
Normalizing images in various weather
and lighting conditions using Pix2Pix

GAN

by

Sanjida Tasnim

20201039

Ashif Mahmud Mostafa

23241036

Azmain Morshed

22141050

Namreen Shaiyaz

20201086

A thesis submitted to the Department of Computer Science

and Engineering in partial fulfillment of the requirements for

the degree of Bachelor in Computer Science or Computer

Science and Engineering

Department of Computer Science and Engineering

School of Data and Science

Brac University

January 2024

© 2024. Brac University

All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. I/We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sanjida Tasnim, 20201039 Ashif M. Mostafa, 23241036

Namreen Shaiyaz, 20201086 Azmain Morshed, 22141050

i

Approval

The thesis/project titled “Normalizing images in various weather and lighting con-
ditions using Pix2Pix GAN” was submitted by

1. Sanjida Tasnim (20201039)

2. Ashif M. Mostafa (23241036)

3. Namreen Shaiyaz (20201086)

4. Azmain Morshed (22141050)

in Fall 2023 has been accepted as satisfactory in partial fulfillment of the requirement
for the degree of B.Sc. in Computer Science and Engineering on January 22, 2024.

ii

Examining Committee:

Supervisor:
(Member)

Md. Ashraful Alam, PhD
Associate Professor

Department of Computer Science and
Engineering, BRAC University

Co-supervisor:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and
Engineering, BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam
Professor

Department of Computer Science and
Engineering, BRAC University

Departmental Head:
(Chair)

Sadia Hamid Kazi
Associate Professor and Chairperson
Department of Computer Science and

Engineering, BRAC University

iii

Ethics Statement

We consciously assure that for this research that the following is fulfilled:

1. This material is the authors’ own authentic work, which was not published
previously.

2. The paper reflects all of the author’s own research and analysis truthfully and
completely.

3. The paper properly credits the meaningful contributions of co-authors and
co-researchers.

4. All sources used are correctly disclosed with proper citations. A verbatim copy
of the text was indicated as such by using quotation marks and giving proper
references.

5. All authors have been personally and actively involved in significant work
leading to this paper and will take shared responsibility for its content.

6. Finally, all authors acknowledge that the violation of the Ethical Statement
rules may result in severe consequences.

iv

Abstract

Autonomous vehicles are widely regarded as the future of transportation due to its
possible uses in a myriad of applications. In recent years, perception systems in
driverless cars have had reasonable development through the various implementa-
tions of object detection systems with deep-learning algorithms. Noticeable progress
has been made in this field of study as many isolated and multi-model systems have
been developed and/or proposed to help overcome the shortcomings of the sensors
and detection algorithms. These include research on sensing objects under varying
environmental conditions (illumination, refractive indexes, weather conditions) as
well as detection and removal of noise, clutter, and camouflage from the collected
sensory inputs. However, in its current state, perception systems in autonomous
vehicles are still incapable of accurately detecting objects in real-life scenarios using
its visual/thermal camera, LiDAR, radar, and other sensors. Additionally, most
systems lack the robustness to perform well under any given condition. Hence, this
paper proposes to use advanced color vision techniques and Generative Adversarial
Networks (GAN) to produce reconstructed images that can improve the accuracy of
object detection systems for more precise predictions.

Keywords: Autonomous Vehicles; Object Detection; Image Normalization; Color
Vision; Generative Adversarial Networks

v

Acknowledgement

In preparation for this thesis, we reached out to many people, researchers, and aca-
demicians who greatly contributed to our understanding and views on this subject.
In particular, we would like to express our sincere appreciation to our thesis super-
visor, Professor Dr. Md. Ashraful Alam, and cosupervisor, Dr. Md. Golam Rabiul
Alam, for their encouragement, guidance, and critics. Without their continued sup-
port and interest, this research would not have been the same as presented here.
Additionally, our fellow students should also be recognized for their support. Thus,
we express our sincere appreciation to all of our colleagues and others who have
assisted on various occasions. Their views and tips were indeed helpful. Unfortu-
nately, it is not possible to list all of them, but we are also very grateful to all of
our family members for their continued support.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables ix

List of Equations x

Nomenclature xi

1 Introduction 1
1.1 Research Objectives . 2

2 Problem Statement 3

3 Literature Review 6

4 Methodology 8
4.1 Proposed methodology . 8
4.2 Data analysis . 9

4.2.1 Data acquisition . 10
4.2.2 Image preprocessing . 10
4.2.3 Augmented Data Analysis . 13

4.3 Working principle of Pix2Pix GAN 16
4.4 Description of the Object Detection Models 17

4.4.1 Faster R-CNN using ResNet50 17
4.4.2 Faster R-CNN using MobileNet v3 19
4.4.3 RetinaNet with ResNet50 . 20

5 Implementation 22
5.1 Pix2Pix GAN Model implementation 22

5.1.1 Generator building . 22

vii

5.1.2 Discriminator building . 23
5.1.3 Generator Loss Calculation 24
5.1.4 Discriminator Loss Calculation 25
5.1.5 Attention block . 25

5.2 Pix2Pix GAN model training and result
analysis . 26
5.2.1 Training . 26
5.2.2 Pix2Pix Generated Results . 27
5.2.3 Primary result analysis . 28

5.3 Object Detection Model Implementation 31
5.4 Object Detection Model Evaluation 32

5.4.1 Performance Measures . 32
5.4.2 Comparative results of various models 34

6 Future Work and Conclusion 38

7 References 39

viii

List of Figures

4.1.1 Methodology Flowchart . 8
4.2.1 Augmentation results after pre-processing 12
4.2.2 Original vs augmented for Low Light (level 2) 13
4.2.3 Original vs augmented for Bright Light (level 2) 14
4.2.4 Original vs augmented for Fog (level 3) 14
4.2.5 Original vs augmented for Heavy Rain 15
4.3.1 Working principle of Pix2Pix GAN 16
4.4.1 ResNet 50 architecture . 17
4.4.2 Stage 1 of Faster R-CNN . 18
4.4.3 Stage 2 of Faster R-CNN . 19
4.4.4 MobileNetV3 architecture . 20
4.4.5 RetinaNet structure using ResNet50 backbone 21

5.2.1 Pix2Pix GAN output on weather condition dataset 27
5.2.2 Pix2Pix GAN output on lighting condition dataset 28
5.2.3 Histograms comparing augmented and normalized SSIM and PSNR

scores for batch size 1 . 30
5.3.1 Flowchart representing object detection implementation 31
5.4.1 Class-wise IoU scores for each Model (Lighting) 35
5.4.2 Class-wise IoU scores for each Model (Weather) 36

List of Tables

5.1 Mean PSNR and SSIM for augmented and normalized images 30
5.2 Average scores for lighting condition dataset 34
5.3 Average scores for weather condition dataset 34
5.4 Lighting condition dataset: Average class-wise IoU@[0.5:0.95] 35
5.5 Weather condition dataset: Average class-wise IoU@[0.5:0.95] 36

ix

List of Equations

4.0 Fast R-CNN loss . 19
5.0 Generator Loss . 25
5.0 Discriminator Loss . 25
5.0 PSNR . 29
5.0 SSIM . 29
5.0 SSIM . 29
5.0 IoU . 32
5.0 Precision . 32
5.0 Recall . 33
5.0 F1 . 33
5.0 mAP . 33

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AP Average Precision

cls box-classification layer

CNN Convolutional Neural Network

COCO Common Objects in Context

FC fully-connected

FCN fully convolutional network

FPN Feature Pyramid Network

GAN Generative Adversarial Networks

GDL Gradient Difference Loss

IoU Intersection-over-Union

mAP Mean Average Precision

MSE mean squared error

OpenCV Open Source Computer Vision

PSNR Peak Signal to Noise Ratio

reg box-regression layer

ReLU Rectified Linear Unit

RoI Region of Interest

RPN Regional Proposal Network

SSIM Structural Similarity Index

V AE Variational Auto-Encoders

xi

Chapter 1

Introduction

Identifying and localizing things in images or videos is the task of object detection- a
crucial component in many computer vision applications. Traditionally, supervised
learning with hand-crafted features has been used to perform this task, necessitating
training on large labeled datasets [1]. However, in complex settings, this strategy
can be less successful and labor-intensive. Hence, deep learning techniques are be-
coming more and more popular as a way to improve object detection.

An essential function in applications such as driverless vehicles is object detection. It
supports navigation decisions by assisting these vehicles with detecting and track-
ing nearby objects. The wide variety of items that can be encountered and the
numerous variables that can change an object’s outlook in an image present object
detection with a challenge. Autonomous vehicles generally use a variety of sensors,
such as radar, LiDAR, thermal and optical cameras, and ultrasonic sensors, to de-
tect objects. However, visual cameras are especially popular among them because of
their affordability and capacity to record fine-grained visual information. However,
depending just on color data from these cameras can be inadequate, particularly
in difficult situations like dim illumination or shifting weather [5]. The accuracy of
detection can be hampered by a variety of factors, such as differences in weather
conditions like rain, snow, or fog [3, 4], as well as changes in lighting, viewing angles,
and obstructions [2].

The ability to perceive and understand colors is known as advanced color vision,
and it is essential for object detection. Object detection could be improved by com-
bining deep learning methods like Generative Adversarial Networks (GANs) with
sophisticated color vision algorithms. These techniques make full use of the range
of color information available, enabling the extraction of more powerful and dis-
tinguishing characteristics. Therefore, through the utilization of the entire color
spectrum, sophisticated color vision techniques may provide the best possible an-
swers for intricate detecting situations. Thus, the main goal of this research is to
investigate how enhanced color vision combined with GANs may be used to detect
objects in autonomous cars. The effectiveness of this approach in comparison to
conventional object detection algorithms is another goal of the study.

1

1.1 Research Objectives

This research aims to study the perception system in autonomous vehicles and to
determine whether or not normalizing images with GAN can help improve its accu-
racy. Images from the surroundings of autonomous vehicles are picked up as color
images by the camera. Machine vision is an important concept to understand as hu-
man vision and machine vision work differently when processing visual data. Thus,
understanding the working principles of color vision in machines is significant in this
research. Additionally, understanding normalization and the process of normalizing
an input image, how image classification, extraction of the necessary information
from images, and how various object detection models work are some of the im-
portant things this research focuses on. Also, understanding GANs and how to
incorporate them into the object detection model is essential. Thus, the objectives
can be summarized as follows-

1. Understand the applications of advanced color vision in autonomous vehicles
or machine vision system(s).

2. Understand the effective application of generative adversarial networks (GANs),
its types, implementations, and efficiency.

3. Demonstrate efficient object detection for autonomous vehicles after normal-
ization.

4. Analyze and evaluate the performance of the used models.

5. Providing suggestions for further improvements and open questions (if any).

2

Chapter 2

Problem Statement

With the use of autonomous vehicles becoming increasingly prevalent in modern
society, it raises the question of its reliability in recent times. How to judge the
safety of self-driven automobiles, if they are better performing than human-driven
vehicles, and whether or not they are capable of reducing road hazards are all so-
cial concerns [9]. These concerns may be mitigated by developing object detection
systems that yield better results. To procure better-performing perception systems
in autonomous vehicles it is imperative to develop an object detection system that
is accurate, robust, and well-performing in real-time. Since object detection is an
advancing field of research, several solutions have already been theorized, developed,
and implemented for its miscellaneous applications. Hence, this paper is concerned
with overcoming the challenges of implementing an object detection model that can
improve the mentioned factor(s).

Developing a perception system for autonomous vehicles comes with challenges re-
garding data preparation, fusion methodology, and more [7].

A deep neural network model for autonomous vehicles requires large and diverse
training data of high quality. Thus, using large multimodal data sets collected from
different driving conditions, sensors, and object labels can improve the accuracy of
detection. However, such tasks of collecting data are expensive and time-consuming.
Additionally, the size of open multimodal data sets is significantly smaller than the
size of image data sets. Furthermore, training data for deep neural networks are
often labeled by humans which are susceptible to human errors [7]. Research [11],
investigated the relationship between the quality of labels and the performance of
convolutional neural networks (CNNs) which suggests that data size and coarse la-
bels influence the training time of CNN, while [12] suggests that erroneous labels
can impact the accuracy of CNNs.

As mentioned earlier, autonomous vehicles are equipped with multiple automotive
sensors as the primary source of raw data, each of which captures its specialized data.
Each sensor comprises modeling uncertainties that are difficult to quantify [7] but
could heavily impact the reliability of autonomous vehicles under extreme scenarios.
For example, harsh weather conditions, defective sensors, or unprecedented road sit-
uations are likely to cause higher modal uncertainty. Thus, the perception system
must be robust enough to perceive the best outcome under any given condition.
Recent studies [10], claim that Variational Auto-Encoders (VAE) and Generative

3

Adversarial Networks could be used to solve the multiple data modalities problem.
Another paper [7] also suggests that these are rather popular methods used for im-
age analysis and that GAN have recently been introduced to model Radar data for
roadside detection in autonomous vehicles.

Therefore, the question this research is trying to address is:
How effective Generative Adversarial Networks will be in improving the
accuracy of object detection algorithms?

There are various methods of solution for object detection systems for autonomous
vehicles. Generally, either generative or discriminative models are used [6].

Generative models are usually used to strengthen the network in the system. Such
models can generate newer instances of data that vary from one another and the
data can be distributed without any supervision. On the other hand, discriminative
models estimate the probability of an instance being part of a class and are done by
analyzing large amounts of data from the class itself and its background [6]. These
models learn to find the differences between given data and could be used to classify
various objects that the vehicle sees, so it works more like a classifier. However,
discriminative models do not tackle the issue of detecting the same object under
different conditions of light and weather. Additionally, it would require a lot of
labeled data so training such models would be time-consuming.

GANs, which are a type of generative model, are more suited to handling problems
that arise with multi-modal perception systems. As stated previously, it is difficult
to collect labeled real-time data, but GANs can easily generate newer instances of
such labeled data using sensors. Since GANs can reconstruct the same image, even
if an autonomous vehicle is driving across a scenario with bad environmental con-
ditions such as rain or fog, the model can easily use the values it was trained on to
generate a clear instance of the original by removing the obstructions. As a result,
autonomous vehicles can continue driving without any complications. Besides, it is
also useful in cases when sensors are not responding or have failed [7], reducing the
uncertainty of sensor modalities. Thus, GAN can be used for image normalization.

Hence, this research will attempt to use GAN to normalize the data to a clear image
before passing it through an image classifier to classify objects for detection.

The impact of object detection systems in autonomous vehicles could be enormous.
Undoubtedly, its main objective is to reduce road accidents in various light and
weather conditions or in real-time [7]. Besides, advanced object detection systems
would ensure that autonomous vehicles are far safer and more reliable. Although
societal acceptance and incorporation of such technology may not come as easily,
however, with time autonomous vehicles with reliable object detection systems will
be the stepping stones of robotics in human society. It will ensure optimal fuel
consumption due to better decision-making abilities, can reduce carbon emissions
lowering levels of greenhouse gasses, and noise pollution would also be reduced. Ad-
ditionally, users and governments would benefit as well, as they would be able to
ensure reduced road accidents or casualties, and speed limits could be monitored,
which may also help enforce traffic rules and regulations. One other major benefit of

4

autonomous vehicles with advanced object detection systems would be the elimina-
tion of drunk driving, texting, speeding, or distracted driving and related casualties
[8]. Hence, a model that tackles the problem of various light conditions and weather
conditions will be able to ensure a system that is completely ready for the road.

5

Chapter 3

Literature Review

Up until this point, several methodologies and theories have been developed to ex-
plore object detection and its uses in its miscellaneous applications.

This section aims to critically analyze previous works that relate to color vision
approaches for object detection. Additionally, it looks into various discriminative
and generative methods of object detection that could also be used in autonomous
vehicles.

Two recent studies [13] and [14] use autoencoder techniques to produce normalized
forms of images under various conditions. The first work deals with weather con-
ditions, and the second under different lighting conditions, but ultimately they use
a similar methodology for image reconstruction. The autoencoding technique has
three parts: the encoder, the bottleneck, and the decoder. The encoder compresses
the image with unwanted features by reducing its dimensions through multiple CNN
layers. The neuron count is reduced in each layer producing a bottleneck, where im-
age compression is at its maximum. In the decoding layers, the compressed image
will be decompressed, by increasing neurons in each layer. And the image is restored
back to its original size, in a normalized form. This output image will be clearer as
it removes noises from images with poor illumination or weather. The model works
in both papers and has a high degree of accuracy. The issue with this approach is
that bottlenecking and lossy output narrow down neurons, which can cause a loss
in data. Additionally, the system may become too specialized and only work for
certain types of images. Hence, the system would not be robust enough to work in
multiple different weather or lighting conditions.

Research work [15] approaches color image analysis with an intrinsic reflection
model. This system is based on a dichromatic reflection model. It starts by mak-
ing a hypothesis on matte color clusters and exploits them for image segmentation.
These matte hypotheses are extended to make hypotheses on skewed T’s, which
are once again segmented and exploited to separate all pixels into their reflection
components. The output shows that the process can find the shape of the mate-
rial without the external lighting effects. However, this is an outdated model, and
will not work if the T-shape degrades into a line. This can happen when it lacks
sufficient illumination. Metallic objects and rough surfaces do not give satisfactory
results that can be analyzed properly.

6

Another research work [16] attempts to use non-parametric classification and mul-
tivariate decision trees for real-time color recognition. The non-parametric classi-
fication has two phases: a training phase to approximate a function representative
of a distribution from a sample and a classification phase that determines the class
of each pixel in the function. The multivariate decision tree is used to create a
piecewise approximation of areas in feature space through the recursive division of
feature space with hyperplanes to create instances. The instances are further pro-
cessed and a decision tree is produced. The output gives a binary image where the
suspected target pixels are white and the background is black. The model gives a
lot of false positives as output, so it cannot be successfully used for object detection.
Additionally, like all decision trees, it is prone to over-training. Furthermore, the
system is very outdated compared to more modern algorithms and machine learning
models present today.

A research paper [17] uses GANs to color-correct images taken underwater, which
have been altered by changes in depth and illumination. CycleGAN is used to gener-
ate distorted images from a set of undistorted ones, which are false instances. These
images are mixed in with a set of real-life distorted pictures, or true instances, and
are fed into a discriminator, which attempts to distinguish whether the picture is a
true instance or a false one. The aim is to train the generator well enough to be able
to fool the discriminator into classifying the false instances as true. However, this
can lead to a vanishing gradient or a mode collapse. A vanishing gradient is when
the discriminator improves too much, it cannot be fooled anymore, and the system
can not be trained. A mode collapse is when the GAN only produces a limited
variety of outputs that will always fool the discriminator and do not learn to diver-
sify. To overcome the vanishing gradient problem, a Wasserstein GAN is formulated,
and combining this with the original system gives the completed underwater GAN
or UGAN. As the CycleGAN images might be blurry, it can be optimized using a
Gradient Difference Loss (GDL). The UGAN with the GDL considered is denoted
as the UGAN-P. Both the UGAN and UGAN-P were trained, and both models have
a high level of accuracy. They could recover lost color information while ignoring
the images that do not need to be corrected. However, in its current form, it is
too specialized for color correction only, and the CycleGAN is not able to produce
a diverse set of images with other external factors like particle or lighting effects.
Moreover, it does not provide any solutions if mode collapse occurs.

From the above discussion, it can be seen that every paper has approached its
implementation of color vision and/or object detection in an array of methods. Each
technique is unique and has its own advantages and disadvantages, and they all aim
to solve a different problem while still having the same core concept. Likewise, this
research will also attempt to detect objects with a new technique that is yet to be
implemented. However, it will not limit itself to just image normalization or image
classification separately.

7

Chapter 4

Methodology

4.1 Proposed methodology

Theoretically, this research may be divided into two major stages: image normal-
ization and image classification. The image normalization model will attempt to
reconstruct a normalized version of the images in various lighting and weather condi-
tions while the classifier model will attempt to classify objects in those reconstructed
images. The figure below illustrates the proposed methodology for this research:

Figure 4.1.1: Methodology Flowchart

This research begins with acquiring high-resolution images of various driving scenes

8

from cameras as raw data. The raw images require pre-processing due to the nu-
merous conditions of this research and the requirements of the research methodology.

Pix2Pix is a type of GAN that learns to map between an input image and an output
image (target). To train the Pix2pix GAN, this model requires two types of images:
clean images as the target, and images in various lighting or weather conditions in
the same scenes. Since the original dataset can not fulfill such a requirement, nor
would it be possible to capture images in the same driving scene with the same set-
ting at various light/weather conditions, the original images need to be augmented.
Using image augmentation techniques, the images can include variations of different
lighting conditions such as bright, sunny, and dark; and different weather conditions
such as rainy, and foggy. This may be done using image manipulation techniques
such as brightness and contrast adjustments, color channel modifications, adding
synthetic weather elements, and more.

During the pre-processing stage, this research will attempt to create two types of
datasets. One dataset was needed for the normalization of images in varying lighting
conditions. The other was needed to normalize images in varying weather conditions.
Lastly, a large open-source dataset specialized for object detection in autonomous
vehicles was used to train the classification model for multi-label classification.

The next step for this model is image normalization where the input images would
be reconstructed by the GAN model to produce a normalized image for the noisy
input. Although there are multiple types of GAN, for this research Pix2Pix was
determined to be most suitable to normalize images in varying weather or light con-
ditions. For this research, the input images of Pix2Pix would be the augmented
driving scene images, and the output images would be the normalized versions of
those images.

The last stage of this model will use multi-label classification. For this section of
the methodology, this research implemented three different object detection mod-
els. They are: Faster R-CNN with a ResNet50 backbone, which has high accuracy
but is slow; Faster R-CNN with a MobileNetV3 backbone, which is faster but with
lower accuracy; and RetinaNet with a ResNet50 backbone which has a good balance
between speed and accuracy. All three classifier models were pre-trained, and are
used in object detection so that they can localize objects in an image, similar to the
perception system in an autonomous vehicle. The aim of the object detector is to
determine whether or not objects can be detected more accurately using normalized
images compared to images that are not normalized under various road conditions,
thus showing the effectiveness of the Pix2Pix GAN. Finally, this research aims to
compare and analyze the classification result accuracy of images with and without
normalization for all 3 models.

4.2 Data analysis

For this research, two datasets had to be prepared which included images of roads
in a variety of weather and lighting conditions. Due to the nature of the model that
was to be trained, the images had to be augmented to meet its requirements. This

9

section analyzes the acquisition, pre-processing, and the contents of the dataset.

4.2.1 Data acquisition

In order to acquire a dataset for the model, initially images were scoured from
self-sourced dashcam footage and open-source datasets. However, due to the lack
of variation in the season during which the dashcam footage was sourced, most of
the images sourced did not meet the requirements. Additionally, they were of low
resolution. Hence, open-source footage with higher-resolution images was preferred.
However, it does not completely fit the required criteria for training the GAN model.
This is because training a Pix2Pix GAN model requires a pair of images such that
one is an input image must have a variation of weather or lighting conditions while
the other is the target as it learns to map between them. Therefore both images
must contain the same scene and objects. Hence, the clear and normal images from
the open-source dataset were extracted, which gave around 10,000 clean images in
total. To complete the dataset for the Pix2Pix GAN model, these clean images were
used to produce the necessary augmented images with the required weather and
lighting conditions.

4.2.2 Image preprocessing

After collecting all the clear data for the Pix2Pix model, all the images were first
resized to 256 x 256 pixels. This was done due to hardware limitations. As described
by [18], when creating a dataset for Pix2Pix GAN, it is necessary to add random jit-
ters and mirroring to preprocess the training data set. However, for larger datasets
jittering was not added. In this case, since the images will be augmented and as
the dataset is large, no jitters were added. However, some of the images from the
cleaned original dataset were mirrored before augmentation.

Augmentation

To augment the clear images, Python’s OpenCV (Open Source Computer Vision)
and ImgAug libraries were used extensively. The OpenCV library is made up of
programming functions intended to be used for real-time computer vision programs,
while ImgAug is a powerful library for image augmentation in machine-learning ex-
periments.

Initially, the images had to be converted from BGR (Blue, Green, Red) color format
to RGB (Red, Green, Blue) color format using the cvtColor() function. This was
done because OpenCV’s imread() function loads images in BGR format by default
which is not compatible with the ImgAug library, which uses RGB by default.

Bright Light

To augment daytime images, the Multiply augmenter was created using the ImgAug
library for brightness contrast. Three brightness multipliers with brightness coeffi-
cients of 1.5, 2.3, and 3 were defined to increase the brightness of the image. For
each multiplier, the brightness augmenter was applied to create a new image with
adjusted brightness. This helped to create images at different light intensities of

10

daylight.

Low Light

Night-time image augmentation did not yield reliable results to be included in the
datasets. Instead, this research aimed to create darker or low-light images. In order
to achieve this, the brightness, saturation, and contrast were first adjusted using
the PIL ImageEnhance module. By lowering the brightness, the entire image was
made darker. In the next step, the saturation of the image was decreased between
0.9 to 0.6, making the colors less vivid and appear closer to shades of gray. This can
create a more subdued or monochromatic look. Next, the contrast was increased to
slightly sharpen the images. Then the image is converted from RGB color space to
BGR color space so that the cv2 library can be used. Finally, the gamma correction
technique allowed this research to adjust the luminance of the images. The images
were adjusted using the cv2.LUT() function. If the gamma value is below 1, it pro-
duces a darker low-light image. If increased above 1, it increases image brightness.
A gamma value of 0.5 to 0.7 was determined to produce the most acceptable low-
light images.

Rain

To artificially create rainy images, the Automold Road Augmentation Library [19]
was utilized to augment clear daytime images to add synthetic rain. This library
was designed to augment road images into various lighting and weather conditions
that can pose challenges for training neural network models. First, the OpenCV
library was used to process the images. Then the custom modules, Automold, and
Helpers, present in the Automold library were used to add rainy effects. Automold
was employed to add the rain effect to the images, while Helpers was used to load
the images from the directory. Each image from the initial 10,000 clear images was
taken, and a rain effect was applied with raindrops falling at random angles in each
image. Additionally, this dataset includes rainy images augmented at three different
levels of rain effects: drizzle, heavy, and torrential. Where the level of rain increases
from little to very heavy rain. The type of rain is specified as a parameter to the
am.add rain() function.

Fog

Lastly, this research also created synthetic foggy images of various driving scenarios.
The images were first converted to low-light images, to reduce the sunny or bright
sky effects present in the original images. Now, creating artificial fog in various driv-
ing conditions was more challenging than other augmentation, as it requires depth
estimation to produce realistic fog effects. Meaning, that the intensity of fog has
to be higher at a distance away from the camera position compared to the view
at a closer distance. Hence, the Monodepth2 [24] was employed for depth estima-
tion. It is a Self-Supervised Monocular Depth estimation technique that has several
modules for depth prediction. For this research, the mono 640x192 was used which
fits the image resolution range for this dataset. This module was used to generate
a depth map which was then converted to a grayscale image. This grayscale was
then normalized to a value between 0 and 1 using OpenCV’s cv2.normalize func-

11

tion. The normalized depth map is then inverted (1 - depth map), which results in
larger values for pixels that are farther away from the camera and smaller values for
pixels that are closer. Before adding fog, the depth map loaded as a grayscale im-
age (single channel) is converted to a 3-color channel image using the cv2.cvtColor
function. Then the depth map values are multiplied by a fog intensity factor which
increases the contrast of the depth map, effectively determining the intensity of the
fog. The fog effect is applied by taking a weighted sum of the original image and
the fog color, where the weights are determined by the depth map. The operation
(1 - depth map 3ch) * image + depth map 3ch * fog color results in pixels of the
original image being blended with the fog color. Pixels corresponding to objects
closer to the camera (small depth map values) retain more of their original color,
while pixels corresponding to objects further away from the camera (large depth
map values) take on more of the fog color.

After applying the adjustments above, each of the images was converted back to
BGR form to become compatible with OpenCV’s imwrite() function which was
used to save the images. Some of the results of augmentation are shown as follows:

Figure 4.2.1: Augmentation results after pre-processing

Once the augmentation for each image was complete, the original image (target)
and the augmented image (input) were combined and saved to form a single image
using the Numpy library. The np.concatenate() function was used to achieve this.
This resulted in a new 512 x 256-pixel image. Additionally, all the augmentation

12

images were saved separately, as they would be required to test the classifier model.

Finally, the acquired dataset was split data into train, test, and validation in the
ratio 80:10:10. Therefore, the training dataset for each model would have about
48,000 images. While it would be tested with 6,000 images. When testing the data
with the object detection models to measure the improvement of accuracy before
and after normalization, several test datasets had to be created. Three tests were
made, consisting of augmented images, predicted images and ground truth gathered
from both lighting condition and weather condition datasets.

4.2.3 Augmented Data Analysis

Finally, 2 different datasets were procured from the aforementioned augmentation.
Each dataset consisted of 60,000 images consisting of 10,000 images per variation.
That is, the weather condition dataset had 30,000 images for 3 variations of rain
(drizzle, heavy, torrential) and another 30,000 included the 3 variations of fog. The
lighting condition data set, on the other hand, has 30,000 images for the 3 variations
of darker or low light intensity images and another 30,000 for the 3 variations of
brighter images. Therefore, both datasets had a uniform distribution of weather or
lighting variations respectively.

The following section shows figures of the RGB histograms of some selected aug-
mentations along with their analysis, to differentiate between the original and the
augmented images.

1. Low light

(a) RGB histogram of original image (b) RGB histogram after Dim light augmentation

Figure 4.2.2: Original vs augmented for Low Light (level 2)

After augmenting the images to low lighting conditions, the RGB color channels in
Figure 4.2.2 (b) have turned into separable bars, and the color channels lean towards
the left. The separable bar suggests that certain intensities have been removed from
the RGB color channels selectively. Additionally, the intensities of the pixels have
decreased drastically towards the minimum value 0 for all three channels. Hence,
most of the pixel values are near (0, 0, 0) which tends to be black. As the intensities
of the pixels are scaled down, the overall contrast in the image is decreased. This

13

makes the darker regions look even darker, and the range of intensity values becomes
compressed leading to a significant loss of color information.

2. Bright light

(a) RGB histogram of original image (b) RGB histogram after Bright light augmentation

Figure 4.2.3: Original vs augmented for Bright Light (level 2)

The addition of brightness has caused the intensity of Red, Green, and Blue color
channels to increase significantly in Figure 4.2.3 (b) compared to Figure 4.2.3 (a),
which has led to almost all of the color being washed out in the image. As the
intensity of all the color channels is scaled up to a maximum value of 255, the RGB
value of most of the pixels has become (255, 255, 255) which is suggested by the
spiking count of nearly 20,000 pixels at an intensity of 255. This means that most
of the pixel color tends to be white. The augmented histogram suggests that there
has been a drastic loss of color information and details as it is now more difficult to
differentiate color information in the augmented image. This is because, as pixels
become saturated and approach the upper limit, the subtle differences in color vari-
ation are lost.

3. Fog

(a) RGB histogram of original image (b) RGB histogram after Fog augmentation

Figure 4.2.4: Original vs augmented for Fog (level 3)

After adding the fog artificially, all 3 color channels have shifted towards the right

14

Figure 4.2.4 (b). This means that the color intensities have increased. This could
be due to the addition of artificial whitish fog making the pixel colors tend towards
white. Additionally, the disappearance of lines within the Red, Green, and Blue
channels individually suggests that the augmentation has affected the channels in-
dividually.

4. Rain

(a) RGB histogram of original image (b) RGB histogram after Rain augmentation

Figure 4.2.5: Original vs augmented for Heavy Rain

In these last set of histograms some disturbance can be seen in Figure 4.2.5 (b)
as there has been a shift in color balance towards the left for all 3 color channels
when compared to the original colors in Figure 4.2.5 (a). This suggests that the
color intensity of all 3 channels has decreased. Thus the contrast has also decreased.
Additionally, there are some disappearing lines at certain intensities in each channel
individually. This could be the effect of individual channel transformations since
the white areas in the blue channel do not result in the disappearance of values in
the Green or Red channels at the same point and vice versa.

Although the loss of color information in the fog and rain-augmented images is not
as significant as the lighting condition augmentations, it will, however, provide a
challenge for the GAN to identify the exact color information.

15

4.3 Working principle of Pix2Pix GAN

The Pix2Pix model is a type of conditional GAN that learns to map between an
input image and an output image using a pair of input images. In this case, the
input pair would be a noisy image of various driving conditions and a clear target
image in the same driving scene.

Figure 4.3.1: Working principle of Pix2Pix GAN

The working principle of Pix2Pix GAN can be divided into two main components,
the Generator and Discriminator, which are described as follows:

1. Generator
The generator takes an input image and reconstructs an output image that
is similar to a target image. The generator is a modified U-net that contains
an encoder-decoder architecture, where the encoder is made up of a series of
convolutional layers that take an image as an input, and down-samples it to
extract features. The decoder, on the other hand, is a series of transposed
convolutional layers that take these features and up-samples them to generate
the output image. The encoder and decoder are based on CNNs. Together
they attempt to generate new images for the input that would be similar to
the target image.

2. Discriminator
The discriminator is a separate network that attempts to distinguish between
real and generated images. It is a convolutional PatchGAN classifier, which
attempts to classify the patches of images as real or fake [18]. Each block
in the discriminator is a series of convolutional layers that down-sample the

16

input image and extract features. It takes in a pair of inputs which include the
target image (real) and the generator-generated image (fake) and attempts to
classify them as real or fake.

Once the Pix2Pix GAN is trained, it can be used to generate realistic out-
put images for a given input image. The generated images can be used in a
range of applications, such as image-to-image translation, image style transfer,
and image inpainting. Overall, the Pix2Pix GAN working principle involves
training a generator and discriminator network to work together to generate
outputs that are similar to the target images.

4.4 Description of the Object Detection Models

4.4.1 Faster R-CNN using ResNet50

The Faster R-CNN model is a deep convolutional network used for object detection,
and it works as one unified network. It can be used to accurately predict the lo-
cations of different objects in an image and classify them. Since it is a two-stage
detector, it is made up of two modules: the RPN and the Fast R-CNN network,
which share the same convolutional layers.

Module 1: RPN (Regional Proposal Network)

The RPN is used to form region proposals, which are bounding boxes in the image
that mark the most likely position of images. To start the training, the objects
to be detected in the image are labeled, and these areas are called ground truths.
Next, the image is run through a fully convolutional network. For this model, it has
been run through a ResNet50 backbone, which is a residual network composed of
50 layers [25].

The first layer has a 7x7 convolution with 64 filters. The following 48 layers are
grouped into blocks of three layers, where each block is made up of 1x1, 3x3, and
1x1 convolutions. The 1x1 convolutions are used to decrease and then increase
the dimensions so that the 3x3 works as a bottleneck. The blocks have shortcut
connections between them, which reduces degradation, a common problem seen in
deeper networks. The last layer is a global average pooling layer and a 1000-way
fully-connected layer.

Figure 4.4.1: ResNet 50 architecture

17

After it has been passed through the network, it becomes downsampled along the
spatial dimension. The output is a feature-rich representation of the image. Each
point on the feature map is considered to be an anchor point. The anchor points
are used to create anchor boxes, whose sizes and numbers depend on the number of
region proposals to be made.

For each region proposal, a feature vector is extracted. This vector is then fed
to 2 fully-connected (FC) layers known as a box-regression layer (reg) and box-
classification layer (cls). The reg layer returns a 4-D vector defining the bounding
box of the region, and the class layer, and the cls layer represents a binary classifier
that generates the objectness score for each region proposal.

To generate the region proposals, the area of intersection between every anchor box
and ground truth is checked. This area is known as the Intersection-over-Union or
IoU. The IoU ranges from 0.0 to 1.0, and the more intersection there is, the higher
the objectness score for each anchor. If the IoU level is above 0.7, then the anchor
box is given a positive objectness label, so it is classified as an object, if IoU is less
than 0.3 it is given a negative objectness label, and is classified as the background
instead [22]. Anchor boxes with values between 0.3 and 0.7 are not used in training.

To adjust the anchors to fit the ground truths better, a 1x1 convolutional network
is trained to predict the offsets from the ground truth boxes [23]. These predicted
offsets are used to transform the anchor boxes to the desired regions, and these give
the final region proposals that are used in the next step.

Figure 4.4.2: Stage 1 of Faster R-CNN

Module 2: Fast R-CNN network

The Fast R-CNN network is trained to identify the objects using the region proposal
that was produced in the first section. In this stage, this system learns to categorize
the object of the region proposal by using a basic convolutional network. Region of
Interest (RoI) Pooling is used to change the sizes of the regional proposals as they
are not equal. Then, they are passed through a network, which learns to predict
various categories using cross-entropy loss. A second network learns to guess the
offsets between region proposals and ground truth boxes while trying to align them
using L2 regression loss. Lastly, it computes the actual loss by taking a weighted
combination of both losses. The formula used it:

18

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i) (1)

Where, i is the anchor’s index, with pi being the probability of it being an object.
ti and t∗i are vectors for the 4 parameterized coordinates of the predicted bounded
area, and the ground-truth boxes respectively. The classification loss Lcls is log loss
over whether a class is an object or not. To ensure that regression loss will only be
calculated if an anchor is positive, the term p∗i is multiplied with the loss formula.
{pi} and {ti} provide the outputs of the cls and reg layers respectively. These are
normalized using Ncls and Nreg, which were equalized using the λ.

The image is passed through the initial RPN layer again to generate anchor boxes
once again, sent back to the Fast R-CNN for RoI pooling and loss calculation. This
process is repeated several times to improve the region proposals and increase the
object detection accuracy.

Figure 4.4.3: Stage 2 of Faster R-CNN

4.4.2 Faster R-CNN using MobileNet v3

The second model works similarly to the first. The only difference is that it uses
a MobileNetV3 backbone instead of ResNet50 in module 1. The MobileNetV3 is a
convolutional neural network that has been built upon its predecessors in the Mo-
bileNet series [26].

It begins with a 2D convolutional layer before moving onto the blocks. The blocks
in MobileNetV3 have a linear bottleneck and inverted residual structure, which was
originally introduced in V2 and is resource-efficient. This structure is composed of a
1x1 expansion convolution followed by depth-wise convolutions and a 1x1 projection
layer. The bottlenecks are either of size 3x3 or 5x5. Squeeze and excitation modules

19

have been integrated into the bottleneck structure for reducing parameters, and the
layers have modified swish nonlinearities implemented into them to improve speed.
These blocks lead off to a 1x1 2D convolutional layer, a 7x7 pooling layer, and finally
two 1x1 2D convolutional layers without batch normalization.

Figure 4.4.4: MobileNetV3 architecture

4.4.3 RetinaNet with ResNet50

RetinaNet is a dense, one-stage object detector. It is a single, unified network com-
posed of a backbone network and two task-specific subnetworks [27].

The backbone network is used to compute a convolutional feature map over an en-
tire input image. The Feature Pyramid Network (FPN) is used as the backbone,
which augments a standard convolutional network with a top-down pathway and
lateral connections. This allows the network to efficiently construct a rich, multi-
scale feature pyramid from the given input image. Each level of the pyramid can
detect objects at a different scale. This FPN is built upon the feedforward ResNet-
50 structure, which is used to construct a pyramid with levels from P3 to P7, where
all pyramid levels have C = 256 channels.

Translation-invariant anchor boxes are used on pyramid levels P3 to P7, with areas
of 322 to 5122. In total, there are A = 9 anchors, and each anchor is assigned a
length K one-hot vector of classification targets, where K is the number of object
classes and a 4-vector of box regression targets. The anchors are assigned to ground-
truth object boxes using an IoU threshold of 0.5, and to the background if the IoU
is less than 0.4. In the corresponding entry, the K label vector is set to 1, and all
other entries to 0. Unassigned anchors, that have IoU between 0.4 and 0.5 are ig-
nored during training. The overall backbone is finally linked to the two subnetworks.

The first subnet is the classification subnet, which is used to perform convolutional
object classification on the backbone’s output. This subnet is a small fully convo-

20

lutional network (FCN) attached to each FPN level, and it predicts the probability
of object presence at each spatial position for each of the A anchors and K object
classes. Taking an input feature map with C channels from a given pyramid level,
the subnet applies four 3×3 conv layers, each with C filters and each followed by
ReLU activations, followed by a 3×3 conv layer with KA filters. Finally, sigmoid
activations are attached to output the KA binary predictions per spatial location.

The second subnet performs is the box regression subnet, convolutional bounding
box regression. This is another small FCN attached at every pyramid level, and
works in parallel to the classification subnet to regress the offset from each anchor
box to a nearby ground-truth object if one exists. The box regression subnet is
identical to the classification subnet except that it terminates in 4A linear outputs
per spatial location. For each of the A anchors per spatial location, these 4 outputs
predict the relative offset between the anchor and the ground-truth box.

Figure 4.4.5: RetinaNet structure using ResNet50 backbone

21

Chapter 5

Implementation

5.1 Pix2Pix GAN Model implementation

Implementing the Pix2Pix model involves many libraries and functions. This section
will briefly discuss how some of these important tools and parameters were used to
implement it, along with the changes that were required to implement the GAN for
the dataset this research created.

5.1.1 Generator building

The U-Net architecture is commonly used as the generator in Pix2Pix GANs for
image-to-image translation problems. It contains an encoder-decoder structure along
with skip connections, enabling it to effectively capture both local and global fea-
tures. This research used a generator that starts with an input layer, that takes
input images with dimensions 256x256 pixels and a filter size of 3. Images of small
dimensions were used due to hardware limitations and to reduce processing time.
The input images were downsampled through 8 encoding layers to reduce its dimen-
sions to 1x1 pixels and an output channel of 512, by the encoder.

The encoder is made up of 3 fundamental components described as follows:

1. Convolution: The encoder starts with a series of 2d convolutional layers. Each
convolutional layer applies a set of learnable filters to the input image that
can extract the features from the input. The number of filters determines the
depth or the number of channels in the feature maps.

2. Batch Normalization: After each convolutional layer, batch normalization is
applied. The Batch normalization is responsible for normalizing the activations
of the previous layers, thus improving the stability and convergence of the
model during the training process.

3. Leaky ReLU Activation: Leaky ReLU (Rectified Linear Unit) is a piecewise
linear function, commonly used as the activation function after the batch nor-
malization layer. It allows small negative values to propagate, preventing the
issue of ”dead” neurons and enabling the model to capture more diverse fea-
tures.

At each downsampling step, the intermediate feature maps are stored in a skips list.
These feature maps would be used later during upsampling for skip connections.

22

Next, the upsampling layers are used to increase the spatial dimensions to up to
256x256 of the feature maps while decreasing the number of channels to 64. This
process helps the model generate high-resolution output images from the learned
features. The following section describes the decoder:

1. Transposed Convolution: The decoder starts with 2D transposed convolutional
layers, also known as deconvolutional or upsampling layers. Transposed convo-
lutional layers perform the opposite operation of convolution, which increases
the spatial dimensions of the feature maps.

2. Batch Normalization: Similar to batch normalization in the encoder, it is also
required in the decoder. It is applied after each transposed convolutional layer
in the decoder to normalize the activations.

3. Dropout: is a regularization technique used to prevent overfitting. It is done
by randomly setting a fraction of the input units to zero during training. It
helps to reduce the co-adaptation of neurons and improves the model’s ability
to generalize.

The last layer is a 2D transposed convolutional layer with the defined output chan-
nel filters (which determine the number of channels in the output), a kernel size of
4x4, and tanh activation. This layer generates the final output image with the same
spatial dimensions and filter size as the input image (256x256x3).

Additionally, skip connections are a critical aspect of the U-Net architecture. They
were added between the corresponding encoder and decoder layers. These connec-
tions allow the model to preserve high-resolution features from the encoder while
combining them with the upsampled features from the decoder, enabling the model
to capture both the local and the global information effectively. The U-Net archi-
tecture’s skip connections and symmetrical structure aid in retaining fine-grained
details while also allowing the model to generate coherent and clearer output images.

5.1.2 Discriminator building

The convolutional PatchGAN classifier is a key component of the discriminator in
Pix2Pix GAN [21]. The discriminator is designed to classify the image patches of
an input as real or fake [18].

It receives two input images of dimensions 256x256 and a channel size of 3, which
are the input image generated by the generator and the target image. The input
images are concatenated along the channel dimension, resulting in a single image
with doubled channels. This operation is done to provide the Discriminator with
both the source and target images for assessing their relationship. The concatenated
image has a shape of (batch size, 256, 256, channels*2). Then the concatenated
image goes through a series of downsampling layers till the filter size is increased to
256. This works similarly to the encoder as described below:

1. Convolution: The PatchGAN classifier applies a series of convolutional layers
to extract features from local image patches. Each convolutional layer uses
learnable filters to convolve over the input patches, capturing various visual
characteristics and patterns of the images generated by the generator. The

23

number of filters determines the depth or number of channels in the feature
maps.

2. Batch Normalization: is applied again after each convolutional layer. Similar
to what is done in the encoder, it normalizes the activations of the previous
layer, to improve the stability and convergence of the model during training.
It helps in normalizing the output distribution and speeding up the training
process of the discriminator.

3. Leaky ReLU Activation: Leaky ReLU is used again as the activation func-
tion after the batch normalization layer. It allows small negative values to
propagate, preventing the issue of ”dead” neurons and enabling the model to
capture more diverse features. It introduces a small slope for negative values,
typically 0.2, allowing some information flow even for negative inputs.

After the third downsampling layer, the feature map is zero-padded using tf.keras.lay-
ers.ZeroPadding2D(). This padding operation increases the spatial dimensions of the
feature map. Now, a convolutional layer with 512 filters, a 4x4 kernel size, and a
stride of 1 is applied to the padded feature map. The Batch normalization and
LeakyReLU activation are applied again after this convolutional layer. Finally, the
last convolutional layer with a single filter and a 4x4 kernel size is applied. This
layer produces a single-channel output.

The shape of the output of the last layer are 30x30 image patches that classify
70x70 patches of the input image. By operating on patches rather than the whole
image, the PatchGAN classifier encourages the discriminator to focus on local details
and textures rather than relying solely on global image features. This patch-wise
evaluation helps in achieving high-resolution image generation while maintaining
perceptual coherence.

5.1.3 Generator Loss Calculation

The generator loss for the Pix2Pix GAN is a combination of the following two loss
terms:

1. Adversarial Loss: is a loss term based on the idea that the generator should
produce outputs that can not be differentiated from real images. It is calcu-
lated by passing the generated images through the discriminator and using the
discriminator’s output to compute the loss. It encourages the generator to pro-
duce reconstructed images that are more realistic such that the discriminator
thinks they are real.

2. L1 Loss: is a term that measures the difference between the generated image
and the target image in terms of pixel values. It is calculated by taking the
absolute difference between the two images and summing over all pixels, which
is an MAE (mean absolute error) between the generated image and the target
image. The L1 loss helps the generator to produce images that are similar to
the target image in terms of content.

The generator loss is the weighted sum of these two loss terms [21], where the weights
are determined by hyperparameters. The objective of the generator is to minimize

24

this loss, which encourages it to produce images that are both visually pleasing and
similar to the target image.

Therefore, the generator loss can be computed by the following formula:

Generator Loss = Adversarial Loss + λ× L1 Loss (2)

Where, λ is a hyperparameter that determines the relative weight of the L1 loss
compared to the adversarial loss and its value in this implementation is 100 which
was decided by the authors of [18].

5.1.4 Discriminator Loss Calculation

The discriminator loss for Pix2Pix GAN is based on the idea that the discriminator
should be capable of distinguishing between real and fake images. It is calculated
as the sum of the following two loss terms:

1. Binary Cross-Entropy Loss: is a loss term that calculates the difference be-
tween the predicted probability of the discriminator for real images and the
target value of 1, and the predicted probability of the discriminator for fake
images and the target value of 0. It is calculated by taking the negative log of
the predicted probability for the target class, summed over all images. This
loss encourages the discriminator to correctly classify the images as real or
fake.

2. L2 Weight Regularization Loss: This is used to prevent overfitting of the
discriminator. It is calculated by taking the L2 norm of the discriminator
weights and multiplying it by a regularization coefficient. This loss encourages
the discriminator to have small weights and helps to prevent overfitting.

The discriminator loss is the sum total of these two terms [21]. The objective of the
discriminator is to maximize this loss, which allows it to correctly classify real and
fake images, while also keeping the weights small to prevent overfitting.

The discriminator loss can be calculated by the following equation:

Discriminator Loss = −[log(D(x)) + log(1−D(G(z)))]

+ λ× L2 weight regularization loss
(3)

where, D(x) is the discriminator’s prediction for the real image x, G(z) is the gen-
erator’s prediction for the fake image generated from the noise input z, and λ is the
regularization coefficient.

5.1.5 Attention block

The basic implementation of the Pix2Pix GAN model available on the Tensorflow
website [21], yielded good results for the weather condition dataset. However, it
did not yield favorable results with the lighting condition dataset. As most of the
colors were overexposed in the bright-light augmentation, it was difficult for a ba-
sic Pix2Pix GAN generator to recreate the correct color and shape in bright light

25

images, leading to model failure. Hence, it was necessary to improve the generator
performance to procure better results for both datasets. This was made possible
by modifying the Generator architecture. This research attempted to modify the
upsampler, downsampler, and skip connections in the generator by adding a simple
attention mechanism to yield better results on both datasets.

An attention mechanism is a component often used in neural networks, particu-
larly in deep learning models for various tasks involving sequences or spatial data.
Its primary purpose is to allow the model to focus its computational resources on
specific parts of the input data, effectively learning to ”pay attention” to relevant
information while ignoring irrelevant or noisy details. Hence, this research used a
basic attention mechanism that combines average pooling and max pooling to com-
pute attention weights and apply them to the input feature maps.

The attention block was inserted in the downsample (encoding layer) and upsample
(decoding layer) functions for the Generator. This means that both the upsampling
and downsampling paths of the U-Net generator will have attention mechanisms ap-
plied to them. The attention block helps the generator attend to relevant features
and regions at each stage of encoding and decoding. Additionally, the attention
mechanism in the skip connection contributed to the network’s ability to selectively
combine and emphasize important features from different scales of the input data.
Skip connections help the generator maintain fine-grained details and improve the
overall quality of the generated image. This allowed the model to handle lighting
variations better and improve image normalization by directing its attention to rel-
evant details and features in the presence of varying lighting conditions.

Thus, by integrating the attention block in the upsampler, downsampler, and the
skip connection, it was possible to create a model that could focus on the important
regions of the feature maps both during the downsampling (encoding) and upsam-
pling (decoding) stages, as well as when combining skip connections. Enabling the
model to produce high-quality, visually coherent output images while handling vari-
ations in lighting conditions and preserving fine details. It effectively enhanced the
generator’s capacity to translate low-resolution feature maps into high-resolution
images that are similar to the desired output.

This model successfully converged for both datasets and was capable of effectively
normalizing images for both light and weather variation.

5.2 Pix2Pix GAN model training and result

analysis

5.2.1 Training

During the training, the Pix2Pix GAN model was able to reconstruct images of
various driving scenes successfully for both datasets. The model was trained multiple
times for each dataset by varying batch size, and epochs and by including and
discluding the attention mechanism. It was determined that training the models for
5 to 7 epochs was enough to train Pix2Pix for both sets. However, it was necessary

26

to use batch-size of 1 for the weather condition dataset, while batch-size of 1 and
4 both showed promising results for the lighting condition dataset. The size of
the training data was approximately 48,000. Based on the dataset size and epoch
values presented by the various implementations of Pix2pix GAN in [18], the steps
taken to train the model till convergence were relatively the same. Throughout the
training, the discriminator and generator losses were monitored to ensure that one
did not dominate the other. It was done to ensure that there was no model failure
or collapse.

5.2.2 Pix2Pix Generated Results

The following images display some of the GAN-generated results for the weather
condition dataset.

Figure 5.2.1: Pix2Pix GAN output on weather condition dataset

27

The following images display some of the GAN-generated results for the lighting
condition dataset.

Figure 5.2.2: Pix2Pix GAN output on lighting condition dataset

5.2.3 Primary result analysis

Before the generated images are passed into the object detection model for testing,
this research chooses to find the Structural Similarity Index and Peak Signal to
Noise Ratio of the generated images to analyze the primary outputs. These metrics
can effectively show how accurately the model preserves the structure and details of
the target image, before the object detection model determines how the accuracy of
object detection is increased after normalization.

1. Peak Signal to Noise Ratio (PSNR)

Typically used in the context of digital image and video processing, PSNR is com-
monly used as a quality measurement technique to quantify the noise or distortion
present in the reconstructed images when compared to its original, uncompressed
images [28]. It does this by comparing the pixel values of the original and recon-
structed signals, calculating the average squared differences, and converting this into
a logarithmic scale. Thus, the formula for PSNR is given as follows:

PSNR = 10× log10
MAX2

I

MSE
(4)

28

Where MAXI is the peak value for a pixel. This refers to the maximum possible
value that a pixel or sample in the image or video can take. This value is typically
255 for 8-bit images (where each channel can take values from 0 to 255) [28]. And
MSE is the mean squared error calculated as the average of the squared differences
between the original and reconstructed pixel values.

PSNR is expressed in decibels (dB) where higher PSNR values indicate better image
quality. Therefore a higher PSNR score means that the reconstructed image is closer
to the original image, with less distortion or noise.

Although PSNR provides a quantitative assessment of quality, it still has some limi-
tations as it does not always align perfectly with human perception of image quality,
particularly when dealing with compression artifacts or other specific types of dis-
tortion as it may not capture all aspects of perceived quality. Therefore, for a more
comprehensive evaluation of visual quality, other metrics like the Structural Simi-
larity Index (SSIM) or subjective human testing may be employed.

2. Structural Similarity Index (SSIM)

To overcome the limitations of PSNR, this research uses SSIM as another image
quality assessment tool to determine the effectiveness of normalization via pix2pix
GAN. SSIM is designed to provide a more comprehensive evaluation of quality as it
refers to the visual impact of changes in luminance, contrast, and structure [29].

SSIM takes into account the similarity in the luminance (brightness) between the
reference and reconstructed images and assesses how well the overall brightness levels
are preserved. It then evaluates the contrast of the images, which is related to the
difference in brightness between various parts of the image, and measures how well
the contrast structure is maintained. The structural content of the images being
compared is also evaluated on how well the local patterns of pixel intensities, such
as edges, textures, and details, are preserved in the reconstructed or compressed
image when compared to the reference image. Finally, the three terms are combined
to produce the structural similarity index.

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (5)

Once, all the terms are put together, the formula is represented as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

This yields a value of SSIM between 0 to 1, where 1 represents a perfect match.

Figure 5.2.3 shows the SSIM and PSNR results of the 6,000 images tested by Pix2Pix.
Figure 5.2.3 (a, b) shows that after augmentation the SSIM scores (red bars) are
distributed across a higher range of SSIM in the charts for both weather and lighting
conditions. While after normalization, the SSIM values (blue bars) are more con-
centrated towards the right with a higher count. Thus the normalized bars should

29

Figure 5.2.3: Histograms comparing augmented and normalized SSIM and PSNR
scores for batch size 1

have an overall greater average SSIM than the augmented SSIM. The distribution
of PSNR scores in Figures 5.2.3 (c, d) however, shows the opposite nature. After
augmentation the PSNR (red bars) have moved towards the left, and are more con-
centrated within a short range, indicating a lower average. After normalization, the
PSNR scores have become more distributed and cover a larger area of higher PSNR
scores on the right.

Table 5.1: Mean PSNR and SSIM for augmented and normalized images

Table 5.1 represents the mean scores for the augmented to target image and the
normalized image to the target image for batch sizes 1 and 4. The augmented to
target image column represents the mean similarity of the clear original to the noisy
augmented image. While the normalized to target represents the mean similarity
between the normalized and the original image. The comparative scores of these two
columns show that both the SSIM and PSNR scores increase after normalization.
This means that the quality of normalized images has improved and is closer to the
original image. Hence, the GAN model was successful in normalizing the images in
bad weather and lighting conditions to images that are closer to clear and normal-
ized images.

Additionally, the table suggests that the normalization results are better for a batch

30

size of 1 in both cases which also proves to be true by the various implementations
in [18]. While the lighting condition dataset yields better results than the weather
condition regardless of batch size. This could be due to the use of the attention
mechanism which was used to focus on the brightness and contrast to improve the
results of the lighting variation rather than to put focus on the obstruction of rain
or fog.

It should be noted that the SSIM and PSNR are used to analyze the quality of
reconstructed images and can not truly tell if the object detection accuracy would
increase after normalization. Hence, in the next section, this research attempts to
classify and compare the results to judge the improvement of object detection accu-
racy before and after normalization.

5.3 Object Detection Model Implementation

Figure 5.3.1: Flowchart representing object detection implementation

Before implementing the object detection models, the test data required to compare
the results had to be created. For the 2 conditions, this study created 3 test datasets
each. The 6,000 GAN testing images were used for this purpose. And an additional
4,000 images in clear weather conditions were also required to balance the 6,000
synthetic test datasets with normal images. First, the original 256x256 version of
the test images were merged with the 4,000 clean images to create the ground truth
test data. This is required to find the ground truth labels. Next, the 6k augmented
images were merged with the same 4,000 clear images to form the augmented test
dataset. Which was needed to find the detectable labels in various weather/lighting
conditions. Lastly, the normalized versions of the 6,000 images were merged with
the same 4,000 images to form the normalized test dataset, which would be tested
to see if the label accuracy increases compared to the augmented labels.

To implement the classifier model, the COCO dataset was used. COCO stands
for Common Objects in Context [31], and is a large open-source dataset of labeled
images that is often used for object detection benchmarking. Although it has 80
classes, the 13 most relevant classes were selected to evaluate the models used by
this research. The three object detection models that were used were imported from

31

the Pytorch module which were pre-trained by COCO.

Object detection was first carried out on ground truth images to find true labels
produced by each model. Then the augmented test data and the normalized test
data were passed through the object detection models. Since the object detection
models were essentially, multi-label classifiers the models were used to detect the
location of multiple objects of different classes in a single image. Objects that had
a prediction probability of only 50% or above were considered. Once the label in-
formation was extracted from the 3 test sets of images, this research attempted to
evaluate various accuracy measures to understand whether or not the accuracy of
object detection improves after normalization with Pix2Pix.

5.4 Object Detection Model Evaluation

5.4.1 Performance Measures

To evaluate the model accuracy, precision, recall, F1 scores, IoU, and mAP were
found for the object detection models. In this research, the Intersection over Union
(IoU) plays an important role in finding all the metices. An IoU value of 0.5 was
used as a threshold to measure the True Positives and False Positives, and False
Negatives needed to calculate the selected metrics.

IoU

In object detection, the IoU is the calculation of the intersection of a ground-truth
bounding box, and the prediction bounding box. It is done to find the accuracy of
the predicted box compared to the ground truth.

IoU =
area of intersection

area of union
(7)

Where, the area of intersection is the overlapping area between the two bounding
boxes, and the area of union is the total area covered by the boxes. If the IoU is over
0.5, this object is considered a true positive and if it is below it is a false positive.
While, if the bounding box was present in the ground truth labels but the same
label was not found in the augmented/normalized labels then it was marked as a
false negative. These values are then used to calculate the precision, recall, F1, and
mAP for the models.

Precision

Precision measures the proportion of correctly identified positive predictions (true
positive) to the total number of positive predictions (true and false positives). This
is done to find out how many of the positive predictions are correctly identified, by
comparing them to the number of false positives.

precision =
true positives

true positives + false positives
(8)

32

Recall

The next metric, recall, is the proportion of correctly identified positive predictions
to the total number of actual positive predictions that were detected and not de-
tected (true positive and false negative respectively). This is done to gauge the
percentage of how often the model would detect a label belonging to a certain class.
A low recall value suggests that the model is missing a significant number of positive
instances while a high recall value indicates that the model is successfully capturing
a large proportion of the true positive instances.

Recall =
true positives

true positives + false negatives
(9)

F1

The precision gives an understanding of the frequency of true positives among all
positives that were detected, and recall measures the true positives found from the
actual positives. Both metrics have their respective flaws hence, the F1 score is used
to find the harmonic mean of precision and recall and display an overall result of
both.

F1 = 2× precision× recall

precision + recall
(10)

mAP

Lastly, mAP stands for mean average precision. This study determined the mean
Average Precision (mAP) within the range of mAP at 0.50:0.95. For each class, the
Average Precision (AP) at each IoU threshold within the specified range of 0.50 to
0.95 was calculated with a certain step size. This was found by plotting a precision-
recall graph. Then the mean of the AP values across all classes is computed to find
the class-wise mAP. Finally, the average of all class-wise mAP is determined as the
mAP at 50:95 for this study. This evaluation is often used to assess the model’s
performance in accurately pinpointing objects within a moderate to high degree of
precision.

mAP =
1

n

n∑
k=1

APk (11)

where APk is the AP of class k and n is the number of classes.

33

5.4.2 Comparative results of various models

These performance measures for lighting and weather conditions datasets are dis-
cussed in this section. To begin with, tables 5.2 and 5.3 display the overall perfor-
mance scores for both augmented and predicted (GAN reconstructed) images.

Table 5.2: Average scores for lighting condition dataset

Table 5.3: Average scores for weather condition dataset

Precision, Recall, F1

The results for both lighting and weather conditions presented in Table 5.2 and 5.3
respectively are very similar. In both cases, when comparing the overall recall in the
augmented and normalized columns, it can be observed that the scores increase after
the image is normalized. This result is consistent for all the used object detection
models. Notably, the precision scores are mostly higher for the augmented images
regardless of the dataset or model it is tested on. This could be due to the presence
of higher False Positives values in predicted results compared to the augmented re-
sults (ie. the model incorrectly predicts the presence of an object when it is not
present). Additionally, the harmonic means of precision and recall, ie. the F1 score
is higher for normalized images. F1 is a better measure of the models’ performance
as it takes into account both the false positive and false negative rates. Therefore,
this higher value of F1 holds more weight in indicating the improved accuracy after
normalization.

mAP

The mAP score is another important performance metric frequently used for object
detection benchmarking as it can measure the overall effectiveness of the models.
Similar to the F1 score, the AP also considers the precision-recall trade-off and in-
cludes the false positive and false negative values. This research computed the mAP
at 0.5 to 0.95 IoU threshold to evaluate the model performance between a moderate
and high IoU. According to Tables 2 and 3, the mAP scores of the normalized images
are higher than the mAP scores of the augmented images. This indicates that the
overall effectiveness in detecting objects is better after normalization.

34

Class-wise IoU

To further analyze the accuracy of the models, the class-wise IoUs between 0.5 and
0.95 were calculated for the 13 observed classes which are tabulated below:

Table 5.4: Lighting condition dataset: Average class-wise IoU@[0.5:0.95]

Figure 5.4.1: Class-wise IoU scores for each Model (Lighting)

According to Table 5.4 and Figure 5.4.1 comparing the IoUs of the lighting condition
dataset, the Faster R-CNN with RestNet 50 backbone shows the most significant
improvement since the class-wise average IoUs of most of the class (11 of 13) show an
increase after prediction. This model is known to be the most accurate of the 3 mod-
els used. Similarly, RetinaNet with RestNet50 also shows an increase in prediction
for the majority of the classes (7 of 10). However, Faster R-CNN with MobileNetv3
does not show much improvement; less than half of the identified IoUs show improve-
ment (5 of 12). All the observed changes are further supported by the total mean of
all classes, which shows that the average for the first and last models is higher af-
ter normalization, while for the second model, the score is lower after normalization.

35

Table 5.5: Weather condition dataset: Average class-wise IoU@[0.5:0.95]

Figure 5.4.2: Class-wise IoU scores for each Model (Weather)

According to Table 5.5 and Figure 5.4.2 comparing the IoUs of the weather condi-
tion dataset, both Faster R-CNN with RestNet 50 (8 of 11) and MobileNet v3 (7
of 7), observe an improvement in a significant number of classes, as they show an
increase in the average class-wise IoUs. However, in this test dataset, the RetinaNet
with ResNet50 backbone does not show an improvement in IoU scores, unlike the
lighting condition test data. Only 3 of 7 classes have an increase in this model. This
is further supported by comparing the mean IoU of all classes in the last row, which
shows that the first two models show an increase in the total mean, while the third
model does not.

It should be noted that the 0 values indicate that no IoUs of the range 0.5 to 0.95
were observed for those classes. This is mostly due to the class imbalance, as very
few instances of those objects exist within the test data. Hence, if a class was identi-
fied for the normalized test data but was not found for the corresponding augmented

36

test data in the same model or vice versa, then it was not taken into consideration
for the comparison.

Of the 3 models used, Faster R-CNN with RestNet 50, is the slowest and the most
accurate model and shows drastic improvement for both the dataset. Faster R-CNN
with MobileNetv3, the fastest and least accurate model, shows improvement in the
weather condition dataset but average results for the lighting condition dataset.
Similarly, RetinaNet with RestNet50 backbone shows an improvement for lighting
conditions but does not show the same for weather conditions. This suggests that
the accuracy of the model itself makes a significant difference in whether or not the
accuracy of the detection will improve after normalization.

37

Chapter 6

Future Work and Conclusion

The results of this research suggest that normalizing images in bad weather and
lighting conditions shows an improvement in object detection accuracy. Although
Pix2Pix was successful in improving the overall quality to improve detection, the
scores of accuracies are still very low after normalization. Hence, more effective and
real-time normalization methods should be explored in the future. Additionally, the
SSIM scores of Pix2Pix are average for the dataset used by this research. However,
it is yet to be determined if these values could be improved by increasing the num-
ber of variations per condition. While this research attempted to train the Pix2Pix
with only 3 variations per condition (rain, fog, low and bright light), future research
should try to analyze the effects of varying the number of variations per condition
on the performance of Pix2Pix.

This study also came across various other challenges when augmenting the images
for the datasets. The images augmented using imgaug, OpenCV, and other tools
were not very realistic when producing the artificial fog and dim lighting condi-
tions. However, GANs could be used instead to augment the images. This creates
scope for further research ideas such as investigation of the use of data augmenta-
tion techniques specific to the image-to-image translation tasks. This could involve
exploring geometric transformations, color augmentation, or domain-specific trans-
formations to improve the diversity and generalization capability of the generated
images. Similarly, real-time and low-resource implementations of GAN is also a
unique and relevant field that needs to be explored, if it is to be used in autonomous
vehicles. This could include exploring model compression, quantization techniques,
or network architecture adaptations for resource-constrained environments.

To conclude, autonomous vehicles are developed with the hopes that they will help
reduce traffic problems, make traveling more accessible to the public, and improve
the overall safety of roads. However, there is a significant gap in their ability to
function in a real-life scenario, due to the lack of precision in the models and tech-
nologies that have been developed so far. Much work is still left before they can be
introduced as a viable option for transportation. Therefore, this research attempts
to increase the accuracy, and hence the usability of such vehicles by employing ad-
vanced color vision techniques and using GANs.

38

Chapter 7

References

[1] Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). Object Detection in 20 Years: A
Survey. ArXiv: Computer Vision and Pattern Recognition.

[2] Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object Detection With
Deep Learning: A Review. IEEE Transactions on Neural Networks and Learn-
ing Systems, 30(11), 3212–3232.

[3] Hassaballah, M., Kenk, M. A., Muhammad, K., & Minaee, S. (2021). Vehicle
Detection and Tracking in Adverse Weather Using a Deep Learning Framework.
IEEE Transactions on Intelligent Transportation Systems, 22(7), 4230–4242.

[4] Kenk, M. A., & Hassaballah, M. (2020). DAWN: Vehicle Detection in Adverse
Weather Nature Dataset. ArXiv: Computer Vision and Pattern Recognition.

[5] Campbell, S., O’Mahony, N., Krpalcova, L., Riordan, D., Walsh, J., Murphy, A.,
& Ryan, C. (2018). Sensor Technology in Autonomous Vehicles: A review. 2018
29th Irish Signals and Systems Conference (ISSC).

[6] Amit, Y., Felzenszwalb, P., & Girshick, R. (2020). Object detection. Computer
Vision: A Reference Guide, 1-9.

[7] Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F.,
... & Dietmayer, K. (2020). Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets, methods, and challenges. IEEE
Transactions on Intelligent Transportation Systems, 22(3), 1341-1360.

[8] Gupta, A., Anpalagan, A., Guan, L., & Khwaja, A. S. (2021). Deep learning
for object detection and scene perception in self-driving cars: Survey, challenges,
and open issues. Array, 10, 100057.

[9] Stilgoe, J. (2021). How can we know a self-driving car is safe?. Ethics and In-
formation Technology, 23(4), 635-647.

[10] Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K. L. A., Elkhatib, Y., ... & Al-
Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques,
applications and research challenges. IEEE access, 7, 65579-65615.

39

[11] Zlateski, A., Jaroensri, R., Sharma, P., & Durand, F. (2018). On the impor-
tance of label quality for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1479-1487).

[12] Chadwick, S., & Newman, P. (2019, June). Training object detectors with noisy
data. In 2019 IEEE Intelligent Vehicles Symposium (IV) (pp. 1319-1325). IEEE.

[13] Raj, M. M., Tasdid, S. H., Nidra, M. A., Noor, J., Ria, S. A., & Alam M. A.
(2021). A color vision approach considering weather conditions based on au-
toencoder techniques using deep neural networks. In 2021 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering (CSDE) (pp. 1-12).
IEEE.

[14] Gomes, P. R., Sabuj, H. H., Uddin, M. A., Reza, M. T., Faiz, R. I., & Alam, M.
A. (2021). A deep learning approach for reconstruction of color images in differ-
ent lighting conditions based on autoencoder technique. In 2021 International
Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-4).
IEEE.

[15] Klinker, G., Shafer, S.A. & Kanade, T. (1989). Color image analysis with an
intrinsic reflection model. In [1988 Proceedings] Second International Conference
on Computer Vision (pp. 292-296). IEEE.

[16] Buluswar, S. D., & Draper, B. A. (1998). Color machine vision for autonomous
vehicles. Engineering Applications of Artificial Intelligence, 11(2), 245-256.

[17] Fabbri, C., Islam, M. J., & Sattar, J. (2018). Enhancing underwater imagery
using generative adversarial networks. In 2018 IEEE International Conference
on Robotics and Automation (ICRA) (pp. 7159-7165). IEEE.

[18] Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 1125-1134).

[19] Saxena, U. (2018). Automold road augmentation library. GitHub.[Online].
Available: https://github.com/UjjwalSaxena/Automold–Road-Augmentation-Library.
[Accessed: 20-Apr-2023].

[20] Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. arXiv:1506.01497v3 [cs.CV]

[21] Pix2pix: Image-to-image translation with a conditional GAN. (n.d.). Tensor-
Flow. https://www.tensorflow.org/tutorials/generative/pix2pix

[22] Gad, A. F. (2021). Faster R-CNN Explained for Object Detection Tasks. Pa-
perspace.

[23] Krishna, N. (2022). Understanding and Implementing Faster R-CNN: A Step-

40

By-Step Guide. Medium. https://towardsdatascience.com/understanding-and-
implementing-faster-r-cnn-a-step-by-step-guide-11acfff216b0

[24] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 770–778. doi:10.1109/CVPR.2016.90

[25] Godard, C., Mac Aodha, O., Firman, M., & Brostow, G. J. (2019). Digging into
self-supervised monocular depth estimation. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 3828-3838).

[26] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W.,
Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., Adam, H. (2019). Searching for
MobileNetV3. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1905.02244

[27] Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2018). Focal Loss for
Dense Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1708.02002

[28] Johnson, D. H. (2006). Signal-to-noise ratio. Scholarpedia, 1(12), 2088.

[29] Dosselmann, R., & Yang, X. D. (2011). A comprehensive assessment of the
structural similarity index. Signal, Image and Video Processing, 5, 81-91.

[30] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4), 600-612.

[31] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... &
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Pub-
lishing.

41

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	Nomenclature
	Introduction
	Research Objectives

	Problem Statement
	Literature Review
	Methodology
	Proposed methodology
	Data analysis
	Data acquisition
	Image preprocessing
	Augmented Data Analysis

	Working principle of Pix2Pix GAN
	Description of the Object Detection Models
	Faster R-CNN using ResNet50
	Faster R-CNN using MobileNet v3
	RetinaNet with ResNet50

	Implementation
	Pix2Pix GAN Model implementation
	Generator building
	Discriminator building
	Generator Loss Calculation
	Discriminator Loss Calculation
	Attention block

	Pix2Pix GAN model training and result analysis
	Training
	Pix2Pix Generated Results
	Primary result analysis

	Object Detection Model Implementation
	Object Detection Model Evaluation
	Performance Measures
	Comparative results of various models

	Future Work and Conclusion
	References

