
1

Thesis Report

An Alternate to Hawk Eye using the Graphics Processing
Unit

By:

Radin Ahmed Ehsan – 12241011

Supervisor:

Professor Zahidur Rahman

Spring 2013

2

DECLARATION

This is to certify that the Thesis entitled “An Alternate to Hawk Eye using the

Graphics Processing Unit” is submitted to the department of Computer Science and

Engineering of BRAC University in partial fulfillment of the Bachelor of Science

in Computer Science. The Thesis comprises only our original work and due

acknowledgement has been made in the text to all other material used.

Dhaka, 28th April, 2013

……………………………………………………..
Signature of the Supervisor

Professor Mohammad Zahidur Rahman
Chairman
Department of Computer Science &Engineering
…………………………………………………………………………………………………..

……………………………………………………..
Radin Ahmed Ehsan

STUDENT ID:12241011

3

CERTIFICATE

This is to certify that the Thesis entitled “An Alternate to Hawk Eye using the

Graphics Processing Unit”, submitted to the department of Computer Science and

Engineering of BRAC University in partial fulfillment of the Bachelor of Science

in Computer Science is a record of my own work carried out by me. The matter

embodied in this thesis is original and has not been submitted for the award of any

other degree.

April 28, 2013

4

TABLE OF CONTENTS

0. Abstract 5

1. Introduction 6

2. Related Work 7

3. Structure of Solution 7

 3.1 Choice of Computation Platform 8

 3.2 GPU as a Device to Generic Processing 10

 3.3CUDA – Compute Unified Device Architecture 12

 3.4Image Processing 14

 3.5Physical Simulation 16

4. Pitfall 17

5. Conclusion 19

6. Future Work 19

7. References 20

5

0. Abstract:

The more powerful and advanced our processing units become our hunger for more

computation power increases. While we are pushing the Central Processing Unit (CPU)

to its last limit in the hope to get more computational power, the Graphical Processing

Unit (GPU) is sitting idle most of the times. The GPU is immensely powerful in terms

computation power and as most modern day GPU’s have multi-core architecture;

parallel computing can be performed easily. This paper will look into the prospect of

improving Hawk Eye, a technology currently used as decision aid system in cricket and

tennis in terms of accuracy. For the system NVDIA GPU has been used on CUDA

platform.

Keyword: GPU, GPGPU, CUDA, NVDIA, Hawk Eye, Simulation, Parallel Processing.

6

1. Introduction:

Hawk Eye which is currently used for decision aid system is an image based curve

fitting technology. Multiple cameras are used to feed the system the data on the actual

flight path of the ball such that the final flight path of the ball can be predicted.

The Hawk Eye uses a high speed camera with typical frame rate of 106 frames per

second to track the ball after it has been released from the hand of the bowler through

to the stump. The images received are then used to triangulate and predict the final

position of the ball had it not been stopped by the pads. In each frame sent from each

camera, the system identifies the group of pixels which corresponds to the image of the

ball. It then calculates for each frame the 3D position of the ball by comparing its

position on at least two of the physically separate cameras at the same instant in time.

A succession of frames builds up a record of the path along which the ball has travelled.

It also "predicts" the future flight path of the ball and where it will interact with any of the

playing area features already programmed into the database.

The system however fails to provide much accuracy as it does not take into

consideration factors that may affect the trajectory. Also the amount of deviation that

one bowler have may significantly be larger than any other bowler causing the ball to

turn more during the very last part of the flight. Hawk Eye fail to take into consideration

the spin of the ball, the environmental factors like wind speed, pitch condition and flight

of the ball.

We propose a massive change over the existing technology where we will simulate the

trajectory of the ball based on running a set of physical simulations that will take the

environmental factors into consideration and thereby will provide a substantially higher

level of accuracy to the predictions.

7

The process which will determine the ball’s trajectory through the pad will utilize the

images taken from cameras and will attempt a simulation per frame until the ball

crosses the stump. All of the trajectories from each simulation run will be averaged

together to provide the most accurate approximation of the ball’s path.

We are focusing on the use of the Graphics Processing Unit (GPU) as a processing

platform as this allows us the liberty of utilizing the parallel architecture of the GPU to

run all of the per frame simulations in parallel which will allow us to complete the

simulation in almost real time. [4] [5]

2. Related Work

The only work done in this exact field is Hawk Eye, but it is patented and not much has

been published about it. However papers have been published about image processing

and physics simulation. This paper focuses on merging the two and coming up with a

result that can be used in the field to provide a more accurate judgmental tool to be

used in games like cricket, tennis and more recently football. [1]

The papers on parallelization mostly focus on the performance comparison of running

such applications on different configuration machines and the performance difference of

running on GPU and CPU.

3. Structure of Solution

The video taken from the high speed video has to be first separated into frames and

then used for further processing. For the purpose of keeping the project simple the large

numbers of image frames are considered as input which will be concurrently analyzed in

the multiple cores of the GPU. These images will be used for calculations.

8

The computation was done on a 64 bits Windows 7 Ultimate desktop with Intel Core 2

Duo, E7400 2.80GHz CPU and NVDIA GTX 560 GPU which supports CUDA.

Visual Studio 2010 was used as default IDE.

3.1 Choice of computation platform

CUDA is the computation platform that will be used with C++ as the main programming

language.

There are two popular platforms for GPU computing available now; one is the Open

Computing Library (OpenCL) and the other is the NVDIA Corporations CUDA SDK. The

two platforms are very close to each other in terms of performance with CUDA taking

the marginal lead. In terms of device compatibility, the OpenCL is much further

developed than the NVDIA’s CUDA. Unlike CUDA OpenCL supports all programmable

graphics processors but CUDA on the other hand only supports NVDIAGPUs’. OpenCL

as its name would suggest is open source whereas CUDA is a proprietary SDK by

NVDIA Corporation. The chart below demonstrates the performance differences

between CUDA and OpenCL in details.

9

[3]

The reason why CUDA is the choice for this thesis over OpenCL is because CUDA has

a slight edge in terms of performance. The documentation of CUDA is much better than

that of OpenCL which makes it much easier to learn and pick up. It also makes it faster

to start working with since time is a constraint in this thesis. However, if compatibility

and openness is concerned, then it is definitely more advantageous to use the OpenCL

Application Programming Interface.

0 1 2 3 4 5 6

S3D
Stencil

SPMV_CSR_VECTOR_DP
SPMV_ELIPACKR_SP

SPMV_CSR_SCALAR_SP
SCAN

REDUCTION_PCIE
MD_DP_HW

DGEMM_N
FFT_DP

BSPEED_READBACK
TEX_READBW

LMEM_READBW
GMEM_READBW

MAXSPFLOPS

OpenCL

CUDA

10

OpenCL API as well as CUDA APIs comes with compilers which can compile and

execute GPU run able programs and retrieve data from it. It models the programs as a

set of input data and a set of instruction data which is sent to the device from the host

which does the calculations internally. So essentially, the host is doing nothing but

delegating the task to the devices and providing instructions for it and fetching the

computed data from the devices which it displays to the users.

3.2 GPU as a Device to Generic Processing

Over the past 10 years, hitherto, it has seen the evolution of the GPU's as specialized

hardware to process graphics and video output, and massive parallel processing of data

Host(CPU)

GPU

Accelerators

CPU Cores

11

for general computing. The power of data processing of GPU's has grown much faster

than the CPU, and the main reason for this rapid growth of GPU's with respect to the

CPU is due to the fact that the GPU's were born with the focus of intensive computing,

with respect to data processing and massive parallel computing, as just the minimum

requirements necessary to meet the needs of the scenario of computer graphics, like

rendering, shadows in 3D scenes and others.

Thus the design of the GPU takes into account the existence of more transistors

dedicated to a better process control and data flow, which depicts the main elements:

ALU, cache, and DRAM control for a CPU and a GPU.

Many applications that process large data sets organized in a matrix/vector can use a

model of parallel computing. In 3D rendering processes large arrays of pixels and

vertices are organized so that they can be processed in parallel using threads. Similarly,

applications of image processing, encoding and decoding, video scaling, stereo vision,

artificial neural networks and pattern recognition can be processed in data blocks and

pixels by parallel threads. In fact, many algorithms, even outside the area of image

processing, can be accelerated through parallelization of data processing, specially

signal processing, simulation of physical effects, computer models of financial or

biological applications.

12

3.3 CUDA - Compute Unified Device Architecture

The development of applications that use the GPU as a device for "unconventional”

parallel data processing, i.e., not specifically the graphics processing like rendering, is

increasing. However the use of a GPU as a device that requires an adjustment of the

traditional graphics card pipeline's, forcing the developer to take responsibility for certain

control points in these processes, through graphics libraries that have an API for GPU's

to become programmable, is annoying.

CUDA is a new architecture of hardware and software that was developed with the main

objective of managing the parallel processing of data within the GPU device without the

need to make the mapping of the routines and take responsibility for the execution of

the pipeline system, through API chart. We have the software stack environment of

CUDA, not necessarily for 4 layers of software and these are: (a) application, which is

implemented by the browser software that makes use of GPU as a device data

processing; (b) CUDA Library is a set of mathematical libraries, such as CUBLAS, an

extension of a BLAS library functions algebra implemented in FORTRAN and CUFFT's

a fast Fourier transform of 1, 2 and 3 dimensions; (c) where the CUDA runtime routines

13

of other graphics libraries like OpenGL and DirectX are accessed to be processed on

the GPU; and (d) CUDA Driver API that is the direct communication with the GPU. In

order to facilitate the development of computing solutions for general purpose, not just

graphic, CUDA provides the GPU direct memory access to both writing and for reading,

just as a conventional CPU works.

The data is read from or written to memory by the ALUs. In this architecture there is a

parallel data cache and a shared memory, which has a high-speed access for both,

writing and reading. The applications benefit from this structure by minimizing over fetch

and round-trips of DRAM and reduce the need/dependence on the bandwidth of DRAM

access.

14

[10]

3.4 Image Processing

The image processing provides a substantial bottleneck in the parallelization process as

using the Open Computer Vision (OpenCV) library does not allow for any GPU

parallelizable algorithms to be used alongside their provided pattern recognition

algorithms. In order to overcome this bottleneck, we have come up with a conceptual

algorithm which improves upon the performance of the pattern recognition techniques

used in the OpenCV library.

The algorithm we have come up with supplies the background subtracted image to the

GPU and provides a color threshold as the parameter. The GPU goes through all the

pixels and marks the regions which most closely fit the provided color threshold. The

image data is retrieved and the marked areas are made to fit inside a circular region.

The region which most closely fits the shape is selected as the ball. This is a brief

overview of the process-

» Background Separation Carried out in the CPU

15

» Image Regions marked in GPU on a per-pixel basis

» Noise Reduction applied as a Gaussian Blur

» Image region selected based on closest area match

This process speeds up the detection of the regions but still gets bottlenecked during

background separation and the final fitting. The third and fourth phase is only necessary

since there is no means of gathering data from other GPU cores during the process.

Since getting the final shape requires the merging of all the regions and finding the out

most closely matched shape, we cannot skip the last phase and as such will have to

face the bottleneck, however, the O(n) process of iterating through the pixels of the

image can be turned into O(k) time thanks to the massive parallelization of the GPU

which provides a boost in the response time. As for the noise reduction, it is currently

being carried out during the third phase in the CPU, however, we are working on getting

it within the GPU so that this O(n2) process can be improved in terms of performance.

Once the ball has been detected, the position of the ball is approximated by using the

stumps as a relative standard and the displacement of the ball is approximated per

frame by checking the difference of the ball from the previous frame. To obtain the 3D

positioning of the ball at least 2 different camera images need to be processed. One

camera needs to take the image from the Z axis which provides the X and Y values of

the ball’s position and the other camera needs to take the Image from the Y axis which

provides the Z and X positions of the ball. Using the X axis as the standard axis, we can

scale the Y and Z values to more accurately match the actual position of the ball.

Obtaining the position and the velocity is the rather easy part which can be achieved

just by simple pattern detection. However, in order to detect the spin, we need to have a

special pattern imprinted in the ball which can be used as a reference to obtain the spin

velocity and the direction of spin of the ball. In order to detect and define the pattern, we

need to re-detect the image with a stricter threshold so that the pattern inside the ball is

detectable. The same pattern detection process is applied again on the extracted region

16

and the pattern is detected. It is then compared with the previous frame’s pattern and

the difference is calculated to be the angular velocity of the ball which is the spin

velocity as well.

3.5 Physical Simulation

Given the massive parallelization capabilities of the GPU the best way to utilize the

power is by running multiple instances of the same simulation at the same time. The

physics behind the trajectory is the same as the physics of the projectile. The other

factors of consideration are the spin and the swing of the ball.

We will be using equations to find out the trajectory of the ball. For a successful

prediction we need to know the following:

1) Where the ball will first drop.

2) What will be the height of the ball when it makes impact with the batsman.

All other variables which include wind speed, pitch condition are required to calculate

the spin and swing.

For finding out the distance on where the ball will first drop, we will use:

 [7]

The length of the entire pitch is known to be 22 yards which is equivalent to 20.12

meters. If we subtract the value of d from 20.12 meters we will be able to find out the

distance the ball has to cover before making the impact. From that we can figure out

how long the ball will be at flight from the time it has dropped for the first time till it

makes impact with the pad. This is done using this formula:

17

 [7]

The height of the ball while making impact is found using this formula.

 [7]

From the equations it is understandable that the formulas and equations that are to be

solved do not require any iteration making it atomic. The attached code is a simple

model of this trajectory calculation made in java which is showing that the computation

is of constant time. Thus we will not be able to take advantage of the multiple core of

the GPU. For this we will run simulation of multiple instances at the same time so that

we can harness the power of the GPU.

The simulations that are being run will each give result. We will use these results and

compare it with the original trajectory that we have till the pad. The simulation that is the

closest with the original trajectory will be considered to be the most accurate and that

will be our prediction.

4. Pitfall

• Spin and Swing: While working with the simulation of ball we figured out that

there is not any single equation for finding out the spin of the ball. Therefore it is

hard to predict where the ball will make its impact in case of spin bowlers. For

pace bowlers there is no equation for finding out the swing of the ball which

makes it difficult to predict the impact. Since our computation power is not

limited, we will have a brute force approach for finding out the spin and the swing

of the ball.

18

• Image Processing: Although the ball is divided into two parts with a seam in the

middle, but it is monochromatic which will makes it difficult for us to find out the

angular movement of the ball. If one side of the ball was marked with a cross, it

might have been easier for us to track the angular movement.

The background does not stay static as the game is progressing which makes it

difficult to separate the ball. The heads of the players are spherical in shape

which increases the complexity of finding the ball.

• Algorithmic Complexity: There are issues of bottleneck with the physical

simulation since the physics simulation algorithm is of complexity O(k).

Advantages of multi-core architecture can only be taken if the complexity is of

O(n) or higher.

• Independence: We have to ensure that the simulations we are running are

independent of each other if we are to utilize the full power of the GPU [4].

• Reverse Swing: Finding out the swing and reverse swing that the bowler

produces will be a very tough job as the phenomenon is not fully understood yet

by researchers. [6]

• Frame Separation: Due to the lack of time the video feed could not be separated

frame by frame. Most open source tools can only divide frame for camera speed

up to 60fps whereas the typical frame rate of cameras used in Hawk Eye is 100+.

[2]

19

5. Conclusion

The future of computing is about parallelization. It is difficult for the CPU to handle so

much processing whereas the GPU sits idle most of the time. Therefore it would be wise

to delegate the processing of CPU to the GPU to ensure smoother and better

processing in minimal time.

The solution is always scalable and can be mapped to other problems of similar nature.

6. Future Work

In the future I will try to implement this in cloud and try to gain more knowledge so that

the physics of spin, swing and reverse swing can be added in to the system making it a

full solution to the problem that exist with the existing Hawk Eye System.

20

7. Reference

[1]: Hawk-Eye. http://en.wikipedia.org/wiki/Hawk-Eye

[2]: The Ball Tracking Chronicle. http://cricketingview.blogspot.com/2011/07/ball-

tracking-chronicle.html

[3]: OpenCL Gains Ground On CUDA. http://www.hpcwire.com/hpcwire/2012-02-

28/opencl_gains_ground_on_cuda.html

[4]: R. D. Chiara, U. Erra, V. Scarano, and M. Tatafiore. Massive simulation using GPU

of a distributed behavioral model of a flock with obstacle avoidance. In B. Girod, M. A.

Magnor, and H.-P. Seidel, editors, VMV, pages 233–240. Aka GmbH, 2004.

[5]: Shane Ryooy, Christopher I. Rodriguesy, Sara S. Baghsorkhiy, Sam S. Stoney,

David B. Kirk and Wen-mei W. Hwuy. Optimization Principles and Application

Performance Evaluation of a Multithreaded GPU Using CUDA. In proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel programming.

[6]: David Jamesa, Danielle C. MacDonaldb, John Harta. The effect of atmospheric

conditions on the swing of a cricket ball. Procedia Engineering. Volume 34, 2012, Pages

188 - 193.

[7]: Trajectory of a projectile. http://en.wikipedia.org/wiki/Trajectory_of_a_projectile

[8]: What Is CUDA. http://developer.nvidia.com/cuda/what-cuda

[9]: OpenCV. http://opencv.willowgarage.com/wiki/

[10] Gustavo Poli and José Hiroki Saito: Parallel Face Recognition Processing using

Neocognitron Neural Network and GPU with CUDA High Performance Architecture

http://opencv.willowgarage.com/wiki/�

	UDECLARATION

