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Abstract 

At present time, different types of LEDs are available in the market. Currently, 

most widely used semiconducting material to make LEDs is silicon (Si). But there 

are some problems associated with Si. The major & main problem is, Si is an 

indirect bandgap material. That‘s why; electrons cannot easily move to valence 

band from conduction band. That is why, in this thesis we have worked to find out 

a possible alternative and that is carbon nanotube (CNT). The major advantage of 

CNT is, here we can control the peak emission. That‘s why; at first we have 

worked with unipolar & ambipolar emission and observed a huge difference in 

intensity. First of all, we have fitted the unipolar EL spectrum curve & obtained six 

major peaks. On the other hand, after fitting the ambipolar EL spectrum curve we 

have obtained three major peaks. The peak intensity of unipolar emission was 4.61 

(arb units). On the other hand, the peak intensity of ambipolar emission was 28.2 

(arb units). After that, for bipolar emission we have analyzed the EL spectrum of 

CNT based LED for different drain-source current IDS. Applying the fitting 

technique on each curve, we have obtained few peaks. After obtaining the fitted 

curves, we have plotted curves for different position, intensity & FWHM of peak1 

& peak2, corresponding the drain-source current IDS. Then we have observed that 

the position of peak1 does not remains constant. With increasing IDS, it moves 

towards the lower energy. Up to IDS=155 nA, it keeps the trend unchanged. After 

that it starts to move towards the higher energy. But peak2 shows a different trend. 

Just like peak1 it moves towards the lower energy up to IDS=155 nA. But after that, 

it becomes stable. When we observed the intensity of peak1, corresponding the 

drain-source current IDS, we have seen that the intensity of peak1 increases with 

increasing IDS. But when IDS reaches to 155 nA, it starts to decrease. For peak2, 

intensity also increases with IDS but it does not decrease. After that we have 

observed the FWHM of peak1. The FWHM of peak1 decreases with increasing IDS. 

But when IDS reaches to 120 nA, it starts to decrease drastically. And when IDS 

reaches to 180 nA it starts to increase. But for peak2, we have observed a different 

scenario. The FWHM of peak2 almost remains constant up to 120 nA. After that it 

starts to increase. And when IDS reaches to 155 nA, it decreases drastically. And 

when IDS approaches to 180 nA it drastically increases. We have also plotted the 

ratio of intensity of peak2 & peak1, corresponding the drain-source current IDS. We 

have observed that the ratio of intensity increases with IDS. And when IDS reaches to 
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155 nA, it increases rapidly. After that, we have plotted the ratio of area of peak2 

& peak1, corresponding the drain-source current IDS. Here we have seen that the 

ratio of area increases rapidly with IDS. And when IDS reaches to 120 nA, it rapidly 

decreases. Again when IDS approaches to 155 nA it starts to increase. In this thesis 

we have worked with two peaks only. But, in the fitted curves there are some other 

peaks too which could be a mean for further research.             
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Chapter 1 

 

Introduction 

 

A light emitting diode (LED) is a semiconductor light source.
[10]

 LEDs are used as 

indicator lamps in many devices and are increasingly used for other lighting. 

Appearing as practical electronic components in 1962,
[17]

 early LEDs emitted low-

intensity red light, but modern versions are available across the visible, ultraviolet 

and infrared wavelengths with very high brightness. 

When a light-emitting diode is switched on, electrons are able to recombine with 

holes within the device, releasing energy in the form of photons. This effect is 

called electroluminescence and the color of the light (corresponding to the energy 

of the photon) is determined by the energy gap of the semiconductor. An LED is 

often small in area (less than 1 mm
2
), and integrated optical components may be 

used to shape its radiation pattern.
[18]

 LEDs present many advantages over 

incandestant light sources including lower energy consumption, longer lifetime, 

improved physical robustness, smaller size and faster switching. However, LED is 

powerful enough for room lightening are relatively expensive and require more 

precise current and heat management than compact fluorescent lamp sources of 

comparable output. 

Light emitting diodes are used in applications as diverse as aviation lighting, 

digital microscopes, automotive lightening, advertising, general lighting and traffic 

signals. LED has allowed new texts, video displays and sensors to be developed 

while their high switching rates are also useful in advanced communications 

technology. Infrared LEDs are also used in the remote control units of many 

commercial products including televisions, DVD players and other domestic 

appliances. LEDs are also used in seven-segment display. 

Electroluminescence as a phenomenon was discovered in 1907 by the British 

experimenter H.J. Round of Marconi Labs using a crystal of silicon carbide and a 

cat‘s-whisker detector.
[19][20]

 Russian Oleg Vladimirovich Losev reported creation 
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of the first LED in 1927.
[21]

 His research was distributed in Russian, German and 

British scientific journals, but no practical use was made of the discovery for 

several decades.
[22][23]

 Rubin Braunstein of the Radio Corporation of America 

reported on infrared emission from gallium arsenide (GaAs) and other 

semiconductor alloys in 1955.
[24]

 Braunstein observed infrared emission generated 

by simple diode structures using gallium antimonide ( GaSb), GaAs, indium 

phosphide (InP) and silicon germanium (SiGe) alloys at room temperature and at 

77 Kelvin. 

In 1961 American experimenters Robert Biard and Gary Pittman, working at Texas 

Instruments,
[25]

 found that GaAs emitted infrared radiation when electric current 

was applied and received the patent for the infrared LED. 

The first practical visible-spectrum (red) LED was developed in 1962 by Nick 

Holonyak, Jr, while working at General Electric Company.
[26]

 Holonyak first 

reported this breakthrough in the journal Applied Physics Letters on the December 

1, 1962.
[27]

 Holonyk is seen as the ―father of the light-emitting diode‖.
[28]

 

M.George Craford
[29]

 a former graduate student of Holonyk, invented the first 

yellow LED and improved the brightness of red and red-orange LEDs by a factor 

of ten in 1972.
[30]

 In 1976 T.P. Pearsell created the first high brightness; high 

efficiency LEDs for optical fiber telecommunications by inventing new 

semiconductor materials specifically adapted to optical fiber transmission 

wavelengths.
[31] 

In the present time the most widely used semiconducting material is silicon (Si) 

and also gallium arsenide (GaAs). In the chip manufacturing industry they use Si 

to make transistor. As chip materials continue to grow smaller, more and more 

current is able to escape from the transistors to fail. There are other problems with 

Si too. Silicon is an indirect band material. That‘s why electrons from valence band 

cannot easily reach the conduction band. It creates further problems to make LED 

with silicon. 

Some people think GaAs as a possible solution but it has some other problems too. 

GaAs is very rare and difficult to obtain. On the other hand arsenic is toxic. It is 

toxic so much that its minimum use creates problems with handlings and disposal 
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of GaAs circuits. Moreover, arsenide has poor thermal conductivity. That‘s why 

for all these drawbacks a new semi conducting material is now a demand of time. 

Carbon nanotube shows a new hope to solve the above problems with currently 

used semiconductors. First of all, it conducts electricity better than any other 

material at room temperature. That‘s why it could be the best possible replacement 

for conventional chip making materials. Secondly, the mobility of carbon nanotube 

is about 70 times higher than that of silicon and 25 percent higher than any other 

known semiconducting materials. It measures how fast electrons can move through 

a material. Because the carbon atoms are more tightly bound together than the 

metals currently used in transistor production, electrons flowing through the tubes 

have less room to veer of track. This allows a greater amount of current to move 

even faster through carbon nanotubes than through the copper interconnects of 

today‘s chips. The carbon nanotubes not only carry current at higher speeds than 

silicon transistors but also detect electrical changes with a greater degree of 

precision than silicon. This allows the nanotube to function as a highly responsive 

sensor.   
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Chapter 2 

 

2.1 Review on current LEDs 

 

The first commercial LEDs were commonly used as replacements for incandescent 

and neon indicator lamps, and in seven-segment displays,
[32]

 first in expensive 

equipment such as laboratory and electronics test equipment, then later in such 

appliances as TVs, radios, telephones, calculators and even watches. 

Conventional LEDs are made from a variety of inorganic semiconductor materials. 

The following table shows the available colors with wavelength range, voltage 

drop and material: 

 

Table 2.1 Available LED‘s material, colors with wavelength range and voltage 

drop. 

           

 

 
Color Wavelengh[nm] Voltage drop [ΔV]  

SSe  Infrared λ > 760 ΔV < 1.63 

Gallium arsenide (GaAs) 

Aluminium gallium 

arsenide (AlGaAs) 

 

Red 610 < λ < 760 1.63 < ΔV < 2.03 

Aluminium gallium 

arsenide (AlGaAs) 

Gallium arsenide 

phosphide (GaAsP) 

Aluminium gallium indium 

phosphide (AlGaInP) 

Gallium(III)phosphide (GaP) 

http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Delta_(letter)
http://en.wikipedia.org/wiki/Gallium_arsenide
http://en.wikipedia.org/wiki/Aluminium_gallium_arsenide
http://en.wikipedia.org/wiki/Aluminium_gallium_arsenide
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Aluminium_gallium_arsenide
http://en.wikipedia.org/wiki/Aluminium_gallium_arsenide
http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
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Orange  590 < λ < 610 2.03 < ΔV < 2.10 

Gallium arsenide 

phosphide (GaAsP) 

Aluminium gallium indium 

phosphide (AlGaInP) 

Gallium(III) 

phosphide (GaP) 

 

Yellow 570 < λ < 590 2.10 < ΔV < 2.18 

Gallium arsenide 

phosphide (GaAsP) 

Aluminium gallium indium 

phosphide (AlGaInP) 

Gallium(III) 

phosphide (GaP) 

 

Green  500 < λ < 570 1.9
[33]

< ΔV < 4.0 

Traditional green: 

Gallium(III) 

phosphide (GaP) 

Aluminium gallium indium 

phosphide (AlGaInP) 

Aluminium gallium 

phosphide (AlGaP) 

Pure green: 

Indium gallium 

nitride (InGaN) / Gallium(III) 

nitride (GaN) 

 

Blue 450 < λ < 500 2.48 < ΔV < 3.7 

Zinc selenide (ZnSe) 

Indium gallium 

nitride (InGaN) 

Silicon carbide (SiC) as 

substrate 

Silicon (Si) as substrate—

under development 

 

Violet 400 < λ < 450 2.76 < ΔV < 4.0 
Indium gallium 

nitride (InGaN) 

http://en.wikipedia.org/wiki/Orange_(color)
http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
http://en.wikipedia.org/wiki/Gallium(III)_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_indium_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_phosphide
http://en.wikipedia.org/wiki/Aluminium_gallium_phosphide
http://en.wikipedia.org/wiki/Indium_gallium_nitride
http://en.wikipedia.org/wiki/Indium_gallium_nitride
http://en.wikipedia.org/wiki/Gallium(III)_nitride
http://en.wikipedia.org/wiki/Gallium(III)_nitride
http://en.wikipedia.org/wiki/Gallium(III)_nitride
http://en.wikipedia.org/wiki/Blue
http://en.wikipedia.org/wiki/Zinc_selenide
http://en.wikipedia.org/wiki/Indium_gallium_nitride
http://en.wikipedia.org/wiki/Indium_gallium_nitride
http://en.wikipedia.org/wiki/Silicon_carbide
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Violet_(color)
http://en.wikipedia.org/wiki/Indium_gallium_nitride
http://en.wikipedia.org/wiki/Indium_gallium_nitride
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Purple multiple types 2.48 < ΔV < 3.7 

Dual blue/red LEDs, 

blue with red phosphor, 

or white with purple plastic 

 

Ultraviolet λ < 400 3.1 < ΔV < 4.4 

Diamond
[34]

 (235 nm) 

Boron nitride
[35][36]

 (215 nm) 

Aluminium nitride (AlN) 

(210 nm) 

Aluminium gallium 

nitride (AlGaN) 

Aluminium gallium indium 

nitride
[37]

 (AlGaInN)—down 

to 210 nm 

 

Pink multiple types ΔV ~ 3.3
[38] 

Blue with one or two 

phosphor layers: 

yellow with red, orange or 

pink phosphor added 

afterwards, 

or white with pink pigment 

or dye.
[39] 

 

  

http://en.wikipedia.org/wiki/Purple
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Diamond
http://en.wikipedia.org/wiki/Boron_nitride
http://en.wikipedia.org/wiki/Aluminium_nitride
http://en.wikipedia.org/wiki/Aluminium_gallium_nitride
http://en.wikipedia.org/wiki/Aluminium_gallium_nitride
http://en.wikipedia.org/w/index.php?title=Aluminium_gallium_indium_nitride&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Aluminium_gallium_indium_nitride&action=edit&redlink=1
http://en.wikipedia.org/wiki/Pink
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2.2 Review on ultraviolet and blue LEDs 
 

Current bright blue LEDs are based on the wide band gap semiconductors GaN 

(gallium nitride) and InGaN (indium gallium nitride). They can be added to 

existing red and green LEDs to produce the impression of white light. Modules 

combining the three colors are used in big video screens and in adjustable color 

fixtures.  

By the late 1990s, blue LEDs had become widely available. They have an active 

region consisting of one or more InGaN, called cladding layers. By varying the 

relative In/Ga fraction in the InGaN quantum wells, the light emission can in 

theory be varied from violet to amber. Aluminum gallium nitride (AlGaN) of 

varying Al/Ga fraction can be used to manufacture the cladding and quantum well 

layers for ultraviolet LEDs, but these devices have not yet reached the level of 

efficiency and technological maturity of InGaN/GaN blue/green devices. If un-

alloyed GaN is used in this case to form the active quantum well layers, the device 

will emit near-ultraviolet light with a peak wavelength centered around 365 nm. 

With nitrides containing aluminum, most often AlGaN and AlGaInN, even shorter 

wavelengths are achievable. Ultraviolet LEDs in a range of wavelengths are 

becoming available on the market. Near–UV emitters at wavelengths around 375-

395 nm are already cheap and often encountered, for example as black light lamp 

replacements for inspection of anti-counterfeiting UV watermarks in some 

documents and paper currencies. Shorter wavelength diodes, while substantially 

more expensive, are commercially available for wavelengths down to 240 nm.
[40]

 

As the photosensitivity of microorganisms approximately matches the absorption 

spectrum of DNA, with a peak at about 260 nm, UV LED emitting at 250-270 nm 

are to be expected in prospective disinfection and sterilization devices. Recent 

research has shown that commercially available UVA LEDs (365 nm) are already 

effective disinfection and sterilization devices.
[41] 

Deep-UV wavelengths were obtained in laboratories using aluminum nitride (210 

nm), boron nitride (215 nm) and diamond (235 nm).   
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  2.3 Review on RGB systems 

 

White light can be formed by mixing differently colored lights: the most common 

method is to use red, green, and blue (RGB). Hence the method is called multi-

color white LEDs (sometimes referred to as RGB LEDs). Because these need 

electronic circuits to control the blending and diffusion of different colors, and 

because the individual color LEDs typically have slightly 

 

Fig 2.3 Combined spectral curves for blue, yellow-green, and high brightness red 

solid state semiconductor LEDs. 

different emission patterns (leading to variation of the color depending on 

direction) even if they are made as a single unit, these are seldom used to produce 

white lighting. Nevertheless, this method is particular interesting in many uses 

because of the flexibility of mixing different colors,
[42]

 and in principle this 

mechanism also has higher quantum efficiency in producing white light.  
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There are several types of multi color white LEDs: di-, tri-, and tetra chromic white 

LEDs. Several key factors that play among these different methods include color 

stability, color rendering capability, and luminous efficacy. Often, higher 

efficiency will mean lower color rendering, presenting a trade-off between the 

luminous efficiency and color rendering. For example, the dichromatic white LEDs 

have the best luminous efficacy (120 lm/W), but the lowest color rendering 

capability. However, although tetra chromatic white LEDs have excellent color 

rendering capability, they often have poor luminous efficiency. Trichromatic white 

LEDs are in between, having both good luminous efficacy (>70 lm/W) and fair 

color rendering capability. 

One of the challenges is the development of more efficient green LEDs. The 

theoretical maximum for green LEDs is 683 lumens per watt but today few green 

LEDs exceed even 100 lumens per watt. The blue and red LEDs get closer to their 

theoretical limits. 

Multi-color LEDs offer not merely another means to form white light but a new 

means to form light of different colors. Most perceivable colors can be formed by 

mixing different amounts of three primary colors. This allows precise dynamic 

color control. As more effort is devoted to investigating this method, multi-color 

LEDs should have profound influence on the fundamental method that we use to 

produce and control light color. However, before this type of LED can play a role 

on the market, several technical problems must be solved. These include that this 

type of LEDs emission power decays exponentially with rising temperature,
[43]

 

resulting in a substantial change in color stability. Such problems inhibit and may 

preclude industrial use. Thus, many new package designs aimed at solving this 

problem have been proposed and their results are now being reproduced by 

researchers and scientists.  

 

2.4 Review on Phosphor based LEDs 

 

This method involves coating LEDs of one color (mostly blue LEDs made of ( 

InGaN) with phosphors of different colors to form white light, the resultant LEDs 
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are called phosphor-based white LEDs
[44]

. A fraction of the blue light undergoes 

the stoke shift being transformed from shorter wavelengths to longer. Depending 

on the color of the original LED, phosphors of different colors can be employed. If 

several phosphor layers of distinct colors are applied, the emitted spectrum is 

broadened, effectively raising the color rendering index (CRI) value of a given 

LED.
[45] 

Phosphor based LED efficiency losses are due to the heat loss from the Stokes shift 

and also other phosphor-related degradation issues. Their efficiencies compared to 

normal LEDs depend on the spectral distribution of the resultant light output and 

the original wavelength of the LED itself. For example, the efficiency of a typical 

YAG yellow phosphor based white LED ranges from 3 to 5times the efficiency of 

the original blue LED because of the greater luminous efficacy of yellow 

compared to blue light> Due to the simplicity of manufacturing the phosphor 

method is still the most popular method for making high-intensity white LEDs. 

The design and production of a light source or light fixture using a monochrome 

emitter with phosphor conversion is simpler and cheaper than a complex RGB 

system, and the majority of high-intensity white LEDs presently on the market are 

manufactured using phosphor light conversion. 

Among the challenges being faced to improve the efficiency of LED-based white 

light sources is the development of more efficient phosphors. Today the most 

efficient yellow phosphor is still the YAG phosphor, with less than 10% Stoke 

shift loss. Losses attributable to internal optical losses due to re-absorption in the 

LED chip and in the LED packaging itself account typically for another 10% to 

30% of efficiency loss. Currently, in the area of phosphor LED development, much 

effort is being spent on optimizing these devices to higher light output and higher 

operation temperatures. For instance, the efficiency can be raised by adapting 

better package design or by using a more suitable type of phosphor. Conformal 

coating process is frequently used to address the issue of varying phosphor 

thickness. 

The phosphor-based white LEDs encapsulate InGaN blue LEDs inside phosphor 

coated epoxy. A common yellow phosphor material is cerium-doped yttrium 

aluminum garnet (Ce
3+

:YAG). 
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 2.5 Types of LEDs 

 

The main types of LEDs are miniature, high power devices and custom designs 

such as alphanumeric or multi-color.
[46] 

2.5.1 Miniature 

These are mostly single-die LEDs used as indicators, and they come in various 

sizes from 2 mm sink to 8 mm, through-hole and surface mount packages. They 

usually do not use a separate heat sink.
[47]

 Typical current ratings range from 

around 1mA to above 20 mA. The small size a natural upper boundary on power 

consumption due to heat caused by the high current density and need for a heat.  

 

 

Fig 2.6.1 LEDs of different shapes and sizes. 

Common package shapes include round, with a domed or flat top, rectangular with 

a flat top (as used in bar-graph displays), and triangular or square with a flat top. 

The encapsulation may also be clear or tinted to improve contrast and viewing 

angle. 

There are three main categories of miniature single die LEDs: 

 Low-current typically rated for 2 mA at around 2 V (approximately 

4 mW consumption). 
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 Standard 20 mA LEDs (ranging from approximately 40 mW to 90 

mW) at around :         

  1.9 to 2.1 V for red, orange and yellow,   

  3.0 to 3.4 for green and blue,     

  2.9 to 4.2 for violet, pink, purple and white. 

 Ultra-high-output 20mA at approximately 2 V or 4-5 V, designed 

for viewing in direct sunlight 

 5 V and 12 V LEDs are ordinary miniature LEDs that incorporate a suitable series            

resistor for direct connection to a 5V or 12 V supply. 

  2.5.2 Mid-range 

Medium-power LEDs are often through-hole–mounted and mostly utilized when 

an output of just a few lumens is needed. They sometimes have the diode 

mounted to four leads (two cathode leads, two anode leads) for better heat 

conduction and carry an integrated lens. An example of this is the Superflux 

package, from Philips Lumileds. These LEDs are most commonly used in light 

panels, emergency lighting and automotive tall-lights. Due to the larger amount 

of metal in the LED, they are able to handle higher currents (around 100 mA). 

The higher current allows for the higher light output required for tail-lights and 

emergency lighting. 

2.5.3 High-power 

High-power LEDs (HPLED) can be driven at currents from hundreds of mA to 

more than an ampere, compared with the tens of mA for other LEDs. Some can 

emit over a thousand lumens.
[48][49]

 LED power densities up to 300W/cm
2 

have 

been achieved.
[50]

 Since overheating is destructive, the HPLEDs must be mounted 

on a heat sink to allow for heat dissipation. If the heat from a HPLED is not 

removed, the device will fail in seconds. One HPLED can often replace an 

incandescent bulb in a flashlight, or be set in an array to form a powerful LED 

lamp. 
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                 Fig 2.6.3 High power light-emitting diodes 

Some well-known HPLEDs in this category are the Nichia 19 series, Lumileds 

Rebe Led, Osram Opto Semiconductors Golden Dragon, and Cree X-lamp. As of 

September 2009, some HPLEDs manufactured by Cree Inc. now exceed 105 

lm/W.
[51]

 (e.g. the Xlamp XP-G LED chip emitting Cool white light) and are 

being sold in lamps intended to replace incandescent, halogen, and even 

fluorescent lights , as LEDs grow more cost competitive. 

The impact of Hait‘z law which describe the exponential rise in light output of 

LEDs over time can be readily seen in year over year increases in lumen output 

and efficiency. For example, the CREE XP-G series LED achieved 105 lm/W in 

2009,
[51]

 while Nichia released the 19 series with a typical efficacy of 140 lm/W 

in 2010.
[52] 

LEDs have been developed by Seoul Semiconductor that can operate on AC 

power without the need for a DC converter. For each half-cycle, part of the LED 

emits light and part is dark, and this is reversed during the next half-cycle. The 

efficacy of this type of HPLED is typically 40 lm/W.
[53]

 A large number of LED 

elements in series may be able to operate directly from line voltage. In 2009, 

Seoul Semiconductor released a high DC voltage LED capable of being driven 
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from AC power with a simple controlling circuit. The low-power dissipation of 

these LEDs affords them more flexibility than the original AC LED design.
[54] 

 

2.6.1 Advantages 

 Efficiency: LEDs emit more light per watt than incandescent light 

bulbs.
[55]

 The efficiency of LED lighting fixtures is not affected by 

shape and size, unlike fluorescent light bulbs or tubes. 

 Color: LEDs can emit light of an intended color without using any 

color filters as traditional lighting methods need. This is more 

efficient and can lower initial costs. 

 Size: LEDs can be very small (smaller than 2 mm
2 [56] 

) and are 

easily attached to printed circuit boards. 

 On/Off time: LED light up very quickly. A typical red indicator 

LED will achieve full brightness in under a microsecond.
[57]

 LEDs 

used in communications devices can have even faster response 

times. 

 Cycling: LEDs are ideal for uses subject to frequent on-off cycling, 

unlike fluorescent lamps that fail faster when cycled often, or HID 

lamps that require a long time before restarting. 

 Dimming: LEDs can very easily be dimmed euther by pulse-width 

modulation or lowering the forward current.
[58]

 This pulse-width 

modulation is why LED lights viewed on camera, particularly 

headlights on cars, appear to be flashing or flickering. This is a type 

of Stroboscopic effect. 

 Cool light: In contrast to most light sources, LED s radiate very 

little heat in the form of IR that can cause damage to sensitive 

objects or fabrics. Wasted energy is dispersed as heat through the 

base of the LED. 

 Slow failure: LEDs mostly fail by dimming over time, rather than 

the abrupt failure of incandescent bulbs.
[59]

 

 Lifetime: LEDs can have a relatively long useful life. One report 

estimates 35,000 to 50,000 hours of useful life, though time to 
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complete failure may be longer.
[60]

 Fluorescent tubes typically are 

rated at about 10,000 to 15,000 hours, depending partly on the 

conditions of use, and incandescent light bulbs at 1000 to 2000 

hours. Several DOE demonstration have shown that reduced 

maintenance costs from this extended lifetime, rather than energy 

savings, is the primary factor in determining the payback period for 

an LED product.
[61]

 

 Shock resistance: LEDs being solid-state components are difficult 

to damage with external shock, unlike fluorescent and incandescent 

bulbs, which are fragile. 

 Focus: The solid package of the LED can be designed to focus its 

light. Incandescent and fluorescent sources often require an external 

reflector to collect light and directly it in a usable manner. For 

larger LED packages total internal reflection (TIR) lenses are often 

used to the same effect. However, when large quantities of light is 

needed many light sources are usually deployed, which are difficult 

to focus or collimate towards the same target 

.       

2.6.2 Disadvantages 

 High initial price: LEDs are currently more expensive, price per 

lumen, on an initial capital cost basis, than most conventional 

lighting technologies. As of 2010, the cost per thousand lumens 

(kilolumen) was about $18. The price is expected to reach 

$2/kilolumen by 2015.
[62]

 The additional expenses partially stems 

from the relatively low lumen output and the drive circuitry and 

power supplies needed. 

 Temperature dependence: LED performance largely depends on 

the ambient temperature of the operating environment – or ―thermal 

management‖ properties. Over-driving an LED in high ambient 

temperatures may result in overheating the LED package, eventually 

leading to device failure. An adequate heat sink is needed to 

maintain long life. This is especially important in automotive, 
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medical and military uses where devices must operate over a wide 

range of temperatures, which require low failure rates. 

 Voltage sensitivity: LEDs must be supplied with the voltage above 

the threshold and a current below the rating. This can involve series 

resistors or current-regulated power supplies.
[63]

 

 Light quality: Most cool-white LEDs have spectra that differ 

significantly from a black body radiator like the sun or an 

incandescent light. The spike at 460 nm and dip at 500 nm can cause 

the color of objects to be perceived differently under cool-white 

LED illumination than sunlight or incandescent sources, due to 

metamerism,
[64]

 redsurfaces being rendered particularly badly typical 

phosphor-based cool-white LEDs. However, the color rendering 

properties of common fluorescent lamps are often inferior to what is 

now available in state-of-art white LEDs. 

 Area light source: Single LEDs do not approximate a point source 

of light giving a spherical light distribution, but rather a lambertian 

distribution. So LEDs are difficult to apply to uses needing a 

spherical light field, however different fields of light can be 

manipulated by the application of different optics or ―lenses‖. LEDs 

cannot provide divergence below a few degrees. In contrast, lasers 

can emit beams with divergences of 0.2 degrees or less.
[65]

 

 Electrical polarity: Unlike incandescent light bulbs, which 

illuminate regardless of the electrical polarity, LEDs are only light 

with correct electrical polarity. To automatically match source 

polarity to LED devices, rectifiers can be used. 

 Blue hazard: There is a concern that blue LEDs and cool-white 

LEDs are now capable of exceeding safe limits of the so-called blue-

light hazard as defined in eye safety specifications such as 

ANSI/IESNA RP-27 . 1-05: Recommended Practice for Photo 

biological Safety for Lamp Systems.
[66][67]

 

 Blue Pollution: Because cool-white LEDs with high color 

temperature emit proportionally more blue light than conventional 

outdoor light sources such as high- pressure sodium vapor lamps, the 

strong wavelength dependence of Rayleigh scattering means that 
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cool-white LEDs can cause more light pollution than other light 

sources. The International Dark-Sky Association discourages using 

white light sources with correlated color temperature above 3.000 

K.
[68]

 

 Droop: The efficiency of conventional InGaN based LEDs 

decreases as one increases current above a given level.
[69][70][71][72]

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

2.7 Review on CNT LED 

 

2.7.1 Introduction 

Advances in fabrication, purification, and processing techniques have allowed 

carbon nanotubes to show great potential in many areas of physics, chemistry, and 

engineering.
[9]

 Existing in two forms, multiwalled and single-walled, this form of 

carbon has been shown, both experimentally and theoretically to have excellent 

mechanical and electrical properties. Individual nanotubes have elastic moduli in 

the region of 1 TPa, and in powder samples, bulk conductivity as high a 10
5 

S/m 

has been measured. 

However, while many potential applications have been suggested for carbon 

nanotubes, few practical uses have emerged. The main difficulties relate to the 

poor purity and processability of nanotube containing powders. Using nanotubes 

to improve the performance of existing functional organic devices would be one 

of the most accessible applications. One of the most studied of these devices types 

over the last 10 yr has been the organic light emitting diode (OLED). 

Efficient organic electroluminescence requires the optimization of four factors: 

balance of injection of electrons and holes, transportation of these carriers as 

polarons within the polymer, recombination of carriers to form singlet excitons, 

and the radiative decay of these excitons. In order to achieve the optimization of 

these factors, heterojunction using hole- and electron-transport layers are 

generally used. 

While many organic materials can be as hole-transport layers, materials that work 

effectively as electron-transport layers are not so common. There are various 

reasons for this, n-type undoped polymers are rare while electron mobilities tend 

to be low as a result of the efficient trapping of negative carriers by impurities, 

etc. One possible alternative to polymers or molecular materials as electron-

transport layers would be to use a high mobility material such as carbon 

nanotubes. In fact, these carbon nanocrystals can individually be extremely 

conductive with high mobilities for both electrons and holes. 
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2.7.2 Electroluminescence 

 

2.7.2.1 Review on unipolar and ambipolar FETs 

A CNT field-effect transistor is a three terminal switching device in which the 

current from the source to the drain through the CNT is controlled by an applied 

voltage at a capacitive coupled gate.
[14]

 In addition to modulating the carrier 

density in the CNT, the gate voltage also modulates the injection of carriers at the 

source and drain Schottky barriers. The polarity of the device depends on the 

Schottky barriers heights for electrons and holes, and can be engineered to some 

degree by adjusting the metal work functions. For example, for palladium 

contacts, the Schottky barriers for holes are small and devices are p-type, whereas 

annealed titanium contacts produce ambipolar devices with intermediate Schottky 

barrier heights for electron and holes. 

                             

                               Fig 2.7.2.1 Schematics of a CNT p-n junction. 

 

Ambipolar CNT field-effect transistors (FETs) are not particularly desirable for 

logic operations, because they lack a well-behaved off state. As a result, ways 

have been developed to regain a unipolar device characteristic by using a double 

gate or by chemically doping the contact region. On the other hand, ambipolar 
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transistors enable the injection of electrons and holes from opposite contacts into 

the CNT, and thus are very useful for electro-optic applications. 

 

2.7.2.2 Electron-hole recombination in ambipolar nanotubes 

Electron-hole pairs in semiconductors may recombine by a variety of 

mechanisms.
[14]

 In most cases, the energy will be released as heat (phonos), but a 

fraction of the recombination events may involve the emission of a photon. This 

electroluminescence (EL) process is widely used to produce solid-state light 

sources such as LEDs. To produce an electroluminescent device that emits a 

significant amount of light, a large number of electrons and holes must recombine. 

In an LED, this is achieved at an interface between a hole-doped (p-doped) and an 

electron-doped (n-doped) material. In ambipolar CNT-FETs, electrons and holes 

can be simultaneously injected at opposite ends of the CNT channel. This enables 

radiative recombination to take place in the CNT and EL is generated. Although 

the emission mechanism is the same as that in LEDs, ambipolar CNT-FETs do not 

require any chemical doping, a significant simplification of the fabrication 

process. 

 

 

Carbon-nanotube EL exhibits a number of interesting properties. The emitted 

light, as with photoluminescence, is polarized along the tube axis, and the 

radiation has a characteristic energy that depends on the diameter and chirality of 

the excited single-walled CNT. The length of the electroluminescent region is of 

the order of the recombination length which is less than or equal to 1 µm. At a 

gate voltage halfway between the value of the source and drain voltages, about an 

equal numbers of electrons and holes are injected. The total current is minimized, 

but the amount of light generated is maximized. In short devices, the light 

emission encompasses the entire CNT. In long devices, where electron-hole 

recombination is fast compared with carrier transit times through the channel, 

light emission originates from a small part of the CNT, where electrons and holes 

coexist and can annihilate. As a result, the emission is localized to where the 

concentrations of electron and holes overlap most strongly. In the regions above 
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and below this recombination spot, transport is unipolar and charge carriers are of 

opposite sign. Most importantly, because no chemical doping is involved, the 

electron-hole overlap region and thus the region of light emission can be 

physically moved along the CNT using the gate electrode. A CNT-EL device is 

thus a translatable light source. 

In long CNT-FETs, a simple drift transport model accounts well for the main 

features of the movement of the light emission. For intermediate-length devices 

numerical calculations for the light emission have been performed. The EL spectra 

can be similar to photoluminescence spectra. However, electrical pumping is 

usually much stronger than optical pumping, excitation densities are much higher, 

and a broad emission with a low-energy onset at the E11 exciton energy is usually 

observed. 

 

2.7.2.3 Hot-carrier induced excitation and unipolar emission 

In addition to photon irradiation and electron-hole recombination, excitation of 

CNTs can be achieved through energic – ‗hot‘ – carriers flowing through the 

CNT.
[14]

 This is an impact-scattering mechanism that involves coulombic 

interactions between electrons. Electron-electron interactions are very strong in 

1D materials such as CNTs. Indeed, calculations suggest that impact-excitation 

processes in CNTs are much more efficient (about four orders of magnitude 

stronger) than in conventional bulk semiconductors. The carriers are accelerated 

by the applied electric field, gain energy and then lose some of it to phonons, 

primarily optical phonons. When an energy threshold, Eth, is reached, electronic 

excitation of the CNT across the bandgap can take place. The value of Eth is 

determined not only by the E11 energy, but also by the requirement to conserve the 

circumferential angular momentum of the CNT in the impact-excitation process. 

Solving the Boltzman equation shows that the exciton production probability, P, 

varies exponentially with F, that is P ~ exp(-Eth/eFλop), where e is the charge of an 

electron, Eth ~ 1.5 E11 and λop (about 20-40 nm) is the electron mean free path with 

respect to optical-phonon 
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Fig 2.8.3 Localized and mobile EL from a looped CNT.  

 

scattering. The hot-carrier-induced impact excitation of CNTs can be used to 

create an efficient EL source . The current is carried by only one type of carrier 

(either electrons or holes), and inhomogeneities actively generate electron-hole 

pairs by impact excitation. The emission occurs near defects, trapped charges in 

the gate insulator, CNT-CNT contacts, the Schottky contacts, or any other 

inhomogeneities that produce large, local electric fields that can accelerate the 

carriers to energies above Eth. For example, for the straight CNT, there are at least 

three stationary spots that do not move with the gate voltage. Each of them 

appears to the negative voltage side of the ambipolar spot, where the 

corresponding CNT segment has become n-type. They disappear past the 

ambipolar spot. Experiments like these suggest that locally p-doped segments act 

as n-p-n junctions during electron conduction, owing to pockets of trapped 

electrons in the SiO2 used as the gate dielectric. Thus, monitoring localized EL 

provides a tool for detecting defects in CNT devices. 

Figure 2.8.3 shows looped nanotubes, where hot carriers tunnel from one end of 

the CNTs to the other end across the base of the loop and produce light by impact 

excitation. Different loops on the same CNT may or may not show unipolar EL, 

depending on the microscopic properties of the junction. An analogous variation 

in contact properties has been observed in photovoltage measurements of looped 

CNTs that, unlike EL measurements, probe the low-bias behavior of devices. The 

light emission also depends on the charge in the surrounding CNT segments, 
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which can be changed by moving the ambipolar spot across the base of the loop 

using the gate bias. For example, in Fig 2.8.3 two of the loops become active for 

hole conduction. Note that the ambipolar infrared spot never moves through the 

interior of the loop and instead jumps across the CNT-CNT contacts, which 

suggests strong intertube electron-hole coupling. 

Artificial structures can also be fabricated to create the abrupt change in the 

potential that is required to generate localized light emission by impact excitation. 

It consists of a back gated CNT-FET in which a trench has been cut in the gate 

oxide by etching so that a portion of the CNT channel is suspended. The 

difference in the coupling to the gate of the oxide-supported and the suspended 

part of the CNT leads to band-bending at the interface of the twp segments. 

Carriers reaching this interface are accelerated and, through impact excitation, can 

produce excitons or electron-hole pairs that recombine radiatively. 

Light intensity, I, from unipolar devices depends exponentially on the applied 

electric field, I (photon) α exp(-Fth/F),where  Fth is the threshold field required for 

electronic acceleration within the band. Furthermore, impact excitation is not 

subject to the same selection rules as photoexcitation spectra. Although interband 

transitions are suppressed in favor of exciton transitions in photoexcitation, impact 

excitation does produce free electron-hole pairs. Thus using internal impact 

excitation, both exciton and bandgap CNT emission can be observed. In 

suspended metallic tubes under high-bias conditions, light emission was also 

observed as a result of the hot carrier distribution. 

 

2.7.3 Advantages of CNT LED 

 

Single-walled CNT films are conductive, optically transparent and flexible.
[14]

 

These properties have been used to make anodes for organic LEDs. The advantage 

over the traditionally used indium tin oxide films is their cheaper price, flexibility 

and resilience to corrosion. For example, polymer OLEDs with CNT anodes that 

have maximum light output of 3,500 cd m
-2

 and a current efficiency of 1.6 cd A
-1

 

have been reported.  
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Another way to use CNT in light-emitting devices is in the form of composites 

with conjugated polymers. Indeed, enhanced EL in such composites has been 

reported by many authors, and enhanced photovoltaic behavior was also observed 

in such composites. 
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Chapter 3 

   

3.1 Work Analysis 

The objective of this work is to investigate the advantage of carbon nanotube over 

other materials especially in the field of optoelectronics. In the field of 

optoelectronics, Si based devices is expected to reach its limiting size. Carbon 

nanotube is one among the most promising alternatives due to its superior 

optoelectronic properties. In this thesis, the performance of nanotube based 

devices will be investigated. 

 

 

3.1.1 Experimental detail 

Comparing with CNT LEDs, Si based LEDs are not that much efficient in terms 

of luminous intensity. One of the main reasons behind it, is Si is an indirect 

bandgap material. That‘s why, electrons cannot easily reach to conduction band 

from valence band. This is a major obstacle to make LEDs with Si. On the other 

hand, carbon nanotube is a highly conductive material. And semiconductor CNTs 

are direct bandgap material. Here optical transition occurs according to the Van 

Hove singularities. If E11 optical transition occurs, it is said to be the first Van 

Hove optical transition and second Van Hove optical transition for E2 
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Fig 3.1.1Density of states of metallic & semiconducting CNT
[73] 

 

The main focus of this experiment is on CNT FET, where the channel is made of 

CNT with two gate biasing voltages. One gate bias injects holes and other injects 

electrons from two opposite directions. And the recombination occurs at the 

channel. Another big advantage of CNT FET which will be examined and 

discussed thoroughly later in this chapter is, here we can control the peak 

emission. This is a unique characteristic of CNT over other semiconductive 

materials. In this experiment we will examine the change of peak position, peak 

intensity, FWHM and the ratio of area and intensity of two different peaks. 
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3.1.2 Comparison between unipolar and ambipolar emission 

We have experimental data available for unipolar and ambipolar emission. The 

following figures are for the comparison between two types of emissions in terms 

of their peak position, intensity and FWHM. 

   

 

Fig 3.1.2.1 Fitted curve of unipolar light emission.
[6] 
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                                      Fig 3.1.2.2 Fitted curve of ambipolar light emission.
[6]
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Table 3.1.2 comparison between unipolar and ambipolar emission 

 Peak position Peak intensity FWHM 

Unipolar 0.72808 4.61 0.0887348 

Ambipolar 0.63061 28.2 0.0495697 
 

It is being clearly seen from the above table and the graphs the big difference of 

unipolar and ambipolar emission in terms of peak intensity. It is mainly because of 

the biasing difference between two types of emission. In unipolar mechanism, 

biasing is either positive or negative. That‘s why only holes or electrons can be 

injected here. As a result, at unipolar biasing non-radiative recombination 

dominates over radiative recombination.  

On the other hand, in ambipolar mechanism biasing is bipolar. That‘s why; both 

electrons and holes are injected over here. As a result, here radiative recombination 

dominates over non-radiative recombination. 

For the above reasons, at unipolar biasing peak intensity decreases to a large extent 

and that reduces the electroluminescence intensity.  
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3.1.3 Electroluminescence spectrum at different drain-

source current IDS  

The following curves are to examine the different EL intensity at different IDS at 

bipolar biasing condition. 

 

 

Fig 3.1.3a EL spectrum of nanotube diode recorded at IDS=60 nA.
[6] 
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Fig 3.1.3b EL spectrum of nanotube diode recorded at IDS=120 nA.
[6] 
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Fig 3.1.3c EL spectrum of nanotube diode recorded at IDS=155 nA.
[6] 
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Fig 3.1.3d EL spectrum of nanotube diode recorded at IDS=180 nA.
[6]
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Fig 3.1.3e EL spectrum of nanotube diode recorded at IDS=200 nA.
[6] 
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At first, we have applied the fitting technique on the curve IDS=60 nA. And for best 

fitting, we have obtained three peaks in that. Following figure shows the main 

curve with the fitted curve with three peaks.      

 

 

 

Fig 3.1.3f Fitted curve of EL spectrum of nanotube diode recorded at IDS=60 nA. 
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Then we have applied the fitting technique on the curve IDS=120 nA. And here for 

best fitting we have obtained two peaks. Following figure shows the fitted curve 

with the main curve.   

 

 

 

Fig 3.1.3g Fitted curve of EL spectrum of nanotube diode recorded at IDS=120 nA 
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After that we have applied the fitting technique on the curve IDS=155 nA. Here we 

have obtained three peaks for best fitting. Following figure shows both the fitted 

curve and the main curve.  

 

 

Fig 3.1.3h Fitted curve of EL spectrum of nanotube diode recorded at IDS=155 nA 
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Next we have applied the fitting technique on the curve IDS=180 nA. Here we have 

obtained three peaks for best fitting. Following figure shows the main curve with 

the fitted curve.   

 

 

Fig 3.1.3i Fitted curve of EL spectrum of nanotube diode recorded at IDS=180 nA 
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Lastly, we have applied the fitting technique on the curve IDS=200 nA. For best 

fitting we have obtained three peaks over here. Following figure shows the fitted 

curve with the main curve, 

 

 

Fig 3.1.3j Fitted curve of EL spectrum of nanotube diode recorded at IDS=200 nA 
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Now, observing the position of peak1 corresponding the drain-source current IDS, 

we have seen that the position of peak1 moves towards the lower energy with 

increasing IDS. But when IDS approaches approximately 155 nA, it starts to move 

towards the higher energy. Following curve shows the trend.     

 

 

 

Fig 3.1.3k Different position of first peak vs IDS 
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After that observing the intensity of peak1 corresponding the drain-source current 

IDS, we have seen that the intensity of peak1 increases with increasing IDS. But 

when IDS approximately approaches to180 nA it starts to decrease. Following curve 

shows the trend.   

 

 

 

Fig 3.1.3l Different intensity of second peak vs IDS 
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Then we have observed the FWHM of peak1 corresponding the drain-source 

current IDS. The FWHM of peak 1 decreases with increasing IDS. Initially it 

decreases slowly but when IDS approaches approximately 120 nA it decreases 

drastically. Again when IDS reaches to 180 nA approximately the FWHM of peak1 

slightly increases. Following curve shows the trend. 

 

 

Fig 3.1.3m Different FWHM of first peak vs IDS 
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Now, observing the position of peak2 corresponding the drain-source current IDS 

we have seen that the position of peak2 moves towards the lower energy with 

increasing IDS. And when IDS reaches to 155 nA approximately it becomes stable. 

Following curve shows the trend. 

 

 

Fig 3.1.3n Different position of second peak vs IDS 
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After that we have observed the intensity of peak2 corresponding the drain-source 

current IDS. The intensity of peak2 increases with increasing IDS. Following curve 

shows the trend.  

 

 

Fig 3.1.3o Different intensity of second peak vs IDS 
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Then we have observed the FWHM of peak2 corresponding the drain-source 

current IDS. The FWHM of peak2 shows a different characteristic. It is being 

almost stable up to IDS=120 nA approximately. After that it slightly increases. 

When IDS reaches to 155 nA approximately, it drastically decreases and when IDS 

approaches to180 nA approximately it increases drastically.    

 

 

Fig 3.1.3p Different FWHM of second peak vs IDS 
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Plotting the ratio of intensity of peak2 & peak1 corresponding the drain-source 

current IDS we have seen that ratio of intensity increases with IDS. And when IDS 

reaches to 155 nA approximately it increases rapidly. That means the intensity of 

peak2 dominates over peak1. Following curve shows the trend. 

 

Fig 3.1.3q Ratio of intensity vs IDS 
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After that, plotting the ratio of area of peak2 & peak1 corresponding the drain-

source current IDS we have seen that the ratio of area increases with increasing IDS 

up to 120 nA approximately. After that it drastically decreases and when IDS 

reaches to 155 nA it starts to increase again. Following curve shows the trend.  

 

 

Fig 3.1.3r Ratio of area vs IDS 
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Table 3.1.3 Data for peak 1 & peak 2 

 P1 

positio

n 

P1 

intensit

y 

P1 

FWHM 

P2 

positio

n 

P2 

intensit

y 

P2 

FWH

M 

Ratio 

of 

intens

ity 

(P2/P

1) 

Ratio 

of area 

(P2/P1

) 

60 

nA 

0.6929

4 

4.482 0.049648 
 

0.7611 3.7162 0.0496

484 

0.829 0.0457

2 

120 

nA 

0.6849

4 

5.8018 0.048199 0.7565 7.8373 0.0500

023 

1.350

8 

1.4013 

155 

nA  

0.6833

9 

6.982 0.046472 0.7554

2 

11.43 0.0564

747 

1.637 0.1372 

180 

nA 

0.6839

1 

8.1982 0.041824 0.7551

6 

15.529 0.0314

974 

1.894

1 

0.2679 

200 

nA 

0.6864

9 

6.1261 0.042341 0.7551

6 

17.568 0.0583

477 

2.867

7 

0.5674 

 

 

In this thesis, we have used the data of only two peaks for our analysis and 

observation. But in the fitted curve there are some other peaks too. This could be 

the mean for further research & study in this field. 

 

 

 

 

 

 

 



61 
 

3.1.4 Light emitting mechanism and others 

The main and major advantage of CNT LED is, here we can control the peak 

emission and also the FWHM. But in Si which is the most common and used 

material for LED we cannot do that. 

 

                   

                             Fig 3.1.4a emission spectrum of silicon 

 

In CNT FET structure the gate voltage is mainly used to modulate the injection 

efficiency of electrons (or holes).
[2]

 At a large negative bias i.e. Vg=-5V the hole is 

the majority carrier type injected into the CNT channel. These injected holes may 

recombine with electrons injected from the Sc contact via tunneling and emit 

photon. However, the electron is the majority carrier type in the CNT channel with 

i.e. Vg=5V. The electrons injected from the Sc electrode may recombine with holes 

injected from the Pd contact via tunneling and emit photon. 
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Fig 3.1.4b Band diagrams which correspond to two representative points A  

(forward bias) and B (zero or small reverse bias)
[2]

 

 

To obtain efficient light emission from CNT devices, we propose that large 

numbers of carriers can be injected from two electrodes at the same time without 

the Schottky barrier, and they can  then radiatively recombine with high efficiency. 
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Chapter 4 

 

Conclusion 

In summary we can say, semiconducting CNTs are direct- bandgap materials, with 

strongly bound 1D excitons, whose transition energies are inversely proportional to 

the CNT diameter.
[14]

 These energies can be further tuned by placing them in 

different dielectric environments. Such excitons can be excited by light absorption, 

electron-hole recombination or internal impact excitation by hot carriers flowing 

through the CNTs. Their radiative decay leads to fast luminescence characteristics. 

Ambipolar CNTs can be used to form LED-like three-terminal devices without the 

need for external doping. Furthermore, the origin of the resulting emission can be 

translated along the tube at will by the gate field. Even stronger, localized EL can 

be excited by hot carriers under unipolar conditions. Higher-energy exciton states 

produce photocurrents and photovoltages that can be used for the spectroscopic 

identification of CNTs and to determine important device parameters, such as 

band-bending and Schottky barriers, or to fabricate nanoscale photodetectors. 

However, this is only the beginning of the study and of the application of nanotube 

photonics. As the production of pure CNTs advances, we expect to see applications 

in biology, where sensors, are nonlinear devices. Applications in biology, where 

CNTs are already used as fluorescent probes, photosensitizers and sensors, are 

expected to grow. An understanding of 1D optics, exciton localization and exciton-

exciton interactions would also greatly benefit from the study of these model 

systems.  
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Appendix 1 
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