputs.

1.5.3. Damerau-Levenshtein distance

Damerau-Levenshtein distance is a string metric for measuring edit distance in

information theory and computer science. Like Levenshtein distance, it finds the

difference between two strings by giving the minimum number of operations

needed to transform one string into the other where an operation is an insertion,

deletion, or substitution of a single character.

Unlike Levenshtein distance, it counts transposition as a single edit operation,

rather than two. Damerau-Levenshtein distance is therefore equal to the minimal

number of insertions, deletions, substitutions and transpositions needed to

transform one string into the other.

30

Damerau in his seminal paper not only distinguished these four edit operations

but also stated that they correspond to more than 80% of all human

misspellings. It is worth noting that Damerau concentrated on single-character

misspellings.

1.5.4. Levenshtein Edit Distance Mapping

Levenshtein distance (LD) is a measure of the similarity between two strings,

which we will refer to as the source string (s) and the target string (t). The

distance is the number of deletions, insertions, or substitutions required to

transform s into t.

A commonly-used bottom-up dynamic programming algorithm for computing the

Levenshtein distance involves the use of an (n + 1) × (m + 1) matrix, where n

and m are the lengths of the two strings. Here is pseudocode for a function

LevenshteinDistance that takes two strings, s of length m, and t of length n, and

computes the Levenshtein distance between them:

int LevenshteinDistance(char s[1..m], char t[1..n])
 // d is a table with m+1 rows and n+1 columns
 declare int d[0..m, 0..n]

 for i from 0 to m
 d[i, 0] := i
 for j from 1 to n
 d[0, j] := j

 for i from 1 to m
 for j from 1 to n
 if s[i] = t[j] then cost := 0
 else cost := 1
 d[i, j] := minimum(
 d[i-1, j] + 1, // deletion
 d[i, j-1] + 1, // insertion
 d[i-1, j-1] + cost // substitution
)

 Return d[m, n]

This section shows how the Levenshtein distance is computed when the source

string is "iCemaN" and the target string is "Human". The figure also traces the

shortest path.

31

figure 1.3: Levenshtein distance between “iCemaN” and “Human”

Section 2: The FSR And

The Spelling Checker

32

Section 2: The Spell

Checker

2.1. Error Tolerant Finite State Mapping

We can define error-tolerant finite state recognizer as a high error tolerant

recognizer of a specific string set supported by the underlying finite state

representation of that specific string set (Oflazer, 1996). The important thing is to

generate the finite state machine to recognize only the specific string set (All the

Entries of Bangla Dictionary) only and nothing else. The term error-tolerance in the

other hand requires an error metric for measuring how much the two string deviate

from each other. Transposition is rather uncommon in Bangla text and thus

Levenshtein distance (accessible at: http://en.wikipedia.org/wiki/Levenshtein_

distance) is the measure of the deviation of two strings.

33

table 2.1: Some Bangla Verb Roots and Some of The Inflected Forms

For the demonstration purpose we will consider only the currently recognized set at

table 2.1 by our working prototype. Figure 2.1 explains the underlying finite state

recognizer’s principal by mapping some of the roots and its inflections. One thing

should be noted is that only the existing strings are recognized and nothing else,

even though there are other valid strings that are not in the list. This is the hand-

coded, rather optimized state map.

figure 2.1: Finite State Recognizer to Recognize Strings from Table 2.1

34

The state table can produce by any of the commonly used finite state machine tools

such as Xerox FST tool (accessible at: www.xrce.xerox.com/competencies/content-

analysis/fssoft/docs/fst-97/xfst97.html) and AT&T FSM library (accessible at:

http://www.research.att.com/~fsmtools/fsm/).

The mapping can be extended for every transition representing a property, a feature

not required for our implementation at present. For this particular case study, we

have used only 10 root words and a handful of inflections, but it is enough to test

the expected improvements made to the approach to be used as a non-word spell

checker.

The extensive mapping is not used but kept as a future extension to the spell

checker to have the ability to work on real-word errors. The data structure for such

implementation may vary from the one we are using but concept remains somewhat

the same.

2.2. The Algorithm

35

Test String

String Scanner End of String

No

Spelling Checking
Algorithm

Finalizing
Solutions

Yes

Possible Solutions

Finite State
Table Show Output

Algorithm Block

figure 2.2: Spelling Checker System Block Diagram

The spelling checker being developed deals with only isolated non-word errors. The

algorithm has been optimized on the basis of statistics to handle the most probable

errors efficiently and yet leave the scope to handle the more unusual cases. The

algorithm handles substitution and insertion errors somewhat in a similar manner. It

uses the look-ahead character to map the next move. On the other hand, deletion

error is handled through the current character.

table 2.2: Rate of Different Errors to Occur in Bengla Text

One advantage in checking spelling using this algorithm is that at every encounter of

an erroneous character, it saves the current state and thus uses it with later a

character which reduces the scope of misdetection in a multi-character error

situation. At the same time it does not leave any possibility unexplored and often

produces "absurd" results, but if we take a closer look, the absurd strings turn out to

36

be probable solutions in terms of string pattern similarity. The list of types of Bangla

error found in table 2.2 and the rate of their occurrences are the main motivations

behind the spell checking process (Chaudhuri, 2001).

Make Single

 Transition With c(i)

(Correct Sequence)

Make Double

 Transition With c(i +
 1)

(Single Substitu
tion)

Make Double

 Transition With c(i)

(Single Deletion)

Make Single

 Transition With c(i +
 1)

(Single Insertio
n)

Try Multiple

 Transition With

c(i) a
nd c(I +

 1)

(Multi-E
rror C

ombo)

figure 2.3: Process Flow Diagram of The Algorithm

2.3. Implementation

37

We have used JAVA™ SDK v1.5.0 build 06 to implement our spell checker. While the

state tables are meant to be automatically generated from a set of finite state rules,

the tables used in the prototype implementation have been hard coded. The

algorithm gets the input from the String Scanner, and then uses the Finite-State

Recognizer Table to update the set of possible solutions. As the algorithm uses all

the possibilities to reach the solution, sometimes our algorithm produces the same

string pattern with different edit distance. The finalizing selection process addresses

this problem by selecting the final solution set.

2.3.1. Error Detection

The algorithm works on the basis of error occurrence statistics. As suggested by

(Chaudhuri, 2001) that single character error is the highest among all Bangla

text errors (41.36%) thus it has been handled exclusively. More over the

expectation of the presence of a particular type of errors in table 3 also taken

under consideration. After the initialization process, we checked if each character

occurrence can be consumed by a single transition. If so then we are scanning a

correct word. We have a basic check in the main block for repetition by putting

an error value in our State-Table for every state. At each failure of such the

sequence to assume possible solution is as follows,

a) We checked for Substitution Error (Possible Expectancy 66.90%) by trying to

consume the look-ahead character in two transitions. If possible then we

switch our next test character to be the immediate next character of the

look-ahead character. The recorded edit distance of this move is 1.

figure 2.4: Handling Substitution Error

b) If we failed in section (a), we check Deletion Error (Possible Expectancy

17.87%) by trying to consume the current character by two transitions. If

38

possible then we switch our next test character to be the look-ahead

character. The recorded edit distance for this move is 1.

figure 2.5: Handling Deletion Error

c) If we failed in section (b), we check Insertion Error (Possible Expectancy

9.60%) by trying to consume the look-ahead character by a single transition.

If possible then we switch our next test character to the look-ahead

character. The recorded edit distance for this move is 1.

figure 2.6: Handling Insertion Error

d) If we failed in section (c), we first save the current state for later use and

check Multiple Character Deletion Error by trying to consume the current

character by a multiple transitions. If possible then we switch our next test

character to be the look-ahead character. The recorded edit distance for this

move is the sum of the number of transitions and 1 and it is updated to the

saved state as well.

e) If we failed in section (d), then we assume a combinational multiple errors

and try to consume the look-ahead character in multiple transitions. If

possible then we switch our next test character to be the immediate next

character to the look-ahead character. The recorded edit distance for this

move is the sum of the number of transitions and 1.

f) If all attempts are failed we make a bold assumption that all the characters

before the current character are insertions and make a multi-transition from

the start state to consume the current character and the try the next

39

character. The recorded edit distance for this move is the sum of the number

of transitions and the position of current character.

One thing that should be noticed is, we save the current state just after failing

with single error checking. This eventually will help us to lead to the correct

solution as multiple moves with the next test character will be made from that

state. All these checks will be made with all the elements of the solution set thus

no possibilities will be left off and a synchronous edit distance update is made to

keep things in order.

Another significant benefit from this approach is the reduced number of pattern

matching. The algorithm will make deterministic moves rather than trying a blind

guess. This reduces the processing time needed for each check and increases the

speed.

2.3.2. Suggestion Generation

After checking the whole string a finalizing method is used. In this step the

possible output set is checked, sorted and selected by threshold matching. All

the possibilities are finalized by making them reach a final state by the minimum

number of moves and it is tried in both forward and reverse direction. Due to the

mix of singular and multiple moves the prototype often produces same patterns

with different edit distance. Similar patterns with higher edit distance are

removed after sorting the list. Then the elements having an edit distance higher

than a predefined threshold value are truncated. Thus the result is ready.

2.3.3. Suggestion Ranking

The ranking is the most important feature of a spelling checker. The optimized

the ranking method is the better and smaller in number the suggestion would be.

In case of an edit distance based ranking method is used in a system where

huge numbers of results are produced with many of those having the same edit

distance, it is hard for a spelling checker to rank them.

The proposed system for a starter produces small number of suggestions and it

is the least probable to have too many suggestions with the same edit distance.

40

More over the threshold used is not some specific edit distance but the number

of top ranking results. Standard for this number should not be more than 10.

2.4. Performance and Evaluation

The evaluation metric used for testing the performance is based on the (Kukich,

1992) parameters for isolated-word error correction:

◘ Lexicon size;

◘ Test set size;

◘ Correction accuracy for single error misspellings;

◘ Correction accuracy for multi-error misspellings; and

◘ Type of errors handled (phonetic, typographical, OCR generated etc.).

These metrics have been used by another notable effort in Bangla spelling

checker as well (Bhatt, Choudhury, Sarkar and Basu 2005).

There were 3 files in the test set, each with 97 words. One file contained all

correct strings, another contained strings with single error of any of the possible

types, and the third file contained string with multiple, ranging from 2 to 9,

character errors. The results, with the actual clock time, are shown in Table 3.

The lexicon used in this study does not contain the actual words, rather consists

of a state table with 50 states for the 97 strings used in the test case. The

results show 92% accuracy for single character error in different positions. The

algorithm fails to find the suggestion in cases where the transposition error

occurs at either end of the word, and that accounts for much of the remaining

8% in our results.

In case of multiple character errors, the accuracy is approximately 70%. It

should be noted that some of the input words were randomly generated

nonsense words, which often led to the algorithm producing absurd suggestions

in return.

41

table 2.3: Actual Test Results on Two Different Systems

An attempt was made to check the suggestion generation capabilities of the

algorithm for any word, including those that may never occur in Bangla. One

important result is the very small incremental time needed to find single-error

misspellings over the correct ones. The state transition approach keeps the

transition time somewhat the same and that should be regarded as a significant

improvement in the performance of the spell checker.

2.5. Future Improvements

One notable improvement would be to introduce transposition errors as a single

edit distance errors. If that is done, a simple check of single transition possibility

based on the current character and the look-ahead character will yield a possible

suggestion. This type of errors is not impossible to correct with the current

algorithm but it is considered as a double substitution and thus higher frequency

of such error in a text will slow the overall process.

A faster and optimized state table generation can further improve the

performance. In the Error-tolerant Finite State Recognition with Applications to

Morphological Analysis and Spelling (Oflazer, 1996), proposed an algorithm for

such a task and yet a more optimized approach can be obtained. Improved data

structure like the Recursive Transition Network (RTN) is well suited for such a

task.

42

Extending this algorithm to handle real-word errors can be achieved by

augmenting the information kept for the mapping of the states, which is

currently used for state status determination only. Memory requirement is

another concern in the current implementation, which can be significantly

improved by using different representations such as node-edge representation

for the state table. The transition speed may also be improved by using a DBMS

approach while searching.

43

Conclusion
This paper presents a finite state machine based spelling checker for Bangla that

shows good promise in terms of suggestion generation and runtime performance.

The method described optimizes its performance by using statistical information on

the error patterns of Bangla text. While it is quite possible to use this method on

other languages without such statistics, the performance will definitely suffer. The

approach leaves much space for improvement and may be able to have practical

application with devices with low memory. The key feature is there is no dictionary.

44

References

Naushad UzZaman and Mumit Khan. 2006. A Comprehensive Bangla Spelling
Checker. In the Proceeding of International Conference on Computer Processing on
Bangla (ICCPB- 2006), Dhaka, Bangladesh, 17 February.

P. Kundu and B.B. Chaudhuri. 1999. Error Pattern in Bangla Text. International
Journal
of Dravidian Linguistics, 28(2).

B. B. Chaudhuri. 2001. Reversed word dictionary and phonetically similar word
grouping based spell-checker to Bangla text. LESAL Workshop, Mumbai.

Arif Billah Al-Mahmud Abdullah and Ashfaq Rahman. 2004. A Different Approach in
Spell Checking for South Asian Languages. In the Proceeding 2nd International
Conference on Information Technology for Applications (ICITA), China.

Kermal Oflazer. 1996. Error-tolerant Finitestate Recognition with applications to
Morphological Analysis and Spelling correction. computational Linguistics, Volume
22, page: 73 – 89.

Sebastian Deorowicz and Marcin G. Ciura. 2005. Correcting Spelling Errors by
Modeling their Causes. International Journal of Applied Mathematics and Computer
Science. Vol. 15, No. 2, 275–285.

K. Kukich, 1992. Techniques for automatically correcting words in text. ACM
Computing Surveys, 24(4):377--439.

Naushad UzZaman and Mumit Khan. 2005. A Double Metaphone Encoding for Bangla
and its Application in Spelling Checker. IEEE International Conference on Natural
Language Processing and Knowledge Engineering, Wuhan, China.

Naushad UzZaman and Mumit Khan. 2004. A Bangla Phonetic Encoding for Better
Spelling Suggestions. In the Proceeding of 7th International Conference on Computer
and Information Technology (ICCIT 2004), Dhaka, Bangladesh, December.

Aniruddh Bhatt, Monojit Choudhury, Sudeshna Sarkar and Anupam Basu. 2005.
Exploring the Limits of Spellcheckers: A comparative Study in Bangla and English.
The Second Symposium on Indian Morphology, Phonology and Language
Engineering (SIMPLE'05). Published by CIIL Mysore, pages. 60 - 65, Kharagpur,
INDIA.

