Teaching Compiler Development to Undergraduates Using a
Template Based Approach

Md. Zahurul Islam and Mumit Khan
Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh.
zahurul@bracuniversity.ac.bd, mumit@bracuniversity.ac.bd.

Abstract

Compiler Design remains one of the most dreaded
courses in any undergraduate Computer Science cur-
riculum, due in part to the complexity and the breadth
of the material covered in a typical 14-15 week semester
time frame. The situation is further complicated by the
fact that most undergraduates have never implemented
a large enough software package that is needed for a
working compiler, and to do so in such a short time
span is a challenge indeed. This necessitates changes in
the way we teach compilers, and specifically in ways
we set up the project for the Compiler Design course at
the undergraduate level. We describe a template based
method for teaching compiler design and implementa-
tion to the undergraduates, where the students fill in
the blanks in a set of templates for each phase of the
compiler, starting from the lexical scanner to the code
generator. Compilers for new languages can be imple-
mented by modifying only the parts necessary to imple-
ment the syntax and the semantics of the language,
leaving much of the remaining environment as is. The
students not only learn how to design the various
phases of the compiler, but also learn the software
design and engineering techniques for implementing
large software systems. In this paper, we describe a
compiler teaching methodology that implements a full
working compiler for an imperative C-like program-
ming language with backend code generators for MIPS,
Java Virtual Machine (JVM) and Microsoft’s .NET
Common Language Runtime (CLR).

Keywords: code generator, compiler design, lexical
analysis, optimization, semantic analysis, syntax,
analysis.

I. INTRODUCTION

A typical undergraduate is likely to experience large and
complex software design and implementation challenge
for the first time in the course on Compiler Design.
This core course in the undergraduate Computer Science
curriculum is dreaded by the undergraduate students for
both its depth and breadth of the material covered, from
theoretical computer science to the very practical issue
of how to design large modular software in a very short
time frame of a semester or even a quarter [1]. The les-
sons learned however is highly dependent on the teach-
ing methodology used as well as on the software tools
used to implement the compiler during the course. Our
experience shows that the student is more likely to ab-
sorb and retain the knowledge of both the theoretical
underpinnings of programming languages and the prac-
tical software engineering methodologies used to im-

plement a compiler for these languages if they are taught
using an incremental template based method, in which
the students “fill in” the various templates used to im-
plement the various phases in the compiler instead of
starting from scratch. In this paper, we describe our ex-
perience in developing a pedagogical software platform
for teaching compiler development to the undergraduate
students using a subset of the C programming language,
which generates code for three different architectures —
MIPS, JVM and CLR. The instructor is of course fiee
to choose any other suitable language — a scaled-down
version of a common programming language such as
Java or C for example — and create the templates needed
to develop a compiler for that language. Our approach is
quite traditional in that we make extensive use of auto-
mated tools such as scanner and parser generators to
develop a compiler for a simple but usable language,
which reduces the programming load without oversim-
plifying the underlying complexity of compiler design
[2-5].

There are a set of initial decisions that the instructor
must make before the project is underway:

1. A suitable language to develop the compiler for.
We have chosen a subset of the C programming
language modeled after the C- language described in
[6]. We could have just as easily chosen Appel’s
MiniJava [5] or Aiken’s COOL [2], which are both
designed for classroom compiler development pro-
jects. Whatever language is chosen, it is imperative
that the abstract syntax tree (AST) is well-defined
before the beginning of semantic analysis, espe-
cially if the Visitor Pattern is used to implement
the later phases.

2. The implementation language to develop the com-
piler in. We have chosen Java, although we have
developed the framework in both Java and C++, so
both are likely candidates. In fact, the instructor
may give the students a choice, within reason, of
implementation languages.

3. Automated tools. We have chosen JLex [7] and
CUP [8] as the scanner and parser generator respec-
tively (Lex and YACC when using C++). It is im-
portant to note that there are a large number of
choices available, each with its own set of con-
straints.

4. The phases of a compiler to develop. A typical
choice may be to limit the optimization phase to
simple local optimizations, or to eliminate the
phase altogether. If optimization is included, a suit-
able intermediate representation (IR) is very impor-
tant. We have chosen LLVM, which is an SSA-
based, low-level, strongly-typed IR designed to
support efficient global optimization and high-level
analysis [9].

5. The target platform. It is useful to pick a reasonable
target to generate code for, especially one for which
debugging and simulator tools are readily available.
Our typical choices include MIPS, JVM and CLR
[10-12].

6. Implementing the project. The course staff must
implement the project fully before its use in the
course. That is the only way to ensure that the pro-
ject is appropriate for the course. This also allows
the course staff to create the testing infrastructure
that the students will use.

In the following sections, we provide an overview
of the C- language, and then proceed onto the various
phases of the compiler front- and back-end.

II. OVERVIEW OF THE C- LANGUAGE

The C- programming language is basically a small trac-
table subset of C without pointers and aggregates [5].
We have extended the language to include new data
types such as bool and string. A C- program to com-
pute the greatest common divisor (GCD) of two num-
bers is shown in Fig. 1. We provide an overview of the
syntax and semantics of the language below.

// Program to compute GCD using
// Euclid's algorithm.

int gcd
{
if (v == 0)
else return gcd
}
void main
{

int x;

(int u, int wv)

return u;

(v,u-u/v*v) ;
(void)
int y;

write int (gcd(x,y));
1

Fig. 1 C- program to compute GCD using Euclid's al-
gorithm.

A. Lexical Convention

Table I shows the keywords, operators, and the special
symbols in the C- language.

Table I C- language lexical items

Keywords int, bool, string, void, true,
false, if, else, while, return.

Operators + - *F /<<= > >= = |I=
= - (unary) !

Special symbols | ;,()[]1{}//

Other tokens ID, INT LITERAL,
STR_LITERAL

An Identifier in C- language consists of a letter, fol-
lowed by zero or more letters, digits, or underscores and

these are case sensitive. An INT LITERAL is an integer
literal (a digit followed by zero or more digits). A
STR_LITERAL is character string literal, surrounded by
double quotes. White space consists of blanks, new
lines, and tabs. White space must separate IDs,
INT LITERALs, STR LITERALs and keywords.
Comments start with //, and extend to the end of the
line. The following regular expressions describe the ID,
INT _LITERAL, and STR_LITERAL tokens:

letter = [a-zA-Z]

digit = [0-9]

ID = letter (letter | digit | © *)*
INT_LITERAL = digit digit* = digit+
STR_LITERAL = [A7]* <

B. Grammar

A C- program contains list of declaration, statements,
and expression. Each function declaration has a return
type, name (identifier) list of parameter and compound
statement. A compound statement may have some local
declaration and list of statement. The C- language sup-
port various types of statements such as compound
statement, assignment statement, selection statement,
iteration statement, call statement and return statement.
The grammar of C- language is given in Table II

Table II C- language grammar

. program —> declaration-list
. declaration-list > declaration-list declaration | €

. declaration = var-declaration | fun-declaration

AW N =

. var-declaration - type-specifier ID ;
| type-specifier ID [INT LITERAL];
. type-specifier - int | bool | string | void

(9,

6. fun-declaration = type-specifier ID (params)
compound-stmt

7. params —> param-list | void | €
8. param-list = param-list , param | param
9. param —> type-specifier ID | type-specifier ID []

10. compound-stmt = { local-declarations
statement-list }

11. local-declarations = local-declarations
var-declaration | €

12. statement-list = statement-list statement | €
13. statement > compound- stmt | assign-stmt
| selection-stmt | iteration-stmt | call-stmt
| return-stmt
14. selection-stmt > if (expression) statement
| if (expression) statement else statement
15. iteration-stmt = while (expression) statement
16. return-stmt = return ; | return expression ;
17. call-stmt = call ;

18. assign-stmt = var = expression ;

19. var - ID | ID [expression]

20. expression = expression mulop additive-expression
| expression addop additive-expression
| expression relop additive-expression
| (expression)
| var
| call
| INT LITERAL
| STR_LITERAL
| true
| false

2l.relop 2 <=|<|>|>=|==|!=

22. addop 2> +| -

23. mulop 2> * |/

24. call > ID (args)

25. args > arg-list | €

26. arg-list > arg-list , expression | expression

A sample C- program that calculates greatest com-
mon divisor is shown in Fig. 1.

lll. THE COMPILER FRONT-END
PHASES

The first phase of the compiler is the lexical analysis
phase, which reads the input program to be compiled,
and breaks it up into a sequenced of tokens. These to-
kens are in turn used by the next phase of the compiler,
the syntax analyzer, to check for grammaticality of the
input program. We use JLex [7] to automatically create
a C- language scanner given its token definition. It is
instructive to study the NFA and DFA tables produced
by the automated scanner. The students are provided
with a template that describes some of the tokens in the
language, and are required to fill in the rest to create a
complete scanner. The test input programs are provided
to check for conformance. The students should learn to
write hand-crafted scanners, but that can be limited to a
highly simplified language.

The next phase of the compiler reads in the sequence
of tokens returned by the scanner, and performs a syn-
tactic check of the input program against the specified
grammar. The output of this phase is an abstract syntax
tree (AST) of the C- language program. We use Con-
struction of Useful Parsers (CUP) [8] to create the parser
for the C- language. The students are advised to study
the LALR states and transitions produced by the gener-
ated parser. The critical design decisions in this phase
are to (a) create the grammar description suitable for the
parser algorithm, and to (b) create the AST type hierar-
chy that describes the language to be compiled in rea-
sonable detail. We have in the past chosen to split these
two decisions and have implemented these in two sub
phases. The design of the AST type hierarchy is critical

in the later phases, and must be designed with fore-
thought. Fig. 2 shows the AST type hierarchy used in
the most recent course on compiler development that
used the C- language described here. Note that while
there is no one “correct” AST type hierarchy, there are
many “wrong” ones, and the instructor needs to spend
some time detailing the various design decisions that go
into designing such a hierarchy so that the students gain
some insight into the process. It is also important to
design a stable AST type hierarchy right at the begin-
ning if one should choose to use the Visitor Pattern
[13] to implement the later phases of the compiler. Our
later phases of the compiler are all designed using the
Visitor Pattern, greatly simplifying the implementation.
For the first sub phase, the instructor sets up the skele-
ton subset of the language grammar, and the students
must complete the grammar description and create a
complete parser that emits error messages if there are
syntax errors. The second sub phase is more complex,
as it requires the building of the AST given the AST
type hierarchy. The template CUP description includes
examples of how some of the top-level AST nodes are
created, as well as some of the leaf nodes (e.g., IdAST,
IntLiteralAST, etc), and the students fill in the rest after
studying the AST type hierarchy in detail. One of the
useful techniques to verify the correctness of the AST
creation is to visualize the AST as a graph. Our students
create a DotPrinter visitor to output the AST in the
GraphViz dot format [14], which can then be visualized
using the dotty program. Another useful assignment is
to write a PrettyPrinter visitor, which traverses the AST
to create a formatted version of the original source code.

Once the AST is created by the syntax analysis
phase, the semantic phase proceeds to check the static
semantics of the input program. The two main tasks for
the semantic analysis phase are to (a) create the name-to-
object bindings for the input program, checking for dec-
laration errors, and to (b) check the static type correct-
ness. Both of these are implemented using the Visitor
Pattern.

The name-checker visitor traverses the AST and cre-
ates name-to-object bindings using a symbol table, ap-
propriately scoped. The design of the symbol table is an
important design decision in industrial strength compil-
ers, but for the purposes of the project can be a simple
Java HashMap that maintains the binding for each
scope. The students should however be made aware of
the various techniques used to create and maintain a
symbol table. The visitor that implements this function
annotates the AST with binding information that is later
used by the semantic type-checker visitor to check for
type correctness in the input program. The template sets
up the NameChecker visitor that traverses the AST and
checks the names using a symbol table, which is local
to the visitor. The visitor annotates the AST with the
name binding information, and discards the symbol
table.

— FuncDeclAST I ArrayParamAST
— ParamAST —— L ScalarParmAST
— DeclAST ¢ ArrayVarDeclAST
— LessExpAST
- ScalarVarDeclAST
I LessEqualExpAST
— DeclListAST
— ArrayExpAST
— GreaterExpAST
— ExpListAST
— BinaryOperatorAST |«¢
— GreaterEqualExpAST
— ExpAST ¢
— CallExpAST
— EqualExpAST
— ParamListAST
— FalseAST
— NotEqualExpAST
F— ProgramAST
— IdAST
AST |d— — PlusExpAST
— StmtListAST
— IntLiteral AST
F MinusExpAST
— StmtAST |d—
— StrLiteral AST
F— MutiplyExpAS
— TrueAST
— DivideExpAST
L UnaryOperatorAST |«—
— OrExpAST
AssignStmtAST - AndExpAST
CallStmtAST
NotExpAST
L1 TypeAST |«
CompoundStmtAST
UnaryMinusExpAST
IfElseStmtAST
IfStmtAST BoolTypeAST
ReturnStmtAST IntTypeAST
WhileStmtAST StrTypeAST
VoidTypeAST

Figure 2 The C- language AST type hierarchy

The type-checker visitor further annotates the AST by
adding type information for all the identifiers in the
input program, while checking for type correctness.
While type checking is a non-trivial task for most pro-
gramming languages, the static type semantics of the C-
language is simple enough that this is quite reasonable
to implement in a short time. The following describes
the type semantics for a function application in C- for

example:
E 2> El1 (E2) {E.type :=if E2.type =s and
El.type =S > tthent
Else type_error}

This rule says that in an expression formed by apply-
ing E1 to E2, the type of E1 must be a function s > t
from the type s of E2 to some range type t. The type of
El (E2) is t. To check of a C- program we also have to

check the type of expressions and statements. Since
some C- language constructs like statements do not
have values, the special type non_type is assigned to
those. If an error is detected within a statement, the type
assigned is type_error. The C- type system is described
by a Java or C++ class hierarchy rooted at Type. C-
language static type semantics does not have subtyping,
and so the implementation does not have to worry about
type unification, greatly simplifying the design and
implementation. The template sets up the TypeChecker
visitor that traverses the AST and checks type correct-
ness in the input program, using the name binding an-
notations in the AST. The output of this visitor is to
annotate the AST further with type information, so that
each node has a type.

IV. CODE GENERATION

The code generation phase in the compiler back-end
takes as input a higher-level intermediate representation
such as AST or some other IR such as LLVM IR of the
source program and produces as output an equivalent
target program. The target program code must be correct
and high quality, meaning that it should make effective
use of the resources of the target machine. Moreover, the
code generator itself should run efficiently. The C-
Compiler generates codes for the multiple targets ma-
chine such as Java Virtual Machine (JVM), Microsoft
Common Language Runtime (CLR), and MIPS archi-
tecture. The MIPS code generator is used as the baseline
code generator as it is trivial to map the C- AST to
MIPS instruction using a stack-machine. To generate
code for the JVM we translate the C- program into an
intermediate language called Oolong [15]. Similarly, to
generate code for the CLR we translate the C- program
into an intermediate language called Microsoft Interme-
diate Language (MSIL) [16]. The templates that are cre-
ated for this phase are one visitor per target, with some
of the code generation primitives fill in to get the stu-
dents started.

A. MIPS Code Generation

As mentioned earlier, we use MIPS as the baseline tar-
get platform, because of its orthogonal instruction set
and the availability of the SPIM simulator that can be
used to test the target code on a variety of platforms
[17]. The MIPS baseline code generator generates code
for a pure stack machine, using eight registers shown in
Table III. The calling convention and the activation
frame layout change from semester to semester to illus-
trate design trade-offs. Only a few optimizations are
performed, such as eliminating consecutive push and
pop operations involving the same register and memory
location tuple.

Table III MIPS registers used in code generation
Register Explanation

$tp Frame pointer

$sp Stack pointer

$ra Return address register
$v0 Function/expression result
$vi Function/expression result
$a0 Function argument

$t0 Temporary register

$t1 Temporary register

B. Oolong Code Generation for JVM

Our JVM code generator produces an intermediate
representation called Oolong [15] directly from the
AST. Oolong is an assembly language for the Java
virtual machine, based on the Jasmin language by Jon
Meyer [18]. The Oolong representation is functionally
equivalent to the Java binary class format, but far easier
to read and write. The JVM is divided into four concep-
tual data spaces these are: Class area, Java Stack, Heap,
and Native Method Stack. Since our code generators all
generate code for a stack machine, our primary focus is
the Java Stack. Each time a method is invoked, a new
data space called a stack frame is created. Collectively,
the stack frames are called the Java stack. The stack
frame on top of the stack is called the active stack
frame. Each stack frame has an operand stack, an array
of local variables, and a pointer to the currently execut-
ing instruction. This instruction pointer is called the
program counter (PC). The program counter points into
the method area, and points at the current instruction.

The JVM was designed with Java in mind, with sup-
port for classes. We generate a class with a name based
on the C- file name and all the C- code is translated to
Oolong code under that class. To perform any operation,
we push the operands onto the stack then perform the
operation. To generate the byte-code from the Oolong
code, we assemble the Oolong code by the Oolong as-
sembler, which is freely available on the web. It should
be noted that some of the Oolong instructions are data
type dependent.

C. MSIL CODE GENERATION FOR CLR

The .NET Common Language Runtime (CLR) [12]
is designed to be a language-neutral architecture. The
CLR differs from the JVM in this one respect. There are
many similarities as well. CLR consists of a typed,
stack-based intermediate language (IL), an Execution
Engine (EE) that executes IL and provides a variety of
runtime services (storage management, debugging, pro-
filing, security, etc.), and a set of shared libraries (NET
Frameworks) [16]. The CLR has been successfully tar-
geted by a variety of source languages, including C#,
Visual Basic, C++, Eiffel, Cobol, Standard ML, Mer-
cury, Scheme and Haskell.

To generate Byte-code for CLR we use Microsoft In-

termediate Language (MSIL) as the intermediate lan-
guage. There is an MSIL intermediate language assem-
bler available with the Microsoft .NET framework. The
Intermediate Language assembler assembles the MSIL
code to portable executable code, which is the Byte-code
for the Common Language Runtime. The CLR has an
evaluation stack, an array of local variable, and an array
of incoming arguments. The evaluation stack is like the
JVM operand stack. To perform any operation we need
to push the operands onto the evaluation stack then per-
form the operation. The array of local variable holds the
local variables of a function. To use the local variable
array in CLR we need to first allocate the space. The
array of incoming arguments contains the function pa-
rameter when a function is invoked. The MSIL instruc-
tion does not depend on the data type like Oolong in-
struction.

V. CODE IMPROVEMENT

Code improvement is often referred to as optimiza-
tion, though it seldom makes anything optimal in any
absolute sense. It is an optional phase of compilation
whose goal is to transform a program into a new version
that computes the same result more efficiently, more
quickly or using less memory or both (see [19] for an
extensive discussion on code improvement). Some im-
provements are machine independent, and can be per-
formed as transformations on the intermediate form such
as AST or low-level IR; other improvements require an
understanding of target machines, and must be per-
formed as transformations on the target program. Thus
code improvement often appears as two additional
phases of compilation, one immediately after semantic
analysis and intermediate code generation, the other
immediately after target code generation.

We have limited the code improvement to machine
independent local optimizations only. Target dependent
and Global optimizations, while somewhat covered in
the theory lessons, are simply too complex to handle in
a single semester course on compiler development. We
have chosen to use the SSA-based LLVM IR, which
makes it ideal for most of the trivial local optimization
tasks. The students are required to first create the Basic
Blocks (BB), followed by the Control Flow Graph
(CFQ), and then apply some of the simple local optimi-
zations such as constant folding, copy propagation,
common sub-expression elimination, peephole optimi-
zation, etc, all within a single basic block. There are a
set of templates for the code improvement phase, the
first of which deals with creation of the CFGs. Once
these are created, the students have to write a CFGDot-
Printer to create the graph that can be used to visualize
the CFG using GraphViz [14]. The other templates set
up the basic optimization tasks, allowing students to
incrementally add various code improvements by study-
ing some of the existing ones. Fig. 3 shows an excerpt
of the graph for the [fElseStmtAST node, created from
the GCD program in Fig. 1.

(isesimast)
D

Figure 3 AST graph visualization using GraphViz

VI. CONCLUSION

A good course in compiler development is not only
beneficial to the student’s understanding of theoretical
computer science, it also greatly enhances a student’s
grasp of the practical area of software engineering. A
compiler project is likely to be the most complex soft-
ware engineering task many students complete in an
undergraduate program. Our experience shows that a
large factor in how much the students learn from this
course depends on how the course project is structured.
Aiken points out the importance of structuring the pro-
ject carefully, and implementing the entire project by
the course staff before its use in the course, “because a
full implementation is the only reliable way to ensure
that the project is self-consistent, complete, and tracta-
ble” [2]. A template based method, where the students
create a fully working compiler from a set of templates
created by the instructor, and using well-documented
automated tools to create scanners and parsers, has been
shown to be very effective. It also helps if the students
manage to create a compiler that emits runnable code,
providing a sense of great accomplishment.

REFERENCES

[1] ACM Computing Curricula 2001 - Appendix A:
CS Body of Knowledge.
http://www.computer.org/education/cc2001/final/pl.
htm

[2] Alexander Aiken. Cool: a portable project for
teaching compiler construction. ACM SIGPLAN
Notices, Vol. 31, No. 1, July 1996.

[31 Bill Appelbe. Teaching Compiler Development.
Proceedings of the tenth SIGCSE technical sympo-
sium on Computer science education, pp. 23-27,
January 1979.

[4] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman.
Compilers Principles, Techniques, and tools.
Addison-Wesley, Boston, 1986.

[51 A. W. Appel. Modern Compiler Implementation in
Java. Second edition, Cambridge University Press,
2002.

[6] Kenneth C. Louden. Compiler Construction Prin-
ciples and Practice. PWS Publishing Company,
1997.

[7] JLex: A Lexical Analyzer Generator for Java' .
www.cs.princeton.edu/~appel/modern/java/JLex/

[8] CUP Parser Generator for Java'™.
www.cs.princeton.edu/~appel/modern/java/CUP/

[9] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. Proc. of the 2004 International
Symposium on Code Generation and Optimization
(CGO'04), Palo Alto, California, Mar. 2004.

[10]John L. Hennessy, David A. Pattterson. Computer
Organization and Design. Hardcourt (India) Private
Limited & Morgan Kaufmann, 1999.

[11]Frank Yellin, Tim Lindholm. The Java™ Virtual
Machine Specification. Sun Microsystems, Inc.,
1999.

[12] Eric Meijer, John Gough. Technical Overview of
the Common Language Runtime. MIT Press, 2001.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Re-
usable Object-Oriented Software. Professional
Computing Series. Addison-Wesley, Reading, MA,
October 1994.

[14] Emden R. Gansner and Stephen C. North. An open
graph visualization system and its applications to
software engineering. Software — Practice and Ex-
perience, Vol. 30, No. 11, pp. 1203-1233, 2000.

[15] Joshua Engel. Programming for Java™ Virtual
Machine. Addison Wesley, 1999.

[16] Andrew Kennedy, Don Syme. Design and Imple-
mentation of Generic for the NET Common Lan-
guage Runtime. Microsoft Corporation, 2000.

[17]SPIM: A MIPS32 Simulator.
http://www.cs.wisc.edu/~larus/spim.html

[18] Jasmin: A Java assembler for the Java Virtual ma-
chine. http://jasmin.sourceforge.net/

[19] Steven S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufmann, 1997.

