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Abstract

Within medical image analysis, appropriately classifying the extent of knee os-
teoarthritis is a significant obstacle, made more difficult by the scarcity of annotated
data and strict privacy rules. Conventional approaches are hindered by the exorbi-
tant expenses, limited availability of annotated datasets, as well as issues over the
confidentiality of patient data. To overcome these challenges, we propose a method
which is a Federated Learning Framework that utilizes pseudo-labeling we are calling
it PLFL. Our innovative approach avoids the cost of human annotation and guaran-
tees patient confidentiality through Federated Learning while reducing the dangers
linked to adversarial assaults and annotation mistakes. Our proposed method works
under the assumption that the server is the only custodian of gold label data, while
the client side does not have any label data. The server utilizes gold-labeled data
to train the global model and subsequently applies the federated learning approach.
Clients add labels to unlabeled data by picking labels that meet or exceed a minimal
threshold level of confidence in the prediction. Once data on the client side reaches
the specified confidence score, it is added to the client’s dataset. Upon receiving the
labeled data, the client initiates the training process and sends the weight of the
local model. Subsequently, the server aggregates the weights of each model using the
FedAvg technique. The thorough assessment of our system, in comparison to the
standard client-server-based Federated Learning approach (CSFL) and FixMatch-
based semi-supervised Federated Learning (FSSFL) approach, clearly shows signif-
icant performance improvements. Our framework PLFL showed superior perfor-
mance compared to other explained techniques, with consistent accuracy, weighted
average precision, recall, and an F1-score of 0.88. Significantly, it outperforms both
CSFL and FSSFL Frameworks, significantly enhancing model performance and ef-
ficiency. The proposed framework achieves an accuracy of 93.07% for the healthy
class, 64.00% for the moderate class, and 100% for the severe class. Furthermore,
our system has exceptional prediction precision, especially in detecting moderate
and severe instances of osteoarthritis, surpassing rival frameworks. This is seen
in the notable progress in accurately forecasting moderate and severe categories,
highlighting the effectiveness of our method. The pseudo-labeling-based framework
had the shortest duration for label generation and model training, 3.2 times shorter
than the best-performing model of the traditional Federated Learning Framework
(CSFL) and 1.7 times lower than the best-performing model of the FixMatch-Based
Federated Learning Framework (FSSFL). This thesis proposes an innovative inves-
tigation into identifying knee osteoarthritis severity, the first instance of applying
semi-supervised and federated learning approaches in this field. Our goal is to stim-
ulate progress in medical image analysis by using our innovative technique, resulting
in more precise diagnoses and better patient outcomes.

Keywords: Knee Osteoarthritis; Medical Image Analysis; Federated Learning;
Pseudo-Labeling; Semi-Supervised Learning; Annotation Scarcity; Patient Confi-
dentiality; Adversarial Attacks; Annotation Errors; Client-Server Architecture; Fix-
Match Framework; Diagnosis Healthcare Data Privacy; AI in Healthcare; Compu-
tational Efficiency

iv



Acknowledgement

First and foremost, I am grateful to Almighty Allah for the good health and well-
being necessary to complete this thesis work. I extend my heartfelt thanks to my
thesis supervisor, Dr. Md. Golam Robiul Alam. Without his encouragement,
this thesis would never have been accomplished. His constant support, understand-
ing, and constructive critiques over the year have greatly enriched my work.
I also take this opportunity to express my gratitude to all the respected faculty
members of the department for their help and support. I thank my parents for
their unceasing encouragement, support, and attention. Additionally, I am deeply
thankful to my family for their unwavering support and patience throughout this
journey. Finally, I am grateful to everyone who helped me in every possible way to
make my thesis fruitful.

v



Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Open challenges in Knee Osteoarthritis Diagnosis . . . . . . . . . . . 3
1.3 Our Proposed Solution: Overcoming the Problems in Knee Osteoarthri-

tis Diagnosis and Medical Domain and its Effectiveness Comparison . 4
1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 8
2.1 Current Insights and Advancements in Knee Osteoarthritis . . . . . . 8

3 Background Studies 10
3.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Current Insights in Federated Learning . . . . . . . . . . . . . 11
3.2 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Pseudo-labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 FixMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Federated Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methodology 17
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Knee Osteoarthritis Severity Grading Dataset . . . . . . . . . 18
4.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Dataset Split . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



4.1.4 Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.6 Model Size and Parameters Comparison . . . . . . . . . . . . 32

4.2 Proposed Method: Pseudo-labeling-Based Federated Learning Frame-
work (PLFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Comparative Methods: Client-Server-Based Federated Learning (CSFL)
and FixMatch-Based Federated Learning Framework (FSSFL) . . . . 37
4.3.1 Client-Server-Based Federated Learning Framework . . . . . . 37
4.3.2 FixMatch-Based Federated Learning Framework . . . . . . . . 39

5 Performance Evaluation 44
5.1 Evaluation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4 F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Performance Analysis: Proposed Method . . . . . . . . . . . . . . . . 46

5.4.1 Pseudo-labeling-Based Federated Learning Framework . . . . 46
5.5 Performance Analysis: Comparative Methods . . . . . . . . . . . . . 57

5.5.1 Client-Server-Based Federated Learning Framework . . . . . . 57
5.5.2 FixMatch-Based Federated Learning Framework . . . . . . . . 59

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 68
6.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 75

vii



List of Figures

1.1 Number of Publication Count by Year on Knee Osteoarthritis. . . . . 3

3.1 Working Procedure of Federated Learning . . . . . . . . . . . . . . . 11
3.2 Working Procedure of Pseudo Labeling . . . . . . . . . . . . . . . . . 13
3.3 Working Procedure of FixMatch . . . . . . . . . . . . . . . . . . . . . 14

4.1 Top-Level Overview of the Proposed System . . . . . . . . . . . . . . 18
4.2 Data Distribution of Osteoarthritis Severity Grading Dataset . . . . . 20
4.3 Data Distribution of Osteoarthritis Severity Grading Dataset Exclud-

ing Doubtful and Minimal Classes . . . . . . . . . . . . . . . . . . . . 22
4.4 Sample Removed Images Where Part of the Knee is Not Visible . . . 24
4.5 Data Distribution of Osteoarthritis Severity Grading Dataset After

Removing Corrupt Images . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Comparison of Original Images Before Augmentation and After Weak

Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Comparison of Original Images Before Augmentation and After Strong

Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Architecture of DenseNet-169 . . . . . . . . . . . . . . . . . . . . . . 30
4.9 Architecture of MobileNetV2 . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 Architecture of Bottleneck of MobileNetV2 . . . . . . . . . . . . . . . 31
4.11 Architecture of DenseNet-201 . . . . . . . . . . . . . . . . . . . . . . 31
4.12 Client and Server’s Dataset Creation of Pseudo-labeling-Based Fed-

erated Learning Framework . . . . . . . . . . . . . . . . . . . . . . . 35
4.13 Pseudo-labeling-Based Federated Learning Framework. . . . . . . . . 36
4.14 Client-Server-Based Federated Learning Framework . . . . . . . . . . 38
4.15 Client and Server Dataset Creation of FixMatch-Based Federated

Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.16 Working Procedure of FixMatch . . . . . . . . . . . . . . . . . . . . . 42
4.17 Working Procedure of FixMatch-Based Federated Learning Framework 43

5.1 DenseNet169 Performance in Pseudo-Labeling-Based Federated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 DenseNet201 Performance in Pseudo-Labeling-Based Federated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 MobileNetV2 Performance in Pseudo-Labeling-Based Federated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 DenseNet169 Performance in Pseudo-Labeling-Based Federated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



5.5 DenseNet201 Performance in Pseudo-Labeling-Based Federated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 MobileNetV2 Performance in Pseudo-Labeling-Based Federated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 DenseNet169 Performance in Client-Server-Based Federated Learning 58
5.8 MobileNetV2 Performance in Client-Server-Based Federated Learning 58
5.9 DenseNet169 Performance in FixMatch-Based Federated Learning . . 62
5.10 DenseNet201 Performance in FixMatch-Based Federated Learning . . 63
5.11 MobileNetV2 Performance in FixMatch-Based Federated Learning . . 63
5.12 Comparison of Performance in Different Federated Learning Approaches 66
5.13 Comparison of Model Accuracies Across Different Architectures . . . 67

ix



List of Tables

2.1 Summary of the Literature Review on Knee Osteoarthritis . . . . . . 9

3.1 Summary of the Literature Review on Federated Learning . . . . . . 12

4.1 Data Sample of Each Grade with Description . . . . . . . . . . . . . 19
4.1 Data Sample of Each Grade with Description . . . . . . . . . . . . . 20
4.2 Data Sample of Used Grades with Description . . . . . . . . . . . . . 21
4.3 Step-by-Step Image Enhancement Procedure . . . . . . . . . . . . . . 22
4.3 Step-by-Step Image Enhancement Procedure . . . . . . . . . . . . . . 23
4.4 Class and Client-Wise Data Distribution for Federated Learning . . . 25
4.5 Class and Client-Wise Data Distribution for Pseudo-labeled Feder-

ated Learning and FixMatch Federated Learning . . . . . . . . . . . 25
4.6 Step-by-Step Image Augmentation Procedure . . . . . . . . . . . . . 26
4.6 Step-by-Step Image Augmentation Procedure . . . . . . . . . . . . . 27
4.7 Weak Augmentation Procedure with Description . . . . . . . . . . . . 27
4.8 Strong Augmentation Procedure with Description . . . . . . . . . . . 28
4.9 Comparison of Models Based on Parameters . . . . . . . . . . . . . . 32
4.10 Comparison of Models Based on Size . . . . . . . . . . . . . . . . . . 32

5.1 Overview of Hyperparameters for Client-Server-Based Federated Learn-
ing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Overview of Hyperparameters for Pseudo-labeling-Based Federated
Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Overview of Hyperparameters for FixMatch-Based Federated Learning 46
5.4 Number of Pseudo-Labeled Data on Each Communication Round Us-

ing DenseNet169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Test Results on DenseNet169 in Pseudo-Labeling-Based Federated

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Detailed Test Results of Each Communication Round Using DenseNet169

in Pseudo-Labeling-Based Federated Learning . . . . . . . . . . . . . 49
5.7 Number of Pseudo-Labeled Data on Each Communication Round Us-

ing DenseNet201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8 Test Results on DenseNet201 in Pseudo-Labeling-Based Federated

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Detailed Test Results of Each Communication Round Using DenseNet201

on Pseudo-Labeling-Based Federated Learning . . . . . . . . . . . . . 51
5.10 Number of Pseudo-Labeled Data on Each Communication Round Us-

ing MobileNetV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

x



5.11 Test Results on MobileNetV2 in Pseudo-Labeling-Based Federated
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12 Detailed Test Results of Each Communication Round Using Mo-
bileNetV2 on Pseudo-Labeling-Based Federated Learning . . . . . . . 54

5.13 Number of Pseudo-Labeled Data on Communication Round-1 Using
All Pre-trained Models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.14 Detailed Test Results on Different Models of Pseudo-Labeling-Based
Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.15 Comparison of Computation Time in Different Models in Pseudo-
Labeling-Based Federated Learning . . . . . . . . . . . . . . . . . . . 55

5.16 Test Results on Pre-trained Models in Client-Server-Based Federated
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.17 Detailed Test Results on Different Models in Client-Server-Based Fed-
erated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.18 Comparison of Computation Time in Different Models in Client-
Server-Based Federated Learning . . . . . . . . . . . . . . . . . . . . 59

5.19 Test Results on DenseNet169 in FixMatch-Based Federated Learning
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.20 Detailed Test Results of Each Communication Round Using DenseNet169
on FixMatch-Based Federated Learning Framework . . . . . . . . . . 59

5.21 Test Results on DenseNet201 in FixMatch-Based Federated Learning 60
5.22 Detailed Test Results of Each Communication Round Using DenseNet201

on FixMatch-Based Federated Learning . . . . . . . . . . . . . . . . . 60
5.23 Test Results on MobileNetV2 in FixMatch-Based Federated Learning 61
5.24 Detailed Test Results of Each Communication Round Using Mo-

bileNetV2 on FixMatch-Based Federated Learning . . . . . . . . . . . 61
5.25 Detailed Test Results on Different Models on FixMatch-Based Fed-

erated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.26 Comparison of Computation Time in Different Models in FixMatch-

Based Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . 64
5.27 Detailed Test Result Comparison of Best-Performing Models in All

Three Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.28 Comparison of Computation Time of Best-Performing Models in All

Three Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.29 Comparison of Model Parameters Across Different Research Studies . 67

xi



Chapter 1

Introduction

Over the last few decades, artificial intelligence more notably, machine learning has
become a game-changing instrument in the medical field, transforming numerous
areas involving administration, research, and practice. Machine learning algorithms
have shown amazing potential to improve diagnosis, treatment planning, patient
outcomes, and operational efficiency through the analysis of tremendous amounts
of healthcare data. Analyzing medical imaging is one important field of progress.
Radiographs, being the most often conducted radiological examination, hold signifi-
cant importance as a modality that has been extensively studied for many purposes.
Deep learning is the rapidly advancing domain of artificial intelligence that has been
widely applied in several sectors, including the realm of medicine. Deep learning
models in particular have demonstrated an unequalled ability to identify anomalies
and diseases from medical imaging including CT scans, MRIs, and X-rays. Because
algorithms using deep learning can precisely recognize patterns and traits that the
human eye would miss, diseases including cancer, cardiovascular ailments, and neu-
rological problems can be found early. Beyond diagnosis and therapy, machine
learning has improved resource management and healthcare operations.

1.1 Motivation

Osteoarthritis (OA) can be seen as a worldwide problem. Osteoarthritis most com-
monly affects weight-bearing joints such as the knee, hip, and spine. Knee os-
teoarthritis(KOA), a common chronic joint illness, can be defined by gradual carti-
lage loss in the joint[58].In the United States, it is the most common joint condition,
with symptomatic knee osteoarthritis affecting 10% of men and 13% of women aged
60 and older[6]. In India, Osteoarthritis is the second most prevalent rheumatologic
issue and the most common joint condition, affecting between 22% to 39% of the
population [3]. Approximately 45% of women aged 65 and older experience symp-
toms, whereas radiological evidence is detected in 70% of women in the same age
group [1], [2]. Knee osteoarthritis can be caused by various factors such as aging,
genetics, obesity, joint injuries, and excessive mechanical stress. Cartilage creates
a low friction-bearing surface and allows for smooth joint movement. Reduction of
this cartilage in the knee joint is the main reason behind KOA. This is a serious
condition that affects people’s every day activities by hampering their ability to
walk. KOA is primarily responsible for the inability to move; if discovered in its
later stages, full recovery is practically difficult, and knee replacement is the only
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alternative available, which is expensive. Early detection and treatment make it
possible to maintain physical function, reduce pain, and slow disease progression,
allowing people to live active lives. In general, radiographic imaging, such as X-rays,
in addition to the patient’s history and the results of the physical examination are
used to diagnose knee osteoarthritis[41]. Radiography, specifically X-ray imaging,
is a non-invasive, cost-effective, and readily accessible method that is highly valued
for its ability to detect early signs and conduct mass screenings. However, its level
of accuracy is lower. Magnetic Resonance Imaging (MRI) and dual-energy x-ray ab-
sorptiometry (DXA) are widely regarded as the most effective methods for detecting
the severity of osteoarthritis (OA). However, they are expensive. With the recent
major developments in X-ray imaging in medical fields, a wide range of anoma-
lies and deformities in the body’s muscles, limbs, and bones can now be detected.
Using a variety of diagnostic methods, including radiography, MRI, gait analysis,
and bioelectric impedance signals and radiographs are the most often used by ex-
pert doctors to diagnose knee osteoarthritis [35]. Using the Kellgren-Lawrence (KL)
grading system, which classifies knee osteoarthritis into five stages from 0 (healthy)
to 4 (severe) [4], one may frequently determine how bad the disease is. These grades
are determined by severity and are as follows: 0 (healthy), 1 (doubtful), 2 (minimal),
3 (moderate), and 4 (severe) [18]. Measurement of joint space breadth and severity
grading is made possible in large part by radiographs[52]. However, correctly deter-
mining these grades from radiographic images which might not have enough image
enhancement can be difficult by deep learning models and mostly depends on the
knowledge of medical specialists. However, the affordability and widespread avail-
ability of X-rays make them a promising tool for the early detection of osteoarthritis.
By using deep learning models, it is possible to automate the precision and speed
of early diagnosis.
With an eye on increased accuracy, effective resource allocation, and lower health-
care costs, researchers have explored a range of machine learning and deep learning
approaches to enhance knee osteoarthritis detection over time. By supporting X-ray
analysis and feature extraction, the use of image processing techniques including
thresholding, masking, edge detection, and contrast enhancement improves the pro-
cess. The growing amount of papers and Proceedings published in recent years, as
1.1 shows, is proof that researchers interest in addressing this issue.

2



Figure 1.1: Number of Publication Count by Year on Knee Osteoarthritis.

Particularly in medical imaging, worries about data privacy endure despite the ad-
vancements in machine learning and deep learning. Medical data is delicate, contain-
ing details about medical disorders and past treatments, hence maintaining privacy
and taking ethical issues into account is critical. Smooth access to medical data is
hampered by the difficulty of preserving privacy.

1.2 Open challenges in Knee Osteoarthritis Diag-

nosis

A challenge for machine learning and deep learning practitioners is the availability
of datasets. Consequently, there is a substantial body of research on the automated
evaluation of osteoarthritis severity. However, the majority of the research relies
on two publicly available datasets: the Osteoarthritis Initiative (OAI) [13] and the
Multicentre Osteoarthritis Study (MOST) [8].In deep learning, providing more la-
beled data to a model typically yields better results. However, publicly available
gold-label X-ray images are scarce. In the medical domain, finding reliable gold-label
data is challenging due to several reasons. The complexity and variability of medical
conditions and treatments make it difficult to establish a single ”correct” label for
many cases. Additionally, medical data are often sensitive and subject to privacy
regulations, limiting access to large, well-labeled datasets. Labeling medical data is
also time-consuming and expensive, requiring the expertise of trained professionals.
These factors contribute to a scarcity of high-quality labeled datasets, which com-
plicates the development of machine learning models in healthcare. Cai et al[48]
highlighted a major problem: when end users label the data, there is a significant
chance of making mistakes because they are not domain experts or lack interest.
For that reason, researchers have attempted to address this issue by generating knee
osteoarthritis X-ray images [44]. Nevertheless, these datasets are still not entirely
reliable for the healthcare industry and individuals.
Another significant issue is that many hospitals possess such data, but privacy con-
cerns and regulations prevent them from sharing it with researchers and the public.
Which can be solved by using Federated learning. Federated learning is a decen-
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tralized machine learning approach where multiple devices collaboratively train a
shared model while keeping data localized. It allows for model training without
centralizing sensitive data, preserving privacy and security. This technique enables
efficient learning across a network of devices, promoting scalability and adaptabil-
ity in various applications[12]. Federated Learning (FL) holds significant promise
in revolutionizing the medical domain by addressing critical challenges while safe-
guarding patient privacy and data security[49]. FL allows healthcare institutions to
collaborate and train machine learning models collectively without the need to share
sensitive patient data. This decentralized approach enables hospitals, research fa-
cilities, and pharmaceutical companies to pool their knowledge and resources while
preserving the confidentiality of patient information.
Furthermore, a large portion of this data is still unlabeled because of a shortage
of knowledge and qualified physicians. Data labeling is an involved process that
calls for a great deal of experience. Federated learning and semi-supervised learning
methods can be applied to get past these obstacles and make use of decentral-
ized data. The medical industry presents several important problems for federated
learning (FL) since labeled data is scarce. FL trains machine learning models co-
operatively while maintaining local data from decentralized data sources like as
hospitals or individual devices. However, there are frequently few big, varied, and
well-labeled datasets in the medical profession spread over several locations or or-
ganizations. The complete potential of FL in healthcare is hampered by this dearth
of labeled data. The lack of labeled data access makes FL less successful in train-
ing models or making good generalizations across many populations or situations.
Furthermore impeding the sharing and aggregation of data required for FL are the
sensitive character of medical data and privacy laws. Patient privacy and confiden-
tiality are protected by HIPAA regulations, which require anonymization of data.
Sensitive health information is protected and regulatory requirements are met when
anonymization makes sure that people cannot be easily identified from the data[5].
In federated learning, allowing end users to label data opens up the possibility for
adversaries to manipulate client data, potentially through actions such as altering
labels or specific data features. These manipulations can result in data poisoning
attacks, compromising the integrity and effectiveness of the learning process[34]. To
address the shortage of labeled data in the medical domain, semi-supervised learning
can be a viable approach that can work with a limited number of labeled data.

1.3 Our Proposed Solution: Overcoming the Prob-

lems in Knee Osteoarthritis Diagnosis and Med-

ical Domain and its Effectiveness Comparison

In this study, we aim to address the challenges of insufficient supervised data, pri-
vacy concerns related to sharing medical data, and the issue of data poisoning. To
tackle these challenges, we propose a semi-supervised learning approach that utilizes
pseudo-labeling with zero-label data in federated clients, while relying on fully super-
vised data in the central server. Pseudo Contrastive Learning is a semi-supervised
machine learning approach where models are designed to improve their performance
by actively selecting and incorporating new, relevant data points for training. This
iterative process allows the model to continuously adapt and improve its perfor-
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mance over time. In pseudo-labeling, labels are applied to unlabeled data by means
of a model trained on both labeled and previously pseudo-labeled datasets. This
process is repeated, in a self-training loop, adding newly tagged data to the training
set[22] One machine learning paradigm called semi-supervised learning trains with a
combination of labeled and unlabeled data. Particularly in cases when labeled data
is scarce or costly to acquire, semi-supervised learning techniques can enhance the
performance of the model by using the extra knowledge from the unlabeled data.
Within Federated Learning (FL), semi-supervised learning can be rather important
in improving the effectiveness and efficiency of the FL procedure. Through the ac-
tive selection and incorporation of new, relevant data from decentralized sources,
SSL can assist FL models in adapting to changing conditions and enhancing their
performance over time by using the extra information from unlabeled data across
decentralized sources. Particularly in cases when labeled data is limited or hard to
come by from specific sources, this can assist the model to perform better.
Another semi-supervised method that can be utilized involves each client having a
very small amount of labeled data. They can then label and other data and par-
ticipate in training, known as FixMatch. FixMatch [26] is a pioneering approach
in semi-supervised learning, innovatively merging the concepts of weak augmenta-
tion, strong augmentation, and pseudo-labeling to maximize the utilization of both
labeled and unlabeled data. At its core, FixMatch employs weak augmentation,
a gentle form of data transformation applied uniformly to both labeled and un-
labeled data during training. This technique introduces subtle variations such as
random cropping and horizontal flipping, facilitating better generalization without
distorting the underlying content of the images. It also introduces the concept of
strong augmentation, a more aggressive transformation strategy exclusively applied
to the unlabeled data. These transformations, which include random rotations,
translations, or changes in brightness, are designed to significantly alter the ap-
pearance of the images. By subjecting the model to such diverse and challenging
inputs, strong augmentation encourages the learning of robust and invariant fea-
tures. Through an iterative process, the model is trained using both the labeled
data and the newly pseudo-labeled data, gradually improving its performance. Fix-
Match has been shown to achieve state-of-the-art results in scenarios where labeled
data is scarce.
We will compare the results of traditional client-server-based Federated Learn-
ing (CSFL) and FixMatch-based Federated Learning (FSSFL) with the proposed
method to demonstrate the efficacy of our approach. In addition, we will demon-
strate that the combination of federated learning with semi-supervised approaches
like as pseudo-labeling significantly improves the identification and categorization of
knee osteoarthritis in its first phases using X-ray images. This work is the first known
instance of using federated semi-supervised learning to classify knee osteoarthritis
grade. In addition, our efforts have been directed toward mitigating data poisoning
attacks and reducing labeling expenses through the use of semi-supervised learning.
Furthermore, we have prioritized the need to safeguard patient data confidentiality
through the utilization of federated learning methodologies.
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1.4 Research Contributions

With a semi-supervised learning approach inside a federated learning framework,
this thesis study attempts to address the difficulties of privacy and restricted data
availability in medical imaging. Pseudo-labeling and zero-label data are combined
in the solution for distributed clients. By use of pseudo-contrastive learning, the
approach methodically selects and incorporates more data points into the training
process. Furthermore lessening data poisoning assaults is the tactic. The economic
efficiency of the method makes high-quality model training more accessible. The
work shows potential in real-world healthcare applications by categorizing grades of
knee osteoarthritis using X-ray images.

1. An Improved Federated Learning Configuration In the traditional fed-
erated learning configuration, the server does not engage in model training and
does not possess any datasets, except for a small amount needed for model vali-
dation. The main duties of the server are selecting clients, distributing weights,
and aggregating weights. In our updated federated learning arrangement, the
data is still dispersed across clients, but the server possesses the gold label data.
Firstly, the server trains a model using the provided gold label data and sub-
sequently distributes the first model weights to the clients. After completing
the initial training phase, the server takes on the conventional responsibilities
of client selection, weight distribution, and weight consolidation in federated
learning. By using this, we also ensure the following outcomes:

• Addressing concerns over privacy
This work ensures the privacy and security of sensitive patient informa-
tion by utilizing a federated learning framework. This decentralized ap-
proach prevents the need to share medical data, thus safeguarding patient
privacy while enabling collaborative learning across different institutions.

• Patient privacy through federated learning
Our research highlights the prioritization of federated learning approaches.
By maintaining data decentralization and avoiding direct sharing, we pro-
tect patient privacy while yet facilitating the creation of robust machine-
learning models.

2. Advanced semi-supervised learning framework
We introduced an advanced semi-supervised learning framework that modifies
the current pseudo-labeling approach, in the current pseudo-labeling approach
[7] it is fully centralized and the model is trained by mixing pseudo-labels
with existing annotated dataset and then retraining the model, but in our
approach gold label data are trained only once in server and zero-label data in
distributed clients. This modified methodology capitalizes on the advantages
of both data privacy concerns and semi-supervised learning, hence improving
the performance of the model even in situations when there is a limited amount
of labeled data available. By utilizing this method, we additionally guarantee
the following results:

• Resolving the issue of limited data availability
This work addresses the challenge of limited supervised data by employing
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a semi-supervised learning technique. This approach reduces the require-
ment for abundant labeled data, making it feasible to train models with
fewer annotations.

• Data Poisoning Attack Mitigation
Our approach integrates tactics to reduce the risks linked to data poi-
soning attacks. By utilizing semi-supervised learning, we improve the
resilience of the model against fraudulent data inputs, guaranteeing a
higher level of reliability and security in the model’s performance.

• Cost-efficient labeling
The application of semi-supervised learning substantially decreases the
costs associated with labeling by effectively leveraging both labeled and
unlabeled data. This cost-efficient method enhances the accessibility of
high-quality model training, particularly in fields where obtaining labeled
data is costly.

3. An In-depth Comparative Analysis
In this thesis, we not only introduce a new approach but also carry out a com-
prehensive comparative investigation. We evaluate our suggested method by
comparing it to the client-server-based Federated Learning approach (CSFL)
and the FixMatch-based semi-supervised Federated Learning (FSSFL). In or-
der to guarantee the strength and significance of our comparisons, we em-
ploy various pre-trained models, such as DenseNet169, DenseNet201, and Mo-
bileNetV2. We conducted a comprehensive analysis of these frameworks, ex-
tensively assessing their performance, efficiency, and scalability. We specifi-
cally focused on identifying the strengths and drawbacks of each framework.
This thorough assessment showcases the efficacy and adaptability of our method-
ology in various settings and model architectures.

1.5 Organization of the Report

The following text outlines the structure of this report: The Related Works are
described in Chapter 2, and The background study for this project is outlined in
Chapter 3. Chapter 4 provides a concise overview and examination of methodologies.
Chapter 5 explores the discoveries and interpretation of the results. The main
conclusion of the thesis is presented in Chapter 6.
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Chapter 2

Related Work

2.1 Current Insights and Advancements in Knee

Osteoarthritis

Researchers in the paper [50] focused on the fact that, due to the differences in
body structures between individuals in different countries, using Western datasets
would not be beneficial for Indians. Therefore, they utilized the Mendeley Dataset
IV, which included Indian subjects and achieved an accuracy of 89% using Efficient-
NetB1. In another paper [43], using the OAI dataset, researchers focused on two
things: first, they tried to detect the knee joint using YOLOv3, and then they used
VGG16 for classification, and they achieved an accuracy of 89%. Researchers in a
different study from 2023 [18] used an ensemble technique. They trained four dif-
ferent transfer learning methods ResNet-34, VGG-19, DenseNet 121, and DenseNet
using the OAI dataset. Then, they put them all together to get better performance
and got a 98% success rate. In this study [54], researchers tried to collect their
own dataset using 2000 knee X-rays collected from a hospital, used CNN for feature
extraction, and finally experimented with multiple machine learning models and got
the highest accuracy of 90.1% using the K-Nearest Neighbour algorithm. Finally,
in a 2022 study[42], the researchers tried a hybrid approach, a tri-weightage classifi-
cation model that utilizes features from the x-ray image, questionnaire, and flexion
angle, and finally, using ResNet-152v2 and Inception-ResNet-v2, they achieved an
accuracy of 89.29%. A new approach called Siamese-GAP Network was introduced
in a study [45] conducted in 2022. To be more precise, the Siamese network in-
corporates a series of Global Average Pooling (GAP) layers to extract information
from each level. By employing YOLOv2[33], they conducted segmentation and per-
formed binary classification to distinguish between the healthy and moderate classes,
resulting in an accuracy of 88.38%.
A summary is given in the Table 2.1 below:
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Table 2.1: Summary of the Literature Review on Knee Osteoarthritis

Research
Work

Dataset Model Accuracy
Learning

Philosophy
Learning
Organization

Published Year

[50] OAI dataset EfficientNetB1 89%
Supervised
Learning

Centralized 2023

[43] OAI dataset

YOLOv3 for knee joint
detection and
VGG16 for
classification

89%
Supervised
Learning

Centralized 2022

[54] OAI dataset

Ensemble method
(ResNet-34,
VGG-19,

DenseNet 121,
and DenseNet)

98%
Supervised
Learning

Centralized 2023

[46]
Researchers
collected

Feature extraction
using CNN and
ML methods

90.1%
Supervised
Learning

Centralized 2022

[42] OAI dataset
RestNet152V2

and
InceptionResNetV2

89.29%
Supervised
Learning

Centralized 2022

[45] OAI dataset
Siamese-GAP

Network
88.38%

Supervised
Learning

Centralized 2022

[15]
Training set from

the MOST validation
set from the OAI

DNN 66.71%
Supervised
Learning

Centralized 2018

[24]
Images from
a hospital in
Shanghai

Faster R-CNN mAP 0.082
Supervised
Learning

Centralized 2020

[17]
1024 knees images

from the
OAI dataset

Naive Bayes
and RF classifiers

82.98%
Supervised
Learning

Centralized 2019

[30]
18436 knees images

from the
MOST dataset

Textural ROI
classification using

CNN
AP 0.86

Supervised
Learning

Centralized 2021

Our model OAI Dataset MobileNetV2 88.15%
Semi-supervised

Learning
Federated and
Cooperative

2024

From the table 2.1 and based on the analysis of various studies conducted between
2018 and 2023, it is evident that the majority of research on knee osteoarthritis has
focused on the Osteoarthritis Initiative (OAI) [13] and the Multicentre Osteoarthritis
Study (MOST) [8]. Specifically, there have been a total of seven studies conducted
on the OAI and two studies conducted on the MOST. This indicates a shortage
of annotated data available for knee osteoarthritis diagnosis. In two investigations,
researchers attempted to acquire datasets from hospitals but were unable to pub-
licly disseminate the data. The majority of researchers employed pre-trained image
classification models such as EfficientNetB1 [28] and VGG16 [9]. Other studies em-
ployed a fusion of object detection and picture classification methods. Tariq et. al.
[54] achieved the highest level of accuracy of 98% by employing a configuration that
utilized four pre-training models in an ensemble-based approach.
Moreover, after conducting the current literature review, we discovered that most
researchers used KL-Grading to check the severity of knee osteoarthritis, and the
OAI dataset was the most commonly used. The common thing we can notice from
the recently published papers is that most of the researchers have pointed out the
unavailability of public data, therefore the gold label dataset is still a blocker for
developing a good-performing model. Also, we need a generalized model with data
from different regions, so there is still a lot of scope available for using semisupervised
learning with federated learning.
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Chapter 3

Background Studies

3.1 Federated Learning

Federated Learning is a distributed and privacy-preserving approach to machine
learning. Consequently, the absence of a central database eliminates the necessity
of storing all the sensitive data in one place, thereby preventing any potential data
leaks. Federated Learning reverses the conventional approach of bringing the data to
the machine learning model by instead bringing the machine learning model to the
data. The training of the models is divided into sub-calculations that are carried
out locally inside an organization. Upon completing the computations, only the
anonymized (intermediate) outcomes are disclosed to the research organizations,
excluding the privacy-sensitive data itself.
Federated Learning addresses two primary challenges in data analysis:

• Enhancing the quality of societal assessments,

• Protecting citizens’ privacy rights.

Federated learning is a privacy-preserving method for training artificial intelligence
models, ensuring that no one has access to or interacts with the data. It provides
a means to leverage data for the development of new AI applications. A significant
number of these AI applications were trained using data that was collected and
processed in a single location. However, contemporary AI is transitioning towards
a decentralized methodology. AI models are now being trained collectively on local
devices such as mobile phones, laptops, or private servers, without the need for data
to be transmitted elsewhere. Federated learning, a novel method of AI training,
is increasingly being used as the industry standard to comply with a multitude of
new requirements about the management and storage of sensitive data. Federated
learning enables the utilization of raw data from many sources such as satellites,
bridges, machines, and smart devices by processing it at its origin.
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Figure 3.1: Working Procedure of Federated Learning

3.1.1 Current Insights in Federated Learning

In this study[19], the researchers pointed out the potential problem of data availabil-
ity due to the data privacy regulations in the medical sector, which is a challenge
for deep convolutional networks that require a large amount of data. They also
state that high accuracy can be achieved by using federated learning and the proper
weight aggregation method. They used a DNN model on the BraTS dataset to
prove their claim. In a study of 2021 [40], Researchers tried to detect COVID-19
pneumonia, for this, they took the help of GAN for data generation, but due to data
privacy and preventing reconstruction of data and keeping data privacy, they have
proposed Federated Differentially Private Generative Adversarial Network (FedDP-
GAN), using the (CXR)images dataset and FedDPGAN-based ResNe they achieved
an accuracy of 94.45%. In another study [29] of COVID-19 case classification, re-
searchers focused on data privacy and applied federated learning on (CXR)images
dataset and compared it with traditional machine learning and found that federated
learning outperforms the traditional machine learning method, where the traditional
model with SGD optimizer got an accuracy of 94.82% fed-SGD achieved and accu-
racy of 95.96%. QAYYUM et al. [36] explored clustered federated learning for
COVID-19 diagnosis using edge computing and also discussed challenges and tech-
nologies for deploying ML at the edge. Highlights collaborative learning framework
for COVID-19 diagnosis leveraging clustered federated learning. And achieved a
precision of 71% for detecting COVID-19, 97% for detecting healthy on the X-ray
dataset, and a precision of 93% for COVID-19 and 86% for classifying healthy on
Ultrasound images. Dou et al. [32] in their research Demonstrated federated learn-
ing for COVID-19 CT abnormalities detection. They utilized multinational datasets
with internal datasets from three hospitals in Hong Kong and external validation
on datasets from China and Germany. In their experiment, they found that larger
training databases improve model performance on unseen datasets also collaboration
across multiple clinical centers is crucial for AI system development. Furthermore,
multicenter studies with collaborative efforts are valuable for handling data distri-
bution. From our study, we have seen that Federated Learning (FL) approach is the
emerging methodology for healthcare systems.
Many studies have used FL in medical studies such as MRI analysis[39], classify-
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ing prostate cancer [23], but mostly for COVID-19 diagnosis However, none of the
mentioned studies have explored the possibility of Knee Osteoarthritis detection
using Federated learning. Furthermore, it has been observed that the majority of
research has concentrated on the key issue that, to enhance an AI model, data from
various places is necessary. Hospitals have limitations in sharing data due to regula-
tory constraints and a shortage of skilled annotators. Consequently, there exists an
opportunity for leveraging semi-supervised learning in conjunction with federated
learning to solve this problem.

Table 3.1: Summary of the Literature Review on Federated Learning

Paper ID Dataset Method Accuracy Published Year
Used

Semi-Supervised
Learning

[19] BraTS 2018 DNN model Not mentioned 2022 No

[40]
(CXR) images

dataset
FedDPGAN-based

ResNet
94.45% 2021 No

[29]
(CXR)images

dataset
Fed-SGD 95.96% 2021 No

[36]
X-ray and

Ultrasound datasets

clustered
federated learning

(CFL)

The precision of
71% for COVID-19
and 97% for healthy
on the X-ray dataset

Precision of 93% for
COVID-19 and 86%

for healthy on
Ultrasound dataset

2022 No

3.2 Semi-supervised learning

Semi-supervised learning occupies an intriguing position between supervised and
unsupervised learning in the area of machine learning. In conventional machine
learning, our typical practice involves utilizing a dataset that is completely labeled,
with each example being assigned the right answer. But, in the real-world sce-
nario, acquiring such a comprehensive dataset is frequently challenging, laborious,
and costly. In contrast, unsupervised learning operates on unannotated data, aim-
ing to identify patterns or clusters without any predefined criteria for these pat-
terns. Semi-supervised learning bridges supervised learning and unsupervised learn-
ing techniques to solve their key challenges. With it, you train an initial model on a
few labeled samples and then iteratively apply it to a greater number of unlabeled
data.

3.2.1 Pseudo-labeling

Pseudo-labeling refers to the practice of augmenting the training data by using test
data that has been anticipated with a high level of confidence. The pseudo-labeling
strategy, initially introduced by [7] in 2013, involves utilizing a limited collection of
labeled data in conjunction with a substantial amount of unlabeled data to enhance
the performance of a model. The approach is really straightforward and consists of
only four fundamental steps:

• Perform model training using a set of labeled data samples.
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• Utilize the trained model to make predictions on a set of unmarked data.

• Utilize the anticipated labels to compute the loss on unlabeled data.

• Integrate the loss from labeled data with the loss from unlabeled data and
perform backpropagation.

Pseudo-labels refer to assigning target classes to unlabeled data as if they were actual
labels. The class with the highest predicted probability, determined by a network,
is selected for each unlabeled sample (see Equation 3.1).

Pseudo-labels = argmaxP (y = c|x) (3.1)

Figure 3.2: Working Procedure of Pseudo Labeling

Current Insights in Pseudo-labeling based Research Work

In this study[51], the researchers used Semi-supervised learning with pseudo-labeling
for pancreatic cancer detection on CT scans they also addressed the challenge of
detecting pancreatic cancer with limited labeled data. They have utilized a hy-
brid method combining pseudo-label and consistency regularization and found that
Semi-supervised learning improves classification accuracy in pancreatic cancer detec-
tion. In another study[27], the researchers focus on learning from synthetic images
for real-world applications. They also found that Active Pseudo-Labeling enhances
model performance in semantic segmentation and detection and reduces domain
gaps between synthetic and real images. Their method achieves an AP50 of 42.2
after fine-tuning which is an improvement in the object detection task on the bench-
mark dataset. In this research[53], the researchers addressed labeling challenges in
e-health datasets due to high labeling costs or expertise requirements which is a
blocker on the road to achieving high segmentation accuracy. So they proposed a
Federated Semi-Supervised Learning model for medical image segmentation. They
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Proposed a Federated Semi-Supervised Learning model for medical image segmen-
tation. Using Federated Semi-Supervised Learning they Achieved the highest Dice
scores of 89.23% and 91.95% in segmentation tasks which demonstrated significant
improvements compared to state-of-the-art fundus image and prostate MRI segmen-
tation. In another research [37], the researchers tried to detect plaques between two
IVOCT datasets using Pseudo-label-based unsupervised domain adaptation tech-
niques. They have found that label distribution learning improves the detection
performance of unlabeled target images by correcting pseudo labels for vulnerable
plaque detection. For VPS classification for IVOCT to HarbinOCT they achieved
an F1 score of 89.45% and for HarbinOCT to IVOCT they achieved an F1 score of
85.02%
Most studies emphasize that label data is expensive to annotate and often unavail-
able owing to privacy constraints. No studies were discovered on the detection of
knee osteoarthritis. However, one research did identify the difficulties associated
with noisy label data caused by pseudo-labeling. An opportunity exists to utilize
semi-supervised learning in combination with federated learning to address this is-
sue.

3.2.2 FixMatch

FixMatch combines two SSL strategies: pseudo-labeling and consistency regulariza-
tion. Its primary innovation stems from the combination of these two components
and the consistency regularization process’s usage of distinct weak and strong aug-
mentations. The working procedure of FixMatch is shown in Figure 3.3.

Figure 3.3: Working Procedure of FixMatch
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Current Insights in FixMatch

Zhou et al. [56] were influenced by the noisy student method proposed in FixMatch-
LS and a variant, FixMatch-LS-v2, where they were concerned about noisy training.
They have also introduced the Kullback-Leibler loss. In these methods, they reduced
the noisy pseudo-labels by introducing label smoothing to change the pseudo-label
threshold. Using the ISIC 2018 and ISIC 2019 challenge datasets, they achieved
an AUC of 91.63%, 93.70%, 94.46%, and 95.44% on the four proportions of labeled
data from ISIC 2018. In another study, Ding et al. [31] tried to evaluate the quality
of sinter, which is the main raw material of blast furnace ironmaking. FeO is an
important indicator for evaluating the strength and reducibility of sinter. However,
due to a lack of label data, they utilized FixMatch with Dense Net. Using the
section image of the sintering machine tail, they have achieved an accuracy[57]
introduced a novel concept of cross-pseudo-supervision by integrating self-training
with consistency learning calling this model DFCPS which incorporates the concepts
of Fixmatch. Using the Kvasir-SEG dataset they experimented with four settings
using 1/2, 1/4, 1/8, and 1/16 of the labeled data and got mIoU of 80.12,77.42,76.53
and 72.39 respectively. DFCPS enhances the robustness and performance of the
model. In another paper[25], researchers Investigate the MixMatch and FixMatch
impact on histology images with noisy data in imbalanced settings. And found that
MixMatch is more robust to imbalances compared to FixMatch. MixMatch has a
higher average AUC in the imbalanced dysplasia class. One interesting finding of
this study was Both methods degrade with a high level of imbalances. Yang [55] et al.
took a closer look at the weak-to-strong consistency framework from FixMatch and
then introduced the Unified Dual-Stream Perturbations approach (UniMatch) for
superior results. They mainly focus on semi-supervised semantic segmentation using
a weak-to-strong consistency framework and explore expanded perturbation space
and dual-stream perturbation techniques for improvement. The results demonstrate
superiority in remote sensing interpretation and medical image analysis. UniMatch
also surpasses existing methods significantly across all evaluation protocols.
The medical domain, particularly disease classification, has not been thoroughly
investigated using the semisupervised learning method FixMatch. However, re-
searchers have observed the potential of FixMatch based on its algorithmic perfor-
mance. Therefore, combining FixMatch with federated learning presents an oppor-
tunity to address the problem of insufficient labels. However, one research [47] has
demonstrated that FixMatch does not yield significant improvements when tested
on chest X-ray and retinal image datasets.

3.3 Federated Averaging

FedAvg [38] is one of the first and most often employed techniques for Federated
Learning. During each cycle of training in FedAvg, a cohort of clients is chosen
at random for the purpose of aggregation. During the process of aggregation, the
parameters of each client are assigned weights and then averaged to create a global
model. The weight assigned to each client is determined by the fraction of their data
volume. It should be noted that in the implementation of FedAvg, more computation
can be added to each client by doing numerous iterations of the local update before
the averaging step. The equation for FedAvg can be represented as follows 3.2
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The updated global model at time step t+1 is computed using the following equation:

Global Modelt+1 =
C∑
i=1

Ni

N
× Local Modeli (3.2)

where:

Global Modelt+1 is the updated global model at time step t+ 1.

C is the total number of clients.

Ni is the number of data points used for training by client i.

N is the total number of data points across all clients.

Local Modeli is the model update from client i.

Explanation

• The term Ni

N
represents the proportion of data points contributed by client i

relative to the total data points N .

• This proportion is used to weight the contribution of each client’s local model
update in the global model update.

• The sum
∑C

i=1 aggregates these weighted contributions across all C clients.

• Dividing by C ensures that the global model update is averaged appropriately
across all clients.

This formulation ensures that the global model update reflects the contributions of
all clients proportionally to the amount of data they have used for training.
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Chapter 4

Methodology

ur proposed method assumes that the server owns gold label data, while the client
side does not have any label. The server trains the global model using gold-labeled
data and then implements the federated learning technique. Clients assign labels to
unlabeled data, selecting labels with minimum threshold level confidence or above in
prediction. If an image achieves a confidence score, it is included in the client’s data
set. The client data set is divided into training, validation, and testing splits. After
receiving newly labeled data, the client starts training and transmits the weight
of the local model and the number of data points used for training to the server.
The server then combines the weights of each model with the global model using the
FedAvg method. If the result is unsatisfactory, the combined weights are transmitted
to clients, who recommit the process of assigning labels and training local models.
The training and communication illustrated in Figure 4.1
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Figure 4.1: Top-Level Overview of the Proposed System

4.1 Dataset

In our whole experiment, we have used the Knee Osteoarthritis Severity Grading
Dataset[13].

4.1.1 Knee Osteoarthritis Severity Grading Dataset

The University of Florida created the Knee Osteoarthritis Severity Grading Dataset.
Osteoarthritis Initiative (OAI) organizes the photographs, which can be seen on
Kaggle [13]. According to the Kellgren–Lawrence (KL) grading system, there are
a total of 9786 knee images. These knee images are categorized into five severity
levels: 0 (healthy), 1 (doubtful), 2 (minimal), 3 (moderate), and 4 (severe). The
resolution of every single image was 224 pixels by 224 pixels. The healthy category
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comprised almost forty percent of the images in the dataset, while the doubtful
category comprised approximately 18%, the minimal category comprised 26%, the
moderate category comprised 13%, and the severe category comprised just over 3%.
An overview of the dataset and some examples of its contents can be found in Table
4.1.

Table 4.1: Data Sample of Each Grade with Description

Data Sample Grade Description

Grade 0 (Healthy) An image of a knee indi-
cating good health.

Grade 1 (Doubtful) Indications of potential
joint narrowing with the
presence of osteophytic
lipping, though uncer-
tainty exists.

Grade 2 (Minimal) Clearly identifiable os-
teophytes and potential
narrowing of the joint
space.

Grade 3 (Moderate) Presence of multiple
osteophytes, definite
joint space narrowing,
and mild sclerosis.
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Table 4.1: Data Sample of Each Grade with Description

Data Sample Grade Description

Grade 4 (Severe) Prominent osteophytes,
significant joint narrow-
ing, and severe sclerosis.

The data distribution for each class is illustrated in Figure 4.2.

Figure 4.2: Data Distribution of Osteoarthritis Severity Grading Dataset
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As we wanted to classify if a patient has knee Osteoarthritis or not so we have
removed those classes that may contain knee Osteoarthritis like doubtful and min-
imal. To distinguish between the classes and degrees of severity and learn more
distinguishable features, we have concluded that the Doubtful and Minimal classes
should be removed from the list of classes. An overview of the final dataset, along
with some examples of its content, can be found in Table 4.2

Table 4.2: Data Sample of Used Grades with Description

Data Sample Grade Description

Grade 0 (Healthy) An image of a knee indi-
cating good health.

Grade 3 (Moderate) Presence of multiple
osteophytes, definite
joint space narrowing,
and mild sclerosis.

Grade 4 (Severe) Prominent osteophytes,
significant joint narrow-
ing, and severe sclerosis.

The data distribution of each class follows after dropping the Doubtful and Minimal
classes in Figure 4.3:

4.1.2 Data Preprocessing

To enhance the accuracy of the predictions, it is recommended that we make sure
the photographs are of good quality and that models can easily learn from them.
By doing this the model will be able to learn efficiently, recognize vital properties,
and generate correct predictions as a result of this. Given this, we have decided to
enhance the overall quality of the photographs. To improve the X-ray image and
precisely identify the knee region, we made use of an image improvement approach
that was implemented using OpenCV[60]. In the beginning, binary thresholding
is applied in order to distinguish and separate the knee region. It is possible to
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Figure 4.3: Data Distribution of Osteoarthritis Severity Grading Dataset Excluding
Doubtful and Minimal Classes

construct a binary mask by identifying and making use of the principal contour
that is specific to the knee. Following that, the grayscale picture is put through a
bitwise AND operation using this mask in order to combine the two images. As a
consequence of this, histogram equalization is utilized to enhance the contrast and
visibility of the knee region. Table 4.3 includes explanations and methodology for
carrying out the changes, while the graphic displays a transformation process that
is carried out step by step.

Table 4.3: Step-by-Step Image Enhancement Procedure

Step Description Sample Output

Convert to Grayscale Convert the input color
image to gray-scale.

Gaussian Blur Apply Gaussian Blur to
the gray-scale image for
noise reduction.

-

Adaptive Thresholding Applies adaptive thresh-
olding to the blurred im-
age to create a binary im-
age.

-
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Table 4.3: Step-by-Step Image Enhancement Procedure

Step Description Sample Output
Find Contours Finds contours in the bi-

nary image.
-

Get the Largest Contour Find the largest contour
(assumption: represent-
ing the knee).

-

Create Mask Creates Mask of the
largest contour

Bit-wise AND Operation Applies bit-wise AND
operation between the
gray-scale image and the
mask to get the seg-
mented knee area.

Histogram Equalization Applies histogram equal-
ization to enhance
the contrast of the
segmented knee area.

After data enhancement, we removed those images that were fully dark or half knee
not visible, so we have gone through a manual checking and removed those images,
here is a sample of the images we removed manually displayed in Figure 4.4, so after
removing dark images, the data distribution became like this Figure 4.5:
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Figure 4.4: Sample Removed Images Where Part of the Knee is Not Visible

Figure 4.5: Data Distribution of Osteoarthritis Severity Grading Dataset After Re-
moving Corrupt Images

4.1.3 Dataset Split

1. Dataset Split for Client-Server Based Federated Learning

Initially, we obtained the complete clean dataset consisting of 4057 photos. We then
put aside 10% of this data only for testing reasons. This test data is specifically
reserved for evaluating the performance of the aggregate model on the server. Sub-
sequently, we divide the training dataset into two equal parts, assigning one half to
client 1 and the other half to client 2.
The distribution of client and test data follows Table 4.4
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Table 4.4: Class and Client-Wise Data Distribution for Federated Learning

Portion Healthy Moderate Severe
Client 1 1255 444 126
Client 2 1264 439 123
Server 271 104 31

2. Dataset Split for Pseudo-labeled Federated Learning and FixMatch
Federated Learning

At first, we took the complete dataset, which consisted of 4057 pictures. After that,
we partitioned the complete dataset into three unique parts: one was put aside for
client 1, another was designated for client 2, and the third and final component was
assigned to the server.
The distribution of client and test data follows Table 4.5

Table 4.5: Class and Client-Wise Data Distribution for Pseudo-labeled Federated
Learning and FixMatch Federated Learning

Portion Healthy Moderate Severe
Client 1 930 329 93
Client 2 930 329 93
Server 930 329 93

4.1.4 Image Augmentation

Image Augmentation for Federated Learning and pseudo-labeled Feder-
ated Learning

Image data augmentation is creating additional variations of pictures in a given
dataset by applying transformations, hence enhancing its variety. When it comes to
implementing computer vision solutions that can be used effectively, it is better to
have larger datasets that encompass all the visual characteristics of the item being
targeted. However, implementing this is more challenging than simply expressing it
verbally. Image data gathering necessitates the human acquisition and annotation
of pictures, and it is unfeasible to record every conceivable circumstance that may be
beneficial for the computer vision model. Data augmentation of image data reduces
the amount of time required to create an ideal dataset by several person-hours. By
safeguarding against overfitting, it enables us to enhance the performance of your
model utilizing the available dataset.
We applied data augmentation techniques utilizing the Keras [59] module in Ten-
sorFlow [61] to enhance our dataset. The techniques involved in picture manipu-
lation include resizing, rotating, adjusting the height and width, applying a shear,
zooming, and horizontally flipping the images using a ’nearest’ fill mode. The data
augmentation method with the value and sample output is presented in Table 4.6
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Table 4.6: Step-by-Step Image Augmentation Procedure

Parameter Value Description Sample Image

Original Image - -
Rescale 1.0 / 255 Rescale pixel values to [0, 1] -

Rotation 20 Random rotation within ±20 de-
grees

Width Shift 0.1 Random horizontal shift within
10% of image width

Height Shift 0.1 Random vertical shift within 10%
of image height

Shear 0.2 Shear transformations

Zoom 0.2 Random zoom within 20%
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Table 4.6: Step-by-Step Image Augmentation Procedure

Parameter Value Description Sample Image

Horizontal Flip True Randomly flip images horizon-
tally

Fill Mode Nearest Fill mode for handling newly cre-
ated pixels (nearest neighbor)

-

Image Augmentation for FixMatch Federated Learning

The idea behind FixMatch is derived from UDA [20] and ReMixMatch [16], and it
makes use of two unique forms of augmentation: weak augmentation, which is used
to generate pseudo-labels on unlabeled photos, and strong augmentation, which is
used for prediction on unlabeled images. FixMatch uses both weak and powerful
augmentations to achieve its desired level of efficacy.

1. Weak Augmentation
A common variant of the flip-and-shift augmentation approach is known as
weak augmentation. We applied these manipulations using random flips from
left to right, random brightness, and random contrast. It is possible to find
the values in Table 4.7

Table 4.7: Weak Augmentation Procedure with Description

Parameter Value Description
Random Flip
Left to Right

-
Randomly flip
images horizontally.

Random Brightness max delta=0.2
Randomly adjust
brightness by max delta 0.2.

Random Contrast lower=0.2, upper=1.8
Randomly adjust
contrast within range.

After applying weak augmentation our data became like Figure 4.6a.
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(a) Original Images Before Weak Aug-
mentation

(b) Original Images After Weak Aug-
mentation

Figure 4.6: Comparison of Original Images Before Augmentation and After Weak
Augmentation

2. Strong Augmentation
When these enhancements are applied, the resulting representations of the
input photographs are very deformed. Several augmentations were applied to
the image, including random flips, tweaks to brightness and contrast, changes
to saturation, alterations to hue, and, as a last step, CutOut augmentation.
A square section of the image is chosen randomly by the Cutout function, and
then it is replaced with a color that is either a solid gray or a solid black. The
values are contained in Table 4.8.

Table 4.8: Strong Augmentation Procedure with Description

Parameter Value Description
Random Flip
Left to Right

Nil
Randomly flip
images horizontally.

Random
Brightness

max delta=0.8
Randomly adjust
brightness by max delta 0.8.

Random
Contrast

lower=0.2, upper=1.8
Randomly adjust
contrast within range.

Random Saturation lower=0.2, upper=1.8
Randomly adjust
saturation within range.

Random Hue max delta=0.2
Randomly adjust
hue by max delta 0.2.
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(a) Original Images Before Strong Aug-
mentation

(b) Original Images After Strong Aug-
mentation

Figure 4.7: Comparison of Original Images Before Augmentation and After Strong
Augmentation

4.1.5 Models

1. DenseNet169

DenseNet[10] is a convolutional neural network architecture that incorporates dense
connections between layers using dense blocks. In these blocks, all layers with the
same feature-map sizes are directly connected. The DenseNet-169 model belongs
to the collection of DenseNet models that are specifically developed for image clas-
sification tasks. The densenet169 model has a greater size, around 55MB. The
DenseNet169 architecture consists of many sorts of layers, including convolutional,
max pool, dense, and transition layers. In addition, the design employs two ac-
tivation functions, specifically Relu and SoftMax. Every architecture is composed
of four massive blocks, each with a different amount of layers. As an illustration,
DenseNet-169 consists of layers arranged in the following sequence: [6, 12, 32, 32].
The convolution layer serves as the initial layer of the DenseNet model, which is
responsible for the naming of Convolutional Neural Networks (CNN). DenseNet is a
versatile framework that may be used for many computer vision tasks, such as image
classification, object recognition, and semantic segmentation. We have utilized the
DenseNet169 architecture from TensorFlow’s Keras library [62] for the purpose of
classifying the three severity classes in our study
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Figure 4.8: Architecture of DenseNet-169

2. MobileNetv2

Google is the designer of MobileNetV2[11], [14]. MobileNetV2 is a superior mod-
ule that incorporates an inverted residual structure. The removal of non-linearities
in thin layers is evident when compared with MobileNetV1[42]. By utilizing Mo-
bileNetV2 as the foundation for extracting features, exceptional results are also
attained in object identification and semantic segmentation. MobileNetV2 consists
of two distinct sorts of blocks. A residual block with a stride of 1 is present. Another
option is to use a shrinking block with a stride of 2. Both sorts of blocks consist
of three layers. The first layer consists of a 1×1 convolution operation using the
ReLU6 activation function. The depthwise convolution corresponds to the second
layer. The third layer consists of a 1×1 convolution operation, which does not in-
clude any non-linear activation function. It is asserted that when ReLU is applied
repeatedly, deep networks only exhibit the capabilities of a linear classifier on the
portion of the output domain that is not zero. Mobilenetv2 It is renowned for its
efficiency and low computational demands and offers an ideal solution for medical
image analysis, enabling robust diagnostic classification while minimizing resource
usage. Using MobileNetV2 architecture from TensorFlow’s Keras library [64] this
architecture has been implemented.

Figure 4.9: Architecture of MobileNetV2
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Figure 4.10: Architecture of Bottleneck of MobileNetV2

3. DenseNet201

The Dense Convolutional Network (DenseNet)[10] establishes connections between
each layer and every other layer in a feed-forward manner. They mitigate the issue
of the vanishing gradient, enhance the propagation of features, promote the reuse
of features, and significantly decrease the parameter count.DenseNet operates on
the principle that convolutional networks may achieve greater depth, accuracy, and
training efficiency by including shorter connections between layers near the input
and those near the output.DenseNet201 is characterized by its 201 layers, which
results in a greater number of parameters and computational complexity compared
to DenseNet169, which has 169 layers. DenseNet201 often has a greater number of
parameters since it has a bigger depth and breadth in comparison to DenseNet169.
This can result in possibly enhanced performance, particularly when dealing with
bigger datasets, but it also necessitates a greater allocation of processing resources.
The computational cost of DenseNet201 is higher compared to DenseNet169, mostly
because of its bigger parameter count and deeper architectural complexity. We have
utilized the DenseNet201 architecture from TensorFlow’s Keras library [63] for the
purpose of classifying the three severity classes in our study.

Figure 4.11: Architecture of DenseNet-201
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4.1.6 Model Size and Parameters Comparison

The tables 4.9 and 4.10 present a detailed comparison of three neural network mod-
els—DenseNet169, DenseNet201, and MobileNetV2—focusing on their parameters
and sizes.
DenseNet201 has the most parameters with 24,085,507 trainable and 18,321,984
non-trainable, totaling 42,407,491. DenseNet169 follows with 20,874,243 trainable
and 12,642,880 non-trainable parameters, adding up to 33,517,123. MobileNetV2 is
the smallest, having 16,057,347 trainable and 2,257,984 non-trainable parameters,
for a total of 18,315,331.
Regarding size, DenseNet201 is the largest, with 91.88 MB for trainable parameters
and 69.89 MB for non-trainable ones, totaling 161.77 MB. DenseNet169 has 79.63
MB of trainable and 48.23 MB of non-trainable parameters, amounting to 127.86
MB. MobileNetV2 is the most compact, with 61.25 MB for trainable and 8.61 MB
for non-trainable parameters, totaling 69.87 MB.
DenseNet models, with their larger parameter sets and sizes, are likely to offer higher
performance but require more computational resources. In contrast, MobileNetV2 is
optimized for efficiency, making it suitable for environments with limited resources.

Table 4.9: Comparison of Models Based on Parameters

Model Name
Trainable
Parameters

Non-trainable
Parameters

Total
Parameters

DenseNet169 20874243 12642880 33517123
DenseNet201 24085507 18321984 42407491
MobileNetV2 16057347 2257984 18315331

Table 4.10: Comparison of Models Based on Size

Model Name
Trainable
Parameters Size (MB)

Non-trainable
Parameters Size (MB)

Total
Parameters Size (MB)

DenseNet169 79.63 48.23 127.86
DenseNet201 91.88 69.89 161.77
MobileNetV2 61.25 8.61 69.87
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4.2 Proposed Method: Pseudo-labeling-Based Fed-

erated Learning Framework (PLFL)

Under this approach, we assume that the server only owns the label data. Based
on our distribution, we have 930 images of healthy knees, 329 images of knees with
moderate osteoarthritis, and 93 images of knees with severe osteoarthritis. These
data are classified as our gold label data, whereas all the data on the client side has
no label. Our approach started by training the server using the gold-labeled data.
After training the global model for 20 epochs. We begin the implementation of the
federated learning technique. Initially, we transmit this train model weights to the
clients. Upon obtaining the weight of the global model, the clients started the task
of assigning labels to the data that had not been previously labeled. During this
stage, we selected only the labels that had a confidence level of 70% or above in
the prediction. If an image achieves a confidence score of 70% on its outcome, we
categorize it as belonging to that specific class and include this data to train the
client model. Once the entire client dataset has been predicted, we proceed to divide
it into separate halves for training, validation, and testing of the client model. After
receiving newly labeled data, the client commences training. Once the training is
complete, the client transmits the weight of the local model and the number of data
points utilized for training to the server. Upon receiving the data from both clients,
the server commences the process of combining the weights of each model with the
global model that it had trained earlier using the FedAvg method. Next, the server
evaluates the performance of this model using the separate test data that was set
aside specifically for testing purposes. If the outcome is deemed unsatisfactory,
the server proceeds to transmit the combined weights to the clients, who in turn
recommence the process of assigning labels to their data and training local models.
Subsequently, the clients submit the updated weights back to the server. Here we
present the algorithmic overview of our method
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Algorithm 1 Federated Learning Algorithm

1: Server Training:
2: Train a global model using the gold-labeled data.
3: Federated Learning Training:
4: for each iteration do
5: Client Labeling:
6: Receive the current global model weights.
7: Clients label their unlabeled data based on the model predictions, considering

only predictions with a confidence level of 70% or higher.
8: Client Training:
9: Clients split their labeled data into training, validation, and testing sets.

10: Clients train their local models using the labeled training data.
11: Client Model Transmission:
12: Clients send their trained model weights and the number of data points used

for training back to the server.
13: Server Aggregation:
14: The server aggregates the received model weights from all clients using Fed-

erated Averaging (FedAvg).
15: Server Evaluation:
16: The server evaluates the performance of the aggregated model using separate

test data.
17: Check Performance:
18: if the model performance is deemed unsatisfactory then
19: The server sends the aggregated weights back to the clients.
20: Clients repeat the process of labeling their data and training local models.
21: else
22: The process stops.
23: end if
24: end for
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Client Distribution

Figure 4.12: Client and Server’s Dataset Creation of Pseudo-labeling-Based Feder-
ated Learning Framework
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Method Overview

Figure 4.13: Pseudo-labeling-Based Federated Learning Framework.
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4.3 Comparative Methods: Client-Server-Based

Federated Learning (CSFL) and FixMatch-

Based Federated Learning Framework (FSSFL)

4.3.1 Client-Server-Based Federated Learning Framework

The initial experiment is a Federated Learning framework that operates on a client-
server architecture. This framework comprises two separate clients and a central
server. The server has the responsibility of transmitting weights to the clients,
receiving weights from the clients, and aggregating the weights. At first, the server
distributes randomized weights to the clients. Upon getting the weights from the
servers, the clients begin training their own local data. The client’s data was divided
into three segments: 80% for training the model, 10% for validation during the model
training, and 10% for measuring the client’s performance. Upon completing the data
training process, each client transmits the weight and the number of samples utilized
to the server. The server remains in a state of readiness to accept the weights and
information from both clients. Upon receiving the weights from both clients, the
server commences the process of aggregating the weights into a global model. The
weighted FedAvg approach is utilized to aggregate the weights into a global model.
Subsequently, the server evaluates the performance of the global model using data
that has been set aside solely for testing. The server continuously executes this
procedure until it attains a satisfactory outcome. Our experiment consisted of three
communication rounds. In order to get high precision using the global model.
Here we present the algorithmic overview of our method:

Algorithm 2 Client-Server-Based Federated Learning Framework

1: Initialization:
2: Setup a server and multiple clients.
3: Initialize the global model on the server.
4: Distribute initial model weights to all clients.
5: Training Rounds:
6: while termination condition not met do
7: Local Training:
8: Clients receive the current global model weights.
9: Each client trains its local model using its own data.

10: Trained model weights are sent back to the server.
11: Aggregation:
12: Server collects and aggregates trained model weights from all clients.
13: Aggregation is performed using weighted FedAvg.
14: Evaluation:
15: Server evaluates the performance of the global model using test data.
16: end while
17: Termination:
18: Repeat the training rounds for a predefined number of iterations or until con-

vergence.
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Overview of the Method

Figure 4.14: Client-Server-Based Federated Learning Framework
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4.3.2 FixMatch-Based Federated Learning Framework

This structure consists of two distinct clients and a central server. The server is
responsible for providing weights to the clients, receiving weights from the clients,
and aggregating the weights. Initially, the server assigns random weights to the
clients. Upon the beginning of client training, we undertake the conversion of photos
into Numpy format to enhance augmentation and processing capabilities. Initially,
we allocated 20% of the data specifically for each clients, which would be exclusively
utilized for testing the local model. We have determined that the remaining 80% of
the data will be utilized for training the client. Within this 80%, 80% is unlabeled
and 20% is labeled. In each batch, we include both labeled and unlabeled data, with
the quantity of unlabeled data being twice as much as the labeled data. The model
commences training by utilizing the labeled data and enhancing the unlabeled data
through two methods: strong augmentation and weak augmentation. We utilize
a supervised model to train our labeled pictures using cross-entropy loss. Two
pictures are obtained for each unlabeled image by applying weak augmentation and
strong augmentation. The image that has been enhanced with additional features
is inputted into our model, and we obtain predictions for different classes. Here, the
likelihood of the most confident class is being compared to a threshold of 70%. If the
value exceeds the specified threshold, we consider that class as the ground label, also
known as the pseudo-label. Next, the highly enhanced picture is inputted into our
model to obtain a forecast across different classes. The cross-entropy loss is utilized
to compare the probability distribution with a ground-truth pseudo-label. The losses
are aggregated and the model is fine-tuned. After finishing the data training process,
each client sends the weight and the number of samples used to the server. The server
stays in a state of preparedness to receive the weights and information from both
clients. After receiving the weights from both clients, the server starts the process
of combining the weights into a global model. The weighted Federated Averaging
(FedAvg) technique is employed to combine the weights and create a global model.
Afterward, the server assesses the effectiveness of the global model by utilizing data
that has been exclusively reserved for testing purposes. The server iteratively runs
this operation until it achieves a desirable result. The experiment included two
communication rounds. In order to get high precision using the global model.
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Here we present the algorithmic overview of our method

Algorithm 3 Federated Learning with Data Augmentation

1: Initialization:
2: Assign random weights to the clients’ models by the server.
3: Data Preparation:
4: Convert images into Numpy format for better augmentation and processing

capabilities.
5: Allocate 20% of the data for testing each client’s local model.
6: Reserve the remaining 80% for training, with 80% unlabeled and 20% labeled.
7: Training Process:
8: for each client do
9: Train the client’s model on the labeled data and augment the unlabeled data

through strong and weak augmentation.
10: Apply supervised learning on labeled images using cross-entropy loss.
11: for each unlabeled image do
12: Generate two augmented images (weak and strong augmentation).
13: Predict the class probabilities for each augmented image.
14: if the most confident class probability exceeds 70% then
15: Assign it as the pseudo-label.
16: end if
17: end for
18: Utilize cross-entropy loss to compare the probability distribution with the

pseudo-label.
19: Aggregate losses and fine-tune the model.
20: end for
21: Model Transmission:
22: After training, each client sends its model weights and the number of samples

used to the server.
23: Server Aggregation:
24: The server receives weights from all clients and combines them into a global

model using weighted Federated Averaging (FedAvg).
25: Model Evaluation:
26: Evaluate the effectiveness of the global model using reserved test data.
27: Iteration:
28: Iteratively repeat the process until a desirable result is achieved.
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Client Distribution

Figure 4.15: Client and Server Dataset Creation of FixMatch-Based Federated
Learning Framework

41



Figure 4.16: Working Procedure of FixMatch
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Figure 4.17: Working Procedure of FixMatch-Based Federated Learning Framework
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Chapter 5

Performance Evaluation

In this portion of the thesis, we shall elucidate the discoveries and draw definitive
conclusions from our study. The experimental results are categorized into four cate-
gories. The initial stage involves examining the outcomes of the Client-Server-Based
Federated Learning Framework, while the subsequent stage will focus on evaluating
the results of the pseudo-labeling-based Federated Learning Framework. During the
third step, we will examine the FixMatch-Based Federated Learning Framework. In
the last part, we will compare the methodologies and analyze the disparities in out-
comes between Semi-Supervised Learning (SSL) and Traditional Federated Learning
(FL).

5.1 Evaluation Matrices

A variety of performance metrics were used in this study to explain why ML models
could perform well with one evaluation metric’s measurement while performing not
so great with another metric’s assessment. In this study, we mainly used Accuracy,
Precision, Recall, and F1-Score as performance evaluation metrics.
Here,
TP = True Positive , TN = True Negative
FP = False Positive, FN = False Negative

5.1.1 Accuracy

Accuracy is defined as the total number of accurate predictions divided by the total
number of data samples present in the dataset as shown in the equation (5.1)-

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

5.1.2 Precision

The Precision is defined as the total number of accurate positive predictions divided
by the total number of positive predictions as shown in the equation (5.2)-

Precision =
TP

TP + FP
(5.2)
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5.1.3 Recall

The recall is defined as the total number of accurate positive predictions divided by
the total number of actual positive predictions as shown in the equation (5.3)-

Recall =
TP

TP + FN
(5.3)

5.1.4 F1-Score

F1-Score is the harmonic mean of precision and recall as shown in the equation
(5.4)-

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5.4)

5.2 Experimental Setup

We utilized Google Colab Pro Plus with a high RAM configuration. The graphics
processing unit (GPU) employed is a Tesla T4. To improve images and separate
clients, we utilized a Dell Inspiron 5559 laptop equipped with 8 GB of RAM and an
Intel Intel(R) CoreTM i7-6500U CPU @ 2.50 GHz [Cores 2], operating on Microsoft
Windows 10 Pro. We utilized Python 3.9 on a Dell Inspiron 5559 laptop as our
programming instrument. The outcomes of the model creation and training process
were recorded on Wandb[21] for the client-server-based Federated Learning setup.
The results of the pseudo-labeling-based Federated Learning and FixMatch-based
Federated Learning were logged on CSV.
We utilized Google Drive as a server to store and deliver model weights to clients.

5.3 Hyperparameters

1. Hyperparameters for Client-Server-Based Federated Learning Frame-
work

Table 5.1: Overview of Hyperparameters for Client-Server-Based Federated Learning
Framework

Hyperparameter Value
Number of Epochs 10
Initial Learning Rate 1e-4
Batch Size 32
Image Height 224
Image Width 224
Image Depth 3
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2. Hyperparameters for Pseudo-labeling-Based Federated Learning Frame-
work

Table 5.2: Overview of Hyperparameters for Pseudo-labeling-Based Federated
Learning Framework

Hyperparameter Value
Number of Epochs 10
Initial Learning Rate 1e-4
Batch Size 32
Image Height 224
Image Width 224
Image Depth 3
Pseudo-labeling Threshold 0.70

3. Hyperparameters for FixMatch-Based Federated Learning

Table 5.3: Overview of Hyperparameters for FixMatch-Based Federated Learning

Hyperparameter Value Description

Number of categories 3
Number of categories or
classes in the classification task.

Input shape of image 224, 224, 3
Shape of input images
height, width, channels.

mu 2
Size of the unlabeled batch
in semi-supervised learning.

lambda u 1
Loss weight to balance
supervised and unsupervised losses.

tau 0.8
Weakly augmented threshold
controlling augmentation level.

Number of Epochs 10 Number of training epochs.

Learning Rate 1e-4
Learning rate for
updating model parameters.

bs lab 2 Batch size for labeled data.

bs unlab mu * bs lab
Batch size for unlabeled data,
calculated as the product of
mu and bs lab.

bs total bs lab + bs unlab
Total batch size including
both labeled and unlabeled
data batches.

5.4 Performance Analysis: Proposed Method

5.4.1 Pseudo-labeling-Based Federated Learning Framework

For our research, we employed three pre-trained models: DenseNet169, DenseNet201,
and MobileNet-v2. In this paragraph, we will analyze the outcomes of the individual
model.
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DenseNet169: Initial Server Training

As we have considered that only servers have gold label data, before transmitting
the weights to the model, we trained the server model for 20 epochs. After training
the model, we got 81% overall accuracy on the test set, 81% weighted average F1-
score, 81% weighted average precision, and 81% weighted average recall. Details of
the results are given in the confusion matrix 5.1a and classification report 5.4b.

(a) Confusion Matrix of DenseNet169 in
Pseudo-Labeling-Based Federated Learn-
ing

(b) Classification Report of DenseNet169 in
Pseudo-Labeling-Based Federated Learn-
ing

Figure 5.1: DenseNet169 Performance in Pseudo-Labeling-Based Federated Learn-
ing

The server successfully predicted 109 images among 135 images, and most miss-
classification was seen in the Moderate class and the overall miss-classification rate
was 0.19

DenseNet169: Federated Learning

Upon receiving the model weight from the server, clients embarked on data labeling
tasks. In the initial communication round, each client processed its dataset, with
Client 1 identifying 672 data points surpassing the prediction confidence threshold
which is 70%, while Client 2 successfully labeled 680 data points meeting the same
criterion.
Advancing to subsequent communication rounds, Client 1 exhibited improved per-
formance, accurately categorizing 967 data points with high prediction confidence.
Meanwhile, Client 2 continued to make strides, successfully identifying 984 data
points meeting or exceeding the confidence threshold. The detail of the statistics is
presented in Table 5.4
The data indicates a distinct pattern of enhancement in predicted accuracy as the
number of communication cycles increases. At the beginning, during round 0, the
model’s capacity to make accurate predictions was not sufficient to reach a confi-
dence level of 70% for all clients. Nevertheless, when the model underwent repeated
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Table 5.4: Number of Pseudo-Labeled Data on Each Communication Round Using
DenseNet169

Split CommR Healthy Moderate Severe
Client 1 0 459 121 92
Client 2 0 467 110 103
Client 1 1 810 123 34
Client 2 1 834 115 35

training using pseudo-labels, there was a noticeable performance improvement. Dur-
ing communication round 1, all clients demonstrated the ability to forecast 50%
more data compared to the previous round, thereby highlighting the efficacy of the
iterative training method.
It is worth mentioning that although the general accuracy of predictions increased,
there was a decrease in the number of predictions in the severe category. This
suggests that there are specific areas where the model may be enhanced to better
handle cases of severe categorization.
Further analysis of test accuracy demonstrates substantial improvement across all
clients. Client 1 had a significant 4% improvement in accuracy from round 0 to
round 1, achieving an amazing accuracy rate of 91% in round 1. Client 2, in contrast,
showed significant progress, with accuracy increasing by 12% from 85% in round 0
to an outstanding 97% in round 1. The server’s accuracy had a significant 14%
boost, going from 70% in round 1 to 84% in round 1.
The findings highlight the effectiveness of the training technique used, as seen by
the steady enhancement in predictive performance and accuracy measures for both
clients and the server. These observations not only confirm the iterative training
strategy but also offer useful suggestions for improving the model’s performance in
future rounds.

Table 5.5: Test Results on DenseNet169 in Pseudo-Labeling-Based Federated Learn-
ing

Model CommR Client1 Client2 Server
0 0.91 0.85 0.70

DenseNet169 1 0.96 0.97 0.84

A detailed result can be found in The Table 5.6, where we can see that in all metrics,
we got an impressive result in both clients 1 and 2, and with each communication
round, the result got even better.
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Table 5.6: Detailed Test Results of Each Communication Round Using DenseNet169
in Pseudo-Labeling-Based Federated Learning

Model Client CommR Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

Client1 0 0.91 0.91 0.91 0.91
Client2 0 0.85 0.87 0.85 0.86
Server 0 0.70 0.77 0.77 0.72
Client1 1 0.96 0.96 0.96 0.96
Client2 1 0.97 0.97 0.97 0.97

DenseNet169 Server 1 0.84 0.84 0.84 0.83

DenseNet201: Initial Server Training

As we have considered that only servers have gold label data, before transmitting
the weights to the model, we trained the server model for 20 epochs. After training
the model, we got 86% overall accuracy on the test set, 86% weighted average F1-
score, 87% weighted average precision, and 86% weighted average recall. Details
of the results are given in the confusion matrix 5.2a and classification report 5.2b.
The server successfully predicted 116 images among 135 images, and most miss-
classification were seen in the Moderate class the overall miss-classification rate was
0.14.

(a) Confusion Matrix of DenseNet201 in
Pseudo-Labeling-Based Federated Learn-
ing

(b) Classification Report of DenseNet201 in
Pseudo-Labeling-Based Federated Learn-
ing

Figure 5.2: DenseNet201 Performance in Pseudo-Labeling-Based Federated Learn-
ing
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DenseNet201: Federated Learning

After obtaining the weight of the model from the server, the clients began their data
labeling jobs. During the initial communication session, each client analyzed their
dataset. Client 1 identified 809 data points that exceeded the prediction confidence
level of 70%. Also, Client 2 correctly labeled 832 images which met the same crite-
ria. Client 1 showed enhanced performance in communication round 1, successfully
classifying 836 images. Meanwhile, Client 2 made significant progress by successfully
identifying 873 images with the progress of the communication round. The detailed
statistics are presented in Table 5.7

Table 5.7: Number of Pseudo-Labeled Data on Each Communication Round Using
DenseNet201

Split CommR Healthy Moderate Severe
Client 1 0 566 209 34
Client 2 0 591 209 32
Client 1 1 534 224 78
Client 2 1 579 218 76

According to Table 5.8, in communication round 0, the model demonstrated a 70%
degree of confidence in accurately predicting all of the data. Nevertheless, the degree
of confidence rapidly increased when the model underwent training using pseudo-
labels. In the first round of communication, all clients demonstrated the ability to
forecast 50% additional data in the severe category compared to the prior round.

Table 5.8: Test Results on DenseNet201 in Pseudo-Labeling-Based Federated Learn-
ing

Model CommR Client1 Client2 Server
0 0.90 0.90 0.82

DenseNet201 1 0.93 0.92 0.84

50



In addition, the test accuracy of each server and client may be characterized in
the following manner: Client 1 attained a starting accuracy of 90% in communica-
tion round 0, which then improved by an additional 4% in communication round
1. However, Client 2 saw a notable improvement in accuracy, with a 92% rise in
communication round 1 compared to its original accuracy of 90% in communication
round 0. The server exhibited enhanced performance, with its precision rising by
2% from 82% in round 0 to 84% in round 1.
A detailed result can be found in the Table 5.9, where we can see that in all metrics,
we got an impressive result in both clients 1 and 2, and with each communication
round, the result got even better.

Table 5.9: Detailed Test Results of Each Communication Round Using DenseNet201
on Pseudo-Labeling-Based Federated Learning

Model Client CommR Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

Client1 0 0.90 0.90 0.90 0.90
Client2 0 0.90 0.81 0.90 0.90
Server 0 0.82 0.83 0.82 0.82
Client1 1 0.93 0.93 0.93 0.93
Client2 1 0.92 0.92 0.92 0.92

DenseNet201 Server 1 0.84 0.84 0.84 0.84

MobileNet V2: Initial Server Training

As we have considered that only servers have gold label data, before transmitting
the weights to the model, we trained the server model for 20 epochs. After training
the model, we got 84% overall accuracy on the test set, 84% weighted average F1-
score, 83% weighted average precision, and 84% weighted average recall. Details of
the results are given in the confusion matrix 5.3a and classification report 5.3b.

51



(a) Confusion Matrix of MobileNetV2 in
Pseudo-Labeling-Based Federated Learn-
ing

(b) Classification Report of MobileNetV2
in Pseudo-Labeling-Based Federated
Learning

Figure 5.3: MobileNetV2 Performance in Pseudo-Labeling-Based Federated Learn-
ing

Our server successfully predicted 114 images among 135 images, and most miss-
classification was seen in the Moderate class the overall miss-classification rate was
0.15
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MobileNet V2: Federated Learning

Once the client was provided with the model weight by the server, it immediately
began the process of labeling the data. When it comes to communication round 0,
client 1 has the ability to pass the threshold confidence with 952 data points. The
second client, which has 969 data points, is able to satisfy the requirements.
There were 966 data points that were able to pass the criterion, which was 70%,
during the first communication session with client 1. In addition, 1013 photos were
labeled for the second client. The detailed statistics is presented in Table 5.10

Table 5.10: Number of Pseudo-Labeled Data on Each Communication Round Using
MobileNetV2

Split CommR Healthy Moderate Severe
Client 1 0 725 150 77
Client 2 0 591 209 79
Client 1 1 661 219 86
Client 2 1 711 214 88

What we can notice from the table 5.11 is that in communication round 0, the model
was unable to predict all data with 70% confidence, but it increased gradually when
it trained on pseudo-labels, and in communication round 1, all clients were able to
predict more data than in every class than the previous round.
On the other hand, the test accuracy of each server and client follows this client 1
got an overall 94% accuracy on communication round 0 which decreased by 1% more
in communication round 1, whereas client 2 increased in accuracy in communication
round 1 by 92% where in communication round 0 it was 86% sever also shows and
increment in the round to by 4% from 80% it rose to 84%.

Table 5.11: Test Results on MobileNetV2 in Pseudo-Labeling-Based Federated
Learning

Model CommR Client1 Client2 Server
0 0.94 0.86 0.80

MobileNet V2 1 0.93 0.92 0.84

A detailed result can be found in Table 5.12, where we can see that in all metrics,
we got an impressive result in both clients 1 and 2, and with each communication
round, the result got even better.
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Table 5.12: Detailed Test Results of Each Communication Round Using Mo-
bileNetV2 on Pseudo-Labeling-Based Federated Learning

Model Client CommR Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

Client1 0 0.94 0.94 0.94 0.94
Client2 0 0.86 0.89 0.86 0.86
Server 0 0.80 0.81 0.80 0.80
Client1 1 0.93 0.93 0.93 0.93
Client2 1 0.92 0.92 0.92 0.92

MobileNet V2 Server 1 0.88 0.88 0.88 0.88

Overall Comparison

If we compare all three models in pseudo-labeling-based federated learning, we
will see that in the case of the client’s data labeling, MobilenetV2 outperforms
DenseNet169 and DenseNet201. In round 1 where every model performed better
than the previous round MobilenetV2 was able to predict 1013 images with single
class prediction confidence 70% where the value was 984 and 874 for DenseNet169
and DenseNet201 for client two even in client 1 MobilenetV2 performed very well

Table 5.13: Number of Pseudo-Labeled Data on Communication Round-1 Using All
Pre-trained Models

Model Name Split Healthy Moderate Severe
Client 1 810 123 34

DenseNet169 Client 2 834 115 35
Client 1 534 224 78

DenseNet201 Client 2 579 218 76
Client 1 661 219 86

MobileNetV2 Client 2 711 214 88

We can see from the details in Table 5.13 that DenseNet201 was better than DenseNet169
in the case of predicting the severe class, but in the comparison of moderate and
severe classes, where the data amount was small, mobile net performed better than
both models in pseudo-labeling.
Now if we look at the overall model performance in communication round 1 in Table
5.14, after aggregating the weights received from the clients, Both DenseNet models
performed similarly in the test portion of the data, while MobileNet v2 performed
much better in comparison to the two models.
Considering computational efficiency, while DenseNet169 and DenseNet201 exhibit
similar computation times, MobileNetV2 requires slightly more time. However, this
marginal increase in computation time is justified by MobileNetV2’s superior per-
formance and accuracy.
If we look at the confusion matrix 5.4a, 5.5a and 5.6a and the classification reports
5.4b, 5.5b and 5.6b of the test portion, then we can notice the difference between
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Table 5.14: Detailed Test Results on Different Models of Pseudo-Labeling-Based
Federated Learning

Model Accuracy Precision Recall F1-Score
DenseNet169 0.84 0.84 0.84 0.83
DenseNet201 0.84 0.84 0.84 0.84
MobileNet v2 0.88 0.88 0.88 0.88

Table 5.15: Comparison of Computation Time in Different Models in Pseudo-
Labeling-Based Federated Learning

Model Computation Time(min)
DenseNet169 18.04
DenseNet201 20.20
MobileNet v2 18.34

all three models more clearly. The miss-classification rate is 0.09 for MobileNetV2,
while for DenseNet169 and DenseNet201 it is 0.16. The correct classification rate is
also high for all three classes of MobileNetV2.

(a) Confusion Matrix of DenseNet169 in
Pseudo-Labeling-Based Federated Learn-
ing

(b) Classification Report of DenseNet169 in
Pseudo-Labeling-Based Federated Learn-
ing

Figure 5.4: DenseNet169 Performance in Pseudo-Labeling-Based Federated Learn-
ing
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(a) Confusion Matrix of DenseNet201 in
Pseudo-Labeling-Based Federated Learn-
ing

(b) Classification Report of DenseNet201 in
Pseudo-Labeling-Based Federated Learn-
ing

Figure 5.5: DenseNet201 Performance in Pseudo-Labeling-Based Federated Learn-
ing

(a) Confusion Matrix of MobileNetV2 in
Pseudo-Labeling-Based Federated Learn-
ing

(b) Classification Report of MobileNetV2
in Pseudo-Labeling-Based Federated
Learning

Figure 5.6: MobileNetV2 Performance in Pseudo-Labeling-Based Federated Learn-
ing
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5.5 Performance Analysis: Comparative Meth-

ods

5.5.1 Client-Server-Based Federated Learning Framework

For our research, we employed two pre-trained models: DenseNet169 and MobileNet-
v2. In this paragraph, we will analyze the outcomes of the individual model.
The table displays the accuracy of the two pre-trained models used in the test
dataset, as well as the accuracy of their information on both the client and server
sides. Table 5.16 clearly demonstrates that DenseNet169 outperforms the other
models discussed before. All the models illustrating the impact of federated learning
exhibited enhanced accuracy throughout the communication round.

Table 5.16: Test Results on Pre-trained Models in Client-Server-Based Federated
Learning

Model CommR Client1 Client2 Server
DenseNet169 0 0.85165 0.87978 0.69966

1 0.86183 0.9071 0.82512
2 0.86264 0.90164 0.81773

MobileNet v2 0 0.83516 0.78142 0.44828
1 0.87636 0.8306 0.76847
2 0.85714 0.86339 0.81034

Table 5.17 shows the test results for several models. We can see that the DenseNet169
model, which has an accuracy rate of over 0.82, performs the best. The DenseNet169
model has the highest F1 score, which is 0.81. The MobileNet-v2 model’s F1-score,
which is 0.80, is satisfactory. The accuracy of the MobileNet-v2 is 0.81. Both models
performed admirably with essentially the same outcomes across all evaluation matri-
ces. DenseNet’s ability to reuse features from different layers might be advantageous
in capturing global patterns across diverse datasets. Furthermore, DenseNet169 is
a relatively deeper model compared to MobileNet-v2, which could allow it to learn
more intricate representations.

Table 5.17: Detailed Test Results on Different Models in Client-Server-Based Fed-
erated Learning

Model Accuracy Precision Recall F1-Score
DenseNet169 0.82 0.81 0.82 0.81
MobileNet v2 0.81 0.81 0.81 0.80

In Figure 5.7a,5.7b,5.8a and 5.8b, we can see the confusion matrices and get the
details about the classifications. It is seen that the DenseNet169 model classifies 259
healthy graded Knee joints correctly while miss-classifying 12 data. MobileNet-v2
classifies the healthy data which is 256 and misclassifies 15 data into other classes.
The class that is mostly misclassified by all models is the Moderate class. Both
models classify the moderate-graded KOA as a Healthy knee. A total of 50 data
are misclassified by the MobileNet-v2 model followed by 49 miss-classification by

57



the DenseNet169 model. These models perform nearly the same while classifying
Severe Knee OA predicting 19 and 18 data correctly respectively.

(a) Confusion Matrix of DenseNet169 in
Client-Server-Based Federated Learning

(b) Classification Report of DenseNet169 in
Client-Server-Based Federated Learning

Figure 5.7: DenseNet169 Performance in Client-Server-Based Federated Learning

(a) Confusion Matrix of MobileNetV2 in
Client-Server-Based Federated Learning

(b) Classification Report of MobileNetV2
in Client-Server-Based Federated Learning

Figure 5.8: MobileNetV2 Performance in Client-Server-Based Federated Learning

Table 5.18 displays the computational variance between the two models. The table
shows that even though the DenseNet169 model is the most accurate, it still requires
the longest computation times. In contrast, the MobileNet v2 model runs roughly
49.716 minutes faster than the DenseNet169 model while exhibiting almost the same
accuracy.
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Table 5.18: Comparison of Computation Time in Different Models in Client-Server-
Based Federated Learning

Model Computation Time(min)
DenseNet169 59.517
MobileNet v2 49.716

5.5.2 FixMatch-Based Federated Learning Framework

DenseNet169

In both clients 1 and 2, there was a consistent improvement in accuracy across
communication rounds. Client 1 started at 82% accuracy in round 0 and maintained
the same accuracy in round 1. Client 2 improved from 80% in round 0 to 83% in
round 1. The server showed a significant improvement from 70% accuracy in round
0 to 88% in round 1. These improvements were reflected in the weighted average
precision, recall, and F1-score for each entity, demonstrating the effectiveness of the
iterative communication process in refining the model’s performance. The detailed
statistics is presented in Table 5.19

Table 5.19: Test Results on DenseNet169 in FixMatch-Based Federated Learning
Framework

Model CommR Client1 Client2 Server
0 0.82 0.80 0.70

DenseNet169 1 0.82 0.83 0.88

A detailed result can be found in the Table 5.20, where we can see that in all metrics,
we got an impressive result in both clients 1 and 2, and with each communication
round, the result got even better.

Table 5.20: Detailed Test Results of Each Communication Round Using
DenseNet169 on FixMatch-Based Federated Learning Framework

Model Client CommR Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

Client1 0 0.82 0.82 0.82 0.79
Client2 0 0.80 0.79 0.80 0.78
Server 0 0.70 0.68 0.70 0.68
Client1 1 0.82 0.83 0.82 0.80
Client2 1 0.83 0.82 0.83 0.81

DenseNet169 Server 1 0.88 0.84 0.88 0.86
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DenseNet201

All throughout the communication rounds, both client 1 and client 2 displayed an
increased level of accuracy. In the first round, Client 1’s accuracy increased from
80% in the first round to 84% in the first round. The accuracy rate of Client 2 was
consistent across both rounds, coming in at 86%. on the other hand, the server’s
performance, stayed unchanged across both rounds, with an accuracy rate of 68%.
Although there was a slight increase in the server’s accuracy, recall, and F1 score
from round 0 to round 1, these metrics continued to be much lower than those of
the clients. In light of this, it may be deduced that the performance of the server
has space for continued improvement. The detailed statistics is presented in Table
5.21

Table 5.21: Test Results on DenseNet201 in FixMatch-Based Federated Learning

Model CommR Client1 Client2 Server
0 0.80 0.86 0.68

DenseNet201 1 0.84 0.84 0.80

A detailed result can be found in this table 5.22, where we can see that in all metrics,
we got an impressive result in both clients 1 and 2, and with each communication
round, the result got even better.

Table 5.22: Detailed Test Results of Each Communication Round Using
DenseNet201 on FixMatch-Based Federated Learning

Model Client CommR Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

Client1 0 0.80 0.80 0.80 0.79
Client2 0 0.86 0.86 0.86 0.84
Server 0 0.68 0.46 0.68 0.55
Client1 1 0.84 0.85 0.84 0.83
Client2 1 0.84 0.85 0.84 0.83

DenseNet201

Server 1 0.80 0.74 0.80 0.77
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MobileNetV2

In both clients 1 and 2, there was an improvement in accuracy across communication
rounds. Client 1 started at 83% accuracy in round 0 and increased to 84% in round
1. Client 2 also showed improvement from 81% accuracy in round 0 to 87% in round
1. However, the server’s performance remained stable with 76% accuracy in both
rounds. While there were improvements in the server’s precision, recall, and F1-score
from round 0 to round 1, they were still lower compared to the clients, indicating
potential for further enhancement in its performance. The detailed statistics are
presented in Table 5.23

Table 5.23: Test Results on MobileNetV2 in FixMatch-Based Federated Learning

Model CommR Client1 Client2 Server
0 0.83 0.81 0.76

MobileNet V2
1 0.84 0.87 0.8

A detailed result can be found in Table 5.24, where we can see that in all metrics,
we got an impressive result in both clients 1 and 2, and with each communication
round, the result got even better.

Table 5.24: Detailed Test Results of Each Communication Round Using Mo-
bileNetV2 on FixMatch-Based Federated Learning

Model Client CommR Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

Client1 0 0.83 0.83 0.83 0.81
Client2 0 0.81 0.82 0.81 0.80
Server 0 0.76 0.65 0.76 0.67
Client1 1 0.84 0.84 0.84 0.82
Client2 1 0.87 0.87 0.87 0.85

MobileNet V2

Server 1 0.87 0.86 0.87 0.76

Overall Comparison

Upon evaluating the total performance of the models in communication round 1 and
combining the weights obtained from the customers, it is clear that both DenseNet
models exhibited similar levels of performance in the test dataset. MobileNet v2 ex-
hibited markedly superior performance levels in comparison to the DenseNet models.
Furthermore, MobileNet v2 demonstrated a commendable accuracy of 0.87, indicat-
ing its proficiency in accurately classifying KAO pictures in the given test dataset.
Furthermore, it showcased a remarkable precision of 0.86 and a recall of 0.87, in-
dicating its efficacy in accurately identifying positive examples and retrieving all
pertinent instances from the dataset, respectively. The F1-Score of 0.76 provides
solid evidence that the model’s performance is equally accurate and comprehensive.
MobileNet v2 has exhibited significantly improved performance compared to DenseNet169
and DenseNet201, indicating that it is a more suitable choice for the particular task
and dataset. The detailed statistics are presented in Table 5.25
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Table 5.25: Detailed Test Results on Different Models on FixMatch-Based Federated
Learning

Model Accuracy Precision Recall F1-Score
DenseNet169 0.88 0.84 0.88 0.86
DenseNet201 0.80 0.74 0.80 0.77
MobileNet v2 0.87 0.86 0.87 0.76

If we look at the confusion matrix 5.9a,5.10a and 5.11a and the classification report
5.9b,5.10b and 5.11b of the test portion, then we can notice the difference between
all three models more clearly. The DenseNet169 and DenseNet201 were able to
identify the classes Healthy and Moderate but it was completely unable to detect a
single image of class severe in the test dataset, whereas MobileNetV2 was able to
classify only a single image of class severe

(a) Confusion Matrix of DenseNet169 in
FixMatch-Based Federated Learning

(b) Classification Report of DenseNet169 in
FixMatch-Based Federated Learning

Figure 5.9: DenseNet169 Performance in FixMatch-Based Federated Learning
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(a) Confusion Matrix of DenseNet201 in
FixMatch-Based Federated Learning

(b) Classification Report of DenseNet201 in
FixMatch-Based Federated Learning

Figure 5.10: DenseNet201 Performance in FixMatch-Based Federated Learning

(a) Confusion Matrix of MobileNetV2 in
FixMatch-Based Federated Learning

(b) Classification Report of MobileNetV2
in FixMatch-Based Federated Learning

Figure 5.11: MobileNetV2 Performance in FixMatch-Based Federated Learning
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Table 5.26: Comparison of Computation Time in Different Models in FixMatch-
Based Federated Learning

Model Computation Time(min)
DenseNet169 94.21
DenseNet201 108.68
MobileNet v2 31.54

From the table, it can be clearly stated that DenseNet201 took the longest time to
train both clients, due to the model depth it took this time. Though DenseNet201
DenseNet169 took longer than MobileNetV2, nearly one-third of DenseNet169, Mo-
bileNetV2 performed best among these three models.

5.6 Discussion

When we look at the three model models of a client-server-based federated learn-
ing framework, then pseudo-labeling-based federated learning framework, and the
FixMatch-Based Federated Learning Framework, we can see that for client-server-
based Federated Learning Framework, Densenet169 was the best performer. When
it comes to the pseudo-labeling-based Federated Learning Framework, MobileNetV2
is the winner, and in the FixMatch-Based Federated Learning Framework, again,
MobileNetV2 outperforms other models.
When comparing the evaluation metrics of these three models in the Table 5.27, we
can see that MobileNetV2 in the pseudo-labeling-based Federated Learning Frame-
work outperforms the other two models in different frameworks in every metric. It
has the highest overall accuracy (weighted average). Precision, weighted average
Recall, and weighted average F1-Score

Table 5.27: Detailed Test Result Comparison of Best-Performing Models in All
Three Frameworks

Framework Model Accuracy
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

CSFL Densenet169 0.82 0.81 0.82 0.81
PLFL MobileNet V2 0.88 0.88 0.88 0.88
FSSFL MobileNet V2 0.87 0.86 0.87 0.76

When we look at the training times of the best three models displayed in 5.28, we can
see that MobileNetV2 in the pseudo-labeling-based Federated Learning Framework
took the longest time to complete label generation and model training, which is
3.2 times lower than DenseNet169, which is trained using the traditional Federated
Learning Framework model, and 1.7 times lower than MobileNet v2 in the FixMatch-
Based Federated Learning Framework.
Considering the predictions by each model, we can see that DenseNet169 provided
an 86.91% correct result on healthy images, a 70.51% correct prediction for the
moderate class, and a 62.07% correct prediction for the severe class. MobileNetV2
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Table 5.28: Comparison of Computation Time of Best-Performing Models in All
Three Frameworks

Framework Model Computation Time(min)
CSFL DenseNet169 59.517
PLFL MobileNet v2 18.34
FSSFL MobileNet v2 31.54

of FSSFL provides 100% correct output for the healthy class, 59.38% correct out-
put for the moderate class, and 20% correct output for the Seaver class. Finally,
MobileNetV2 in PLFL provides 93.07% correct output for the healthy class, 72.73%
correct output for the moderate class, and 100% correct output for the Seaver class.
So we can see that the pseudo-labeling-based Federated Learning Framework was
able to outperform the other two frameworks in moderate and severe classes.
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(a) Confusion Matrix of DenseNet169 in Client-Server-Based Federated Learning

(b) Confusion Matrix of MobileNetV2 in
Pseudo-Labeling-Based Federated Learning

(c) Confusion Matrix of MobileNetV2 in
FixMatch-Based Federated Learning

Figure 5.12: Comparison of Performance in Different Federated Learning Ap-
proaches
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So overall, in the three criteria stated here, pseudo-labeling-based Federated Learn-
ing outperforms the Client-Server-Based Federated Learning Framework and FixMatch-
Based Federated Learning Framework with 0 label images in each client in the Knee
Osteoarthritis Severity detection task.

Table 5.29: Comparison of Model Parameters Across Different Research Studies

Model Name Number of parameter
EfficientNet-B1 7.8M
ResNet152V2 60.4M
InceptionResNetV2 28M
MobileNetV2 in
Our method

3.4M

Figure 5.13: Comparison of Model Accuracies Across Different Architectures

When comparing our method (PLFL) to previous research in Table 5.29 and Fig-
ure 5.13, it’s clear that our approach achieved performance that is very close to
other models. The highest accuracy of 89.29% was achieved by InceptionResNetV2
and ResNet152V2 in the research conducted by H. Masood et. al[42], with these
models having a large number of parameters 28 million and 60.4 million, respec-
tively. Another study by B. C. Dharmani et al. [50] reported an accuracy of 89%
with the EfficientNet-B1 model consisting of 7.8 million parameters. In contrast,
our method using MobileNetV2, which has only 3.4 million parameters, achieved
an accuracy of 88.15%. It’s important to note that these other studies utilized
fully supervised methods. Meanwhile, our approach employed semi-supervised tech-
niques within a collaborative and federated setting. Despite having limited labeled
data—930 healthy images, 329 moderate KAO images, and 93 severe images—our
method achieved an accuracy that is only 1% less than the best-performing mod-
els mentioned. This demonstrates the efficiency and effectiveness of our approach,
particularly given the constraints on labeled data.
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Chapter 6

Conclusion

The primary objective of our research is to identify the most effective method for
categorizing the severity of knee osteoarthritis with little human intervention. We
have also emphasized the challenge of finding labeled medical photos due to the
requirement for skilled individuals with expertise in this area. Additionally, this
process is time-consuming and further compounded by a scarcity of medical pro-
fessionals capable of doing this task. Due to these factors, the process of labeling
medical photographs is expensive for an organization. Additionally, it is impor-
tant to note that there are stringent regulations governing the sharing of medical
pictures and data. Consequently, hospitals are reluctant to openly disclose medical
data. Given these facts, we have implemented a novel solution known as the pseudo-
labeling-based Federated Learning Framework. This approach effectively addresses
the problem of annotation costs by utilizing zero-label data on clients. In addition,
we have implemented Federated Learning, a method that addresses the problem
of data sharing while maintaining the confidentiality of patients’ information. Our
technique is capable of resolving the adversarial assault known as data poisoning
and incorrect annotation by the annotator, which can occur on the client side. By
enhancing the train data with a high level of prediction confidence, we can exclude
unreliable data, therefore serving the aim of data preparation.

The study compared a pseudo-labeling-based federated learning framework with two
other frameworks: the traditional client-server-based federated learning framework
and the FixMatch-based federated learning framework. The pseudo-labeling-based
framework demonstrated superior model performance and time efficiency compared
to both. The traditional federated learning framework included labeled data in all
clients, while the FixMatch-based framework had 20% labeled data in each client.
The Pseudo-labeling-based framework demonstrated exceptional performance with
accuracy, weighted average precision, weighted average recall, and weighted aver-
age F1-score of 0.88. The MobileNetV2 model in the pseudo-labeling-based frame-
work had the shortest duration for label generation and model training, 3.2 times
shorter than the DenseNet169 model trained using the traditional Federated Learn-
ing Framework. The best-performing model from each framework was selected and
compared. Furthermore, our system has exceptional prediction precision, especially
in detecting moderate and severe instances of osteoarthritis, surpassing rival mod-
els. This is seen by the notable progress in accurately forecasting moderate and
severe categories, highlighting the effectiveness of our method. This is the first in-
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stance where a pseudo-labeling-based federated learning system has been used to
assess knee osteoarthritis severity from X-ray pictures. Through the utilization of
pseudo-labeling in the context of Federated Learning, we are able to get unparalleled
precision and effectiveness in assessing the severity of knee osteoarthritis based on
X-ray images.

6.1 Limitations and Future Work

The primary obstacle is in acquiring data, especially within the healthcare sector
where data is frequently sparse and restricted. Our pursuit brought attention to this
fact, as we discovered the necessity for a larger dataset to carry out a comprehensive
investigation. During our investigation, we observed a significant presence of data
imprinting in each client, with a limited number of severe images in comparison to
those classified as healthy or moderate.

In order to address this difficulty, we carefully allocated data points across clients,
guaranteeing an equal quantity of photos on each server and maintaining overall
balance. Nevertheless, as a result of the limits imposed by the hardware, we were
restricted to a maximum of two customers, both of whom were equipped with iden-
tical setups.

In the future, we want to increase the number of clients and photographs by seek-
ing the assistance of medical specialists to provide detailed explanations for knee
osteoarthritis images. In addition, our strategy involves expanding our clients by
providing them with non-iid datasets obtained from other geographical areas.

Alongside these efforts, our primary focus is on improving the weight aggregation
approach to maximize the effectiveness of our study results.
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