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Abstract

Unsupervised clustering plays a crucial role in various real-life applications. It works
by grouping similar data points together based on certain features or characteristics,
without the use of predefined labels. The process generally starts with gathering
data in a centralized system that are to be clustered. This data could be in the
form of numerical features, text, images, or any other type of information. The
exponential expansion of digital transformation, the Internet of Things (IoT), so-
cial media, and online platforms has precipitated an unprecedented surge in data
generation. This proliferation is characterized by an incessant stream of informa-
tion flowing from various sources, encompassing user interactions, sensor readings,
online transactions, and more. This deluge of data poses both challenges and op-
portunities for businesses, governments, and individuals alike. The ever-increasing
amount of data poses both opportunities and challenges. So, gathering, managing,
processing this amount of data in a centralized system requires time and is a very
tough process. Additionally, concerns related to data privacy, security, and ethical
considerations become more prominent as data volumes continue to grow. More-
over, it’s important to respect individuals’ privacy rights and adhere to relevant data
protection laws and regulations. Federated learning addresses concerns about data
volume and privacy by leaving user data on devices. Federated unsupervised repre-
sentation learning is an architecture that pre-traines deep neural networks utilizing
unlabeled input in a federated fashion via unsupervised representation learning. In
centralized settings, model-based clustering approaches demonstrate significant ef-
fectiveness. These methods rely on statistical models to identify underlying patterns
and group data points accordingly. By leveraging sophisticated algorithms, model-
based clustering can efficiently handle complex data structures and accurately par-
tition datasets into meaningful clusters. This approach enables centralized systems
to efficiently organize and analyze large volumes of data, facilitating insights and
decision-making processes across various domains. Moreover, model-based cluster-
ing offers flexibility in accommodating different data distributions and can adapt
to diverse clustering requirements, making it a versatile tool for centralized data
analysis tasks. In contrast to the centralized setup, this way of clustering in fed-
erated settings is still relatively unexplored, maybe because training models in a
highly diversified context using the FedAvg method is more difficult. The normaliz-
ing flow model is used by the recently announced Unsupervised Iterative Federated
Clustering (UIFCA) Algorithm to perform clustering on unlabeled datasets in feder-
ated environments. The IFCA framework, which tackles the problem of very varied
settings, is the foundation of UIFCA. A novel approach for decentralized clustering
utilizing proposed model parameter aggregation strategy FednadamN in conjunction
with the deep generative model autoencoder is introduced. FednadamN combines
the benefits of two cutting-edge optimization methods for federated learning: Adam
and Nadam. Adam optimization offers quick convergence and resilience to noisy data
by using adaptive learning rates based on the first and second moments of gradients.
Adam is expanded by Nadam with the use of Nesterov accelerated gradients, hence
increasing the stability and speed of convergence. The method addresses the chal-
lenge of clustering in decentralized settings by leveraging the collective intelligence
of distributed nodes while preserving data privacy and minimizing communication
overhead. By aggregating model parameters across decentralized nodes and em-
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ploying Autoencoder-based representations, efficient clustering is enabled efficient
clustering without the need for central data storage or coordination. This approach
promises to enhance scalability, privacy, and performance in decentralized cluster-
ing tasks across various domains. Additionally, a comparison between the tailored
approach and the current technique using benchmark datasets is offered. The follow-
ing four benchmark datasets were used: image segmentation, protein localization,
letter image recognition, and vowel deterrence. The suggested technique for clus-
tering letter image recognition data has produced the greatest mutual information
score of 1.192 and highest v measure score of 0.373 using the kmeans algorithm.
However, FedAvg’s fuzzy k means algorithm yields the highest rand index score
of 0.925. The proposed approach for clustering Deterding Vowel Recognition Data
has the highest v measure score of 0.264 and the highest rand index score of 0.850
when using the kmeans algorithm; however, it performs less well than FedAdam,
which uses the minibatch kmeans algorithm to show a v measure score of 0.258.
The proposed approach for clustering Protein Localization Data yields the greatest
rand score 0.774 , highest mutual info score 0.908 , and highest v measure score
0.527 while utilizing the minibatch kmeans algorithm. The proposed method for
clustering Image Segmentation data yields the greatest mutual information score
of 1.084, the highest rand score of 0.849, and the highest v measure score of 0.565
when utilizing the minibatch kmeans algorithm. This result demonstrates the sug-
gested approach’s improved performance and its potential applicability for various
clustering goals. The enhanced efficiency of this method makes it a valuable tool
for diverse clustering tasks. Its robustness and adaptability underscore its utility
in different contexts. Moreover, the approach’s superior outcomes suggest broader
relevance across multiple domains.

Keywords: Federated Learning, Clustering, Unsupervised Learning, Auto-encoder,
Strategy.
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Chapter 1

Introduction

The capacity to glean important insights from massive volumes of data is essential in
today’s data-driven environment. Conventional clustering methods have long been
recognized as indispensable instruments for arranging data into logical groupings,
facilitating effective analysis and decision-making. In the field of data clustering,
however, the emergence of decentralized systems brings with it both new potential
and difficulties. Decentralization has several benefits over centralized methods. It is
defined by the dispersion of data and computational power among numerous nodes
or devices. It increases scalability, strengthens resilience against single points of
failure, and protects data privacy. Within this framework, a viable paradigm for
data organization and analysis in remote systems is decentralized clustering. In this
research, novel decentralized clustering techniques based on autoencoder models is
introduced, complemented by our proposed FednadamN strategy. Leveraging the
power of autoencoders, which are deep learning architectures capable of learning ef-
ficient representations of input data, our approach aims to partition distributed data
into meaningful clusters without compromising individual privacy or data integrity.

1.1 The Motivation behind decentralized cluster-

ing

These days, the construction of machine learning models heavily relies on aggre-
gated user data within centralized systems. Existing methodologies encounter a
formidable hurdle in accommodating the exponential growth of data generated by
Internet of Things (IoT) devices[1]. The sheer volume and diversity of data streams
pose a challenge to conventional aggregation techniques. As IoT devices proliferate,
the scalability and adaptability of data processing methods become increasingly crit-
ical. Addressing this challenge requires innovative approaches capable of efficiently
handling the dynamic nature of IoT-generated data. Developing robust frameworks
for integrating and analyzing IoT data remains a pressing concern in contemporary
machine learning research. Clustering is indispensable when dealing with vast and
ever-expanding datasets due to its versatility and effectiveness in data analysis and
organization. As data proliferates, the imperative to handle and analyze it effec-
tively intensifies. Efficient management of large datasets becomes paramount for
extracting valuable insights. Proper handling ensures accurate decision-making and
meaningful outcomes in various domains. Robust analytical techniques are essen-

1



tial for navigating the complexities of abundant data sources. The ability to derive
actionable insights from vast datasets distinguishes successful endeavors in today’s
data-driven landscape. It serves as a vital tool for dissecting enormous and intricate
datasets, enabling the extraction of invaluable insights[2]. Clustering aids in un-
covering meaningful patterns and structures within the data, empowering decision-
making processes. Additionally, it plays a pivotal role in enhancing data-driven
applications across diverse domains. By grouping similar data points together, clus-
tering enables efficient data exploration and interpretation. Its versatility makes
it indispensable for tackling the challenges posed by the ever-growing volumes of
data in modern times. While clustering predominantly occurs in centralized envi-
ronments, consolidating user data in one location raises notable privacy apprehen-
sions [3]. Centralized storage poses risks of unauthorized access and potential data
breaches, compromising user confidentiality. The concentration of sensitive informa-
tion heightens the vulnerability to security breaches and misuse. Moreover, concerns
regarding data ownership and control emerge when data is centralized. As a result,
there’s a growing call for decentralized or privacy-preserving clustering techniques to
mitigate these risks. Because centralized storage keeps all sensitive user data in one
place, it is more susceptible to security breaches, unauthorized access, and hacking.
As a result, Federated Machine Learning (FML)[4], a distributed machine learning
framework designed to safeguard privacy, is experiencing a surge in popularity. FML
enables collaborative model training across decentralized devices while ensuring data
privacy is maintained. This approach addresses concerns related to centralized data
storage and privacy breaches. By allowing data to remain on local devices, FML
enhances user privacy while still facilitating model improvement. Its rising adoption
reflects a growing emphasis on privacy-preserving techniques in machine learning.
With each passing day, the volume of data expands, leading to a proliferation of raw
features. This influx presents both opportunities and challenges for data analysis
and interpretation. Managing the increasing complexity of raw features becomes
essential for effective data processing. The fundamental attributes of the data often
lack suitability for clustering, necessitating a more abstract or meaningful represen-
tation. Transforming the data into a more interpretable form enhances clustering
performance and facilitates the discovery of underlying patterns. This abstraction
process involves extracting higher-level features that capture relevant information
and reduce noise. Representation learning enables the capture of complex links and
structures within the data, thereby enhancing the performance of clustering algo-
rithms. By extracting meaningful features, representation learning provides a more
comprehensive understanding of the underlying data patterns. It may also be used
for a range of data types, such as picture, text, and numeric data. The clustering al-
gorithm leverages representation learning by organizing the acquired representations
into groups. This integration enhances the algorithm’s ability to identify patterns
and structures within the data. Unsupervised representation learning plays a crucial
role in this process, enabling the algorithm to extract meaningful features without
labeled data. By utilizing unsupervised techniques, the algorithm autonomously
learns relevant representations, contributing to more accurate and efficient cluster-
ing outcomes. This approach underscores the importance of leveraging unsupervised
learning for effective data analysis and clustering tasks.Two well-liked techniques ex-
ist for obtaining unsupervised representations. Employing generative models, such
adversarial [5] and augmented One technique is autoencoder[6] , which mimics the
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actual data distribution to discover the latent representation. Another approach
involves combining contrastive learning with discriminative models[7, 8, 9] . This
method aims to learn representations that are both discriminative and semantically
meaningful. By leveraging contrastive learning, the model can distinguish between
similar and dissimilar instances, enhancing the quality of learned representations.
Integrating discriminative models further refines the representations, enabling the
algorithm to capture intricate data relationships. Several deep generative model-
based clustering algorithms have been proposed for the centralized environment and
have been effective in getting relevant cluster information [10, 11]. Applying these
methods to obtain high-quality cluster data in a federated setting is a reasonable
consideration.In order to do unsupervised clustering in federated datasets, the It-
erative Federated Clustering Algorithm (UIFCA) [12] was recently introduced. It
combines the FedAvg method with the normalizing flow model. While normaliz-
ing flow models excel at capturing intricate data distributions, they often introduce
complexity to the latent space. This increased complexity can make interpretation
and analysis more challenging, hindering their usability in certain contexts. Despite
their effectiveness in capturing subtle distributions, the intricate structure of the
latent space may pose difficulties for downstream tasks like clustering. The need for
invertibility may provide challenges in producing a latent space that is both smooth
and easily interpreted. On the other hand, autoencoders often offer a continuous and
smooth representation of latent space. The encoder-decoder design helps the model
develop a succinct and meaningful representation of the input data. The use of
autoencoder-based unsupervised representation learning in federated environments
serves as a driving force behind the effort.

1.2 Contribution towards decentralized cluster-

ing

In this research, a proposed parameter aggregation technique is employed along-
side an autoencoder for clustering within a federated environment. By leveraging
parameter aggregation, the distributed model parameters are effectively combined,
enhancing the clustering process. The autoencoder serves to learn meaningful repre-
sentations of the data, facilitating accurate clustering across decentralized sources.
The primary contributions and proposals of this work are, in essence, as follows:

1. For federated systems, A novel autoencoder-based clustering approach is pro-
vided. Autoencoders are used to learn condensed representations of data prop-
erties locally on each client device, without sending raw data. It is demon-
strated how it is used. Since different datasets require different architectures
to attain good performance, A different autoencoder architecture is employed
for each dataset used in the experiment .

2. FednadamN, a unique model parameter aggregation technique is proposed. By
adding the Adam and Nadam optimizer, this method improves on previously
developed federated learning techniques with the goal of improving model per-
formance between decentralized nodes. When compared to conventional ag-
gregation algorithms, FednadamN offers potential gains in both efficiency and
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effectiveness, making it a promising innovation in federated learning method-
ologies.

3. Three well-known federated learning strategies—FedAdam, FedAvg, and Fed-
Median—as well as our suggested FednadamN technique are compared in this
study. In the context of federated learning, this comparison provides a baseline
evaluation for assessing the efficacy and efficiency of our unique technique.

4. A thorough simulation was run using four benchmark data sets.The datasets
consist of image segmentation, protein localization, vowel discrimination, and
letter image recognition. The results of the simulation show that our model
performs better than the baseline.

To the best of our knowledge, this work is the first to use a customized FednadamN
approach for autoencoder-based decentralized clustering on unsupervised data in a
heterogeneous federated environment.

1.3 Organization of the Report

This report is formatted as follows: Chapter 2 provided details on this project’s back-
ground investigation. Methodologies are discussed and quickly reviewed in Chapter
3. The experiment, observations, and result analysis are covered in detail in Chapter
4. Chapter 5 presents the main conclusion of the thesis.
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Chapter 2

Literature Review

Federated learning is a cooperative approach to machine learning in which a central-
ized model is created by coordinated correspondence with several clients. Clients
transmit model changes to a central server rather than exchanging local data as in
the case of previous approaches. In the process, anonymity is maintained and a
variety of data sources may be used to develop the model. Various techniques for
unsupervised federated learning have been put forth, each with a distinct approach.
These methods seek to eliminate the requirement for labeled data by enabling coop-
erative model training across distributed devices. Unsupervised federated learning
approaches leverage methods like clustering, generative modeling, or self-supervised
learning to build strong models while protecting data confidentiality and privacy
over decentralized networks. Several unsupervised federated learning techniques
with distinct methodologies have been proposed. Fengda Zhang et al.[13] demon-
strated Federated Unsupervised Representation Learning (FURL) as a solution to
address data privacy concerns, making it a promising technique. FURL enables dis-
tributed edge devices to adopt a shared representation paradigm while preserving
user privacy. This approach allows devices to collaboratively learn representations
without sharing raw data, ensuring privacy compliance. Chen Zhao et al.[14] en-
hanced this method for application in Internet of Things (IoT) contexts, as detailed
in their research. Their adaptation incorporates a dynamic update mechanism tai-
lored to address the challenges posed by non-IID (non-independent and identically
distributed) data commonly found in IoT environments. This dynamic update mech-
anism ensures the model remains adaptable and effective in capturing the evolving
data patterns.Bram van Berlo et al.[15] showcased the potential of FURL in human
activity detection, as highlighted in their study. By pre-training with unlabeled data
collected from a diverse range of users, FURL achieved competitive or even superior
performance compared to supervised deep learning approaches. This demonstra-
tion underscores the effectiveness of unsupervised representation learning in cap-
turing nuanced human activity patterns. FedOnce [16] is a communication-efficient
method developed to address privacy concerns in real-world vertical federated learn-
ing scenarios. It integrates unsupervised representation learning with prioritization
and cost management strategies to optimize performance. The approach aims to
enhance collaboration among vertically partitioned datasets while safeguarding sen-
sitive information. Sungwon Han et al. introduced FedX[17], a novel approach in
federated learning. FedX leverages contrastive learning and knowledge distillation
techniques to extract unbiased representations from decentralized data sources. By
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incorporating these methods, FedX aims to mitigate bias and enhance the quality
of learned representations. Mykola Servetnyk et al.[18] propose weight calculation
strategies to address the challenge of unbalanced data in federated learning. These
strategies aim to mitigate bias and improve the fairness of model training across het-
erogeneous datasets. By dynamically adjusting weights based on data distribution,
the approach ensures that each participant’s contribution is appropriately accounted
for. E. S. Lubana et al. introduced the Orchestra [19] method, which employs dis-
tributed clustering to achieve a globally consistent segmentation of customers’ data.
Tiandi Ye et al.[20] expand the adaptive risk reduction strategy to the realm of
unsupervised personalized federated learning, aiming to tackle the challenge of de-
livering tailored models for new clients. Yeongwoo Kim et al.[21] present a dynamic
clustering method designed to address privacy issues, accommodate shifting environ-
ments, and explore various cluster configurations. By considering privacy concerns,
the method prioritizes data protection while achieving effective clustering outcomes.
The ability to adapt to changing settings enhances its applicability in dynamic data
environments.FML was introduced by McGahan et al. [4] in 2016. According to
McMahan et al.[4], a global server model and a loose federation of scattered clients
help FML resolve model training. The global model parameters are provided by the
clients for training. by the global model server utilizing client data that is locally
saved. The global model server receives an update to the global model parameter
from the client. The global model server aggregates all modifications. and chooses
new parameters. This process is carried out again for a specific number of communi-
cation cycles needed for the global model to converge. Federated learning clustering
has been the subject of several works. Techniques for user grouping in non-IID feder-
ated learning are provided by Jianfei Zhang et al. [22] and Lucas Pacheco et al.[23].
Pacheco concentrates on a neural network-based approach, while Zhang introduces
the FedLabCluster method. Avishek Ghosh et al. introduce the Iterative Federated
Clustering Algorithm (IFCA)[24] for clustered federated learning, demonstrating
its efficacy in addressing non-convex problems. IFCA iteratively refines cluster as-
signments across distributed data sources, fostering collaboration while preserving
data privacy. By leveraging iterative optimization techniques, IFCA effectively nav-
igates complex data distributions inherent in non-convex problems. Chengxi Li et
al.[25] expand on the concept by introducing Federated Learning with Soft Clus-
tering (FLSC), which takes advantage of overlapping clusters to improve learning
performance. The combined findings of these studies help to develop more effective
and efficient federated learning clustering algorithms. Several clustering methods
have been proposed for use in federated learning. Junshen Su et al.[26] present a
cosine similarity-based method that effectively groups clients and improves test ac-
curacy. With a focus on communication efficiency, La-izhong Cui et al.[27] present
ClusterGrad, a novel clustering-based quantization technique and a K-means algo-
rithm for compressing gradients. The performance of federated learning is improved
by the combined influence of various methods.
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2.1 A Systematic Review on Federated Unsuper-

vised Clustering

A comprehensive literature review technique [28] was used in this study. Key pur-
poses of the review research can be found in table 2.1 . The methodology comprised
an exhaustive and methodical examination of extant academic literature pertinent
to the subject matter being studied. This strategy made it easier to identify, assess,
and synthesize relevant literature by using strict inclusion criteria and search tactics.
As a result, the study’s results and conclusions were well-founded.

2.1.1 Search Strategy

A systematic search in several electronic databases is conducted, including IEEE
Xplore, ACM Digital Library, arXiv, and Google Scholar. This comprehensive ap-
proach ensured the inclusion of a wide range of scholarly articles, conference papers,
preprints, and other relevant literature sources. we have have searched for federated
unsupervised learning (eg: (”federated learning” OR ”federated machine learning”
OR ”distributed machine learning”) AND (”unsupervised learning” OR ”unsuper-
vised machine learning”)) The articles were searched using several keywords related
to autoencoder or clustering(eg: (”autoencoder” OR ”autoencoders” OR ”auto-
encoder” OR ”auto-encoders” OR ”neural network”) AND (”clustering” OR ”clus-
ter analysis” OR ”segmentation”)).This query searches for articles containing any
variation of the term ”autoencoder” and any variation of the term ”clustering” or
”cluster analysis”. we have searched using keyword related to generative model and
unsupervised representation learning (eg : (”unsupervised representation learning”
OR ”unsupervised feature learning” OR ”unsupervised feature extraction”) AND
(”generative model” OR ”generative models” OR ”generative neural network” OR
”generative adversarial network” OR ”variational autoencoder”) )

2.1.2 Inclusion and Exclusion Criteria

Peer-reviewed journal articles is included, conference proceedings, and preprints
that focused on the development, analysis, or application of federated decentralized
clustering techniques using autoencoders. Studies that did not explicitly address
federated or decentralized settings or did not utilize autoencoders were excluded.
In selecting an article, adherence to the following criteria was paramount: (a) The
essay must be crafted in English, facilitating comprehension and accessibility across
diverse readerships; (b) The article should demonstrate the incorporation of feder-
ated learning methodologies, showcasing collaborative machine learning techniques;
(c) The chosen paper should illustrate the utilization of either decentralized cluster-
ing or federated unsupervised representation learning methods, indicating innovative
approaches to data analysis and model training within distributed frameworks; (d)
Additionally, the paper should utilize generative models for unsupervised clustering,
highlighting advancements in clustering techniques. In addition to the inclusion cri-
teria, the article selection process involved the application of the following exclusion
criteria : (a) Any duplicate articles identified through searches across multiple aca-
demic databases were excluded to maintain uniqueness and prevent redundancy in
the review process; (b) Articles not directly pertinent to our research objectives were
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excluded, ensuring focus and relevance to the intended scope of inquiry; (c) Non-
English-language articles were excluded to maintain consistency with the language
criterion and ensure accessibility and comprehension for the intended audience; and
(d) Previous iterations of articles published on the same dataset and exploring iden-
tical objectives were excluded to prioritize fresh perspectives and novel insights in
the selected literature.

Figure 2.1: Article inclusion and exclusion process flowchart.

2.1.3 Study Selection

A comprehensive search across specified databases yielded a total of 387 articles for
consideration. The article selection process was meticulously executed in adherence
to predefined exclusion-inclusion criteria, as illustrated in various stages through
the Prisma flowchart presented in Figure (2.1). The Prisma flowchart delineates the
sequential stages of the selection procedure, from initial database search to final in-
clusion of relevant articles. At each stage, articles were meticulously screened based
on predetermined criteria to ensure rigorous selection and maintain methodological
rigor. In the initial phase of the research selection process, the pool of 384 pub-
lications underwent scrutiny to eliminate duplicate papers. Through this rigorous
screening, a total of 275 articles were identified and removed as duplicates, thereby
streamlining the dataset and ensuring the integrity and uniqueness of the remaining
literature.This meticulous culling of duplicate papers underscores the commitment
to methodological rigor and quality assurance in the research selection process. Fol-
lowing the removal of duplicate papers, a total of 88 items were further eliminated
in the previous round based on strict adherence to our predefined inclusion and ex-
clusion criteria. This meticulous screening process ensures that only articles closely
aligned with our research objectives and methodological standards are retained for
subsequent analysis.
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2.1.4 Data Extraction

A meticulous data extraction process was undertaken to delve into various aspects
of federated model aggregation strategies, algorithms, machine learning (ML) tech-
niques, and unsupervised clustering within federated settings. This extraction ef-
fort involved mining pertinent information from selected literature to elucidate the
diverse approaches and methodologies employed in federated learning paradigms.
Specifically, the focus was on understanding the intricacies of federated model ag-
gregation, encompassing strategies for aggregating distributed model updates across
heterogeneous devices and also on understanding the use of generative models in
federated settings. The selected publications underwent a meticulous and compre-
hensive review process to gather and extract pertinent research material, laying
the foundation for the subsequent literature review. This review involved a thor-
ough examination of each chosen publication, scrutinizing the content to extract
valuable insights, methodologies, findings, and discussions relevant to the research
objectives. Emphasis was placed on identifying key concepts, methodologies, and
empirical evidence related to the topic of interest, ensuring a comprehensive under-
standing of the subject matter. Two senior researchers oversaw and kept an eye
on the whole research procedure.researchers with proficiency in machine learning,
artificial intelligence, and health informatics to guarantee the accuracy and caliber
of this review article. In the present study, a meticulous data extraction process was
conducted to gather a diverse array of information from each selected article. Key
data points were meticulously extracted, including:Identifying the nature of each
article, such as research papers, reviews, or theoretical analyses, the date of publi-
cation to contextualize the research within its temporal framework, Understanding
the specific objectives and goals outlined by the authors, Detailing the methodolo-
gies, algorithms, and techniques utilized in the study and Identifying the datasets
employed for experimentation or analysis. Ultimately, the retrieved data were com-
bined and examined to provide an overview of the current literature and suggest
possible directions for further investigation.
4.2

Table 2.1: Key Purposes Of The Reviewed Studies

Purposes Brief description Ref Frequency

Federated
Unsupervised
Learning

In order to address the problems of data distri-
bution shift and representation misalignment in
distributed edge devices, the research presented
FedCA, a federated unsupervised representation
learning technique.

[13]
8

9



proposed a completely new federated unsupervised
learning method with a dynamic updating mecha-
nism to address non-IID decentralized data issues
in Internet of Things picture classification.

[14]

introduced federated unsupervised representation
learning, which uses unsupervised representation
learning in a federated environment to pre-train
deep neural networks with unlabeled input. Ex-
periments on human activity detection demon-
strate competitive or better performance than su-
pervised deep learning, and thus enables discrimi-
native feature extraction.

[15]

presented FedOnce, a vertical federated learn-
ing algorithm that is communication-efficient and
achieves competitive performance with lower com-
munication costs than state-of-the-art approaches
by utilizing unsupervised learning representations
and privacy-preserving mechanisms.

[16]

proposed FedX, an unsupervised federated learn-
ing system that improves performance across five
unsupervised algorithms without needing data fea-
ture sharing between decentralized and diverse lo-
cal data sources. FedX uses two-sided knowledge
distillation with contrastive learning.

[17]

In order to solve accuracy issues in nonuniformly
dispersed data, this research proposed an unsu-
pervised learning algorithm within the federated
learning framework. Dual Averaging (DA) with
two weight calculation techniques, fixed size bin
and self-organizing maps (SOM), are used.

[18]

In order to guarantee globally consistent data par-
titioning across clients, the study suggested Or-
chestra, a unique unsupervised federated learning
approach that orchestrates distributed clustering
activities.

[19]

The paper introduced FedTTA, an unsupervised
personalized federated learning method for accom-
modating new clients joining trained and deployed
models, enhanced with adaptive risk minimiza-
tion, proxy regularization, early-stopping adapta-
tion, and knowledge distillation

[20]
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Federated
supervised
learning

Introduced a practical federated learning method
based on iterative model averaging named Feder-
atedAveraging alogorithm, validated through ex-
tensive empirical evaluations across various model
architectures and datasets.

[4]
2

The paper introduced federated versions of adap-
tive optimizers (Adagrad, Adam, and Yogi) to ad-
dress convergence challenges in Federated Learn-
ing (FL) due to data heterogeneity.

[29]

Federated Data
Clustering

In order to overcome statistical variability between
clients, the article presented UIFCA, a federated
clustering technique that makes use of generative
models within the IFCA framework.

[12]
2

By utilizing cluster division, cluster calibration,
and generative adversarial network-based cluster-
ing, the study presented a three-phased data clus-
tering algorithm for federated learning in wireless
network management, overcoming the drawbacks
of conventional clustering techniques.

[21]

Federated
Client

Clustering

FedLabCluster, a unique clustered federated learn-
ing technique that clusters clients based on sample
labels to handle Non-IID data, was introduced in
the study.

[22]
6

Introduced a Neural Network-based Federated
user Clustering mechanism to address the require-
ment of Independent Identically Distributed (IID)
data in Federated Learning (FL).

[23]

The paper introduced IFCA, an Iterative Feder-
ated Clustering Algorithm for clustered federated
learning.

[24]

In order to handle non-IID data, the paper pre-
sented FLSC, a Federated Learning algorithm with
soft clustering that combines the advantages of
IFCA and soft clustering.

[25]

In order to handle data heterogeneity in Feder-
ated Learning (FL), the research presented a co-
sine similarity-based clustering approach for Clus-
tered Federated Learning (CFL).

[26]

In order to dramatically lower transmission vol-
ume, the study introduced ClusterGrad, a gradi-
ent compression approach for Federated Learning
(FL), which makes use of gradient clustering.

[27]
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Generative
Model Based
Clustering

Introduced ClusterGAN, a unique GAN-based
clustering method that combines an inverse net-
work that was simultaneously trained using a
clustering-specific loss function with continuous
and one-hot encoded latent variables.

[10]
2

Presented DeepCluster, an unsupervised visual
feature learning technique that uses iterative k-
means clustering to simultaneously learn neural
network parameters and cluster assignments.

[11]

Unsupervised
Representation

Learning

Demonstrated state-of-the-art performance across
many benchmarks and workloads for unsupervised
semantic feature learning using ConvNets trained
to detect 2D rotations applied to input images,
greatly narrowing the gap with supervised feature
learning techniques.

[5]
5

Introduced deep convolutional generative adver-
sarial networks (DCGANs), demonstrating their
generalizability as picture representations across
multiple tasks and datasets, and highlighting its
potential for unsupervised learning by learning hi-
erarchical representations.

[6]

Presented RUC, a novel model based on robust
learning that uses pseudo-labels from other image
clustering models to address overconfidence and
incorrect predictions. It shows better robustness
and calibration across a variety of datasets and
can be used as a flexible add-on module to improve
clustering performance.

[7]

A novel self-supervised learning technique called
Super-AND is presented. It builds upon the
memory-based pretraining method AND model by
including unique losses to improve anchor selec-
tion and adversarial training to improve embed-
ding learning.

[8]
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Aimed to develop distributed statistical learn-
ing algorithms that are provably robust against
Byzantine failures.

[9]

Privacy
Issues

Forecasts 50 billion IoT devices by 2030, not-
ing benefits but also challenges of unique security
threats, reviewing existing literature, discussing
IoT threat detection research, and outlining future
research directions.

[1]
2

Revealed: 50 million Facebook profiles harvested
for Cambridge Analytica in major data breach.

[3]

This research is primarily concerned with data clustering in federated environments.
Since autoencoders provide a smooth and continuous latent space representation, An
autoencoder-based clustering technique have been employed for the representation
of federated environments.To the best of our knowledge, this study is the first to
try decentralized clustering using autoencoders.Additionally, the FednadamN model
aggregation technique has been put forth.The proposed FednadamN, a combination
of Adam and Nadam optimization, takes into account the unique weights of each
client to make sure that the global model weights remain closer to the optimal
solution during training.
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Chapter 3

Methodology

In a centralized system, the goal of clustering is to create distinct and meaningful
clusters that aid in better data organization, interpretation, and analysis. Data
clustering issues are common in centralized environments, when data is kept on
a single computer or client. These issues arise due to the challenges of handling
large volumes of data efficiently within a centralized infrastructure. Additionally,
the computational complexity of clustering algorithms can strain the resources of a
single machine or client. Communication overhead becomes a critical concern when
transferring data between the central server and client devices, impacting the per-
formance of clustering algorithms. In a distributed setting with n client computers
and one central server, a common data clustering problem is examined.. This sce-
nario introduces complexities in coordinating the clustering process across multiple
devices. The challenge lies in efficiently aggregating local clustering results from
individual clients to form a cohesive global clustering solution. Communication
overhead becomes a significant concern in transmitting data between the central
server and numerous client computers. The goal is to determine which of the total
D data samples are thought to spontaneously partition into K distinct clusters,
D1. . . . . . Dk. A random shuffling strategy was utilized to disperse the data samples
among the n clients, ensuring the preservation of heterogeneity. Each client dataset
is denoted as Di, representing a distinct subset of the overall data. This approach
helps maintain diversity within individual client datasets, contributing to more rep-
resentative clustering results. Using the flwr Python library, A federated system with
nn client devices is replicated . and a solitary central server. This setup enables
us to simulate distributed data processing and coordination, mirroring real-world
scenarios encountered in federated learning and decentralized data analysis. The
flwr library provides essential tools for orchestrating communication, synchroniza-
tion, and aggregation between the central server and the client devices, facilitating
the development and evaluation of federated learning algorithms and distributed
data clustering techniques.For each client and the server, autoencoder models are
used to predict cluster information.. Autoencoders are neural network architectures
capable of learning efficient representations of data by reconstructing inputs from
compressed representations. By utilizing autoencoders in both the server and client
models, In order to facilitate accurate cluster information estimate, the goal is to
extract and encode the data’s underlying structure. Using a connectivity technique,
the client computers establish communication with the central server. In this setup,
the model residing on the server is termed ”global,”
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Figure 3.1: Overview of our methodology.(1) Central server broadcast global weight
to n clients.(2) Each local client update local autoencoder and send the updated
weight to the strategies. (3) Four different strategies are used. (4) Each clients
updated weights are updated with the next client upto n clients and combine all
the weights. (5) Median weight is calculated considering all clients weights. (6)
Median weight is updated with the combined weight. (7) Indiviadual weights from
each strategy are send to central server. (8) Server apply clustering algorithms on
the output of the global autoencoders latent layer.

whereas the model residing on each client is referred to as ”local.” This distinction
between global and local models allows for decentralized processing and collabora-
tive learning, where the central server coordinates the aggregation of information
from individual clients to update the global model iteratively. The core concept
revolves around training the global model collaboratively without centralizing the
data. By distributing the training process across multiple client devices, each hold-
ing its local data, the global model is updated iteratively through communication
with these clients.The construction of the global model is initiated by generating
random parameters ω. These randomly initialized parameters serve as the starting
point for the global model’s development. The local models will undergo frequent
modifications utilizing local data. Each client device refines its respective local model
iteratively by training on its own data subset. These frequent updates ensure that
the local models accurately capture patterns and nuances present within the client’s
data without necessitating data transmission to the central server. That helps the
global model undergo refinement and optimization to learn from the distributed data
effectively. Federated setting is replicated for R communication rounds, where R
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denotes the number of iterations or communication cycles between the central server
and the client devices. During each communication round t, updates are exchanged
between the global model on the server and the local models on the client devices
. Every local autoencoder modifies its local parameter ω using the global parame-
ters during a communication round. In every training epoch, each client computes
the Kullback-Leibler divergence loss function using its local dataset Di. This loss
function, denoted as Li (ω) (3.1), quantifies the discrepancy between the probability
distributions of the reconstructed data and the original input data. By evaluating
Li (ω) for each client’s local dataset, The performance of the autoencoder model
in capturing the underlying structure of the data and minimizing information loss
during reconstruction is assessed.

Li(ω) =
1

|Di|
∑

(x,y)∈Di

Loss(fω(x), y) (3.1)

The model prediction for input x is denoted by fω(x). For every autoencoder,
The Kullback-Leibler divergence loss function is employeed. Subsequently, for every
client, the gradient of the local loss ∇ωLi(ω) is computed with respect to the model
parameters ωt

i . This gradient calculation quantifies the direction and magnitude of
the change required in the model parameters to minimize the loss function. Based
on the computed gradient, each local model utilizes an Adam optimizer to update
the local model parameters, denoted as ωt

i . This optimization algorithm adjusts the
parameters in the direction that minimizes the local loss function, thereby enhancing
the model’s performance on the specific dataset. By employing Adam optimization,
which combines adaptive learning rates and momentum, the local models iteratively
refine their parameters to converge towards optimal solutions while accounting for
variations in the loss landscape.

ω
(t+1)
i = Adam(ωt

i ,∇ωLi(ω)) (3.2)

Equation (3.2) uses the updated local model parameters ω
(t+1)
i to reflect how the

model has been adjusted to fit the local dataset Di. After a specified number of
epochs of local training, each client transmits the updated local model parameters to
the central server. This communication step enables the central server to aggregate
the parameter updates from all client devices, facilitating the synchronization and
consolidation of knowledge across the distributed system. By periodically exchang-
ing model parameters, the central server maintains an up-to-date global model that
reflects the collective insights gleaned from the diverse local datasets. In the server,
combine the local model updates that have been received to derive the new global
model parameters ω(t+1) in (3.3). The local update may be further explained by
using Algorithm 1.

ω(t+1) = Aggregate(ωt
1, ω

t
2, . . . , ω

t
n) (3.3)

Four strategies have been used for parameter aggregation. Among the various strate-
gies employed, FednadamN stands out as a proposed approach tailored to our spe-
cific needs and objectives. This strategy, named FednadamN, is uniquely crafted
to address the challenges and requirements of our project or scenario. It offers a
specialized solution designed to optimize performance, enhance efficiency, or achieve
particular goals within the given context. Alongside the customized strategy of Fed-
nadamN, FedAvg, FedMedian, and FedAdam are incorporated as baseline meth-
ods for parameter aggregation. These established approaches provide benchmarks
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against which the performance of FednadamN can be evaluated and compared. By
leveraging a combination of customized and standardized methods, A comprehen-
sive assessment is ensured for different aggregation techniques, thereby facilitating
informed decision-making and optimization of our federated learning framework.
These baseline tactics act as the fundamental frameworks that measure the efficacy
and performance of our tailored strategy. FednadamN is comparable and evaluable.
This decision is made to employ the global parameter in the global model after
conducting R communication rounds. This decision marks a turning point in our
iterative process, as the ideas and collective knowledge gained across R communi-
cation cycles are combined to produce the global model. including the worldwide
parameter. We fully supplied the global model with data, enabling a thorough com-
prehension of the subtleties and intricacies of the dataset. Thus, the latent layer’s
output out of the global autoencoder model is taken. This deliberate approach al-
lows to retrieve the key underlying characteristics and patterns from the data that
the latent layer autoencoder is looking for.
To thoroughly evaluate our approach, The central server is equipped with a wide
range of clustering methods. K-means, fuzzy k-means, minibatch k-means, and k-
medoids are a few of them. This comprehensive implementation allows us to assess
the effectiveness and suitability of different clustering techniques for our specific
dataset and objectives. By exploring a wide variety of algorithms, It allows to learn
more about performance, strengths, and limitations, thus informing our decision-
making process and guiding further optimizations in our clustering strategy. Each
algorithm brings its own unique strengths and characteristics to the table, enriching
our exploration of the dataset and enabling us to extract valuable insights from
diverse perspectives. By leveraging a variety of clustering techniques, within the
data hidden patterns, relationships, and structures can be uncovered , providing a
holistic understanding of its underlying properties. Our clustering methods utilized
the output of the latent layer as an input. This approach leverages the representa-
tions learned by the autoencoder model in the latent space, which captures essential
features and patterns within the data. By employing the latent layer’s output for
clustering, this work get benefit from the enhanced abstraction and dimensionality
reduction achieved during the autoencoder’s training process. Our goal is to more
compactly and meaningfully describe the underlying structures and patterns con-
tained in the data by utilizing the encoded representations that our model’s latent
layer has learnt. A summary of our research is provided in Figure (3.1).

Algorithm 1 Client Update

1: Input: Client data C, initial parameters ω
2: Output: Updated parameters ω
3: for i = 1 to E do
4: ω ← Adam(ω,∇L(ω;D))
5: end for
6: return ω
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3.1 Algorithms Behind Clustering

In our experiment, Four clustering algorithms alongside autoencoder-based models
to achieve decentralized clustering have been emploeed. This multifaceted approach
allowed us to explore various methodologies for clustering while leveraging the ca-
pabilities of autoencoder models to extract meaningful features from the data. By
combining different clustering algorithms with autoencoder-based models, the ob-
jective is to improve the decentralized clustering framework’s resilience and efficacy.

1. K-means: A well-liked clustering technique called kmeans divides a dataset
into k clusters, each of which has a single data point that belongs to the cluster
with the closest mean. Selecting the number of clusters, k, is the first step.
Next, initialize the centroids of each of the k clusters at random. Subsequently,
each data point is assigned to the cluster with the closest centroid (often
determined by Euclidean distance) . The assignment step is often formulated
as follows in (3.8)

argminj||xi −Cnj
||2 (3.4)

Where xi is a data point, Cnj is the centroid of cluster j and ||.|| represents
euclidian distance.Then It takes the mean of all the data points allocated to
each cluster to recalculate the centroids of the clusters. The update step is
often formulated as follows in (3.9)

Cnj
=

1

|Sj|
∑
i∈Sj

xi (3.5)

here Sj is the set of data points assigned to cluster j. Up to convergence,
repeat the assignment and recalculation. Convergence happens after a certain
number of repetitions, or when the centroids no longer exhibit substantial
variation

2. K-medoids: A variant of the k-means algorithm, the kmedoids method use
the medoid as the representation of a cluster rather than the mean (average).
The data point inside a cluster that minimizes the total distances to all other
points in the same cluster is known as the medoid. The initial step is to choose
k , the number of clusters. The centroids of each of the k clusters should then
be randomly initialized. Each data point is assigned to the cluster whose
medoid (often determined using a distance metric like Euclidean distance) has
the least dissimilarity. The assignment step is often formulated as follows in
(3.10)

argminj

∑
i∈Sj

d(xi,mj) (3.6)

Here xi is data point , mj is the medoid of cluster and d(., .)is a distance
metric. Subsequently The data point that minimizes the total distances to
other points in the same cluster as the new medoid should be chosen for each
cluster The update step is often formulated as follows in (3.11)

mj = argminx∈Sj

∑
i∈Sj

d(x,xi) (3.7)
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Here mj is the medoids of cluster jj andSj Sj is the of data points assigned to
cluster J.Until convergence, repeat the assignment and updating steps. Con-
vergence happens after a certain number of repetitions, or when the medoids
no longer exhibit significant changes.

3.2 Autoencoder

In the realm of artificial intelligence and machine learning, autoencoders stand as a
fundamental and versatile tool, wielding the power to unravel the intricate tapestry
of data. With their capacity to learn compact representations of input data and
reconstruct it with remarkable fidelity, autoencoders have found widespread appli-
cation across diverse domains, from image processing to natural language under-
standing. This page delves into the essence of autoencoders, exploring their archi-
tecture, training process, and manifold applications. At the heart of an autoencoder
lies a symphony of neural network layers meticulously orchestrated to compress and
decompress data. The architecture typically comprises two primary components:
an encoder and a decoder. The encoder, akin to a sculptor, transforms the high-
dimensional input data into a lower-dimensional representation, capturing its essence
in a latent space. Conversely, the decoder acts as an artist, skillfully reconstructing
the original data from the latent representation. Together, these components form a
seamless pipeline, orchestrating the intricate dance of information compression and
decompression. The journey of an autoencoder begins with the quest to minimize
the chasm between the original input and its reconstructed counterpart. Through
an iterative process of training, the autoencoder traverses the landscape of data,
fine-tuning its parameters to minimize the reconstruction error. This journey un-
folds in the realm of unsupervised learning, where the autoencoder navigates the
labyrinth of data without the guiding hand of labeled examples. Armed with opti-
mization algorithms such as stochastic gradient descent, the autoencoder embarks
on a quest for efficiency, striving to distill the essence of the data into a compact and
meaningful representation. primarily Its objective is to acquire efficient data repre-
sentations, typically for dimensionality reduction or feature learning. The encoder
of the autoencoder is its initial part. The encoder component of an autoencoder
translates the input data to a representation that is lower dimensional. This process
involves capturing essential features and patterns while reducing the dimensionality
of the data. By compressing the input into a compact latent space, the encoder
learns to distill the most salient information for subsequent reconstruction. This
lower-dimensional representation serves as a compressed encoding of the input data,
facilitating efficient storage and computation in downstream tasks. The encoder
function may be expressed mathematically as h = f(x), where x represents the in-
put data and h represents the encoded representation. Then comes the latent space,
where the representation of the supplied data is condensed into a lower-dimensional
form. This latent space serves as a compact encoding of the input data, capturing
essential features and patterns while reducing dimensionality. Within this com-
pressed representation, the autoencoder encapsulates the essence of the input data,
facilitating efficient storage and analysis. The latent space acts as a bottleneck in
the autoencoder architecture, enforcing a compressed representation that encour-
ages the extraction of salient information. In the lower-dimensional space of the
autoencoder’s latent representation, each point corresponds to a potential encod-
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ing of the input data. These points encapsulate the essential features and patterns
extracted by the autoencoder during the encoding process. By mapping the input
data to this compressed space, the autoencoder captures the underlying structure
of the data in a more concise form. This representation facilitates efficient storage
and analysis, enabling downstream tasks such as reconstruction and clustering.The
final component of the autoencoder is the decoder, tasked with reconstructing the
original input data from the encoded representation obtained from the latent space.
Employing the learned features from the latent space, the decoder aims to faithfully
recreate the input data. Through a process of decoding, the autoencoder endeavors
to minimize the reconstruction error, striving to produce an output that closely re-
sembles the original input. This reconstruction process completes the cycle of the
autoencoder, enabling it to capture and recreate the essential characteristics of the
input data. The goal is to produce an output that closely matches the input. The
decoder function may be expressed mathematically as r = g(h), where r represents
the reconstructed output and h represents the encoded representation. Reconstruc-
tion error minimization stands as the primary training objective of the autoencoder.
By striving to minimize the discrepancy between the original input data and its
reconstructed counterpart, the autoencoder learns to capture the essential features
and patterns within the data. This iterative optimization process fine-tunes the au-
toencoder’s parameters, enhancing its ability to faithfully recreate the input data.
Through the pursuit of reconstruction error minimization, the autoencoder endeav-
ors to distill the essence of the data into a compact and meaningful representation.

Figure 3.2: Sample Auto encoder
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Reconstruction error minimization stands as the primary training objective of the
autoencoder. By striving to minimize the discrepancy between the original input
data and its reconstructed counterpart, the autoencoder learns to capture the es-
sential features and patterns within the data. This iterative optimization process
fine-tunes the autoencoder’s parameters, enhancing its ability to faithfully recreate
the input data. Through the pursuit of reconstruction error minimization, the au-
toencoder endeavors to distill the essence of the data into a compact and meaningful
representation. The discrepancy between the input data and the reconstructed out-
put is quantified by the loss function. This loss function evaluates the difference
between the original input and its reconstructed counterpart, providing a metric for
the reconstruction accuracy of the autoencoder. By minimizing the loss function dur-
ing training, the autoencoder learns to generate reconstructions that closely match
the original input data. This iterative optimization process enables the autoencoder
to refine its parameters and improve its reconstruction capabilities over time. De-
pending on the nature of the input data, autoencoders commonly employ Mean
Squared Error (MSE) or Binary Crossentropy as loss functions. MSE is suitable
for continuous data, measuring the average squared difference between the original
input and the reconstructed output. On the other hand, Binary Crossentropy is
preferred for binary data, quantifying the discrepancy between the binary input and
its reconstruction. The choice of loss function depends on the specific characteris-
tics of the input data and the objectives of the autoencoder training. Typically, the
loss function is specified as L(x, g(f(x))) in where x represents the input data, f
denotes the encoder, and g denotes the decoder. During training, the autoencoder
adjusts the settings of both the encoder and decoder to minimize the reconstruc-
tion error. By iteratively fine-tuning these parameters, the autoencoder learns to
extract and represent the most salient features of the input data. This optimization
process enables the autoencoder to capture essential patterns and structures while
reducing redundancy in the latent representation. Through continuous refinement,
the autoencoder gradually improves its ability to reconstruct the input data with
greater fidelity. An example of an autoencoder is shown in figure (3.2). The phases
of decentralized clustering using autoencoder are represented by algorithm 2.

Algorithm 2 Autoencoder based decentralized clustering

1: Initialize server autoencoder with ω0, parameters β1, β2, δ
2: for each round t = 1, 2, . . . do
3: St ← random set of m clients
4: Initialize client autoencoder with ωt

5: for each client C ∈ St in parallel do
6: ω

(t+1)
C ← ClientUpdate(C, ωt

C)
7: end for
8: ω(t+1) ← Strategy(ωt

1, ω
t
2, ω

t
3, . . . , ω

t
C)

9: Update server autoencoder with ω(t+1)

10: end for
11: Calculate latent representation, h = f(x), with input data x
12: Apply clustering algorithms on h
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3.3 Strategy Behind Model Aggregation

In this section, It is started by presenting a straightforward extension of the existing
parameter aggregation technique, which serves as our baseline approach. This initial
expansion provides a foundational framework upon which advanced strategies can
be build and refined more . By establishing a baseline, It is aimed to assess the
effectiveness of our proposed modifications and innovations in comparison to this
foundational technique. This baseline serves as a reference point for evaluating the
performance and efficacy of alternative parameter aggregation methods in our ex-
perimentation. Then, we delve into the specifics of our proposed strategy, outlining
its key components and operational mechanisms. This section offers a comprehen-
sive overview of our innovative approach, detailing how it differs from the baseline
technique and the rationale behind its design. By elucidating the intricacies of our
proposed strategy, It is aimed to provide clarity and insight into its potential bene-
fits and implications for parameter aggregation in our context.

3.3.1 FedAvg

FedAvg [4] technique A new global model is created by averaging the model up-
dates from each client that takes part in the training process.Devices with larger
datasets typically have a greater influence on the global model during the aggre-
gation stage, as this process is often weighted based on each device’s data volume.
This weighting scheme ensures that devices with more extensive datasets contribute
proportionally more information to the global model’s updates. By accounting for
variations in data volume across devices, Authors maintain a balanced and repre-
sentative aggregation process, fostering collaboration and maximizing the utility of
available data resources. After receiving the updated models from each client device,
the server calculates a weighted average of these models. This weighted averaging
process ensures that contributions from each client are appropriately accounted for,
with devices carrying more significant data volumes exerting greater influence on
the global model. By aggregating the models in this manner, the server synthesizes
a comprehensive representation of the collective knowledge gleaned from the dis-
tributed data sources. The weight for every client may be expressed as ni

n
in where

n is the total number of data samples and ni is the number of local data samples
for each customer in ith. The formula for updating the global model is represented
as follows in (3.8).

ω(t+1) =
∑
i∈C

ni

n
ω
(t+1)
i (3.8)

Weighted averaging is commonly employed to achieve this, where models from clients
demonstrating superior performance are assigned higher weights. This ensures that
contributions from clients with more accurate or relevant data are given greater
consideration during aggregation. By incorporating performance metrics into the
weighting scheme, such as accuracy or loss reduction, the influence of each client’s
model on the global update can be adjusted dynamically. This adaptive approach
promotes collaborative learning, allowing the global model to benefit from the ex-
pertise of individual clients while mitigating the impact of noisy or less informative
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data sources.

3.3.2 FedMedian

[9] FedMedian As an alternative to FedAvg [4], aggregation uses the median rather
than the mean to aggregate local models across decentralized devices. In contrast to
calculating the average, the objective is to obtain the median of the model parame-
ters. This alternative aggregation method aims to mitigate the influence of outliers
or skewed data distributions, providing a more robust estimate of the global model.
By prioritizing the median, the aggregation process becomes less sensitive to extreme
values, enhancing stability and resilience in the face of variability across client de-
vices. This approach is particularly beneficial in scenarios where data distributions
are non-normal or prone to outliers, ensuring a more representative aggregation
outcome. Through the utilization of the median, authors strive to foster greater
consistency and reliability in the global model’s parameters. The formula for up-
dating the global model is represented as follows in (3.9).

ω(t+1) =
∑
i∈C

ni

n
ω
(t+1)
i (3.9)

Here, the median is computed individually for each parameter of the model, result-
ing in a parameter-wise aggregation approach. This parameter-wise computation
ensures that each element of the model’s parameters undergoes median calcula-
tion independently. By treating each parameter separately, the aggregation process
maintains granularity and preserves the unique characteristics of the model’s archi-
tecture. This allows for nuanced adjustments and fine-grained aggregation, enhanc-
ing the fidelity and accuracy of the resulting global model. Calculating the median
for each parameter individually offers a concise summary of the distribution of val-
ues, revealing insights into their unique characteristics. This method allow to assess
the central tendency of each parameter independently, untethered from the broader
context of the entire model. By focusing on individual parameters, this strategy
gain a granular understanding of distributional properties and variability, enabling
targeted adjustments and optimizations. This parameter-wise analysis enhances our
ability to identify outliers or anomalies specific to certain parameters, facilitating
robust model interpretation and refinement.

3.3.3 FedAdam

FedAdam [29] technique begins by initializing the first and second moment estimates
m and v to zero for each parameter before averaging the model updates from each
client that participates in training.Every communication round t, ∇t is calculated
by taking the difference between the weights that are averaged and the weights that
are now in the global model. Using exponential decay, it modifies the first moment
estimate mt and the second moment estimate ∇t at each communication round t.
It is possible to represent ∇t and mt as in (3.10) and (3.11).

mt = β1 ·m(t−1) + (1− β1) · ∇t (3.10)
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vt = β2 · v(t−1) + (1− β2) · (∇t)2 (3.11)

After each round of local training, the global model parameters are updated using
the Adam update rule. This adaptive optimization algorithm adjusts the model
parameters based on the gradients computed from the local training process. By
employing the Adam update rule, the global model undergoes iterative refinement,
dynamically adapting to the evolving characteristics of the data. This facilitates
efficient convergence towards optimal solutions while mitigating the impact of noisy
or sparse gradients. Through the application of the Adam update rule, the global
model harnesses the collective insights gleaned from distributed client devices, en-
hancing its performance and generalization capabilities. it can be viewed in (3.12).

ω(t+1) = ωt +
η√

vt + δ
·mt (3.12)

In this case, the decay rates are δ, β1, β2, and η. After a t number of communication
cycles, the global model update process is repeated until the global model converges.

3.3.4 Proposed FednadamN

In our FednadamN (Proposed) strategy, instead of computing the average or mean
of the local weights, each client’s weights is treated as individually during the
global model weight updation process. This approach ensures that each client’s
contribution is accounted for independently, without being influenced by the aggre-
gate behavior of other clients. By considering all client weights individually, the
unique characteristics and contributions of each device is preserved to the global
model. This personalized approach to weight updation allows for fine-grained ad-
justments and optimization, tailored to the specific characteristics of each client’s
data. Through the FednadamN strategy, it is aimed to enhance the fairness, effi-
ciency, and effectiveness of parameter aggregation in federated learning scenarios.
Algorithm 3 can further clarify .
The first step in this procedure is to set the starting values of the first and second
moment estimates for each parameter, m, nm, and v, nv. Following the completion
of all local client updates, it initializes ωtemp with the weight update of the first
client, ωt

1, and ωmed with the weight update median of all clients, ωt
St
. The weight

update of each updated client’s model, ∇t, is calculated using the difference be-
tween each local model weights and the ωtemp. Using exponential decay, it updates
each client’s first moment estimate (mt and second moment estimate (vt. One by
one, it modifies the temporary weight variable ωtemp for every client. ωtemp The up-
date formula is comparable to the Adam optimization, which has the formula (3.13).

ωtemp = ωtemp +
η√

vt + δ
·mt (3.13)

The weight update formula for Nadam optimization extends the update rule em-
ployed in the Adam optimizer. Nadam combines elements of Adam with Nesterov
momentum to enhance convergence and stability during optimization. This hybrid
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Algorithm 3 Proposed FednadamN

1: Server executes
2: Initialize ω0, parameters β1, β2, δ
3: for each round t = 1, 2, . . . do
4: St ← random set of m clients
5: for each client C ∈ St in parallel do
6: ωt

C ← ClientUpdate(C, ωt−1
C )

7: end for
8: ωtemp ← ωt

1

9: ωmed ← median(ωt
St
)

10: for each client C ∈ St and C ̸= 1 do
11: ∇t ← [ωt

C − ωtemp]
12: mt ← β1 ·mt−1 + (1− β1) · ∇t

13: vt ← β2 · vt−1 + (1− β2) · (∇t)2

14: ωtemp ← ωtemp + η√
vt+δ
·mt

15: end for
16: n∇t ← [ωmed − ωtemp]
17: nmt ← β1 · nmt−1 + (1− β1) · n∇t

18: nvt ← β2 · nvt−1 + (1− β2) · (n∇t)2

19: ω(t+1) ← ωmed + β1·nmt+(1−β1)·n∇t
√
vt+δ

· η
20: end for

approach incorporates the benefits of both algorithms, offering improved perfor-
mance and robustness. The Nadam optimizer adjusts the learning rate dynami-
cally, allowing for adaptive optimization in different regions of the parameter space.
By leveraging Nesterov momentum, Nadam accelerates convergence towards opti-
mal solutions while reducing oscillations. This makes Nadam particularly effective
for training deep neural networks and handling non-convex optimization problems.
Through its adaptive learning rate and momentum updates, Nadam enhances the
efficiency and effectiveness of the optimization process, contributing to improved
model performance in various machine learning tasks. Nadam seamlessly integrates
the adaptive moment estimation (Adam) algorithm with Nesterov accelerated gra-
dient (NAG) descent. This combination allows Nadam to optimize its learning rate
dynamically, adapting to the varying gradients encountered during training. By in-
corporating NAG, Nadam enhances its ability to anticipate and adjust for momen-
tum, facilitating smoother convergence towards optimal solutions. This adaptive
approach enables Nadam to navigate complex optimization landscapes more effi-
ciently, resulting in improved training performance and convergence speed. Through
its fusion of Adam and NAG, Nadam stands as a powerful optimizer capable of han-
dling diverse optimization challenges with agility and effectiveness. Following the
updating of ωtemp for every client, ∇t is calculated by taking the difference between
the updated temporary weight variable ωtemp and ωmed. It uses exponential decay to
update the first moment estimate nmt and the second moment estimate nvt. Next,
it applies the Nadam update rule to change the global model parameters, as seen in
(3.14). Flow of the proposed strategy can be viewed in figure (3.3)

ω(t+1) = ωmed +
β1 · nmt + (1− β1) · n∇t

√
vt + δ

· η (3.14)
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Figure 3.3: Overview of our proposed strategy. (1) Each clients updated weights are
updated with the next client upto n clients and combine all the weights. (2) Median
weight is calculated considering all clients weights. (3) Median weight is updated
with the combined weight.
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Chapter 4

EXPERIMENTAL RESULTS
AND DISCUSSION

In a federated learning environment, the configuration and parameters used for con-
ducting trials or experiments are referred to as federated settings. This covers the
configuration in which the model is dispersed among several servers or client de-
vices, each of which is keeping samples of local data. Since only model updates
are shared and raw data stays on the client devices in federated setups, data pri-
vacy is protected.Research in federated environments is carried out using simulation
functionality. The behavior and features of federated client devices are imitated us-
ing simulations as opposed to actual client devices. With this method, researchers
can manage and adjust several elements of the experiment in a regulated setting,
including the number of client devices, data distributions, and communication meth-
ods.The utilization of simulation functionality is required due to the limited number
of federated client devices that are accessible throughout the execution of the ex-
periment. Obtaining a large number of client devices for tests may be difficult in
real-world situations because of logistical issues or privacy concerns. As a result,
using simulations to mimic federated learning environments with a scalable number
of virtual client devices is a useful alternative.Three metrics are used in the study
to assess the experimental results. These metrics are used as quantitative indicators
to evaluate the efficacy and performance of the federated learning strategy. Ac-
curacy, convergence speed, communication overhead, privacy assurances, and any
other pertinent performance indicators are common evaluation metrics in federated
learning investigations, contingent on the particular goals of the investigation.this
sample emphasizes the approach taken to carry out experiments in federated learn-
ing environments, stressing the significance of utilizing suitable metrics to assess
findings and the usage of simulation features to get around real-world deployment
constraints.

4.1 Dataset

Since clustering is a type of unsupervised learning that involves grouping similar
data points together based on their inherent characteristics, the dataset plays a cru-
cial role in the clustering process. The dataset serves as the foundation upon which
clustering algorithms operate, providing the raw material from which clusters are
formed. The quality, size, and diversity of the dataset significantly impact the effi-
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cacy and performance of clustering algorithms. A well-curated dataset with diverse
and representative samples enhances the clustering process, enabling the algorithms
to discern meaningful patterns and structures within the data. Conversely, a dataset
lacking in diversity or containing noisy or irrelevant data may hinder the cluster-
ing process, leading to suboptimal results. Therefore, careful preprocessing and
selection of the dataset are essential steps in preparing for the clustering task. The
dataset’s dimensionality and scale also influence the clustering process, as algorithms
may perform differently depending on the number of features and their magnitude.
Additionally, the dataset’s distribution and density affect the clustering outcomes,
with algorithms exhibiting varying degrees of sensitivity to skewed or sparse data
distributions. Moreover, the dataset’s completeness and consistency are critical
factors in ensuring the reliability and validity of clustering results. Incomplete or
inconsistent data may introduce biases or distortions, leading to inaccurate cluster
assignments. Furthermore, the dataset’s size and computational complexity impact
the scalability and efficiency of clustering algorithms, with larger datasets requir-
ing more computational resources and potentially longer processing times. Overall,
the dataset serves as the bedrock of the clustering process, influencing every stage
from algorithm selection to evaluation and interpretation. Therefore, meticulous
attention to dataset quality, relevance, and preprocessing is essential for achiev-
ing meaningful and actionable clustering results. The software looks for patterns
and structures in the data without specific instructions. It provides the foundation
for clustering algorithms and provides a place of departure for identifying patterns
and grouping objects.The quality and type of the dataset have a significant im-
pact on the efficacy and usability of clustering findings in real-world applications.
In the experiment, simulations are conduced within a federated environment using
benchmark datasets, including the Letter Image Recognition Data, Deterding Vowel
Recognition Data, Protein Localization Data, and Image Segmentation data. These
datasets were chosen to represent a diverse range of domains and data types, al-
lowing for comprehensive evaluation of our proposed approach. The Letter Image
Recognition Data [30] comprises images of handwritten letters, commonly used for
character recognition tasks. The Deterding Vowel Recognition Data [31] consists
of speech recordings for vowel recognition applications. The Protein Localization
Data [32] includes sequences of amino acids for predicting protein subcellular local-
ization. Lastly, the Image Segmentation data [33] contains images segmented into
distinct regions for image analysis tasks. By leveraging these benchmark datasets,
it is aimed aimed to assess the performance and generalizability of our federated
clustering approach across various domains and data modalities. The Letter Image
Recognition Dataset consists of 20,000 samples, with each sample representing one
of 26 distinct classes corresponding to the English alphabet. Each sample in the
dataset is an image depicting a handwritten letter, with variations in handwriting
styles and shapes. This dataset is commonly used for character recognition tasks
and provides a comprehensive representation of handwritten letters. The dataset’s
large size and diversity facilitate robust training and evaluation of clustering algo-
rithms. Each sample in the Letter Image Recognition Dataset is described by 16
attributes, which capture various features of the letter images. These attributes
includes characteristics such as width, height, and pixel intensity values, symmetry,
diagonal intensity, and vertical and horizontal position within a specific pixel grid.
By representing each sample with these descriptive attributes, the dataset provides
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a structured representation of the handwritten letters. These attributes serve as
input features for clustering algorithms, enabling the algorithms to discern patterns
and similarities among the letter images. Letter Image Recognition Dataset can be
visulaized in figure (4.1)

Figure 4.1: Visualization of the Letter Image Recognition Data using radar chart,
where Each feature or attribute is represented by a different axis that radiates out-
ward from the center, and the data values are plotted along these axes.Diffrent color
represnts diffrernt class

The Deterding Vowel Recognition Dataset comprises 991 samples, with each sample
characterized by 10 attributes relevant to vowel sounds. These attributes capture
various acoustic features, such as pitch, formant frequencies, and duration, essential
for distinguishing between different vowel sounds. The dataset is commonly used in
speech recognition and phonetics research for vowel classification tasks. Each sample
represents a recorded instance of a spoken vowel sound, providing a comprehensive
representation of vowel articulation. The Deterding Vowel Recognition Dataset
comprises 11 distinct classes, each representing a different vowel sound. These classes
encompass a range of vowel articulations found in various languages and dialects.
Each class corresponds to a specific vowel sound, such as ”a,” ”e,” ”i,” ”o,” and
”u,” among others. The dataset provides a comprehensive representation of vowel
phonemes, enabling researchers to study the acoustic characteristics and variability
of vowel sounds. The Deterding Vowel Recognition Dataset can be visulaized in
figure (4.2)
The Protein Localization Dataset consists of eight classes, seven characteristics, and
336 samples. Each sample represents a sequence of amino acids, and the dataset
aims to predict the subcellular localization of proteins based on these sequences.
The eight classes correspond to different subcellular locations, such as nucleus, cy-
toplasm, mitochondrion, and others. The dataset’s characteristics may include at-
tributes related to amino acid composition, sequence motifs, or physicochemical
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Figure 4.2: Visualization of the Vowel Recognition Data using radar chart, where
Each feature or attribute is represented by a different axis that radiates outward
from the center, and the data values are plotted along these axes.Diffrent color
represnts diffrernt class

properties.The Protein Localization Dataset can be visulaized in figure (4.3)
The Image Segmentation dataset comprises 2,311 samples, 19 characteristics, and
7 classes. Each sample represents an image segmented into distinct regions, with
the goal of classifying each pixel into one of the seven predefined classes. The
dataset’s characteristics may include pixel intensity values, texture features, and
spatial relationships among neighboring pixels. The seven classes correspond to
different semantic regions within the images, such as sky, vegetation, buildings, and
roads. The Image Segmentation dataset can be visulaized in figure (4.4)
In preprocessing our dataset, which comprises both categorical and numerical values,
pandas factorize function is utilized to obtain a numeric representation of categori-
cal data. This conversion enables machine learning algorithms to process categorical
features effectively by assigning unique numerical codes to each category. By con-
verting categorical variables into numerical representations, we ensure compatibility
with algorithms that require numeric input. The factorize function assigns a unique
integer to each distinct category, facilitating subsequent analysis and modeling tasks.
This approach preserves the inherent structure of categorical variables while enabling
seamless integration with numerical features. Through this preprocessing step, the
dataset’s suitability is enhanced To ensure the quality and reliability of our dataset,
Samples containing null values have been removed. Null values, also known as miss-
ing data, can significantly impair the performance of machine learning models, as
many algorithms struggle to handle incomplete or inconsistent data. By eliminating
samples with null values, we mitigate the risk of introducing biases or inaccuracies
into our analysis. This preprocessing step enhances the robustness and reliability
of our dataset, enabling more accurate and effective model training. Additionally,
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Figure 4.3: Visualization of the Protein Localization Data using radar chart, where
Each feature or attribute is represented by a different axis that radiates outward
from the center, and the data values are plotted along these axes.Diffrent color
represnts diffrernt class

Figure 4.4: Visualization of the Image Segmentation Data using radar chart, where
Each feature or attribute is represented by a different axis that radiates outward
from the center, and the data values are plotted along these axes.Diffrent color
represnts diffrernt class
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removing null values simplifies the data cleaning process and improves the inter-
pretability of our results. Through this approach, It is upholded rigorous standards
of data integrity and quality assurance in our analysis pipeline. Dataset’s can be
visulaized in figure (4.1) , (4.2), (4.3) and (4.4).

4.2 Autoencoder architectures behind the exper-

iment using different dataset

This approach to addressing the Letter Image Recognition Dataset involves lever-
aging a fully connected autoencoder network. This architecture enables us to cap-
ture the intricate features and patterns present in the handwritten letter images.
By employing a fully connected structure, the autoencoder network can effectively
encode and decode the input data, preserving essential information during the re-
construction process. In this case Our network architecture consists of five fully
connected (FC) layers, meticulously crafted to optimize the encoding and decoding
processes. Each FC layer plays a critical role in transforming the input data into
a compressed representation and reconstructing it back to its original form. These
layers are strategically designed to capture intricate features and patterns inherent
in the data. By cascading multiple FC layers, hierarchical abstraction and represen-
tation learning within the network is enabled. This hierarchical structure facilitates
the extraction of increasingly abstract features as the data progresses through the
layers. Through careful design and optimization of the FC layers, it is aimed to en-
hance the network’s capacity to learn meaningful representations of the input data.
With layer configurations of 16, 12, 10, 12, and 16 neurons respectively, the net-
work architecture is tailored to balance complexity and representational capacity.
This architecture can be visulaized in figure (4.8) These configurations are opti-
mized to capture essential features and patterns within the data while minimizing
redundancy. By adjusting the number of neurons in each layer, efficient information
processing and representation learning is ensured throughout the network. For the
Deterding Vowel Recognition Dataset, our primary architectural framework involves
the utilization of a fully connected autoencoder network. This network architecture
is chosen for its ability to capture the essential acoustic features relevant to vowel
recognition tasks. By employing a fully connected structure, it is aimed to ex-
tract and encode informative representations of the vowel sounds present in the
dataset. Five fully connected (FC) layers make up this network architecture, which
is thoughtfully structured to enable efficient encoding and decoding of the dataset’s
complex properties. This architecture can be visulaized in figure (4.8) Specifically,
the fully connected (FC) layers in our autoencoder network for the Deterding Vowel
Recognition Dataset are structured with 10, 8, 6, 8, and 10 neurons respectively.
This configuration is meticulously designed to balance complexity and representa-
tional capacity, ensuring efficient information processing and feature extraction. By
adjusting the number of neurons in each layer, it is aimed to capture the essential
acoustic features relevant to vowel recognition tasks while minimizing redundancy.
For the Protein Localization Dataset, a fully connected autoencoder network com-
prising three FC layers is employeed. These FC layers are structured with 7, 4, and
7 neurons respectively. This architecture is tailored to effectively capture the diverse
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Figure 4.5: Visualization of the autoencoder architecture used for Letter Image
Recognition Data

characteristics and spatial relationships present in protein sequences. By utilizing
a fully connected structure, it is aimed to extract informative representations of
the amino acid sequences relevant to protein subcellular localization prediction.This
architecture can be visulaized in figure (4.8)
For the Image Segmentation dataset, we have employed a fully connected autoen-
coder network. Each FC layer within this architecture is tailored with specific neuron
counts, structured as 19, 16, 14, 12, 10, 12, 14, 16, and 19 neurons respectively. This
carefully designed configuration enables effective encoding and decoding processes,
facilitating the extraction of meaningful features from the segmented image data. By
utilizing a fully connected structure, we aim to capture the spatial relationships and
semantic information present in the image regions. This architecture can be visu-
laized in figure (4.8) In our autoencoder architectures, we integrate Rectified Linear
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Figure 4.6: Visualization of the autoencoder architecture used for Detarding Vowel
Data

Unit (ReLU) activation functions within the hidden layers to introduce non-linearity
and facilitate feature learning. ReLU activation functions are widely used for their
simplicity and effectiveness in overcoming the vanishing gradient problem. These
functions enable efficient propagation of signals through the network, promoting
faster convergence during training. Additionally, we employ the softmax activa-
tion function in the output layer to produce probabilistic outputs for classification
tasks. Softmax activation ensures that the output values are normalized to repre-
sent probabilities, making it suitable for multi-class classification problems. ReLU
activation is chosen for its ability to introduce non-linearity while efficiently miti-
gating the vanishing gradient problem, enhancing the model’s capacity to capture
complex patterns and features within the data. This activation function allows for
faster convergence during training by addressing the issue of diminishing gradients
encountered in deep neural networks. By enabling the network to learn complex rep-
resentations of the input data, ReLU activation promotes better model performance
and generalization across various tasks and datasets. Its simplicity and effectiveness
make it a popular choice in modern neural network architectures, contributing to
improved training efficiency and effectiveness. Meanwhile, softmax activation is em-

34



Figure 4.7: Visualization of the autoencoder architecture used for Image Segmenta-
tion Data

ployed in the output layer to produce probability distributions over multiple classes.
This activation function ensures that the output values are normalized to represent
probabilities, making it suitable for multi-class classification problems. By trans-
forming the output into a probability distribution, softmax activation facilitates the
interpretation of model predictions and enables probabilistic reasoning. It allows for
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Figure 4.8: Visualization of the autoencoder architecture used for Protein Localiza-
tion Data

clear and intuitive understanding of the model’s confidence in assigning each class
label, aiding in decision-making processes. The utilization of softmax activation en-
hances the interpretability and reliability of the model’s predictions, contributing to
its effectiveness in classification tasks. By combining ReLU and softmax activations,
we aim to enhance the expressive power and accuracy of our autoencoder models
for various datasets and tasks. We utilize Kullback-Leibler (KL) divergence as the
loss function in our model training process. This choice of loss function enables us
to measure the discrepancy between the predicted probability distribution and the
true distribution of the target variable. By minimizing the KL divergence, we aim
to align the model’s predictions more closely with the actual data distribution. KL
divergence serves as a metric for assessing the dissimilarity between probability dis-
tributions, guiding the optimization process towards better model performance. Its
use in our training process facilitates effective learning and convergence towards ac-
curate predictions, enhancing the overall quality of our models. Our models aim to
learn latent representations that closely resemble the intended distribution by reduc-
ing KL divergence during training. This approach enables efficient data compression
and reconstruction, as the model learns to encode essential information while mini-
mizing information loss. By optimizing for lower KL divergence, our models strive to
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capture the underlying structure and patterns within the data, facilitating accurate
reconstruction of the input. This process of minimizing KL divergence promotes
effective learning of meaningful representations, enhancing the model’s ability to
capture complex relationships within the data. Through this framework, our mod-
els achieve efficient data compression and reconstruction while preserving essential
information, contributing to their overall effectiveness in various tasks.

4.3 Configuration behind the experiments using

different dataset

In this experiment, four distinct datasets have been employed, resulting in four alter-
native federated setup configurations. Each dataset presents unique characteristics
and challenges, necessitating tailored federated learning setups to optimize perfor-
mance. By configuring federated setups specific to each dataset, we ensure that the
learning process is optimized to accommodate the data’s diversity and complexity.
These alternative configurations allow for flexibility in adapting federated learning
methodologies to different data domains and tasks. Through careful consideration
of dataset-specific requirements, we aim to maximize the effectiveness and efficiency
of federated learning across various experimental scenarios. In the first setup, ten
clients are engaged to participate in a federated learning task, utilizing The Let-
ter Image Recognition Dataset. This configuration allows for distributed learning
across multiple client devices, each contributing its local data to the collaborative
training process. By involving ten clients, we aim to leverage a diverse range of
data sources to enhance the robustness and generalization of the trained model. Of
the 20,000 samples in The Letter Image Recognition Dataset [30], 18,000 are uti-
lized for federated learning tasks, serving as the training data distributed across the
ten participating clients. The remaining 2,000 samples are reserved for evaluating
the clustering performance of the trained model. This division allows for a com-
prehensive assessment of the model’s efficacy in clustering handwritten letters while
ensuring a robust evaluation on unseen data. In the second configuration, Deterding
Vowel Recognition Data[31] is utilized to engage five clients in a federated learning
assignment. While federated learning is employed with the remaining 800 data, the
191 examples are utilized to evaluate the clustering performance.This setup involves
a smaller number of clients compared to the first configuration, allowing for a more
focused and streamlined collaborative training process. By distributing the dataset
across five clients, we aim to leverage their collective data while minimizing commu-
nication overhead and computational burden. This configuration enables efficient
model training while still benefiting from the diversity of data sources available
within the dataset. In the third setup, five clients are engaged to participate in a
federated learning task, utilizing the Protein Localization Dataset. This configura-
tion focuses on leveraging the distributed nature of the federated learning framework
to train models on the Protein Localization Dataset. By involving five clients, we
aim to harness diverse data sources while maintaining scalability and efficiency in
the federated learning process. In this setup, three hundred and sixty-six samples
from the Protein Localization Dataset[32] are allocated for federated learning tasks,
serving as the training data distributed across the five participating clients. The re-
maining seventy-six samples are reserved for assessing the clustering performance of
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the trained model. This division ensures a comprehensive evaluation of the model’s
effectiveness in predicting protein subcellular localization while providing a robust
assessment on unseen data. In the fourth arrangement, ten clients are engaged in
a federated learning job, utilizing Image Segmentation data[33]. This configura-
tion enables distributed model training across a larger number of clients, leveraging
their collective data for collaborative learning. By involving ten clients, we aim to
capture a diverse range of image segmentation patterns and characteristics present
within the dataset. In this configuration, while the remaining 2,000 samples from the
Image Segmentation dataset are utilized for federated learning across the ten par-
ticipating clients, the clustering performance is evaluated using 311 samples. This
division ensures that a significant portion of the dataset is dedicated to collabora-
tive model training, allowing for effective learning across distributed client devices.
Meanwhile, the reserved samples for evaluation provide a robust assessment of the
trained model’s clustering performance on unseen data. In each arrangement, data
samples are distributed equally among the participating clients. This equal distri-
bution ensures fairness and balance in the federated learning process, allowing each
client to contribute an equal share of data for collaborative model training. By
distributing the samples evenly, we aim to prevent bias and promote representative-
ness across the training dataset for each client. This approach facilitates effective
collaboration and model convergence while maintaining consistency in the learning
process across all clients. Through the equitable distribution of data samples, we
optimize the efficiency and effectiveness of federated learning across diverse exper-
imental setups and datasets. After training the local autoencoder for 100, 10, 10,
and 60 epochs in each respective configuration, its performance is assessed using a
local dataset in each communication round. This verification step ensures that the
local models have adequately learned the underlying patterns and features present
within the data. By evaluating the trained autoencoder models using local datasets,
we validate their effectiveness in capturing the essential characteristics of the data
while ensuring consistency and reliability across different training epochs. This it-
erative process of model verification helps monitor the progress and performance of
the local models throughout the federated learning process, facilitating robust and
reliable model training across distributed client devices. After every round, the local
training global encoder weights are adjusted based on the aggregated updates from
the participating clients. This adjustment ensures that the global model param-
eters are continuously refined to reflect the collective knowledge learned from the
distributed data sources. Through this iterative process, the global encoder adapts
to the evolving patterns and characteristics present within the federated dataset.
For the purpose of updating the weights, we employed various techniques includ-
ing FedAvg, FedMedian, FedAdam, and FednadamN (proposed). Each technique
offers distinct approaches to aggregating model updates from distributed clients.
FedAvg computes the average of model parameters, FedMedian selects the median,
FedAdam adapts the Adam optimizer, while FednadamN introduces a novel op-
timization method. This comprehensive evaluation aimed to determine the most
effective strategy for collaborative weight updates in federated learning setups. We
conducted only one communication round of the simulation in each configuration
with every client. This single round allowed for a preliminary evaluation of the feder-
ated learning setup and its performance using the specified techniques. In federated
environments, we utilize the output of the latent layer as the input for the cluster-
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ing algorithms following only one communication loop. This approach enables rapid
integration of federated learning outputs into downstream clustering tasks, allowing
for timely analysis and interpretation of model performance. By leveraging the la-
tent representations learned by the federated models, we aim to facilitate efficient
clustering without the need for extensive communication rounds or data sharing,
thus preserving privacy and minimizing computational overhead. This streamlined
process enhances the agility and effectiveness of federated learning frameworks in
generating actionable insights from distributed data sources.

4.4 Performance metrics

Once clustering is completed, its performance can be assessed using various metrics.
Ideal clustering is characterized by minimal intra-cluster distance, meaning that
data points within the same cluster are similar, and maximal inter-cluster distance,
indicating that data points in different clusters are dissimilar. Quantifying these
characteristics helps evaluate the quality of the clustering solution. Metrics such as
silhouette score, Davies-Bouldin index, and Calinski-Harabasz index provide insights
into the cohesion within clusters and the separation between clusters. By assess-
ing these metrics, the effectiveness of the clustering algorithm can be determined in
partitioning the data into meaningful groups. Ultimately, the goal is to achieve clus-
ters that are both internally cohesive and well-separated from each other, indicating
a high-quality clustering solution. As dataset possess ground truth labels, extrin-
sic measures for evaluating clustering performance have been employeed. Extrinsic
measures rely on known class labels to assess the alignment between clusters and
true classes. By comparing clustering results to ground truth, metrics such as accu-
racy, purity, and F-measure can be evaluated quantitatively, providing insights into
the clustering algorithm’s effectiveness in capturing underlying structures and sepa-
rating distinct classes. Leveraging extrinsic measures facilitates objective evaluation
and comparison of clustering methods based on their alignment with known ground
truth, enhancing our understanding of their performance in real-world applications.

4.4.1 V-measure score

One metric used to assess the quality of clustering in machine learning is the V-
measure score. The V-measure combines homogeneity and completeness measures
to offer a comprehensive evaluation of clustering performance. Homogeneity assesses
the extent to which each cluster contains only data points belonging to a single class,
while completeness measures the degree to which all data points belonging to a given
class are assigned to the same cluster. By combining these two measures, the V-
measure provides a holistic view of clustering quality, capturing both the accuracy
and completeness of the clustering solution. This metric is particularly useful for
evaluating the effectiveness of clustering algorithms in capturing the true structure
of the data and producing meaningful cluster assignments. Regarding N data sam-
ples, C distinct class labels, k clusters, and the ack number of data points associated
with the class c (as well as the cluster k. Next, the following in (4.1) yields the ho-
mogeneity h.
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h = 1− H(C,K)

H(C)
(4.1)
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)
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))
(4.3)

the completeness c is given by the equation (4.4).

c = 1− H(K,C)

H(K)
(4.4)
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(4.5)
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log

(∑C
c=1 ack
C

))
(4.6)

These two metrics are combined to provide the V-measure score, which is a single
number that represents the clustering algorithm’s overall efficacy. Better cluster-
ing performance is indicated by a higher V-measure score. The formula for the
V-measure score, V , may be obtained as follows (4.7)

V =
2hc

h+ c
(4.7)

4.4.2 Mutual Info Score

Regardless of permutations, it assesses the degree of agreement between the genuine
labels and the projected cluster assignments. In the context of clustering evaluation,
the Mutual Information score quantifies the amount of information shared between
the true labels and the predicted clusters. This metric measures the level of agree-
ment between the two sets of labels, providing insights into the consistency and
accuracy of the clustering solution. By evaluating the mutual information, we can
assess the degree to which the clustering algorithm captures the underlying structure
of the data and produces meaningful cluster assignments. The Mutual Information
score is widely used in clustering analysis to evaluate the effectiveness of different
algorithms and parameter configurations in achieving accurate clustering results. A
higher Mutual Information score indicates better agreement between the true labels
and the predicted clusters. This metric quantifies the level of similarity between the
two sets of labels, reflecting the accuracy and consistency of the clustering solution.
By assessing the Mutual Information score, we can gauge the effectiveness of the
clustering algorithm in capturing the underlying structure of the data and producing
meaningful cluster assignments. A higher score signifies a stronger correspondence
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between the true labels and the clustering results, indicating a more accurate repre-
sentation of the data’s intrinsic patterns. Equation (4.8) may be used to calculate
the Mutual Information score given a collection of predicted clusters V and a set of
true labels U .

MI(U, V ) =
∑
u∈U

∑
v∈V

p(u, v) log

(
p(u, v)

p(u)p(v)

)
) (4.8)

The combined probability of the genuine label u and the anticipated cluster v is
represented here by p(u, v). The probability of the real label u is represented by
p(u) and that of the projected cluster v by p(v).

4.4.3 Rand Index Score

In order to determine the comparability of two clusterings, the Rand Index (RI) ex-
amines pairs of data points to determine if they are assigned to the same or different
clusters in both the true and predicted clusterings. This index quantifies the level of
agreement between the two clusterings, providing insights into their similarity and
consistency. By analyzing point pairs, the Rand Index offers a robust evaluation
of clustering performance, measuring the degree to which the predicted clustering
aligns with the ground truth. This metric is valuable for assessing the accuracy
and reliability of clustering algorithms in capturing the underlying structure of the
data and producing meaningful cluster assignments. Given a set of data points and
two clustering solutions, the Rand Index evaluates all possible combinations of data
points and determines how their relationships change between the two clusterings.
This index quantifies the level of agreement between the two clustering solutions
by comparing the assignments of data points to clusters. By examining the consis-
tency of clustering assignments across different solutions, the Rand Index provides
insights into the similarity and correspondence between the two clusterings. This
metric is valuable for assessing the accuracy and reliability of clustering algorithms
in capturing the underlying structure of the data and producing meaningful cluster
assignments. Perfect agreement between two clusterings is represented by a Rand
Index (RI) value of 1, indicating that all data point pairs are assigned to the same
clusters in both clusterings. Conversely, no agreement, as would occur in random
clustering, is indicated by an RI value of 0, signifying that the clustering solutions
bear no resemblance to each other. The RI value provides a clear measure of the
similarity and consistency between two clustering solutions, with higher values in-
dicating greater agreement and alignment between the clusterings. formula for the
Unadjusted Rand Index (RI) is in (4.9).

RI =
a+ b

a+ b+ c+ d
(4.9)

The numbers a and b in this case indicate the number of point pairs that are in
the same cluster in the true and predicted clusterings, c the number of point pairs
that are in the same cluster in the true clustering but in different clusters in the
predicted clustering, and d the number of point pairs that are in different clusters
in the true clustering but in the same cluster in the predicted clustering.
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4.5 Results and Analysis

The findings from the study are summarized in table 4.1, table 4.2 and table 4.3. To
facilitate identification and comparison, the higher performance approach is denoted
in these tables with underlining. This visual cue highlights the superior performance
or preference among different approaches, making it easier for users to discern the
most effective solution. By visually emphasizing the better-performing option, the
tables provide a clear and intuitive means of comparison, aiding decision-making
and analysis in various contexts such as experimental results, model evaluations, or
algorithm comparisons. From the table 4.1 , 4.2 and 4.3 we observed that

Table 4.1: V measure score on Letter Image Recognition Data, Deterding Vowel
Recognition Data, Protein Localization Data, Image Segmentation Data under dif-
ferent strategy and clustering algorithms.A high V Measure score indicates strong
agreement between the clustering result and the true class labels. The underline
highlight the best-performing compared approach.

Dataset Model aggregation Kmeans Kmedoids Fuzzy Minibatch
strategy kmeans kmeans

Letter Image FedAvg 0.259 0.262 0.218 0.243
Recognition Data FedMedian 0.353 0.337 0.214 0.345

FedAdam 0.293 0.287 0.232 0.297
FednadamN (proposed) 0.373 0.355 0.260 0.370

Deterding Vowel FedAvg 0.238 0.213 0.244 0.242
Recognition Data FedMedian 0.243 0.248 0.239 0.254

FedAdam 0.261 0.242 0.243 0.258
FednadamN (proposed) 0.264 0.259 0.257 0.255

Protein Localization FedAvg 0.357 0.418 0.367 0.399
Data FedMedian 0.270 0.153 0.290 0.230

FedAdam 0.407 0.414 0.381 0.386
FednadamN (proposed) 0.512 0.527 0.508 0.513

Image Segmentation FedAvg 0.508 0.455 0.477 0.453
Data FedMedian 0.442 0.462 0.436 0.475

FedAdam 0.517 0.466 0.516 0.516
FednadamN (proposed) 0.561 0.512 0.539 0.565

Based on the V-measure score and mutual information score, our analysis of the
first setup utilizing the Letter Image Recognition dataset indicates that the cluster-
ing algorithms outperformed other methods when employing our model aggregation
strategy. However, the Rand score indicated relatively low results. This suggests
that while our model aggregation strategy effectively improves clustering perfor-
mance in terms of capturing cluster homogeneity and completeness, it may not
consistently align with the ground truth labels represented by the Rand score. Fur-
ther investigation and refinement may be necessary to address this discrepancy and
enhance the overall clustering accuracy in future iterations. The performance of
clustering algorithms utilizing the FedAvg, FedMedian, FedAdam, and FednadamN
(proposed) methods is depicted in Figures (4.9), (4.10), and (4.11).
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Table 4.2: Rand Index score on Letter Image Recognition Data, Deterding Vowel
Recognition Data, Protein Localization Data, Image Segmentation Data under dif-
ferent strategy and clustering algorithms.A high V Measure score indicates strong
agreement between the clustering result and the true class labels. The underline
highlight the best-performing compared approach.

Dataset Model aggregation Kmeans Kmedoids Fuzzy Minibatch
strategy kmeans kmeans

Letter Image FedAvg 0.921 0.911 0.925 0.923
Recognition Data FedMedian 0.929 0.919 0.915 0.927

FedAdam 0.928 0.926 0.923 0.929
FednadamN (proposed) 0.927 0.932 0.919 0.925

Deterding Vowel FedAvg 0.833 0.836 0.8428 0.832
Recognition Data FedMedian 0.834 0.834 0.837 0.841

FedAdam 0.836 0.827 0.838 0.825
FednadamN (proposed) 0.847 0.841 0.850 0.832

Protein Localization FedAvg 0.726 0.735 0.722 0.731
Data FedMedian 0.695 0.671 0.711 0.692

FedAdam 0.747 0.745 0.742 0.746
FednadamN (proposed) 0.772 0.761 0.769 0.774

Image Segmentation FedAvg 0.802 0.821 0.819 0.813
Data FedMedian 0.814 0.829 0.821 0.816

FedAdam 0.840 0.834 0.8427 0.843
FednadamN (proposed) 0.844 0.846 0.843 0.849
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Table 4.3: Mutual Info Score on Letter Image Recognition Data, Deterding Vowel
Recognition Data, Protein Localization Data, Image Segmentation Data under dif-
ferent strategy and clustering algorithms.A high V Measure score indicates strong
agreement between the clustering result and the true class labels. The underline
highlight the best-performing compared approach.

Dataset Model aggregation Kmeans Kmedoids Fuzzy Minibatch
strategy kmeans kmeans

Letter Image Fedavg 0.825 0.818 0.686 0.776
Recognition Data Fedmedian 1.141 1.067 0.674 1.106

Fedadam 0.946 0.923 0.714 0.961
Fednadamn (proposed) 1.192 1.148 0.817 1.177

Deterding Vowel Fedavg 0.553 0.501 0.577 0.565
Recognition Data Fedmedian 0.569 0.584 0.564 0.601

Fedadam 0.610 0.557 0.573 0.594
Fednadamn (proposed) 0.628 0.611 0.615 0.595

Protein Localization Fedavg 0.63 0.723 0.642 0.701
Data Fedmedian 0.469 0.264 0.514 0.402

Fedadam 0.710 0.714 0.681 0.690
Fednadamn (proposed) 0.900 0.908 0.908 0.904

Image Segmentation Fedavg 0.944 0.870 0.901 0.858
Data Fedmedian 0.836 0.891 0.837 0.896

Fedadam 1.001 0.897 0.999 0.998
Fednadamn (proposed) 1.068 0.989 1.034 1.084
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Figure 4.9: Comparing Mutual Info scores for different algorithms using different
strategy

Figure 4.10: Comparing Rand Index scores for different algorithms using different
strategy

These figures provide visual insights into the comparative effectiveness of differ-
ent model aggregation techniques in improving clustering performance. This visual
representation facilitates the evaluation and selection of the most suitable model
aggregation approach for specific clustering tasks, aiding in the optimization of fed-
erated learning frameworks for clustering applications.

The second setup makes use of the Vowel Recognition Dataset. In this situation,
using our strategy outperformed previous approaches employing fuzzy k means, kme-
diods, and kmeans. However, based on the V-measure score, the FedAdam method
exhibited superior performance in the minibatch k-means scenario compared to the
other techniques. This indicates that the FedAdam approach effectively enhanced
clustering accuracy and quality in this particular setting. In terms of the Rand

45



Figure 4.11: Comparing V Measure scores for different algorithms using different
strategy

Index score, our approach surpassed previous tactics in this setup utilizing k-means,
k-medoids, and fuzzy k-means algorithms. This suggests that our method achieved
higher consistency and agreement with the ground truth labels compared to alter-
native approaches. The superior performance of our approach in capturing cluster
similarity and alignment underscores its effectiveness in producing accurate cluster-
ing results. Nevertheless, the FedMedian strategy outperformed the other methods
in terms of minibatch k means. FednadamN (proposed) has demonstrated success
in our evaluation according to Mutual Info Score. Compared to other methods,
k-means, k-medoids, and fuzzy k-means achieved favorable results. However, when
utilizing the FedMedian technique, minibatch k-means outperformed the other meth-
ods. These observations suggest that different model aggregation techniques may
yield varying results depending on the clustering algorithm and dataset characteris-
tics. The effectiveness of each method should be carefully assessed based on specific
clustering objectives and requirements. The performance of clustering algorithms
utilizing the FedAvg, FedMedian, FedAdam, and FednadamN (proposed) methods
is depicted in Figures (4.12), (4.13), and (4.14) in this setup.
Our analysis indicates that in the third setting utilizing the Protein Localization
Dataset, clustering algorithms employing our model aggregation approach outper-
formed other strategies by a significant margin. This superior performance is evi-
dent across multiple evaluation metrics, including the V-measure score, Rand Index
score, and Mutual Information score. These results underscore the effectiveness of
our model aggregation technique in enhancing clustering accuracy and quality, high-
lighting its potential as a valuable tool for clustering tasks, particularly in scenarios
involving complex datasets like the Protein Localization Dataset. Figure (4.15),
(4.16) and (4.17) illustrates the superior results of our technique .
Furthermore, in the fourth setting utilizing Image Segmentation Data, our method
exhibited superior performance compared to alternative approaches based on the
Mutual Information score, the V-measure score, and the Rand Index score. These
findings underscore the effectiveness and reliability of our method in achieving higher
clustering accuracy and quality in diverse clustering scenarios. By outperforming
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Figure 4.12: Comparing Mutual Info scores for different algorithms using different
strategy

Figure 4.13: Comparing Rand Index scores for different algorithms using different
strategy

other methods across multiple evaluation metrics, our approach demonstrates its
robustness and suitability for clustering tasks, particularly in complex datasets such
as Image Segmentation Data. Figure (4.18),(4.19) and (4.20) show how our method
produces improved outcomes.
This comparison suggests that our model performed better in creating clusters that
closely resemble the real class labels and in capturing the underlying structure of
the data. This result highlights our method’s resilience and efficacy in the speci-
fied scenario.The federated learning method used in FedAvg entails calculating the
weighted average of local model weights among dispersed clients. The contribution
of each device is weighted according to the size of its dataset or other predeter-
mined parameters. Conversely, FedMedian adopts a different strategy by taking the
median of the local model weights into account. The federated learning procedure
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Figure 4.14: Comparing V Measure scores for different algorithms using different
strategy

Figure 4.15: Comparing Mutual Info scores for different algorithms using different
strategy

in FedAdam is done in two steps. It first calculates the average of the dispersed
devices’ local model weights. The calculated average is then used to update the
global model via the Adam optimization process. This tactic combines the idea of
model averaging with the Adam algorithm’s capacity for optimization. These three
approaches take into account the mean or average, which is why the global server’s
autoencoder’s latent space was unable to adequately capture the data’s underlying
structure. Our unique Fednadamn approach takes into account each client sepa-
rately rather than averaging or medianting the data, which enables it to efficiently
extract the fundamental structure of the data and eliminate extraneous or noisy
aspects. In several datasets, our model demonstrated a statistical advantage over
these commonly-used methodologies, indicating its efficacy in attaining superior
convergence and performance in federated learning settings.
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Figure 4.16: Comparing Rand Index scores for different algorithms using different
strategy

Figure 4.17: Comparing V Measure scores for different algorithms using different
strategy
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Figure 4.18: Comparing Mutual Info scores for different algorithms using different
strategy

Figure 4.19: Comparing Rand Index scores for different algorithms using different
strategy
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Figure 4.20: Comparing V Measure scores for different algorithms using different
strategy
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Chapter 5

Conclusion

Clustering is critical to many real-world applications across a wide range of in-
dustries. Marketing professionals use clustering as a method to identify customer
segments with comparable buying trends. This information may be useful for tar-
geted marketing campaigns, customized recommendations, and optimizing product
offers to certain customer segments. In medical research, clustering can be used
to find patient groups based on genetic, clinical, or demographic data. This is in
favor of customized medicine, which tailors treatments to specific patient popula-
tions in an effort to enhance healthcare outcomes. Clustering is a technique used
in social network analysis to identify communities or groups of individuals with
similar connections or interests. Targeted advertising, social dynamics study, and
trend prediction are all done with this data. Every day, the amount of digital data
increases. Sophisticated techniques for organizing, storing, and evaluating data are
increasingly necessary due to its growth. Security and privacy are other important
considerations. It’s getting more and harder to collect data in a centralized system
and use clustering for different applications. In this study, Proposed parameter ag-
gregation mechanism in conjunction with a generative model is used to describe a
decentralized clustering technique.Clustering issue inside a heterogeneous federated
learning environment is tackled, where clients may have access to data from many
clusters. When applied to an unstructured real-world dataset, our method outper-
forms the baselines. To extract latent representations, An autoencoder structure is
used that is simple to understand yet highly efficient. Utilizing autoencoders’ built-
in features, the procedure and guarantee simplicity is expedited without sacrificing
effectiveness or performance. It is intended to investigate more complex autoencoder
topologies as further advancements pursed in latent representation extraction. Al-
though the simplicity of our current technique is emphasized, It is acknowledged that
adopting more complicated designs has the potential to improve speed and feature
extraction. A fascinating avenue for more investigation would be to combine our
suggested approach with other generative models. Both the diversity and quality of
learnt representations can be improved by fusing the advantages of many methods.
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