
Feature Unification for Morphological Parsing in Bangla
Sajib Dasgupta Dr. Mumit Khan
Department of CSE, Department of CSE,
BRAC University, Bangladesh. BRAC University, Bangladesh.
sajib44new@bracuniversity.net mumit@bracuniversity.net

Abstract
This paper describes a Feature Unification Based
Word Grammar model for the morphological
parsing of Bangla words. While normal
morphological parsing strategy is adequate to
decompose a word into morphemes, it is not able
directly to compute the part of speech of a
derivationally complex word or return a word's
inflectional features--precisely the information
required for syntactic parsing. These deficiencies
have now been remedied by adding a unification-
based word grammar component which can
provide parse trees and feature structures. In
addition to that, feature unification lessens the
number of lexicon classes (less space) and actually
reduces the complexities regarding morphotactic
analysis.

INTRODUCTION
Normal morphological parsing strategy
decomposes a word into morphemes given lexicon
list, proper lexicon order and different spelling
change rules. But this is not enough to compute the
part of speech of a derivationally complex word or
return a word's inflectional features. In this paper
we will discuss about feature based morphological
parsing for Bangla which gives us parts of speech
and other morphological features in addition to the
morpheme division. [2][8] At first we give an idea
of normal morphological parsing, then we discuss
on feature based morphological parsing and in the
end we shed light on the comparisons between the
two approaches.

NORMAL MORPHOLOGICAL PARSER
In the normal morphological parser or generator
there are actually 3 components: (1) Lexicon (2)
Morphotactics (3) Orthographic Rules. [5]

1. Lexicon

The list of stems and affixes, together with basic
information about them (whether a stem is a
Noun stem or a Verb stem, etc.). Every lexicon
is of a certain class.
Example: Here is an example

hAt1 (হাট)
Class: Verb_Stem or Root
Feature: Parts of Speech = Verb

All the lexicons in a certain class is stored in a FSA
(Finite State Automata).

2. Morphotactics

The model of morpheme ordering that explains
which classes of morphemes can follow other
classes of morphemes inside a word. For
example, the rule that the Bengali
Tense_Person_Affixes follow the Verbs rather
than preceding it. Normally morphotactics is
implemented using Finite State Automata
(FSA). For example the following FSA can be a
representation of morphotactic analysis for
Bangla:

Figure 1: FSA representing morphotactics

3. Orthographic Rules

These spelling rules are used to model the
changes that occur in a word, usually when two
morphemes combine. For example root word hAt
(হাট) is changed into hEt (েহট) when added with
verb suffix to form a word hEtECI (েহেটিছ):

PC_KIMMO version 1 implements this parsing
strategy. [1] [12]

1 Through out this paper we have used English alphabet to
represent Bangla characters. For example “আ” is “a”, “◌া ” is
“A”, “ি◌ ” is “I”, “ক” is “k”, “খ” is “K”, “য়” is “y”, “◌্
”(hasanta) is “~” etc.
We have also assumed that the words are given in Unicode
Format (vowel comes after consonant). For example েখেয়িছ is
represented as KEyECI.

FEATURE BASED MORPHOLOGICAL
PARSING
This is a morphological parser which uses a
unification based chart parser given a proper word
grammar. It does so by adding an extra analytical
component Word Grammar in addition to the three
components described previously in the normal
parsing strategy.

Just as a sentence parser produces a parse tree with
words as its leaf nodes, a word parser produces a
parse tree with morphemes as its leaf nodes. When
we parse a sentence, it is normally already
tokenized into words (since we put white space
between words); but when we parse a word, we
must first tokenize it into morphemes. This
tokenizing is done by the morphotactic and
orthographic rules and lexicon. When a surface
word is submitted to a Recognizer, the rules and
lexicon analyze the word into a sequence of
morpheme structures (or possibly more than one
sequence if more than one analysis is found). A
morpheme structure consists of a lexical form, its
gloss, its category, and its features. For example,
the word anAdUnIktAr (aনাধিুনকতার) is tokenized
into this sequence of morpheme structures.

 Figure 2. Morpheme structure

Here cat, next_cat, to_cat, prev_cat all are feature
variables and PF (prefix), ADJ (adjective), N_ADJ
(both noun and adjective), N(noun), SF (suffix),
INF(inflection) are features. The descriptions of
the features are as belows:

cat:
 It specifies the category of a lexicon.
 It can be N, ADJ, V, P,

next_cat:

It specifies the lexical category of the stems to
which it can attach as a prefix.

 It can be N, ADJ, V, P,

prev_cat:
 It specifies the lexical category of the stems to
 which it can attach as a suffix.
 It can be N, ADJ, V, P,

This analysis (all the tokens) is then passed to the
word grammar which returns the parse tree and
feature structure. Word grammar portion actually
contains rule list showing how to form a word and
all the feature constraints. [8][5] We can use a chart
parser to get a parse tree. For every node in the
parse tree we have to ensure that no feature
constraint is violated. Features of a certain node are
actually those features which are derived from the
features of the child nodes. So for a node in the
parse tree we have to do two things :

(1) Feature Unification

 Figure 3. Feature Unification

Feature unification is to see whether the feature
constraint specified in the parent node prevails if
we have the features from the child nodes. For
example in the above picture in the parent node we
have to see whether feature F1 of node1 is equal to
the feature F2 of node2. If it is not true then this
parse tree formation is false.

(2) Feature Collection

 Figure 4. Feature Collection

It is to collect features from the child nodes. For
example in the above picture in the parent node
feature F is equal to the feature F1 of node1.

So for the Bangla if we define a word grammar like
this [PCKIMMO Version2]: [2][7][13]

Word = Stem INFL
 <Stem cat> = <INFL prev_cat > //feature unification
 <Word cat> = <Stem cat> //feature collect

Stem = Stem_1 SUFFIX
 <Stem_1 cat> = <SUFFIX prev_cat >
 <Stem cat> = <SUFFIX to_cat>

Stem_1 = PREFIX ADJECTIVE
 <PREFIX next_cat> = <ADJECTIVE cat >
 <Stem_1 cat> = < ADJECTIVE cat>

Then after the chart parsing and feature unification
we get the following parse tree and feature
structure:

Fig 5: Parse tree and feature structure for
anAdUnIktAr(aনাধুিনকতার).

Here we can see that after the final parsing the top
node Word has feature cat=N which specifies that
the final word's category is NOUN although its root
word adUnIk is actually ADJECTIVE. This is
because the SUFFIX tA is added with the
ADJECTIVE and changes it into NOUN. This
feature constraint specified above in the word
grammar is specified once again as belows:

Stem = Stem_1 SUFFIX
 <Stem_1 cat> = <SUFFIX prev_cat > //unification
 <Stem cat> = <SUFFIX to_cat> //feature collect

This states that prev_cat feature of SUFFIX has to
be same with the cat feature of Stem_1 and cat
feature of Stem is equal to the to_cat feature of
SUFFIX. For the word anAdUnIktAr, anAdUnIk
is Stem_1 and tA is SUFFIX. And after the normal

parsing [as shown in Figure 2] we get the lexicon
tA(তা) as

Form tA(তা)
class SUFFIX
fearture [
 cat=SF
 prev_cat=ADJ
 to_cat= N
]
Which confirms that tA should be added with the
category ADJ (ADJECTIVE) and after the addition
new category will be N(NOUN). For the above
word, as anAdUnIk is of category ADJ feature
unification succeeds. [11][9]

The above feature unification also rules out any
other combination like
 anAdr + tA = anAdrtA X
because anAdr(aনাদর) is NOUN and tA(তা) cannot
be added with the NOUN.

THE REASONS BEHIND FEATURE BASED
MORPHOLOGICAL PARSING
There are several reasons why we should use
feature based morphological parsing for Bangla
words: [10]

(1)The word grammar component can
deduce the lexical category (part-of-
speech) of a word:

It is not easy to determine the part-of-speech of
derived words whose parts of speech is different
from the parts of speech of the the root word. For
example adUnIk (aনাধিুনক) is ADJECTIVE but
adUnIkAyn(adUnIk + Ayn) is NOUN. Because
the suffix ayn (আয়ন), when added with the
ADJECTIVE root, changes it into NOUN. [11] So
just dividing a word into its morpheme structure is
not enough. We have to collect all the lexical
features which are relevant to a certain word. This
is only can be done in Feature Based
Morphological Parsing.

As we showed in the example of anAdUnIktAr
given above in Figure 5, we can see that after the
parsing and feature unification we get a feature
structure which specifies that the word
anAdUnIktAr is of category (part of speech)
NOUN.

(2)The word grammar component offers a
more powerful model of morphotactics.

Morphotactics, as we said earlier, explains of
morpheme ordering that explains which classes of
morphemes can follow other classes of morphemes
inside a word. Normally a Bangla word follows the
following morpheme order:

 Word = PREFIX* ROOT SUFFIX*
 (1)
In this notation an asterisk(*) indicates zero or
more occurrence of an element. Thus a word
consists of an obligatory root (or indivisible stem)
preceded by zero or more prefixes and followed by
zero or more suffixes. This accounts for all
inflectional or derivational structure.

This obviously is a rather coarse analysis of
morphotactic structure, and as such greatly over
recognizes. While it enforces the relative order of
prefixes, roots, and suffixes, it does not enforce any
order among prefixes or suffixes. For example,

adUnIktA = ROOT + SUFFIX = adUnIk + tA
adrtA = ROOT + SUFFIX = adr + tA
 (2)

both follows the same morpheme structure as in (1).
But we know first one is correct but second one not.

We can solve this by creating more classes
depending on the ROOT category (parts of speech)
and more PEEFIX and SUFFIX subsets depending
on the which one is added with which ROOT class.
For example this can be a morpheme structure
which can handle the above over recognition.

 Figure 6: Changed morpheme structure.

So SUFFIX tA is added with only ROOT of
category ADJECTIVE.

But there are two problems associated with this
kind of morphotactics based on classification.

Problem 1
This kind of classification based morphotactics
makes the finite state (FSA, which is used to
represent the morphotactics) look cumbersome.
For example the finite state to handle the VERB
morphology can be like Figure 7: [4]

 Figure 7. FSA for verb.

Problem 2
The second problem is that different suffix and
prefixes wants ROOT to be classified on
different category. For example In the example
given in (2) we classify ROOT based on its parts of
speech(NOUN or ADJECTIVE). Again the number
SUFFIX (gUlO, rA,.....) wants the ROOT to be
classified on SEMANTIC information like whether
the root is PERSONAL ROOT (mAnUsh) or
MATERIAL ROOT(bI). This makes
morphotactics look even more complex.

All these problems can be solved if we use feature
based morphological analysis. For example the
FSA for representing the VERB morphology in Fig
7 will be as simple as this:

 Figure 8: Simple FSA for verb.

For this just we have to define all the features and
different features constraints which will specify
which class of morpheme will add with which
class. This feature constraints are actually handled
during the parsing through feature unification as
described previously. For example here are three
lexicons:
 lexicon : KA (খা)
 category: VERB
 feature : LAST_CHAR=V

lexicon : hAt (হাট)
 category: VERB

 feature : LAST_CHAR=C

 lexicon : c~C (c)
 category: TENSE
 feature : LAST_CHAR=V

 lexicon : C (ছ)
 category: TENSE
 feature : LAST_CHAR=C
So, when we parse KAc~CIlAm(খািcলাম) feature
unification of KA+ c~C (VERB + TENSE) occurs
successfully. Same is true for hAtCIlAm. But if
we parse KACIlAm(খািছলাম) feature unification of
KA+ C (VERB + TENSE) does not occur.

It is true that as there are less classes more
lexicons will remain in a certain class. So
searching time should be high. For example for
ROOT we have to search all the NOUN,
ADJECTIVE etc. But if we use FSA to represent a
class then searching time will be optimal
irrespective of less class members or more class
members. It is described in more detail in the next
section.

(3)Feature Based Morphology Uses the FSA
more optimally
We use FSA for representing a lexicon in
morphology. We know in FSA we can search a
string in the most optimal time (order(length of the
string)) given enough space. So space is a big issue
in morphology not time if we use FSA. We can show
that for Bangla if we use feature based
morphological analysis we will require less space
than we use classification based complex
morphotactics.[3][5]

As we said previously, without feature based
parsing we have to classify the ROOT depending
on parts of speech (NOUN, VERB,..........). In that
case we will have a lexicon list like this:
 NOUN: krA, klA, krAt, krtl................
 VERB: kr, krA, jA,

So Noun FSA will look like this:

Figure 9: NOUN FSA.

And VERB FSA will look like this:

 Figure 10: VERB FSA.

So if we use two classes NOUN and VERB, we
need total (9+6) = 15 nodes and (8+5)=13 edges.

But if we use Feature Based Word Grammar
process we will have only one class which contains
all the NOUN, VERB etc. Then the FSA will look
like this:

 Figure 11: ROOT FSA.

So here we see that if we use only ROOT class we
need total 9 nodes and 9 edges which is less than
the previous need. The only extra information we
have to store here is that in the final states we have
to store whether the lexicon is NOUN or VERB.

(4) The word grammar component can
provide a full feature specification for a
word
Besides lexical category, a word grammar can also
determine all features of a word that are relevant to
syntactic parsing, such as tense, number, gender,
and case. For example if we give a word like
krECI(কেরিছ) to the parser it generates the
following feature structure:
 Word:
 [
 cat= V
 time=PR tense=PER
 person=1st
]

which specifies that krECI is of root VERB, tense
PERFECT (PURAGHATITA) time PRESENT
(BARTAMAN) and person 1st (UTTAM).

CONCLUSION
So we can see that feature based morphological
parsing is the best solution towards morphological
parsing of Bangla word. Although the analysis we
put up here on Bangla is quite elementary, future
researchers can take it as a stepping stone towards
building a complete morphological parser for
Bangla.

ACKNOWLEDGEMENTS
This work has been partially supported through
PAN Localization Project (www.PANL10n.net)
grant from the International Development Research
Center, Ottawa, Canada, administered through
Center for Research in Urdu Language Processing,
National University of Computer and Emerging
Sciences, Pakistan. We would like to give them
special thanks. We also acknowledge the constant
advices and support of all the members of the
BRAC University specially Ms. Nupur, Mr.
Sheemam Monjel, Mr. Dewan Shariar Hossain
Pavel, Mr. Asif Iqbal Sarkar and Mr. Kamrul
Haider.

REFERENCES
[1]Antworth, Evan L. “PC-KIMMO: a two-level
processor for morphological analysis.”, Occasional
Publications in Academic Computing No. 16.
Dallas, TX: Summer Institute of Linguistics (1990).

[2]Antworth, Evan L. “Morphological Parsing with
Unifcation-based Word Grammar.”, A paper
presented at North Texax Natural Language
Processing Workshoup (May 23, 1994).

[3] Andrew Spencer and Arnold M. Zwicky, "The
Handbook of Morphology", Blackwell Publishers,
2001.

[4] B.B. Chaudhuri, N. S. Dash, and P. K. Kundu,
"Computer Parsing of Bangla Verbs", Linguistics
Today, Vol. 1, No. 1, pp. 64-86 (1997).

[5]Daniel Jurafsky and James H. Martin, "Speech
and Language Processing: An Introduction to
Nataural Language Processing, Computational
Linguistics, and Speech Recognition", Prentice
Hall, (2000).

[6]G. Edward Barton, Jr."The Computational
Complexity of Two-Level Morphology", November
1985, MIT, Artificial Intelligence Laboratory,
Cambridge, Mass.
"ftp://publications.ai.mit.edu/ai-
publications/pdf/AIM-856.pdf"

[7]Koskenniemi, Kimmo. “Two-level morphology:
a general computational model for word-form
recognition and production.”, Publication No. 11.
Helsinki: University of Helsinki Department of
General Linguistics (1983).

[8]Shieber, Stuart M. 1986. “An introduction to
unification-based approaches to grammar.”, CSLI
Lecture Notes No. 4. Stanford, CA: Center for the
Study of Language and Information.

[9]Pabitra Sarkar, "Bangla Rupthatter Bhumica",
1997.

[10]P. Sengupta and B.B. Chaudhuri,
"Morphological processing of Indian languages for
lexical interaction with application to spelling error
correction", Sadhana, Vol. 21, Part. 3, pp. 363-380
(1996).

[11]Suniti Kumar Chottapaday “Vasha Prokash
Bangla Bakaran”.

[12]PCKIMMO is available at
www.sil.org/pckimmo.

[13]Documentation of PCKIMMO is available at
www.sil.org/pckimmo/v2/doc.

