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Abstract 

Cholera is a water-borne disease caused by Vibrio cholerae that causes severe diarrhea and 

dehydration. Plasmids disseminate antibiotic resistance and have the potential to play critical 

roles in epidemic outbreaks. Understanding the distribution and coexistence of V. cholerae 

plasmids and CRISPR-Cas systems is critical for investigating pathophysiology and 

developing effective control methods. The NCBI database yielded a total of 5873 genomic 

assemblies. PlasForest, a machine learning-based classifier, was used to predict plasmid 

sequences, while CRISPRCasTyper was utilized to identify Cas operons and CRISPR arrays. 

The results demonstrate a statistically significant decrease in %PDC between groups with no 

CCS and groups with 1 CCS and 2 CCS, although the difference in %PDC across groups with 

multiple CCS was not significant.   



v 
  

Dedication  

This thesis is dedicated to my mother, Irin Sultana, whose unwavering love, encouragement, 

and sacrifices have been the driving force behind my academic pursuits. Her selflessness, 

determination, and resilience have been a constant source of inspiration and motivation, and I 

am eternally grateful for her unyielding support throughout my educational journey.   



vi 
  

Acknowledgement 

I would like to convey my heartfelt thanks to Dr. Iftekhar Bin Naser, Associate Professor, 

Department of Mathematics and Natural Sciences, Brac University, for his tremendous 

assistance and support throughout my thesis study. His knowledge, patience, and unshakable 

dedication to my academic achievement have all played a role in determining the course of my 

work and assisting me in reaching my objectives. 

I would also want to express my deepest gratitude to Tushar Ahmed Shishir, Lecturer, 

Department of Mathematics and Natural Sciences, Brac University, for his unselfish devotion 

and readiness to assist me even outside of usual office hours. His ideas, support, and technical 

skills helped me overcome many challenges and complete my thesis in a timely and effective 

manner.  

I am deeply indebted to both Dr. Naser and Mr. Shishir for their guidance and support, and I 

am truly grateful for their contributions to my academic and personal growth. Their mentorship 

and friendship will be cherished for years to come. 

Ratul Reza 

 

 

 

 

 

 



vii 
  

Table of Contents 

Declaration ii 

Approval iii 

Abstract iv 

Dedication v 

Acknowledgement vi 

List of Tables ix 

List of Figures x 

List of Acronyms xi 

CHAPTER 1 1 

INTRODUCTION 1 

1. What is Cholera and what causes it? 2 

1.2. Literature Review 3 

1.2.1.  Epidemiological Review of Vibrio cholerae 3 

1.2.2. Pathogenicity of Vibrio Cholerae 4 

1.2.3. Significance of Plasmids 6 

1.2.4. Significance of the CRISPR-Cas System 7 

1.3. Objective 10 

CHAPTER 2 11 

METHODS 11 

2.1. Collection of Genome Assemblies 12 

2.2. Plasmid prediction via machine learning using PlasForest 13 

2.3. CRISPR-Cas system identification via machine learning using CRISPRCasTyper 16 

2.4. Statistical Analysis and Visualization 18 



viii 
  

CHAPTER 3 19 

RESULTS 19 

3.1. Plasmid distribution 20 

3.2. CRISPR-Cas distribution 22 

3.3. Comparative analysis of the co-existence of plasmid and CRISPR-Cas systems 24 

CHAPTER 4 27 

DISCUSSION 27 

CHAPTER 5 31 

CONCLUSION 31 

REFERENCES 33 

APPENDIX 37 

Appendix 1: Code Snippets 38 

1A: Bash shell script for plasmid identification using PlasForest. 38 

1B: Python script for counting plasmid and chromosome contigs from all genome 

assemblies into a single .csv file 39 

1C:  Python script for gathering CRISPR-Cas data from all genome assemblies into a 

single .csv file 40 

Appendix 2: Supplementary Tables 41 

2A: repeatTyper typing scheme 41 

 

 

 

 

 

 

 

 



ix 
  

List of Tables 

Table 1: Brief summary of Past Vibrio cholerae epidemics 3 

Table 2: Descriptive Statistics 25 

Table 3: One-way ANOVA 26 

Table 4: Post Hoc T-test w/ Bonferroni Correction 26 

Table 5: repeatTyper typing scheme 43 

 

 

 

  



x 
  

List of Figures 

Figure 1: Schematic diagram of the working mechanism of CRISPR-Cas sub-systems 8 

Figure 2: New NCBI Genome page from where V. cholerae assemblies were downloaded 12 

Figure 3: PlasForest Workflow 13 

Figure 4: CRISPRCasTyper Workflow 17 

Figure 5: Frequency of assembly levels in the downloaded genomes. 20 

Figure 6: Frequency distribution of %PDC in genome assemblies 21 

Figure 7: Frequency distribution of number of complete CRISPR-Cas Systems 22 

Figure 8: Frequency Distribution of CRISPR-Cas Subtypes 23 

Figure 9: Mean %PDC against Number of CCS 24 

 

 

 

  

file:///E:/Thesis/Docs/BRACU_Thesis_TemplateV2.docx%23_Toc135106193


xi 
  

List of Acronyms 

%PDC 
  

Percentage of Plasmid Derived Contigs 

AMR 
  

Anti-Microbial Resistance 

CCS 
  

Complete CRISPR-Cas System 

CDS 
  

Coding Sequence 

CT 
  

Cholera Toxin 

DR 
  

Highly Conserved regions in the CRISPR array 

HGT 
  

Horizontal Gene Transfer 

HMM 
 

Hidden Markov Model 

MGE 
 

Mobile Genetic Elements 

MMC  
  

Matthew's Correlation Coefficient 

ORFs 
  

Open Reading Frames 

PDC  Plasmid Derived Contigs 
 

 



 
 

 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

 

 

 



2 
  

1. What is Cholera and what causes it? 

Vibrio cholerae is a bacterium that causes cholera, a water-borne disease that can lead to severe 

diarrhea, dehydration and that may result in renal failure. Leaving severe dehydration untreated 

can result in shock, a coma, and death within hours. According to the CDC, the following 

symptoms are prevalent in the early stages of cholera and affect around one in every ten people: 

• Thirst 

• Excessive watery stools (“rice-water stools”) 

• Leg cramps 

• Restlessness, or irritation. 

High quantities of the pathogenic Vibrio cholerae bacteria are found in the copious amounts of 

diarrhea that cholera patients expel, which can infect others if consumed. This could happen if 

the bacteria come in touch with food or water. 

In order to prevent the pathogen from spreading, the feces (human waste) from unwell persons 

should be appropriately disposed of to avoid infecting everything around. Those caring for 

cholera patients need to wash their hands thoroughly after handling anything that could be 

contaminated with patient feces. 
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1.2. Literature Review 

1.2.1.  Epidemiological Review of Vibrio cholerae 

Vibrio cholerae is a bacterium that causes cholera, a water-borne disease that can lead to severe 

diarrhea, dehydration and death if left untreated. Cholera is an ancient disease, Barua in his 

extensive article on the history of cholera (Barua, 1992), states report of diseases with cholera 

like symptoms dating back to the periods of Hippocrates and Buddha. Prior to 1817, when the 

first pandemic is said to have originated in India, real cholera, caused by Vibrio cholerae 01, 

was already present in Europe.  According to CBC news, from 1817, there were seven distinct 

pandemics of cholera, which is summarized in the table below. 

 

Table 1: Brief summary of Past Vibrio cholerae epidemics 

Pandemic  Period Origin Responsible biotypes 

(Siddique & Cash, 2014) 

1st  1817-1823 Bengal region of India Not recognized 

2nd  1829-1849 India Not recognized 

3rd  1852-1859 India Not recognized 

4th  1863-1879 Bengal region of India Not recognized 

5th  1881-1896 Bengal region of India O1: Classical 

6th  1899-1923 India O1: Classical 

7th  1963-1991 Indonesia O1: El Tor 
 

 

Since the El Tor biotype still persists and infects, The World Health Organization (WHO) 

continues to classify the 7th pandemic as currently ongoing in a cholera factsheet dated 30 

March 2022 (“Cholera”, 2022) 
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1.2.2. Pathogenicity of Vibrio Cholerae 

According to Reidl & Klose's study from 2002, extensive molecular and genomic research has 

helped to clarify the main virulence components and the regulatory mechanisms of V. cholerae 

that contribute to virulence. Despite the fact that no animal model can accurately simulate the 

human infection with V. cholerae, several of them have shown to be highly useful in the 

research of cholera pathogenesis. The rabbit ileal loop model has been effective in measuring 

the fluid accumulation in the intestines caused by CT in vivo.  

Additionally, the article refers to other studies where it has been shown that a number of V. 

cholerae gene products are essential for colonization of the small intestine, notably in cholera 

models in adult rabbits and young mice. Among these are the lipopolysaccharide (LPS) O-

antigen, accessory colonization factors (ACFs), regulatory proteins (such as ToxR/ToxS, 

TcpP/TcpH, and ToxT), outer membrane porins, genes for biotin and purine biosynthesis, an 

iron-regulated OMP protein called IrgA, and features of the LPS core region. A type IV pilus 

known as TCP is regarded as the most important colonization component since it has been 

experimentally shown to be required for colonization of the intestines in animal models as well 

as research with human volunteers. While CT is essential for producing cholera symptoms, but 

it doesn't appear to have any real effect on colonization of the intestines.  

The article (Reidl & Klose, 2002) also refers to an experimental study which produced evidence 

from the deletion of ctxAB mutants, pointing to the possibility that CT activity can promote 

development in the gut environment by destroying epithelial cells, but whether or not CT 

activity outside human host provides any added advantage to pathogenic V. cholerae lacks 

experimental confirmation. The genes for CT are actually found in the single-stranded 

filamentous phage known as CTXφ. The phage has both the "RS2" and "core" portions. The 

ace, zot, cep, and orfU genes, as well as the CT operon (ctxAB), make up the core area, while 
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RS2 encodes genes that are involved in CTX integration, replication, and regulation (Waldor 

et al., 1997).  

The most frequent exposed molecule on the outer membrane of Gram-negative bacteria is LPS, 

which also provides barrier function. The acidity, osmolarity, temperature and exposure to 

antibacterial agents and elements of the innate immune system are only a few of the 

external changes that V. cholerae cells are subjected to during infection. The cell's outer 

membrane efficiently blocks the passage of harmful substances, aids in avoiding detection by 

host agents, and could even make colonization easier. 
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1.2.3. Significance of Plasmids 

Plasmids are circular pieces of extrachromosomal DNA that can replicate on their own and are 

essential for HGT and the evolution of microorganisms. Virulence and drug resistance in V. 

cholerae have been linked to plasmids.  Since the 1960s, it has been common to find plasmids 

in the genomes of environmental and clinical V. cholerae isolates from the serogroups O1, 

O139 and non-O1, non-O139 (Amaro et al., 1988). A single plasmid can cause resistance to 

more than six different antibiotics, including tetracycline, streptomycin, ampicillin, 

chloramphenicol, gentamicin, and SXT, in Cases of V. cholerae and other intestinal infections 

(Carattoli, 2013). Antibiotic resistance-inducing plasmids are frequently large (>40-Kb), 

conjugative, and have a low copy number in the host bacteria. The IncA mega plasmid 

(pVC1447) of V. cholerae O139, which was discovered in China between 2000 and 2006, had 

genes for resistance to erythromycin, aminoglycosides, chloramphenicol, tetracycline, and 

SXT (Luo et al., 2022). 

There have also been reports of a variety of Gram-negative pathogens containing the plasmid 

genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC. These genes encode pentapeptide repeat 

family proteins that protect topoisomerase IV and DNA gyrase from quinolone inhibition. Both 

qnrVC1 and qnrVC3 were found in a clinical strain of V. cholerae that was isolated from 

Bangladesh in 2005 and Brazil in 1998, respectively (Fonseca & Vicente, 2013). 

In an article by Carraro et al., (2016), it states that SXT/R391 integrative and conjugative 

elements were principally responsible for the spread of the multidrug resistance genes that V. 

cholerae. There have been infrequent reports of IncA/C conjugative plasmids mediating 

antibiotic resistance in clinical and environmental isolates of V. cholerae. Their findings 

demonstrated that, while being uncommon in V. cholerae populations, IncA/C plasmids play a 

crucial yet stealthy function by particularly spreading a novel family of genomic islands that 

confer resistance to several drugs. Their findings also imply a reservoir of transmissible 
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resistance genes in non-epidemic V. cholerae non-O1/non-O139 isolates that may be passed 

on by IncA/C plasmids to virulent V. cholerae serotypes in epidemic geographic areas as well 

as to other pathogenic Enterobacteriaceae species. 

 

1.2.4. Significance of the CRISPR-Cas System 

The DNA sequences known as Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) can be found in the genomes of prokaryotic organisms like bacteria and archaea 

(Barrangou, 2015). Invasive genome fragments and mobile genetic elements (MGEs) like 

plasmids, phages, and transposons are incorporated into the CRISPR locus as spacers, showing 

that the prokaryotic immune system is adaptable and can recall previous infections. The spacers 

between the repeats are created as small guide CRISPR RNAs (crRNAs) when an infection 

recurs, and Cas proteins use these crRNAs to target invaders in a sequence-specific way (Hille 

& Charpentier, 2016). The workings of several CRISPR-Cas sub-systems are depicted in the 

schematic figure below by Hille & Charpentier. 
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Figure 1: Schematic diagram of the working mechanism of CRISPR-Cas sub-systems (Hille & Charpentier, 
2016). 

 

The two halves of the CRISPR-Cas systems include a Cas operon (blue arrows) and a CRISPR 

array, which comprises of identical repeat sequences (black rectangles) that are separated by 

spacers acquired from phages (colored rectangles). After phage infection, the Cas1-Cas2 

complex inserts a protospacer sequence from the invasive DNA into the CRISPR array. Cas6 

further processes the long precursor CRISPR RNA (pre-crRNA) generated by the CRISPR 

array in type I and III systems (Cas5d processes it in type I-C CRISPR-Cas systems). 
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In type II CRISPR-Cas systems, TracrRNA, RNase III, and Cas9 are necessary for crRNA 

maturation, but in type V-A systems, Cpf1 alone is sufficient. CrRNA tells Cascade proteins 

to bind the foreign DNA in a sequence-specific way when type I systems are in the interference 

state. The misplaced strand is subsequently broken down by Cas3 using its 3′–5′ exonucleolytic 

activity. In Type III-A and Type III-B CRISPR-Cas systems, respectively, Csm and Cmr 

complexes are employed to cleave DNA (red triangles) and its transcripts (black triangles). A 

ribonucleoprotein complex composed of Cas9 and a tracrRNA:crRNA duplex detects and 

destroys invading DNA in type II CRISPR-Cas systems. Targeted cleavage in type V systems 

is carried out by the crRNA-guided effector protein Cpf1. The interference machinery's 

cleavage points are depicted by red triangles. 
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1.3. Objective 

From the review of literature in the above sections, it can be hypothesized that the presence 

and diversity of CRISPR-Cas would lead to a decreased diversity of plasmid derived contigs 

in V. cholerae genome assemblies. The objective of this research is to identify plasmid derived 

contigs and CRIPSPR-Cas systems from all available genomes from the NCBI database using 

alignment and machine learning techniques and look into their distribution and co-existence in 

order to test this hypothesis. 
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2.1. Collection of Genome Assemblies 

All submitted genome assemblies were downloaded from NCBI genome database 

(https://www.ncbi.nlm.nih.gov/data-hub/genome/). When asked for taxa, “Vibrio cholerae” 

was given as input with the following additional filters. At the time of downloading, a total of 

5873 genome assemblies were available. 

 

Figure 2: New NCBI Genome page from where V. cholerae assemblies were downloaded 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/data-hub/genome/
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2.2. Plasmid prediction via machine learning using PlasForest 

A homology-based Random Forest classifier called PlasForest (Pradier et al., 2021) is used to 

recognize bacterial plasmid sequences in incompletely assembled genomes. With an F1 score 

of 0.950 PlasForest reads contigs from FASTA files and classifies them as plasmids or 

chromosomes without knowing the samples' taxonomic origin. Importantly, it has a 2.8% false 

positive rate for plasmid contigs under 1 kb and a 99.9% false positive rate for contigs 

exceeding 50 kb. The PlasForest pipeline's workflow is illustrated by the following figure. 

 

Figure 3: PlasForest Workflow (Pradier et al., 2021). 

 



14 
  

The NCBI RefSeq Genomes FTP site was used to retrieve all of the bacterial plasmid 

sequences. A total of 36,450 sequences from this database with an e-value of 10-3 were utilized 

as the basis for finding homology. 

Strong differentiation between plasmids and chromosomes was established by combining 

homology search with measurements of nucleotide content. The features listed below were 

chosen for categorization. 

• The maximum overlap among hits in the relevant database was evaluated since it is 

anticipated that the plasmid derived contigs will form longer alignments with sequences 

from the plasmid database than contigs derived from chromosomes. 

• Short contigs match with the query database more frequently than large contigs, so 

contig size was taken into account. 

• In order to distinguish between chromosomes and plasmids, other metrics of the 

distribution of overlaps among hits, such as the quantity of hits, average overlap, 

median overlap, and variance of overlaps, may be utilized. In reality, it can also be 

expected that query chromosomal contigs show hits in the plasmid database due to 

recombination.  

• Plasmid nucleotide composition differs from that of chromosomes, so the G + C content 

was also added. 

The discrepancies between the properties of plasmid contigs and chromosomal contigs were 

found using a Random Forest classifier. By employing a vast number of distinct decision trees, 

this strategy lowers individual error. In order to train and test the classifier, 10,152 complete 

bacterial genomes were randomly picked from the NCBI Refseq Genomes FTP site. 

As a result, a machine learning model was created that can determine whether a contig 

originates from a plasmid or a chromosome based on the attributes retrieved. 
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PlasForest generates a CSV file for each assembly, therefore a python script (Appendix 1B) 

was written to counting plasmid and chromosome contigs from all genome assemblies into a 

single CSV file. 
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2.3. CRISPR-Cas system identification via machine learning using 

CRISPRCasTyper 

CRISPRCasTyper (Russel et al., 2020) is a bioinformatics tool used to identify Cas operons 

and associated CRISPR arrays from an input DNA sequence. 

The program works by initially using Prodigal (Hyatt et al., 2010), a quick and accurate 

protein-coding gene prediction tool for prokaryotic genomes to find ORFs and then running 

HMMER3 (HMMER v3.3.2, n.d.) against 680 manually curated hidden Markov models 

(HMMs) to find Cas and other genes that are functionally associated to CRISPR-Cas systems. 

Class 2 effectors and the III-E gRAMP fusion protein matches are filtered using E-value and 

coverage cutoffs that are tuned for each effector. Overall cutoffs are used to filter the remaining 

HMM matches. Synteny is used to link adjacent Cas and associated genes into operons. These 

operons are then classified using a score system. 

Following that, minced is used to detect CRISPR arrays. To reduce false-positive arrays, an 

additional step is included, which filters and eliminates arrays with non-similar repeat 

sequences, identical spacer sequences, or differing lengths of spacers. If the mean repeat 

sequence identity is less than 70%, the mean spacer sequence identity is greater than 55%, or 

the mean spacer length standard error is larger than 3.5, CRISPR arrays are quarantined. 

CRISPRs, on the other hand, are invariably conserved close to Cas operons. CRISPR-Cas 

systems where the subtype is predicted with probability greater than 0.9 are always retained. 

To compute sequence identity, pairwise2.align.globalxx from the Biopython package is used 

with default penalties. A CRISPR repeat classification algorithm called repeatTyper was built 

to classify distant and orphan CRISPR arrays and predict the subtype of CRISPR-Cas operons 

that could not be accurately categorized on the basis of Cas ORFs. To foreCast the subtype, the 
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model employs extreme gradient-boosting decision trees fitted to counts of canonical tetramers, 

regardless of their order.  The workflow is summarized in the figure below. 

 

  

  

 

 

 

 

 

 

 

During the development period. CRISPRCasTyper has a median accuracy of 98.6% when 

tested against a carefully chosen collection of 31 subtypes. The version used in this study can 

detect 44 subtypes/variants, which, along with the complete typing scheme is provided in 

Appendix 2A. 

 

 

Input sequence 

Subtyped CRISPR-Cas 

Subtyped orphan CRISPRs 

Subtyped orphan Cas operons 

Prune false CRISPR arrays 

repeatTyper: xgboost 

CRISPRs: minced 

Typing based on 
scoring scheme 

ORFs: Prodigal 

Cas genes: 680 HMMs 
HMMS 

Optimized filtering of single 
effector genes 

Join adjacent Cas into 
operons 

 

Figure 4: CRISPRCasTyper Workflow 
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2.4. Statistical Analysis and Visualization 

All statistical analyses used in this study was performed using Analysis Toolpak provided with 

Microsoft® Excel® LTSC MSO (16.0.14332.20492), Microsoft Corporation. (2019). 

All visualization was performed with the default charts provided with Microsoft® Excel® 

LTSC MSO (16.0.14332.20492), Microsoft Corporation. (2019). 
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3.1. Plasmid distribution 

5873 V. cholerae genome assemblies from NCBI GenBank were used in this study. The 

downloaded genomes were assembled as scaffolds (13.45%), contigs (84.27%), chromosomes 

(0.19%) and complete genomes (2.09%). 

PlasForest was able to identify plasmid derived contigs in >99% of the scaffold and contig 

level assemblies. The following figure visualizes the frequency of the different assembly levels 

and the assemblies with successfully identified plasmids. 

 

Figure 5: Frequency of assembly levels in the downloaded genomes. 

 

The genomes assemblies where plasmids derived contigs (PDC) were successfully identified, 

the assemblies contain varying %PDC, with majority containing 25-30% of PDC (mean 27.43 

± 14.02% PDC). The distribution of %PDC is positively skewed (SKP = 1.6, right tailed) and 

highly leptokurtic (k = 6.18). The figure below shows the frequency distribution of %PDC 

among genome assemblies.   
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Figure 6: Frequency distribution of %PDC in genome assemblies 
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3.2. CRISPR-Cas distribution 

CRISPRCasTyper was able identify orphan CRISPR arrays and Cas operons alongside 

complete CRISPR-Cas systems (CCS) and their subtypes. Out of the 5873 genome assemblies, 

1073 contained CCS. Figure 7 shows the frequency distribution of number of CCS in genome 

assemblies.  

 

Figure 7: Frequency distribution of number of complete CRISPR-Cas Systems 

 

The different subtypes of CCS identified were: I-C, I-E, I-F, I-F_T, III-B, III-D, IV-A1 and II-

D. 

All the other subtypes except II-D was found to exist singularly or co-exist with other identified 

subtypes. II-D was identified in only one assembly where it co-existed with I-F and I-F_T. 

Figure 8 shows the frequency distribution of CCS subtypes in genome assemblies. 
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Figure 8: Frequency Distribution of CRISPR-Cas Subtypes 
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3.3. Comparative analysis of the co-existence of plasmid and CRISPR-Cas 

systems 

In order to get an initial idea of the relationship between number of CCS and %PDC in 

genomes, a Pearson’s Correlation test was performed. No significant correlation found between 

number of complete CRISPR-Cas systems in genomes and % of plasmid contigs (r = -0.06645, 

p = 0.03255). 

The data was then divided into four groups based on the number of CCS in the assemblies: 0 

CCS, 1 CCS, 2 CCS and ≥3 CCS. The assemblies with no PDC were ignored. Figure 9 shows 

the mean %PDC across the four groups. 

 

Figure 9: Mean %PDC against Number of CCS 
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Mean %PDC for the group with 0 CCS was 29.08±13.89% which was higher than the groups 

with 1 CCS, 2 CCS and ≥3 CCS with mean %PDC 24.41±10.41%, 22.69±9.43% and 

22.67±12.06%. Table 2 shows the results of some descriptive statistics. 

Table 2: Descriptive Statistics 
 

%PDC 0 CCS %PDC 1 CCS %PDC 2 CCS %PDC ≥3 CCS 

Mean 29.08054495 24.41296879 22.69420943 22.66825776 

Standard Error 0.203063947 0.359882504 0.710641485 2.515620653 

Median 27.35042735 22.79591384 21.70289855 20 

Mode 33.33333333 20 20 #N/A 

Standard Deviation 13.89616311 10.40552202 9.427724667 12.06449283 

Sample Variance 193.1033492 108.2748885 88.88199239 145.5519872 

Kurtosis 7.161842106 1.328306793 1.312932724 0.46826614 

Skewness 1.975925588 0.82998283 0.841880767 0.680128025 

Range 113.3063154 74.74189676 52.38095238 50.95238095 

Minimum 1.587301587 4.081632653 5.194805195 3.333333333 

Maximum 114.893617 78.82352941 57.57575758 54.28571429 

Sum 136184.192 20409.24191 3994.18086 521.3699284 

Count 4683 836 176 23 

 

One-way ANOVA was performed at 5% significance level and it was determined that there 

was a significant difference in mean %PDC among the groups (p<0.01). ANOVA results are 

shown in the table below. 

Table 3: One-way ANOVA 

SUMMARY 
      

Groups Count Sum Average Variance 
  

0 CCS 4683 136184.192 29.08054495 193.1033492 
  

1 CCS 836 20409.24191 24.41296879 108.2748885 
  

2 CCS 176 3994.18086 22.69420943 88.88199239 
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≥3 CCS 23 521.3699284 22.66825776 145.5519872 
  

ANOVA 
      

Variation Source SS df MS F P-value F crit 

Between Groups 21656.25035 3 7218.750115 40.70750913 5.07E-26 2.60646322 

Within Groups 1013275.905 5714 177.33215 
   

       

Total 1034932.156 5717         

 

 

Further post-hoc analysis was done using T-test with Bonferroni correction and it was 

determined that there was a significant difference in the mean %PDC when the test was 

performed between 0 CCS and 1 CCS (p<0.01), and 0 CCS and 2 CCS (p<0.01). Comparisons 

between other groups show no significant differences in mean %PDC between them. 

Number of post-hoc tests made, k = 6 

Bonferroni Corrected α = 𝛼
𝑘
 = 0.05

6
 = 0.008333333 

 

Table 4: Post Hoc T-test w/ Bonferroni Correction 

 

Groups P-value Significant? 

0CCS VS 1CCS 2.1314E-28 Yes 

0CCS VS 2CCS 1.60001E-15 Yes 

0CCS VS 3CCS 0.018522621 No 

1CCS VS 2CCS 0.031825403 No 

1CCS VS 3CCS 0.499250253 No 

2CCS VS 3CCS 0.992155848 No 
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The study analyzed 5873 V. cholerae genome assemblies from NCBI GenBank and used 

PlasForest and CRISPRCasTyper tools to identify plasmid derived contigs (PDC) and 

CRISPR-Cas systems (CCS) respectively.  

PlasForest's classification approach was trained on a diverse range of simulated draft genomes, 

resulting in robust and exact findings. It has a high sensitivity (92.7%) and accuracy (97.3%) 

in distinguishing between plasmid and chromosomal sequences. While other classifiers have 

disadvantages such as low accuracy for short contigs or limited sensitivity, PlasForest 

consistently outperformed them. It had the greatest MCC (up to 0.988) and F1 score (up to 

0.988) for contigs larger than 50 kb, demonstrating its unrivaled accuracy. PlasForest was able 

to identify PDC in >99% of the scaffold and contig level assemblies, with the majority 

containing 25-30% of PDC. The distribution of %PDC is positively skewed and highly 

leptokurtic. 

In terms of accuracy, CRISPRCasTyper exceeds CRISPRCasFinder, with a median accuracy 

of 99.5% for tested subtypes and 98.6% for all 31 subtypes, compared to CRISPRCasFinder's 

median accuracy of 93.9%. It identifies Cas operons more thoroughly, including additional 

genes inside operons such as Cas1, Cas2, Cas4, Cas10, and Cas6. The technique has a 0.4% 

false-positive rate and may find operons that curated data misses, exposing unexpected 

subtypes and variations. CRISPRCasTyper includes features including gene maps for 

displaying operonic organization, precise resolution of loci spanning circular sequences, and 

quick processing times. It can perform a deep metagenome assembly (60-100 Mbp) in less than 

10 minutes and evaluate a normal sized genome (2-6 Mbp) in under a minute. These benefits 

make CRISPRCasTyper a dependable, thorough, and efficient tool for this research. 

CRISPRCasTyper was able to identify 1073 CCS and their subtypes, with I-C, I-E, I-F, I-F_T, 

III-B, III-D, IV-A1, and II-D being the identified subtypes.  



29 
  

A Pearson’s Correlation Test showed no significant correlation between the number of CCS 

and %PDC. The data was then divided into four groups based on the number of CCS in the 

assemblies, and a one-way ANOVA test was conducted. The one-way ANOVA (Analysis of 

Variance) method is used to assess whether or not there are significant differences in the means 

of three or more groups or treatments. It enables researchers to study numerous groups at the 

same time and determine if any detected differences are statistically significant or merely 

coincidental. The test showed that there was a significant difference in %PDC and number of 

CCS.  

However, ANOVA does not specify between which groups the differences occur and so further 

post-hoc analysis of pairwise T-test with Bonferroni correction among all of the four groups 

was performed. The Bonferroni correction was necessary as multiple hypothesis testing was 

performed, the probability of making type I error (rejection of null hypothesis when it is 

actually true) increases. The adjusted α-level value (0.00833) is lower than that used in 

ANOVA (0.05) in order to reduce the significance level to counteract the effect of increased 

type I error probability. 

Although there has been extensive research within the recent years on the mechanism and 

properties of CRISPR-Cas systems in bacteria, the novelty in this research is the determination 

of sub-species wide CRISPR-Cas distribution in all publicly available genome assemblies of 

V. cholerae available in NCBI genome was used. According to Garneau et al., 2010, the 

CRISPR-Cas system may also spontaneously acquire spacers from a self-replicating plasmid 

harboring an antibiotic-resistance gene, resulting in plasmid loss. The ability of CRISPR-Cas 

systems to cleave plasmid sequences is also confirmed by many other articles available, 

however, no confirmatory evidence was produced whether or not presence of CRISPR-Cas in 

V. cholera itself is responsible for the decrease in plasmid content, therefore, further research 

is necessary.  A possible approach is to assess whether any of the spacer sequences match with 
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an extensive plasmid database, and it is important to look into why presence of more than one 

CCS had no statistically significant change in %PDC.  
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The objective of this research was to investigate the presence and diversity of plasmid-derived 

contigs and CRISPR-Cas systems in Vibrio cholerae genome assemblies. The study utilized 

alignment and various machine learning techniques to analyze genome assemblies from the 

NCBI database. In order to identify plasmid distribution PlasForest was used and 

CRISPRCasTyper was used to determine the distribution of CRISPR-Cas subtypes. The results 

show there is a statistically significant decrease in %PDC between groups where no CCS was 

present and the group which had 1 CCS and 2 CCS, but the difference in %PDC was not 

significant between the groups with multiple CCSs. However, there is no causative evidence 

the presence of CCS is the primary reason for the decrease in %PDC and why multiple CCS 

had no effect on decrease in %PDC for which further research is necessary. What is unique in 

this study is the discovery of sub-species wide distribution of plasmid derived contigs and 

CRISPR-Cas subtypes in Vibrio cholerae.  
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Appendix 1: Code Snippets 

1A: Bash shell script for plasmid identification using PlasForest. 

 
#!/bin/bash 

 

cd /mnt/e/Thesis/Database/vibrio_cholerae/data/ 

ls>/mnt/e/Thesis/Tools/PlasForest/PlasForest/filenames.txt 

cd /mnt/e/Thesis/Tools/PlasForest/PlasForest/ 

awk '{ print "python3 PlasForest.py -i 

/mnt/e/Thesis/Database/vibrio_cholerae/data/"$1"  

-o /mnt/e/Thesis/Results/Plasmids/"substr($1, 1, length($1)-4".csv}' 

filenames.txt | bash  
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1B: Python script for counting plasmid and chromosome contigs from all 

genome assemblies into a single .csv file 

 

import os 

import csv 

import pandas as pd 

 

# Set the directory containing the CSV files 

directory = input("Path to Directory: ") 

 

# Initialize an empty list to store the results 

results = [] 

 

# Loop through all CSV files in the directory 

for filename in os.listdir(directory): 

    if filename.endswith(".csv"): 

        filepath = os.path.join(directory, filename) 

         

        # Initialize a counter for the number of plasmid entries 

        num_plasmid = 0 

        num_chromosome = 0 

         

        # Read the CSV file and count the number of "Plasmid" entries 

        with open(filepath, "r") as csvfile: 

            reader = csv.DictReader(csvfile) 

            for row in reader: 

                if row["Prediction"] == "Plasmid": 

                    num_plasmid += 1 

 

        # Read the CSV file and count the number of "Chromosome" entries 

        with open(filepath, "r") as csvfile: 

            reader = csv.DictReader(csvfile) 

            for row in reader: 

                if row["Prediction"] == "Chromosome": 

                    num_chromosome += 1 

         

        # Append the results to the list 

        results.append({"Assembly Name": filename, "#Plasmid_Contigs": 

num_plasmid, "#Chromosome_Contigs": num_chromosome}) 

 

# Write the results to a new CSV file 

with open("statistics.csv", "w", newline="") as csvfile: 

    fieldnames = ["Assembly Name", "#Plasmid_Contigs", "#Chromosome_Contigs"] 

    writer = csv.DictWriter(csvfile, fieldnames=fieldnames) 

     

    # Write the header row 

    writer.writeheader() 

     

    # Write the results for each CSV file 

    for result in results: 

        writer.writerow(result) 

 

#Read statistics.csv and remove duplicates 

for filename in os.listdir(directory): 

    if filename == "statistics.csv": 

        # read the csv file into a pandas DataFrame 

        df = pd.read_csv(filename) 

         

        # remove duplicate entries 

        df.drop_duplicates(inplace=True)  
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1C:  Python script for gathering CRISPR-Cas data from all genome assemblies 

into a single .csv file 

 
import os 

import csv 

 

# initialize the list and count variable 

l = [] 

n = 0 

 

# create the csv file and write the headers 

with open('results.csv', mode='w', newline='') as results_file: 

    writer = csv.writer(results_file) 

    writer.writerow(['Assembly name', '#Complete_CRISPRCas', 'Subtype']) 

 

# iterate through all subfolders in the parent folder 

for root, dirs, files in os.walk("."): 

    for dir in dirs: 

        # check if the CRISPR_Cas.tab file exists in the current subfolder 

        if os.path.isfile(os.path.join(root, dir, 'CRISPR_Cas.tab')): 

            # read the tab file and extract the data under the "Prediction" 

column header 

            with open(os.path.join(root, dir, 'CRISPR_Cas.tab'), mode='r') as 

tab_file: 

                reader = csv.DictReader(tab_file, delimiter='\t') 

                for row in reader: 

                    l.append(row['Prediction']) 

                    n += 1 

 

            # append the subfolder name, count variable, and list to the csv 

file 

            with open('results.csv', mode='a', newline='') as results_file: 

                writer = csv.writer(results_file) 

                writer.writerow([dir, n, l]) 

             

            # reset the list and count variable for the next subfolder 

            l = [] 

            n = 0 
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Appendix 2: Supplementary Tables 

2A: repeatTyper typing scheme 

 
Cla
ss 

Typ
e 

Subty
pe 

Varia
nt 

RepeatTy
per 

Genes 
    

1 I I-A   Included Cas3 Cas3HD 
Cas5 Cas7 
Cas8a/csaX csa5 

Cas1 Cas2 
Cas4 

 
Cas6   

1 I I-B   Included Cas3 Cas5 Cas7 
Cas8b 

Cas1 Cas2 
Cas4 

 
Cas6   

1 I I-C   Included Cas5 Cas7 Cas8c Cas1 Cas2 
Cas4 

  
  

1 I I-D   Included Cas3 Cas5/csc1 
Cas7/csc2 Cas10d 

Cas1 Cas2 
Cas4 

 
Cas6   

1 I I-E   Included Cas3 Cas5 Cas7 
Cas8e/cse1 
Cas11/cse2 

Cas1 Cas2 
 

Cas6   

1 I I-F   Included Cas5f/csy2 
Cas7f/csy3 
Cas8f/csy1 

Cas1 Cas3-
Cas2 

Cas6f   

1 I I-F _T Included Cas5f/csy2 
Cas7f/csy3 
Cas8f/csy1 tniQ 

  
Cas6f   

1 I I-G   Included Cas3 Cas5/csb2 
Cas7/csb1 
Cas8u/csb3 

Cas1/Cas4 
Cas2 

      

1 III III-A   Included Cas10 csm2 csm3 
csm4 csm5 

   
csm6 

1 III III-B   Included Cas10 cmr1 cmr3 
cmr4 cmr5 cmr6 

   
  

1 III III-C   Included Cas10 cmr1 cmr3 
cmr4 cmr5 cmr6 

   
  

1 III III-D   Included Cas10 Cas11/csm2 
csm3 csm5 csx10 
csx19 

   
  

1 III III-E   Included gRAMP 
   

  
1 III III-F   Included SSgr11 Cas10 

Cas5 csm3 
        

1 IV IV-A 1 Included csf1 csf2 csf3 csf4 
  

Cas6   
1 IV IV-A 2 Included csf2 csf3 csf4 

  
Cas6   

1 IV IV-A 3 Included csf1 csf2 csf3 csf4 
  

Cas6   
1 IV IV-B   NA Cas11 csf1 csf2 

csf3 

   
(cysH
) 

1 IV IV-C   Not 
enough 
data 

csf2 csf3 Cas10-
like Cas11 

  
(Cas6)   

1 IV IV-D   Included csf1 csf2 csf3 recD 
  

Cas6   
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1 IV IV-E   Included csf3-csf1 csf2 csf4     Cas6   
2 II II-A   Included Cas9 Cas1 Cas2 

csn2 

  
  

2 II II-B   Included Cas9 Cas1 Cas2 
Cas4 

  
  

2 II II-C   Included Cas9 Cas1 Cas2 
  

  
2 II II-C 2 Not 

enough 
data 

Cas9 
   

  

2 II II-D   Not 
enough 
data 

Cas9         

2 V V-A   Included Cas12a Cas1 Cas2 
Cas4 

  
  

2 V V-B 1 Included Cas12b1 Cas1 Cas2 
Cas4 

  
  

2 V V-B 2 Included Cas12b2 Cas1 Cas2 
Cas4 

  
  

2 V V-C   Not 
enough 
data 

Cas12c Cas1 
  

  

2 V V-D   Not 
enough 
data 

Cas12d 
   

  

2 V V-E   Included Cas12e Cas1 Cas2 
Cas4 

  
  

2 V V-F 1 Included Cas12f1 Cas1 Cas2 
Cas4 

  
  

2 V V-F 2 Included Cas12f2 Cas1 Cas2 
Cas4 

  
  

2 V V-F 3 Included Cas12f3 Cas1 Cas2 
Cas4 

  
  

2 V V-F   Not 
included 

Cas12f6/Cas12f7 
   

  

2 V V-G   Included Cas12g 
   

  
2 V V-H   Not 

enough 
data 

Cas12h 
   

  

2 V V-I   Included Cas12i 
   

  
2 V V-J   Included Cas12j (Cas-phi) 

   
  

2 V V-K   Included Cas12k tniQ tnsB 
tnsC 

   
merR 

2 V V-L   Not 
enough 
data 

Cas12l Cas1 Cas2 
Cas4 

  
  

2 V V-M   Included Cas12m         
2 VI VI-A   Included Cas13a 

   
  

2 VI VI-B 1 Included Cas13b1 
   

(csx2
7) 

2 VI VI-B 2 Included Cas13b2 
   

csx28 
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2 VI VI-C   Included Cas13c 
   

  

2 VI VI-D   Included Cas13d 
   

  

2 VI VI-X   Not 

enough 

data 

Cas13X 
   

  

2 VI VI-Y   Not 

enough 

data 

Cas13Y         

 

Table 5: repeatTyper typing scheme (Russel et al., 2020).  

 

 

 

 

 

 

 

 

 

 

 


