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Abstract

As a topic of global health importance, skin diseases must be quickly identified and
accurately diagnosed to allow for effective treatment. Specifically for the classifica-
tion of skin diseases, the use of deep learning models in the analysis of medical images
has shown remarkable promise. To improve accuracy and predictability when clas-
sifying skin diseases, this paper suggests using an ensemble model composed of the
ResNet-50, EfficientNet, Inception V3, MobileNet, NASNetMobile, DenseNet201
and Xception architectures. The first step of the investigation is to examine the
existing research on deep learning models used for skin disease diagnosis and cate-
gorisation. ResNet-50, EfficientNet, MobileNet, Inception V3, DenseNet201, NAS-
NetMobile and Xception have demonstrated their efficacy in several medical imaging
applications, such as the identification and categorization of skin diseases. The uti-
lization of diagnostic and classification methods in the context of skin illnesses serves
as illustrative instances of such applications. It is important to note, however, that
every construction possesses inherent imperfections. The present study is further en-
hanced by the use of a novel notion referred to as a "ensemble,” which amalgamates
the most advantageous attributes of many models. To ensure proper functioning, the
ensemble model must initially extract and subsequently aggregate information. The
comprehensive set of fundamental models underwent training utilizing a vast dataset
of dermatological information. The objective of this training session was to acquire
the knowledge and skills necessary to identify and discern the distinguishing features
of skin lesions via the analysis of photographic representations. The ensemble model
incorporates feature-level fusion to aggregate information obtained from many base
models. When many data types are merged in this manner, it results in the creation
of a cohesive representation. In order to improve the process of classification and
generalization, the model utilizes the varied members of the ensemble. The efficacy
of the ensemble model is assessed by a wide array of experiments. These research
utilize a meticulously collected and standardized dataset encompassing many skin-
related disorders. The ensemble model demonstrates superiority over the individual
models in terms of accuracy, precision, recall, and Fl-score. The fusion methodol-
ogy, which leverages several sources, holds the potential to extract supplementary
data from diverse systems. The utilization of gradient rendering techniques en-
ables the comprehensive evaluation of a model’s readability. This study examines
the decision-making process of an ensemble in determining the salient features of a
picture for the purpose of labeling. This thesis presents an ensemble architecture
for identifying skin issues by utilizing ResNet-50, EfficientNet, Inception V3, Mo-
bileNet, NASNetMobile, DenseNet201, and Xception models. When compared to
the gold standard dataset, the proposed model demonstrates superior performance,
indicating its potential to assist dermatologists in making more accurate diagnoses
in real-world clinical scenarios.

Keywords: CNNs, Xception, Psoriasis, NASNetMobile, Melanoma, Inception V3,
Skin disease, ResNet-50, Eczema, EfficientNet, Acne, DenseNet201, MobileNet, So-
lar lentigo, Dermatofibroma, Scabies.
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Chapter 1

Introduction

1.1 Motivation

Skin diseases have a significant global impact due to their widespread prevalence,
resulting in discomfort, agony, and, in certain instances, posing a potential threat to
individuals’ lives. The prompt emphasizes the significance of promptly and precisely
identifying these disorders in order to facilitate effective treatment and management.
In recent times, the utilization of deep learning techniques has significantly impacted
the methodologies employed for medical picture analysis and classification tasks.
This paper presents a novel ensemble model that integrates two individual models
with three cutting-edge convolutional neural networks (CNNs), namely ResNet-50,
EfficientNet, and Inception V3. The specific models employed in this study are Mo-
bileNet, NASNetMobile, DenseNet201, and Xception. The objective is to facilitate
the categorization of skin disorders with enhanced ease and precision.

1.2 History of Diseases

1.2.1 Acne

The field of acne categorization utilising Convolutional Neural Network (CNN) mod-
els is a relatively nascent domain of investigation. The subsequent search results
furnish insights into the historical development of acne classification through the
utilisation of Convolutional Neural Network (CNN) models.The employment of com-
puter vision techniques is involved in the process of detecting acne using deep learn-
ing. This procedure involves autonomously discerning and categorising acne lesions
based on pictures of the skin. Adolescents and young individuals demonstrate an
increased vulnerability to the onset of acne. The aetiology of this cutaneous con-
dition is ascribed to the occlusion of pilosebaceous units by a confluence of sebum
and cornified epidermal cells. The manifestation of this phenomena is predomi-
nantly found in the facial region, forehead, dorsal area, and thoracic region. Acne
is a multifactorial dermatological condition that can be ascribed to several etiolog-
ical reasons, such as the proliferation of bacteria, inflammatory processes, and the
occlusion of pilosebaceous units. The ongoing epidemic is the ninth occurrence of
its kind and is projected to impact around 9.4% of the worldwide populace. The
current study identified and categorised acne on various skin types using a vari-
ety of pre-existing convolutional neural network (CNN) models, including Inception



V3, VGG16, and VGG19.Additionally, a comprehensive analysis of acne detection
was conducted using machine learning classifiers. An impressive 99.5% accuracy is
achieved by combining the Inception v3 model with a logistic regression classifier.It
is important to recognise that the creation of a comprehensive model for detecting
acne requires a substantial amount of annotated data and expertise in the domains of
deep learning and computer vision. Furthermore, it is crucial to thoroughly analyse
the ethical considerations, privacy concerns, and compliance with legal frameworks
throughout the process of designing and deploying such a system, specifically in
relation to the utilisation of patient data within a healthcare environment. The in-
clusion of dermatologists and medical specialists is essential to ensure the accuracy
and dependability of the model for actual implementations.|25]

AcneNet is a classification approach for acne classes that utilises a deep convolu-
tional neural network (CNN).[6]

Using a Deep Residual Neural Network model, this study presents a novel approach
to classifying five distinct types of acne.Examining how interpretable convolutional
neural network (CNN) models can be used in the context of acne diagnosis and
severity evaluation is the primary goal of this research.[49]

In this research, we want to construct and compare different deep learning models
that can identify acne lesions in photos of the face. In addition, these models at-
tempt to assess facial acne severity according to medical standards.The major goal
of this research is to develop and test a deep learning model that can reliably diag-
nose acne vulgaris by analysing pictures taken in clinical settings.[32]

Acne sufferers are sorted into one of seven groups using the 16-layer Visual Geometry
Group (VGG16) model in the current investigation.The purpose of this research is
to perform a methodical and comparative examination of several approaches to the
segmentation of photographs displaying acne vulgaris.[55] The research presented
here presents a method for automatically segmenting and labelling images of acne
lesions using convolutional neural networks.

In general, the findings from the search indicate that the field of acne classifica-
tion using convolutional neural network (CNN) models is now in its nascent phase.
Researchers are actively proposing innovative methodologies and constructing deep
learning models to effectively identify acne lesions and categorise them into distinct
classes.

1.2.2 Melanoma

Melanoma is hypothesised to originate from melanocytes, which are specialist cells
responsible for the production of melanin, the pigment that determines skin colour.
The aforementioned sickness, if not properly addressed, has been widely acknowl-
edged to be associated with aggressive conduct and can provide a substantial risk to
an individual’s overall welfare.The significant advancements of deep learning (DL)
algorithms across many domains have resulted in a substantial increase in the adop-
tion of automated diagnostic systems within the healthcare sector. The main aim
of this work is to examine the potential of deep learning (DL) as a method for
accurately identifying and demarcating the target region of a lesion. Enhanced
Super-Resolution Generative Adversarial Networks (ESRGAN) are employed in the
preliminary phase to enhance the quality of the image. The subsequent procedure
involves employing segmentation techniques to effectively delineate the Regions of



Interest (ROIs) from the surrounding areas within the image. To address the dispar-
ity observed in the existing dataset, the researchers employed data augmentation
techniques. Following the preliminary examination of the image, a convolutional
neural network (CNN) that has been trained using a modified variant of Resnet-50
is employed to classify skin lesions. The present investigation utilised a heteroge-
neous dataset consisting of seven distinct types of skin cancer obtained from the
HAM10000 database. This research paper introduces a new optimisation approach
for achieving precise categorisation of skin lesions. The approach involves combin-
ing a Convolutional Neural Network (CNN) architecture with transfer learning.The
original design of Resnet-50 underwent modifications in order to enhance the pre-
training process of the model’s weights prior to its deployment.[38]

In recent times, there has been a growing utility of Convolutional Neural Network
(CNN) models in the process of categorising melanoma. The provided references
provide insights into the evolution of Convolutional Neural Network (CNN) models
for the purpose of melanoma categorisation across the years.The primary objective
of this study is to use a newly built deep convolutional neural network (CNN) model
to the task of melanoma classification. Dermoscopic images are employed for the
purposes of educating and assessing a Convolutional Neural Network (CNN) model.
These photos are widely regarded as the benchmark for accurately representing skin
lesions. [41]

This work presents a novel methodology for the categorisation of melanoma through
the analysis of microscopic images. The method reported in this study utilises
a deep convolutional neural network (DCNN) to perform automated classification
of melanoma lesions into malignant or benign categories. Previous research has
demonstrated that DCNNs exhibit a notable degree of accuracy in this task.This
study aims to explore the capabilities of deep learning algorithms in the context of
melanoma detection and classification.[39]

This research presents a new optimisation approach for the precise identification
and categorisation of different skin lesions. The approach involves the integration
of a Convolutional Neural Network (CNN) structure with a transfer learning model.
This research conducts a comprehensive analysis by means of a systematic review,
focusing on the utilisation of convolutional neural networks (CNNs) for the purpose
of accurately classifying skin cancer.|[2]

This study offers an extensive examination of the existing body of literature per-
taining to Convolutional Neural Networks (CNNs) in the context of skin lesion
classification. The study conducted by researchers yielded a categorisation accuracy
of 93.1% for distinguishing between melanoma and nonmelanoma cases. The sen-
sitivity of the categorisation was determined to be 94.9%, indicating the ability to
correctly identify melanoma cases, while the specificity was calculated to be 92.8%),
reflecting the accuracy in correctly classifying nonmelanoma cases. The main aim
of this study was to employ deep learning techniques in order to address the issue of
melanoma categorisation. In order to accomplish this objective, it will be imperative
to undertake a comprehensive examination of multiple datasets, assessment criteria,
challenges encountered, and prospective avenues for progress within this field.[15]
This article provides an overview of the current research on the application of Convo-
lutional Neural Networks (CNNs) in the categorisation of melanoma.The objective
of this study is to examine the utilisation of deep convolutional neural networks in
the automated categorisation of melanoma skin cancer.[37]



The present investigation employed convolutional neural networks (CNNs) for the
purpose of detecting and diagnosing melanoma skin cancer. The primary objective
was to perform binary classification of dermatological images.The primary objective
of this project is to investigate the application of Convolutional Neural Networks
(CNNs) in the development of a comprehensive autonomous system capable of ac-
curately classifying skin cancer.[10]

The main aim of this study was to create an automated method utilising Convolu-
tional Neural Network (CNN) for the precise identification and distinction of skin
cancer and benign tumour lesions.

The use of Convolutional Neural Network (CNN) models for melanoma categorisa-
tion has seen a significant uptick in recent years of research activity. Researchers
in academia have devised cutting-edge methods and produced complex deep learn-
ing models that can reliably differentiate between malignant and benign melanoma.
The models rely heavily on dermoscopic images and skin images to make their clas-
sifications.

1.2.3 Solar Lentigo

Convolutional neural network (CNN) models for solar lentigo classification is an
emerging field of study. The references supplied provide helpful context for un-
derstanding how Convolutional Neural Network (CNN) models have been used to
classify solar lentigos over time.Solar lentigo, also known as age spots or liver spots, is
a common skin condition characterised by the development of small, uniform, brown
or deeply pigmented patches, most often on the face, hands, and other sun-exposed
areas of the body. Excessive melanin production occurs locally due to prolonged
sun exposure, which is widely believed to be the primary cause of these pigmented
patches.In addition to traditional methods like MRI and X-ray imaging, reflectance
confocal microscopy (RCM) is becoming increasingly used in the field of medical
imaging. Today, Reflectance Confocal Microscopy (RCM) is the gold standard for
diagnosing lentigo. The study of skin can be performed quickly and with a high
degree of spatial resolution using Reflectance Confocal Microscopy (RCM). In this
study, we used a deep convolutional neural network (CNN) to classify reflectance
confocal microscopy (RCM) images with a focus on lentigo detection and identi-
fication. The InceptionV3 architecture was used as the research’s methodology of
choice, which allowed for the incorporation of techniques like data augmentation
and transfer learning. Using RCM data, the proposed method was tested for its
utility and found to be highly effective in its detection of anomalies.[18]

This research proposes a unique method for image categorisation using reflectance
confocal microscopy (RCM) pictures and a deep convolutional neural network (CNN).
The strategy’s primary goal is to identify and confirm the condition of lentigo.In this
paper, we give a systematic assessment of the literature on the application of Con-
volutional Neural Networks (CNNs) to the problem of skin cancer classification.[19]
In this paper, we provide a comprehensive review of work done to date on the topic of
employing Convolutional Neural Networks (CNNs) to classify skin lesions. Whether
a Convolutional Neural Network (CNN) is utilised solely as a feature extractor or for
end-to-end learning can be used to classify the revealed methods.To better under-
stand how Vision Transformer Networks (VINs) and pre-trained models utilising
Convolutional Neural Networks (CNNs) can be used for multi-class skin cancer clas-



sification, this study aims to examine these methods.|[3]

The purpose of this research is to analyse solar lentigo classification problems, such
as class imbalance within the dataset.In the field of radiology in particular, con-
volutional neural networks (CNNs) have emerged as a fundamental deep learning
technique. This research provides a comprehensive look into Convolutional Neural
Networks (CNNs), including an investigation of their fundamental concepts, archi-
tectural design, and training procedure. This research also looks at the application
of Convolutional Neural Networks (CNNs) in radiology, highlighting its ability to
improve diagnostic accuracy, boost productivity, and provide automated medical
image interpretation. The final results of the study are in.This article gives a com-
prehensive evaluation of convolutional neural networks (CNNs) in radiography, with
a special emphasis on its application to the classification of skin lesions. This article
provides a comprehensive look of deep learning, discussing its foundational ideas,
convolutional neural network (CNN) designs, existing obstacles, real-world applica-
tions, and future research directions.[52]

This research provides an in-depth understanding of deep learning’s foundational
concepts, with a focus on convolutional neural network (CNN) architectures and
their application to medical image analysis, particularly skin lesion categorisation.
In order to classify facial and scalp skin lesions, we compared a convolutional neural
network with commercial validation against a panel of 64 domain experts.[4]

The purpose of this study is to evaluate a commercially validated Convolutional
Neural Network (CNN) and a panel of 64 dermatologists for their ability to cor-
rectly categorise solar lentigo and other skin diseases.[20]

According to the above sources, classifying solar lentigo by the application of CNN
models is a relatively new area of research. The identification of solar lentigo has
come a long way thanks to the unique methods developed by researchers and the
use of deep learning models.[23]

1.2.4 Dermatofibroma

The use of Convolutional Neural Network (CNN) models in the classification of skin
lesions, particularly in the context of dermatofibroma, is widely discussed and sev-
eral search results provide relevant material. The literature cited here is drawn from
several scholarly publications. A benign skin condition, dermatofibroma is charac-
terised by the development of a tiny, firm nodule or protrusion on the skin’s surface.
Lesions are often found to have a wide spectrum of colours, from shades of brown to
crimson. Furthermore, the size of these lesions varies widely, from a few millimetres
to as much as one centimetre. Although dermatofibromas are most commonly found
in the limbs, they can appear in other locations of the body.In this groundbreak-
ing study, the authors present a novel deep learning model trained to identify skin
cancer from photographs of moles. The current research made use of a dataset of
3,400 images called the HAM10000 dermoscopy picture collection. Melanoma and
non-melanoma lesions were both included in the dataset. 860 cases of melanoma,
327 cases of actinic keratoses and intraepithelial carcinoma (AKIEC), 513 cases of
basal cell carcinoma (BCC), 795 cases of melanocytic nevi, 790 cases of benign ker-
atosis, and 115 cases of dermatofibroma were included in the dataset. In order to
accurately categorise images as either benign or malignant, a highly sophisticated
convolutional neural network (CNN) was created. By using the already-trained



AlexNet model, the researchers used a transfer learning approach. The suggested
model takes the original image as input and chooses relevant features from it au-
tonomously to speed up the labelling process. Because of this, segmenting lesions
and extracting relevant characteristics can be done with less effort.[7] The authors
suggested using a deep convolutional neural network (CNN) model for accurate
and efficient lesion boundary detection in photos. After initial training, a more
refined and improved dataset was used to further fine-tune the ResNet-50 model.
Dermoscopy pictures were then classified into melanoma, seborrheic keratosis (SK),
and nevus using the enhanced model.[22] The CNN model achieved the greatest
accuracy of 95.18% in the suggested method for classifying dermoscopic pictures of
skin lesions.[47] Researchers used a GoogleNet Inception v3 Convolutional Neural
Network (CNN) model that has been pre-trained using data from the 2014 ImageNet
Large Scale Visual Recognition Challenge’s dataset of roughly 1.28 million images.
Using the dataset as a basis, the model was trained exhaustively via transfer learn-
ing methods. A dataset of 129,450 dermatologist-annotated clinical pictures was
used for the study. A total of 33,740 images were examined, and it was determined
that 3,374 of these were suitable for dermoscopy. The data set was split in half to
create two groups. The original dataset used for training and validation included
127,463 images. There were 1,942 pictures in the second set, all of which had biopsy
labels attached to them. These pictures were used for trials only. The research
used a cross-validation technique with nine iterations.Researchers have effectively
classified images of skin lesions using ensembles of deep learning models. In its re-
search, the team used a variety of publicly available data sources. The authors used
the ISIC 2018 competition dataset, which included 10,015 dermoscopy images, for
their research. This data set is the one that was chosen to be used in the contest
proper. The ISIC Archivel, a comprehensive collection of about 13,000 dermoscopic
pictures, was also incorporated into the study. Researchers were able to gain access
to more than a thousand additional clinical cases thanks to the Interactive Atlas
of Extreme Learning, which they added into their dataset. There were dermoscopy
and close-up clinical pictures to back up every claim. In addition, the PH2 Dataset,
which contains 200 dermoscopic images, and the Dermofit Image Library, which con-
tains 1300 photographs, were added into the study.Researchers used a Convolutional
Neural Network (CNN), specifically the Microsoft ResNet-152 model, to categorise
skin lesions like dermatofibroma.[42].Deep learning architectures have demonstrated
outstanding performance in the classification of photos across various domains, in-
cluding the field of dermatology.[21]Researchers have proposed using a model based
on weighted average ensemble learning to categorise different types of skin lesions,
including dermatofibroma. Five different deep neural network models were used
in the research. [26]Convolutional neural network (CNN) models have been used
for the aim of classifying skin lesions, including dermatofibroma, according to the
cited works. Additional research is needed to fully comprehend the evolution of der-
matofibroma classification through the application of Convolutional Neural Network

(CNN) models.

1.2.5 Eczema

Scholarly interest is expanding in the potential of Convolutional Neural Network
(CNN) models for use in the classification of eczema. The below cited works shed



light on the development of Convolutional Neural Network (CNN) models for eczema
categorisation over time.One of the most common skin disorders, eczema has gained
widespread attention in recent years. In order to improve the standard of care for
patients, it is crucial that a treatment for this medical issue be found as soon as
possible. Eczema is normally diagnosed after a thorough physical examination by
a medical practitioner, such as a doctor or a dermatologist. Because of their same
symptoms, it can be difficult to distinguish between the many forms of eczema. Mul-
tiple efforts have been made recently to automate the identification of skin diseases
to a high degree of accuracy.Another obvious shortcoming is the lack of specific de-
tails about eczema’s varied symptoms and clinical manifestations in the dataset. In
this study, we introduce a unique approach to eczema classification using deep con-
volutional neural networks (CNNs). The data utilised in this study was gathered by
the authors themselves. Data augmentation is a method used to improve the quality
of images by the use of various adjustments. It has been shown that regularisation
strategies, such as batch normalisation and dropout, can successfully alleviate the
issue of overfitting.[12]In this article, we introduce a convolutional neural network
(CNN) model trained on photos from clinical settings to detect and diagnose inflam-
matory skin disorders like eczema automatically. In order to categorise the many
forms of eczema, this research presents the EczemaNet framework, which makes use
of deep convolutional neural networks.[16]This study introduces a novel approach to
categorising five different forms of eczema using a deep convolutional neural network
(CNN). The task of assigning classes is carried out by means of a separate dataset
that has been carefully selected and organised for this purpose. This study delves
at how far artificial intelligence (AI) has come in the field of dermatology image
analysis, and where it may go in the future. This paper gives a comprehensive ex-
amination of current and future trends in the application of Al to the interpretation
of dermatology pictures. In this paper, we focus on how to use convolutional neural
network (CNN) models for eczema classification.The use of Al in the field of mul-
tiphoton tomography with the aim of identifying cases of atopic dermatitis.[13]This
paper introduces a novel approach for categorising eczema conditions into five groups
using deep convolutional neural networks (CNNs). The task of assigning classes is
carried out by means of a separate dataset that has been meticulously created for
this function. In this investigation, we examine the state of the art and potential
future directions of Al in dermatology image processing.[44]This academic essay
presents a thorough analysis of the current state of artificial intelligence (AI) in the
dermatology field and its potential future applications. The fundamental goal of
this research is to analyse how convolutional neural network (CNN) models might
be used to classify eczema.Multiphoton tomography for the diagnosis of atopic der-
matitis using artificial intelligence.[11]In this work, multiphoton tomography images
were analysed to see whether or not artificial intelligence might be used to detect
atopic dermatitis. It is also emphasised that this technology has the potential to
be used in the diagnosis of other skin disorders including eczema. Collectively, the
preceding citations suggest that study into CNN models’ potential utility in the
context of eczema classification is blossoming. The appropriate categorisation of
different eczema problems is currently the focus of academic experts who are ac-
tively presenting novel techniques and developing deep learning models. Analysing
clinical images and multiphoton tomography images allows for the classification to
be completed.



1.2.6 Psoriasis

Psoriasis classification using Convolutional Neural Network (CNN) models is an
active area of study. The subsequently referenced articles shed light on the evolu-
tion of psoriasis classification using CNN models and offer essential historical con-
text.Psoriasis is an autoimmune disease that causes abnormal and excessive growth
of the skin’s outermost layer, the epidermis. This condition is clinically manifested
by the appearance of erythematous, raised, and desquamating patches or plaques,
which can appear anywhere on the body but most commonly do so on the elbows,
knees, scalp, and lumbosacral area. The symptoms of any of the patches men-
tioned above may include itching, soreness, cracking, or even bleeding. Psoriasis
is a skin disorder characterised by an overactive immune system that leads to the
inappropriate destruction of healthy skin cells and rapid turnover of these cells.The
primary aim of this research was to create an advanced deep-learning network that
could correctly and quickly classify dermoscopic images of psoriasis and other papu-
losquamous illnesses. The research was conducted to better diagnose psoriasis.The
EfficientNet-B4 architecture was trained using a database of 7033 dermoscopy im-
ages collected from a total of 1166 people. The aforementioned photographs were
obtained from the Dermatology Clinic of China’s Peking Union Medical College
Hospital. Five-fold cross-validation was used on the training dataset to evaluate
EfficientNet-B4 and compare its classification performance to that of other widely
used networks in previous studies. Ninety images were taken from the test dataset
and used to compare the performance of a four-class model and trained dermatolo-
gists. An online poll was used to gather demographic data, including the ages and
specialities of the dermatologists who provided the diagnoses.[31]Using 5241 photos
of psoriasis lesions, this research developed a CNN model for the detection of dif-
ferent forms of psoriasis.[36] The primary objective of this study was to compare
and contrast Convolutional Neural Network (CNN) deep learning models for auto-
mated psoriasis identification and categorisation. Psoriasis was one of nine common
skin conditions used in this standardised dermatological collection comprising 8021
clinical photos.There was no user-provided content for scholarly revision.[17]The
aforementioned research evaluated Convolutional Neural Network (CNN) models
for classifying psoriasis, a skin disorder. There was cause for optimism in the results
of these experiments, with accuracy rates ranging from 72.4% to 82.9%.[27][9] This
systematic review aims to examine the increasing amount of research conducted on
computer-aided systems utilised in the diagnosis of skin lesions, with a particular fo-
cus on the categorization of psoriasis through the application of convolutional neural
network (CNN) models.[24] This comprehensive study of deep learning applications
in dermatology examines the many approaches taken, results obtained, and restric-
tions placed on these applications. Psoriasis classification using convolutional neural
network (CNN) models is the primary focus of this investigation.[54] Collectively,
the aforementioned articles point to a new area of study concerned with the develop-
ment and use of Convolutional Neural Network (CNN) models for the categorisation
of psoriasis. In order to accurately detect different psoriasis symptoms through the
analysis of clinical pictures, researchers are currently engaged in the development of
novel approaches and the construction of deep learning architectures.



1.2.7 Scabies

The microscopic arthropods called Sarcoptes scabiei are the infectious cause of
the skin disease known as scabies. The relevant mites can penetrate the stratum
corneum of the skin and lay eggs there. Intense itching and the appearance of a rash
with redness and raised bumps are the results of this procedure. Nighttime itching
is caused by an allergic reaction to the mite’s saliva and excretory secretions.The
fundamental objective of this study is to analyse in depth the effectiveness of a deep
learning system trained with a VGG-16 model in the timely detection of scabies.
Examining deep learning approaches, gathering quantitative data, employing the
VGG-16 model for training and testing, and assessing the results were the primary
goals of this investigation. The research strategy included reevaluating a dataset
obtained for the study’s aims and making use of an advanced computational system
that enhances the efficacy of results. Two distinct sets of data were used for training
and testing the VGG-16 model. Emerging deep learning-based categorisation algo-
rithms, along with improvements in hardware technology and computing capacity,
have greatly enhanced the significance of dermatological applications. These courses
are equipped to handle issues such limited access due to geographical isolation, phys-
ical difficulties, a lack of dermatologists, employment constraints, schedule conflicts,
and others. They also help doctors make objective and quick diagnoses.[61]

1.3 Researched Problem

Numerous people throughout the world suffer from skin diseases, each of which can
have serious consequences for their health and well being. Rapid and accurate diag-
nosis of skin conditions is critical for starting effective therapy as soon as possible
and minimizing adverse effects. Medical image analysis, and more specifically the
diagnosis of skin diseases, is an area where deep learning, and more specifically Con-
volutional Neural Networks (CNNs), has shown promising results. The fundamental
goal of this study is to devise an accurate and automated approach to classifying
dermatological images into discrete categories according to different skin conditions.
The following important points will next be discussed and dissected:

1.3.1 Dataset Collection and Preparation

e Gathering a diverse and comprehensive dataset of dermatological images con-
taining various skin disease classes with appropriate annotations.

e Data Augmentation is done.

e Preprocessing the dataset to standardize image size, enhance image quality,
and address class imbalance if present.

1.3.2 Model Selection and Implementation

e Investigate the suitability of CNN models like- Xception NasNetMobile, Mo-
bileNet and DenseNet201, for the detection and classification tasks of skin
diseases.



e Implement the ensemble model comprising Inception V3, ResNet-50, and Ef-
ficientNet to leverage their collective strengths.

1.3.3 Model Training and Optimization

e Train the individual CNN models and the ensemble model using transfer learn-
ing with appropriate hyperparameter tuning and optimization techniques.

e Validate the models on separate test datasets to assess their generalization
capabilities.

1.4 Aims and Objectives

The study’s major objective is to develop a reliable and efficient method for iden-
tifying skin disorders. To accomplish this, we’ll use many distinct CNN models,
including Xception, NasNetMobile, MobileNet, and DenseNet201. In addition, we’ll
use a model consisting of multiple neural networks (an ”ensemble”); including In-
ception V3, ResNet-50, and EfficientNet. The application of deep learning methods
shows great potential for accurately diagnosing skin issues with a high degree of
precision. The aims and purposes of utilising deep learning for the diagnosis of skin
problems include:

1. Automated diagnosis:The purpose of this research is to create and imple-
ment a computerised system for the diagnosis of dermatological disorders using
clinical photographs and patient data. [45].

2. Classification:Using convolutional neural networks and recurrent neural net-
works, more specifically MobileNet V2 and Long Short-Term Memory (LSTM)
models, to categorise skin diseases. [30].

3. Prognosis:The development of automatic information systems that can effi-
ciently gather information for analysis is crucial to the field’s further develop-
ment. [43].

4. Review and analysis:The primary aim of this research was to review ex-
tensively the application of deep learning methods to the classification of skin
diseases. The primary purpose of this research was to provide a thorough
review of the fundamental properties of various imaging technologies as they
relate to skin lesions and to assess the current state of this field. Research anal-
yses that rely on datasets can only be accurate if they make use of a variety of
data processing methods, categorisation models, and evaluation criteria.[33]

5. Construction of a novel framework:The focus of this research is on devel-
oping a novel framework for clinical skin disease diagnosis using deep learning
methods. [34].

Thanks to advancements in deep learning methods, the field of skin disease identifi-
cation has made significant strides. Nonetheless, there are a few problems that need
fixing before this area can truly flourish. There is a pressing need to improve the
properties of datasets and fine-tune deep learning algorithms, as well as to construct
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publicly-acceptable skin disease picture datasets and address racial and geographical
biases in existing public datasets. [58].
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Chapter 2

Literature Review

The group of researchers conducted an extensive analysis of deep learning and ma-
chine learning applications in the diagnosis of skin diseases. In order to enhance the
diagnostic procedure for skin diseases, this study paper provides a comprehensive
review of deep learning techniques and their use within the field of dermatology. The
datasets used for testing and training algorithms were the primary topic of discus-
sion. The study team reviewed numerous scholarly works on the topic of using deep
learning algorithms to the problem of diagnosing and classifying skin disorders. This
project’s overarching goal is to conduct a thorough review of recent scholarly works
that apply deep learning methods to the diagnosis of skin disorders.The first part of
the lecture was a detailed explanation of the techniques used in the field of dermatol-
ogy for photographing skin lesions and identifying their causes. The presentation’s
primary focus was on freely accessible skin datasets that can be used in the creation
and evaluation of algorithms. Therefore, a comprehensive study was executed to
analyse various viewpoints on the application of deep learning algorithms to the
diagnosis of skin disorders. The primary purpose of this research was to examine
deep learning and machine learning algorithms and their applicability to image pro-
cessing in the context of diagnostic accuracy. The accuracy of the deep learning and
machine learning algorithms was very high.The presentation began with a detailed
explanation of the procedures now used in the field of dermatology for capturing vi-
sual evidence of skin conditions. The debate centred largely on freely available skin
datasets that can be used to evaluate and optimise algorithms. Therefore, a compre-
hensive study was executed to analyse various viewpoints on the application of deep
learning algorithms to the diagnosis and classification of skin disorders. The authors
set out to investigate the diagnostic value of image processing methods. They also
compared the outcomes of deep learning and machine learning algorithms. Accuracy
is not an issue for either deep learning or machine learning algorithms.According to
the study’s findings, using deep learning and machine learning algorithms signifi-
cantly improved the accuracy of identifying and classifying skin diseases by 99.04%.
There is a wide range of precision between image processing methods.When compar-
ing image processing approaches with deep learning and machine learning methods,
there is a clear gap in the degree of diagnostic precision.There are unique difficul-
ties involved in collecting data on dermatological diseases for the aim of algorithmic
evaluation and education.There is a lack of specific information on the datasets used
in the study in the reviewed research articles. The purpose of this research is to
investigate if deep learning models can be used to accurately diagnose a wide range
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of skin disorders. Physical examination and biopsy can be time-consuming and im-
precise methods for diagnosing dermatological conditions. The current difficulties in
the diagnosis of dermatological disorders can be overcome with more research and
analysis of deep learning and machine learning methods.[46]

The study evaluated several Convolutional Neural Network (CNN) models for their
ability to categorise 23 distinct skin disorders. The purpose of the study was to in-
vestigate the efficacy of using Deep Learning methods, specifically those that had
been trained on the ”"DermNet” dataset, for the diagnosis of skin disorders. In
addition, many more advanced architectures for Convolutional Neural Networks
(CNNs) were presented.To determine which convolutional neural network (CNN)
architecture is superior, a comparative study was performed.Numerous convolu-
tional neural network architectures were used to train on the DermNet dataset,
with impressive results. These included InceptionV4, InceptionV3, DenseNet-201,
MobilenetV3, ResNet50, VGG19, ResNext50, NASNetLarge, GoogleNet, and In-
ceptionResNetV2.The researchers used the DermNet dataset, which included 19,434
photos of various skin conditions. The images were further classified, and the pro-
cess yielded 23 separate categories.In order to train the model, we used a dataset
consisting of 12,368 images. There were a total of 3,085 photos set aside for verifica-
tion, and another 4,002 were used for pilot testing. The DermNet dataset was used
to classify skin diseases, and it was found that the DenseNet architecture provided
the highest accuracy. Top-1 accuracy for the DenseNet design was 68.97%, while
Top-5 accuracy was 89.05%.[35]

This work unveils an all-encompassing diagnostic system that uses deep learning
methods to identify different types of skin lesions and precisely map their bound-
aries. When used, the integrated diagnostic system significantly boosts Inception-
ResNet-v2’s classification accuracy. In the ISIC 2016 test dataset, an improvement
in classification performance of 2.72% was seen for benign patients while 4.71%
was seen for malignant patients. The Fl-score is used as a quantitative measure
of improvement. The results of the study show that ResNet-50 performs more well
as a classifier for identifying various skin lesion situations. In this context, how-
ever, Inception-ResNet-v2 is regarded as the second-most effective classifier.There
are just two types of skin lesions included in the ISIC 2016 dataset: benign lesions
and melanoma. The results cannot be extrapolated to cover other types of skin
lesions because of the small sample size. Lacking comparative analyses of recog-
nised methodology or models, it is difficult to determine how effective the proposed
integrated diagnostic framework is in relation to other approaches. The study does
not offer a comprehensive evaluation of key aspects connected to the deep learning
model’s interpretability and explainability. Establishing credibility and encouraging
acceptance of the model within the field of clinical practise depends critically on
meeting the aforementioned criteria.[14]

In order to detect melanomas, this study suggests using well-established architec-
tures like AlexNet, ResNet50, Inception V3, and GoogleNet. Overall, the Incep-
tionV3 model performed exceptionally well in melanoma detection across all in-
cluded datasets, including MedNode, PH2, and HAM10000 Kaggle.The results of
this study show that there was an absence of inclusivity in the reporting of de-
tails on the size and composition of the datasets that were analysed. Pre-trained
architectures are used, but any potential biases or limits of these models are not ad-
equately acknowledged or explored. In particular, the approach does not do enough
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to recognise and counteract the biases that present within the ImageNet database,
the primary dataset used to train the models.[40]

On the basis of observed data, it is clear that the proposed structures function better
than anticipated. The behaviour observed is a result of the measurement parame-
ters being pushed to their limits. When applied to the ISIC2017 dataset, the best
results have been obtained using ResNet50 and SVM models. The accuracy of the
above-described procedure is 99.19%, the AUC is 99.32%, the sensitivity is 98.98%,
the precision is 98.78%, the F1 score is 98.88%, and the computation time is 2.6988
seconds.The research does not provide a thorough explanation of the specific dif-
ficulties and restrictions experienced in the course of applying the suggested deep
learning models and preprocessing methods. A comparison of the proposed strat-
egy’s efficacy to that of other sophisticated methodologies or algorithms utilised for
skin lesion classification is lacking from the study. Without this knowledge, deter-
mining its true efficacy is difficult.[28]

The major goal of this research is to study how convolutional neural networks
(CNNs) and deep learning (DL) methods can be applied to the study and under-
standing of dermatology-related medical pictures. Three common dermatological
problems are described in the Middle Eastern region, and the efficacy of six con-
volutional neural network (CNN) models is examined in this study. These mod-
els are VGG16, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet50.The
study sheds insight on the underrepresentation of other dermatological conditions,
as most recent efforts in the fields of dermatology and deep learning concentrate
on the identification of skin cancer. Data for this study came from Dermnet and
the University of lowa’s Department of Dermatology, among other well-established
institutions that are cited in the text. However, the details provided fall short of
providing a complete picture of the scope and depth of the dataset. Based on the
results of this research, it is clear that the need for comprehensive databases relating
to dermatological disorders does not receive the attention it deserves. Furthermore,
it highlights the need of protecting patient anonymity. In addition, it doesn’t ac-
count for the problem of protecting patients’ privacy.[50]

The primary goal of this research was to improve the accuracy of skin condition
identification and categorisation by using novel image processing models and deep
learning methodologies. The study included a proprietary dataset of over 1450 im-
ages depicting nine different skin states, as well as three different neural models: Mo-
bileNetV2, InceptionV3, and ResNetV2. All of the above parts worked together to
form a solid architectural basis. The MobileNetV2 model successfully distinguished
between 96.77% of medical conditions. The prompt identification and diagnosis of
dermatological diseases is the primary focus of this study because of the possible life-
saving importance of this factor. The aforementioned finding demonstrates the need
of encouraging interdisciplinary cooperation between the fields of computer science
and medicine in the context of this particular topic. The research’s capacity to be
extrapolated to a larger population is hindered by the absence of details about the
size and composition of the dataset used in the study. The research shows that not
enough attention has been paid to thoroughly investigating the specific difficulties
encountered during the initial phase of data gathering. The approaches and meth-
ods used to overcome these obstacles are not elaborated upon either. The study’s
failure to account for the model’s crucial training and deployment features creates
a realistic obstacle to its use in actual settings.[48]
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The fundamental objective of this study is to create a hybrid deep learning approach
for the automatic prediction of skin problems. An automated system for classify-
ing skin conditions is now under development, and techniques like Deep Convolu-
tional Neural Networks (DCNN) and the Binary Butterfly Optimisation Algorithm
(BBOA) are being put to use in the process. The fundamental objective of this
research is to improve the reliability and accuracy of forecasts for skin diseases. To
improve performance by retaining state knowledge from previous image classification
tasks, the proposed framework makes use of the Biogeography-Based Optimisation
Algorithm (BBOA), and to accurately differentiate the specific type of skin condi-
tion, it makes use of the Deep Convolutional Neural Network (DCNN). Models are
trained using image decomposition and feature abstraction methods, after which
they are compared to a standard set of dermoscopy or clinical images. The various
skin problems are then separated, extracted, and categorised using a wide variety
of methods.Significant improvements in accuracy in the detection and classifica-
tion of dermatological disorders have been demonstrated by the methods outlined
in this study compared to earlier optimisation methodologies. This strategy also
reduces the need for both computational and human resources.To better forecast
skin illnesses, a hybrid deep learning framework is used. This framework integrates
deep convolutional neural networks (DCNN) with the biogeography-based optimi-
sation algorithm (BBOA). Reliable prognostic forecasts can be made thanks to this
method’s emphasis on preserving contextual data.When compared to conventional
methods, the suggested model shows considerable improvements in computing effi-
ciency, leading to more accurate categorisation and diagnosis of skin disorders. As
a result, this model greatly reduces the need for a lot of time and effort spent on
computing.Instead of completely replacing current disease diagnosis technology, the
proposed strategy aims to supplement it. Visual symptom-based diagnoses typi-
cally have inferior diagnostic precision compared to those derived from laboratory
approaches. Furthermore, it might be difficult to spot issues in their early stages
when relying exclusively on visual inspection.Additional research and data collection
are required to develop population-specific models that adequately address the lim-
itations of existing risk prediction models.The strategy to integrating DCNN with
BBOA is strengthened by incorporating historical timestamp data.[56]

The primary goal of this study is to compare fourteen different deep learning net-
works for their ability to categorise multiple skin lesions (MSLC) when presented
with skewed data.The final fully connected layer of a set of fourteen deep learn-
ing networks is swapped out for FC7, softmax, and cross-entropy using transfer
learning. This swap is performed to improve the sorting procedure.Ten thousand
and fifteen dermoscopic images were used in the study. Scaling, normalising, and
enhancing were just some of the pre-processing operations performed on the im-
ages.The evaluation of networks requires the use of fixed parameters such as batch
size, number of iterations, and starting rate of learning. Accuracy, recall, precision,
and the F1 score are just few of the performance metrics used in network analy-
sis. The investigation’s final step involves comparing and contrasting the results of
the actual experiment.The purpose of this research is to compare fourteen differ-
ent deep learning networks for their ability to correctly categorise a large variety of
skin lesions. This study sheds light on the viability of such networks for classifying
a wide range of dermatological conditions.Rather than spending time training on
massive datasets from scratch, transfer learning can make use of already developed
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models.Scaling, normalisation, and augmentation are examples of pre-processing
techniques frequently used to improve classification task results. The study analyses
and compares the performance of several networks using a variety of criteria, includ-
ing accuracy, recall, precision, and F1 score.The limitations and shortcomings of the
chosen methodology and approach are not thoroughly examined in the study. The
difficulties in skin lesion categorisation could have been better understood if greater
attention had been paid to the data set used or the constraints of deep learning
networks.[51]

The fundamental objective of this study is to create a system for accurate skin dis-
ease diagnosis by combining optimal region growing segmentation with autoencoder-
based classification techniques.When it comes to segmenting diseased regions, the
Optimised Region Growing method coupled with the Grey Wolf Optimisation (GWO)
algorithm produces the best results. Weber local descriptors (WLDs) and grey level
co-occurrence matrices (GLCMs) are used to evaluate the segmented lesions’ tex-
tures.Using an autoencoder and the resulting latent representation, a smaller collec-
tion of features can be built. This strategy makes it easier to reduce the feature vec-
tor’s dimensionality.Pathological lesion classification is accomplished using a CNN
and additional neural networks trained on the latent representation acquired from
the autoencoder. The results of the empirical study show that the proposed classifi-
cation model outperforms the more conventional deep classification techniques.The
experimental results reported here lend credence to the claim that the suggested
framework is superior to more traditional deep classification methods for spotting
and diagnosing skin issues.Using the Optimised Region Growing with Grey Wolf
Optimisation (GWO) method improves lesion segmentation precision. Autoencoder-
based feature reduction is a technology that aims to lower the dimensionality of
the feature vector, therefore improving the classification model’s performance.The
research does not thoroughly investigate the potential issues or constraints associ-
ated with the suggested architectural framework. It’s important to remember that
the framework’s performance may vary depending on the quantity and variety of
training data used to build the classification model.[57]

The primary goal of this research was to enhance the efficiency of skin cancer de-
tection by combining the Sparrow Search Algorithm (SpaSA) with deep transfer
learning approaches. The SpaSA optimizer was used as the method for optimising
the hyperparameters in this study. Eight different pre-trained convolutional neural
network (CNN) models and five unique U-Net models are used in the optimisation
process. Improved skin cancer segmentation is the primary focus of this optimisa-
tion. The dataset used in this research is split into two subsets, one with 2 classes
and the other with 10. Five different public resources were used in the compila-
tion’s acquisition. The presented method is based on the U-Net framework, namely
DenseNet201. Publicly attested successes provide credence to the claim that the
aforementioned approach is significantly effective in the field of skin cancer segmen-
tation and classification.This research uses the Sparrow Search Algorithm (SpaSA)
in conjunction with deep transfer learning methods to improve the identification
and classification of skin cancer.Five distinct U-Net models are used to increase
classification accuracy and resilience, and the SpaSA optimizer is utilised to im-
prove hyperparameters.The Sparse Simulated Annealing (SpaSA) algorithm is one
example of a meta-heuristic optimisation technique used to find optimal answers to
difficult optimisation problems.The process entails collecting information from five
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open-source resources to build a large-scale dataset that can be used for both eval-
uation and instruction.The study does not thoroughly investigate the performance
indicators and outcomes linked to the proposed approach.In the absence of a com-
parative study involving established best practises or technology advances in the
relevant field, it is difficult to determine whether the proposed technique is superior
or effective.However, the work does not adequately discuss the drawbacks of using
deep transfer learning and the SpaSA optimizer for skin cancer diagnosis.[53]

The primary goal of this research was to propose a comprehensive framework using
deep neural networks (DNNs) for the reliable detection of skin cancer from the ex-
amination of dermoscopic images. This method was developed primarily to lessen
the impact of human error in interpretation. The fundamental objective of this plan
is to enhance early disease identification and guarantee delivery of services that
meet exacting quality benchmarks.This work details a method for building such a
knowledge base, which entails combining multiple dermoscopic datasets. In cases
when there is insufficient data for a full training cycle, researchers have turned to
transfer learning and fine-tuning techniques to speed up the model-building pro-
cess. In order to make the model more accurate, data augmentation methods are
used. The results show that the layered architecture of the model used in this
work allows for binary categorisation of skin cancer. The performance of trained
models is measured across a variety of multiclass and binary classification tasks.
In comparison to other deep learning structures, the results imply that the Deep
Neural Network (DNN) employing a modified version of EfficientNetV2-M is more
effective.The improved EfficientNetV2-M deep neural network model outperforms
state-of-the-art deep learning models developed specifically for multiclass classifi-
cation tasks in the context of performance evaluation.Faster model training with a
smaller training dataset is possible with the help of transfer learning and fine-tuning
methods.In order to make the model more accurate, data augmentation methods
are used. By including a wide variety of dermoscopy datasets, deep neural network
(DNN) models can perform better, and a more complete body of information can
be amassed.Regularisation of the model is made possible by the incorporation of
the progressive learning technique within the EfficientNet models, which also helps
to alleviate the problem of overfitting. There are no specific references to potential
restrictions or limitations associated with the planned activity in the published ma-
terials.[60]

The primary aim of this research is to create a computerised classification approach
using dermoscopic images for the rapid diagnosis of skin cancer.The fundamental ob-
jective of this study is to develop a better framework for the VGG-16 model in order
to improve the accuracy of skin cancer detection.The primary aim of this study is to
help dermatologists get better at analysing photographic evidence of skin cancer.To
aid in the automatic diagnosis of melanoma, a particularly dangerous form of skin
cancer, the current study employed the VGG-16 network, a model of convolutional
neural network (CNN).The current research builds on previous work by using an
improved VGG-16 architecture as the foundation for a model that can aid in the de-
tection of skin cancer.The effectiveness of the model is evaluated by contrasting it to
both benchmark datasets and existing methods for analysing skin images from the
International Skin Image Collaboration.The outcomes indicate that the proposed
model is more accurate than the competing alternatives.[59]

This research aims to further the state of the art in skin disease CAD through the im-
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plementation of deep neural networks (DNNs).The focus of this study is on using dis-
ease taxonomy to correctly categorise skin diseases, with the ultimate goal of enhanc-
ing classification accuracy.In this research, two large skin image datasets—DermNet
and the ISIC Archive—are used to train Deep Neural Networks (DNNs). The pri-
mary objective of the research was to properly classify the spectrum of skin dis-
eases.Advanced deep neural networks (DNNs) were used in the study for training
purposes, and the DermNet and ISIC Archive datasets were used for this purpose.
Models’ categorisation efficacy was boosted with the incorporation of a disease tax-
onomy.The study demonstrated substantial advancements in DermNet disease clas-
sification, with results that are cutting-edge in the profession. Additional proof of
the effectiveness of the proposed methodology comes from the attained accuracy of
80% and the area under the curve (AUC) of 98%. When applied to the DermNet
dataset, which contains 622 unique sub-classes, the accuracy rate and AUC value
were determined to be 67% and 98%, respectively. The ISIC Archive dataset per-
formed admirably, correctly diagnosing all seven diseases 93% of the time on aver-
age with an AUC of 99%.Based on the results of this study, it appears that deep
learning has the potential to accurately classify different skin disorders with a degree
of accuracy that is on par with human performance and that has improved repro-
ducibility over previous methods. Therefore, this approach shows great promise
for the rapid diagnosis of skin diseases in real-world settings. When used to the
field of computer-assisted diagnosis (CAD), deep neural networks (DNNs) enable
the precise classification of a wide variety of skin issues, on par with that achieved
by human professionals. The study’s findings were ground-breaking in that they
successfully classified dermatological disorders with a high degree of accuracy and
remarkable area under the curve (AUC) values.Disease taxonomy was incorporated
to boost model accuracy in classification.By studying clinical or dermoscopy pho-
tos, deep learning approaches have the potential to greatly aid healthcare workers
in making accurate diagnoses of skin disorders. The emerging technology offers a
potentially game-changing chance for rapid and accurate skin disease diagnosis.The
lack of standardisation among classification methods is acknowledged as a challenge
in this research. Different train-test splits and numbers of classes across proprietary
and publically available datasets cause this problem.Noise, low-resolution photos,
and photographs with watermarks are just a few examples of the kinds of interfer-
ence that could be present in publicly available datasets of large volume. There is a
risk that crucial data needed for fine-grained object classification would be omitted
due to these interferences.When used in real-world clinical situations as opposed
to simulated ones for research purposes, the efficacy of artificial intelligence (AI)
classifiers, in particular deep learning models, may show inconsistencies. 8]

The major objective of this study is to build a reliable system for melanoma de-
tection in dermoscopy images using deep learning ensembles. The research team
hopes that by creating automated methods for diagnosing melanoma, they can re-
duce costs, prevent unnecessary biopsies, and even save lives. The proposed approach
uses a combination of recent advances in deep learning and traditional methods of
machine learning to generate ensembles of algorithms. To aid in the detection of
melanoma, these ensembles are used to segment skin lesions and analyse both the
affected area and its surrounding tissue.The system uses a wide variety of low-
level visual signals, such as edge histograms, colour histograms, and a multi-scale
adaption of colour local binary patterns (LBPs), to perform photo classification

18



tasks.Classification and segmentation are the two key features of the system. The
fully convolutional U-Net architecture is used to segment lesions, with the fully con-
nected layer serving as a descriptor of the lesion’s shape. Two independent sets of
experiments, grid-search optimisation and an ensemble of ten networks, are used to
evaluate the performance of the fully convolutional U-Net architecture. Semantic
segmentation of dermoscopic lesions is the focus of these tests, with the hope of
gauging the architecture’s performance in this setting. Measures of performance ex-
cellence include improvements in sensitivity, specificity, and area under the receiver
operating characteristic curve. The system’s performance, as measured by its study
of a set of test images, is superior to that of average dermatologists qualified by pro-
fessional boards.The suggested method improves upon the accuracy of melanoma
detection in dermoscopy images by combining deep learning techniques with tradi-
tional machine learning approaches. This leads to groundbreaking advances that
set a new standard for the industry.When compared to prior art, the system shows
notable advancements in the areas of receiver operating characteristic curve, average
precision, and specificity. When compared to the performance of human dermatolo-
gists using the same test images, the system achieves higher levels of accuracy and
specificity. There are two caveats that the paper recognises. The use of a preset
dataset partition and the lack of software implementations for doing numerous n-fold
assessments are to blame for the lack of statistical significance in the performance
comparisons. In addition, healthcare practitioners’ diagnostic accuracy in identify-
ing skin lesions via dermoscopic pictures may demonstrate diversity in real-world
settings due to the specifics of each lesion. [1]

This study’s primary interest is in analysing and evaluating cutaneous lesions with
the aim of detecting melanoma. In 2018, this project was carried out with the help
and oversight of the International Skin Imaging Collaboration (ISIC).There were
three separate goals in this competition: lesion segmentation, trait identification,
and disease classification. A thresholded Jaccard index, a variant of the original
Jaccard, was used to evaluate the segmentation task. To implement this change,
a threshold was set, and if the Jaccard index was below that value, it was set to
zero. The purpose of this investigation was to analyse pictures missing dermoscopic
features. The criteria for success were modified as part of the study’s design. Ad-
justments were made by adding a new segmentation metric to account for large
variations in interobserver variability. Furthermore, decisions regarding classifica-
tion were made using balanced accuracy as the criterion. Additionally, external test
data was used to evaluate the algorithm’s generalizability. The findings showed that
the majority of the photographs, on average more than 10%, were improperly iden-
tified by the most common segmentation algorithms. Empirical studies have also
shown that, despite equal performance on test data, algorithms might have varying
degrees of generalisation capability. ISIC’s 2018 competition was the most compre-
hensive skin image analysis challenge ever held because the dataset included more
than 12,500 images. To better quantify segmentation errors and account for cases
where dermoscopic properties are absent from images, we integrated the ”Thresh-
olded Jaccard” measure into the evaluation framework. The risk of overfitting due to
inconsistencies in the dataset was effectively addressed through the use of balanced
accuracy as the assessment parameter for classification decisions. Because of this
methodology’s efficacy, there were significant shifts in the participants’ underlying
social order. A more precise evaluation of the algorithm’s generalizability was made
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possible with the addition of test data from colleges that were not part of the initial
training dataset.[5]
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Table 2.1: Assessments of dataset durning study

Ref Task Classifier Database Accuracy
1] Skin disease diagnosis | Deep learning N/A 99.04%
2] Skin disease classifica- | CNN DermNet dataset 68.97%(Top:
tion 1), 89.05%
(Top-5).
3] Enhanced automated | Inception-v3, ISIC datasets 77.04% to
skin lesion diagnosis | ResNet-50, 89.28%
Inception-
ResNet-v2, and
DenseNet-201
4] Melanoma classifica- | Inception-V3 Med Node, PH2, and | 97.1%,
tion HAM10000 Kaggle 97.2%,
96.2%.
5] Skin lesion classifica- | Support Vector | SIC 2017, MNIST- | 99.19%
tion Machine (SVM) | HAM10000, and ISBI
2016
6] Early skin disease di- | CND,CND ISIC 2018, Xiangya | 60% accu-
agnosis Inception-V3 Derm dataset racy
7] Classifying common | CNN N/A 95.7%
Middle FEastern der-
matological disorders
8] Automated skin dis- | DCNN, BBOA | HAM10000 N/A
ease prognosis
9] Skin lesion classifica- | Transfer learn- | ISIC 2018 N/A
tion ing on deep
learning
[10] Enhanced skin disease | CNN N/A N/A
detection
[11] Automatic approach | CNN N/A N/A
for skin cancer detec-
tion
[12] Skin Cancer Detection | DNN Custom dataset 94.80%
[13] Automated classifica- | N/A (ISIC) dataset N/A
tion system for the
early detection of skin
cancer
[14] Deep learning to im- | DNN Dermnet,ISIC 93.06%
prove the accuracy of
skin disease classifica-
tion
[15] Advanced melanoma | Deep learning N/A 76%
recognition system
[16] Analyze skin lesions | N/A Skin Lesion Analy- | N/A

for the purpose of
melanoma detection

sis Toward Melanoma
Detection 2018
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Chapter 3

Data Set

3.1 Data set Source

We used a data set that is available in Kaggle [29] had been used in research.During
the course of our study project, we found that our data set is segmented to seven
distinct portions. The sections of our data sets are: Acne, Melanoma, Solar Lentigo,
Dermatofibroma , Eczema, Psoriasis and Scabies. We utilised picture augmentation
strategies such rotation, shearing and scaling in order to expand the size of the of
our data set as our inital size of the data set was small as you can see in the table
?7?7. After that the augmented data was gone through another processing that is we
used clahe to make the images black and white.

Skin Disease Number of Images before | Number of Images after
Augmentation Augmentation
Acne 72 1080
Melanoma 73 1050
Solar Lentigo 45 1095
Dermatofibroma | 50 1064
Eczema 90 1040
Psoriasis 56 1040
Scabies 40 1170

Table 3.1: Skin Disease initial Data Set

3.2 Data Augmentation

Data augmentation is a highly effective strategy that enhances the robustness and
accuracy of machine learning models in their ability to handle changes seen in real-
world scenarios. Data augmentation is a crucial technique for enhancing the efficacy
of models, particularly in scenarios when the availability of training data is re-
stricted. In our study, we employed the techniques of Histogram equalization and
CLAHE (Contrast Limited Adaptive Histogram Equalization).

Histogram Equalization: Histogram equalization is a technique employed to im-
prove the contrast of an image through the redistribution of pixel intensity values.
The functionality of this process involves the manipulation of the intensity histogram
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Figure 3.1: Images before Augmentation Figure 3.2: Images after Augmentation

of the image in order to optimize the utilization of the complete range of intensities.
This procedure efficiently amplifies the contrast of the image by intensifying the
darkness of the darker regions and the brightness of the brighter regions.

Data augmentation using Histogram Equalization involves applying this technique
to various images in a dataset. The process can be described as follows:

1.

Input Image:Start with an original image that might have varying levels of
contrast and illumination.

Histogram Calculation:Calculate the histogram of intensity values for the
input image. This histogram represents the distribution of pixel intensities.

Cumulative Distribution Function (CDF):Compute the Cumulative Dis-
tribution Function from the histogram. The CDF provides a mapping from
the original pixel intensities to the new, equalized intensities.

Intensity Transformation:Use the CDF to transform the pixel intensities of
the original image. This transformation stretches the range of pixel intensities,
resulting in improved contrast.

Output Image:The transformed image is the output of the data augmen-
tation process using Histogram Equalization. It will have enhanced contrast
compared to the original image.

CLAHE (Contrast Limited Adaptive Histogram Equalization):CLAHE is
an extension of Histogram Equalization that aims to avoid over-enhancement in
regions with large intensity variations. It divides the image into small tiles and ap-
plies Histogram Equalization to each tile independently. Additionally, it introduces
a clipping mechanism to limit the amount of enhancement applied to each tile. This
helps prevent noise amplification in uniform regions and ensures a more balanced
enhancement.

Data augmentation using CLAHE can be summarised as follows:
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. Input Image:Start with the original image that may have both localized and
global contrast variations.

. Image Division:Divide the image into small non-overlapping tiles. The size
of these tiles is a user-defined parameter.

. Histogram Calculation per Tile:Calculate the histogram of intensity val-
ues for each tile individually.

. CDF Calculation per Tile: Compute the Cumulative Distribution Function
for each tile based on its local histogram.

. Clipping:Apply a clipping mechanism to limit the amount of enhancement
that can be applied to each tile. This prevents over-amplification of noise.

. Intensity Transformation per Tile:Use the local CDF to transform the
pixel intensities of each tile.

. Stitching:Stitch the processed tiles back together to form the final output
image.

. Output Image:The final output of the data augmentation process using
CLAHE will have enhanced contrast, both globally and locally, while main-
taining a balance between enhancement and noise control.
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Chapter 4

Methodology

4.1 Work Flow

our initial step was collecting the data set of different skin diseases. Further, we
preprocessed the data and then performed image division. Additionally, we have
done Histogram calculations per tile. Furthermore, we have also done a CDF cal-
culation per tile. Then we did clipping as well as intensity transformations per tile
and stitching. Further, we split the data set into test and train. We divided the
data set 80-20. In detail, 80% is the training set where we trained the models, and
20% 1is the test set where we tested the models. We saved the models, and lastly,

we used the best model.

Histogram CDF
Data Data Image . )
N » - L —» Calculation »alculatiol
File FPreprocessing Division per Tile per Tile
h 4
Clipping
Train|
set
,L B80% ¥

Model Training

Model Testing

Model Saving

Y

Using the best Model

‘J Test
set

20%

Train-
Test
Split

Fy

Intensity
[Transformation per Tile

Stitching

Figure 4.1: Work Flow of the research

25



4.2 Machine Learning Model Description

Skin diseases can manifest in various ways, posing challenges for accurate diagnosis
by traditional methods. In contrast, CNN models possess a remarkable capability
to detect subtle irregularities that might potentially indicate certain skin condi-
tions, owing to their capacity to acquire intricate patterns and characteristics from
photographic data.

4.2.1 InceptionV3

The architectural design of Inception V3, a deep learning model utilized for the pur-
pose of image classification, has a diverse array of layers and components. Figure
4.2 presents a thorough examination of the architecture, as indicated by the search
results obtained.The Inception V3 model is comprised of a total of 42 layers, which
denotes a substantial augmentation in the number of layers as compared to its pre-
cursors, specifically Inception V1 and V2.The model incorporates many components,
including convolutional layers, pooling layers, and auxiliary classifiers.The architec-
tural design of Inception V3 places a strong emphasis on optimizing efficiency and
minimizing the utilization of processing resources. By employing factorised convo-
lutions, it is possible to reduce the total number of network parameters. The model
incorporates regularization techniques such as dropout and batch normalization,
along with the utilization of label smoothing.To facilitate the dissemination of in-
formation on labels at more intricate layers of the network, InceptionV3 employs an
auxiliary classifier.The InceptionV3 architecture has been extensively employed in
various academic fields. The model’s performance on the ImageNet dataset exceeded
that of human assessors by a substantial margin of more than 78.1%.
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Figure 4.2: InceptionV3 Architecture

4.2.2 Xception

The Xception model utilizes a neural network design called Depthwise Separable
convolutions, as depicted in Figure 4.3. This architecture belongs to the class
of deep convolutional neural networks.The researchers at Google apply a distinct
methodology in utilizing the Inception model. The Xception architecture consists of
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a sequential arrangement of depth-separable convolution layers, which are intercon-
nected through the use of residual connections.The model has a depth of 71 lay-
ers. The Xception architecture encompasses several notable characteristics. Firstly,
it employs regular convolutions that effectively analyze both channel and spatial
correlations simultaneously. Additionally, it utilizes the Depthwise Separable Con-
volution, a convolutional operation that evaluates channel and spatial correlations
in a sequential manner, treating them as distinct entities. Lastly, the architecture
incorporates residual connections, also referred to as shortcut connections, which
aid in the seamless propagation of gradients during training and act as a preventive
measure against the vanishing gradient problem.TThe Xception architecture has
outperformed ResNet and Inception V3 in many classification benchmarks.In the
domain of training, the issue of vanishing gradient can be addressed by incorporat-
ing Residual Connections. These connections act as efficient channels that aid in the
transmission of gradients.The model comprises three distinct components, namely
the input, the main, and the outflow.The impacts of batch normalisation are felt in
both the convolutional layer and the separable convolutional layer.
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Figure 4.3: Xception Architecture

4.2.3 ResNet50

The graphic referred as 4.4 visually represents the ResNet50 architecture, show-
casing the inclusion of 48 convolution layers, 1 maximum pool layer, and 1 av-
erage pool layer. The network under consideration is generally acknowledged for
its significant level of activity and is held in high regard as an exemplary exam-
ple within the ResNet network family. The use of convolutional neural networks
(CNNs) has experienced substantial proliferation in the realm of deep learning,
with the ResNet design receiving noteworthy acclaim in this particular discipline.
In 2015, Microsoft Research presented a unique network design called Residual Net-
work (ResNet), which has subsequently demonstrated significant improvements in
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many performance benchmarks. The ResNet50 architecture has been specifically
developed to effectively handle input images with dimensions that are evenly divis-
ible by 32 in terms of height and width, and by 3 in terms of depth, within each
of its four phases. In order to ensure clarity, it is assumed that the dimensions of
the input are 224 x 224 x 3. In all ResNet topologies, the initial stage of convo-
lution utilizes 7x7 kernels, while the succeeding step of max-pooling employs 3x3
kernels. The architecture of ResNet-50 consists of six unique components, which
include input pre-processing, CFG blocks and a fully connected layer. There is
noticeable variability observed among ResNet implementations regarding the total
number of control flow graph (CFG) blocks utilized. The ResNet50 architecture is
comprised of a maximum pooling layer, an average pooling layer, and a total of 48
convolution layers. The methodology consists of four independent stages and allows
for efficient analysis of photos with dimensions that are divisible by both 32 and
3. The ResNet-50 architecture is comprised of six components, and the number of
CFG blocks utilized in each stage may fluctuate among various implementations.
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Figure 4.4: ResNet50 Architecture

4.2.4 NASNetMobile

The utilisation of convolutional neural networks is shown in the design of NAS-
NetMobile in the figure 4.5, which is sometimes referred to as the Neural Archi-
tecture Search Network for Mobile. The subsequent elements encompass notable
architectural features.The ImageNet database is employed as a training resource
for instructing NASNetMobile in the task of object recognition.The neural network
has the capability to accurately classify and distinguish up to 1000 unique cate-
gories of objects seen in an image.The NASNetMobile architecture is designed to
process input photos of size 224x224.The architectural design of this system is specif-
ically tailored to optimise performance on mobile devices such as smartphones and
tablets.The technique known as Neural Architecture Search (NAS) was employed
to develop NASNetMobile, a neural network architecture that leverages reinforce-
ment learning to determine the most optimal architectural components.Instead of
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prescribing a certain configuration for NASNetMobile, the authors adopt a more
autonomous approach by allowing the NAS process to choose the optimal setup in-
dependently. The NASNetMobile architecture is a convolutional neural network that
has undergone extensive training on a substantial dataset for the purpose of accu-
rately categorising photographs into several object categories. Furthermore, it has
been specifically tuned to operate efficiently on mobile devices.
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Figure 4.5: NASNetMobile Architecture

4.2.5 MobileNet

MobileNet is an ultra-lightweight convolutional neural network (CNN) model archi-
tecture that was developed primarily for mobile and embedded devices that have
restricted access to computing resources. The underlying technique of MobileNet
is built on depthwise separable convolutions, which are the main building block of
the network. The pointwise convolution mixes the output channels of the depthwise
convolution with numerous 1x1 convolutions, as opposed to the depthwise convolu-
tion, which applies a single convolutional filter to each input channel. Because it
cuts down on the number of parameters and processes,this strategy brings the total
computing cost down by a substantial amount. In most cases, MobileNet models
are pre-trained on large-scale picture datasets like ImageNet. However, in addi-
tion to the initial MobileNet design, a number of pre-trained variations have been
created in order to establish a balance between the level of accuracy and the size
of the model. For instance, MobileNetV2 is an improvement over the first version
of MobileNet. This is accomplished by incorporating inverted residual blocks and
linear bottleneck layers. The end result is improved performance despite the model
size being the same. The design is improved even more with the introduction of
squeeze-and-excitation blocks as well as additional optimisations in MobileNetV3.
MobileNet models have shown to have exceptional performance on mobile and em-
bedded devices, which enables real-time inference and deployment on platforms with
limited resources. Because it makes it possible to deploy deep learning models on
devices with limited resources in an effective manner, MobileNet has made a signif-
icant contribution to the area of computer vision. The architecture of MobileNet is
shown in the figure 4.6.
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4.2.6 DenseNet201

DenseNet201 is a convolutional neural network that is characterized by its depth,
consisting of a total of 201 layers. The network design known as Dense Convolutional
Network (DenseNet) enables the utilization of network features through the imple-
mentation of dense connections across layers. The architecture of DenseNet201 is
outlined below. The arrival of dense blocks is prioritized. The DenseNet201 architec-
ture consists of dense blocks, whereby numerous layers are tightly interconnected. In
a thick block, every layer possesses the ability to access the feature maps of the lay-
ers positioned above it while concurrently transmitting its own feature maps to the
layers situated below it. The subsequent levels to be discussed are the transitional
layers. The thick slabs are interspersed with a transitional layer. The transition
layer utilizes average pooling and 1x1 convolutional layers to effectively decrease
the quantity of feature mappings and spatial dimensions. Subsequently, the global
pooled average will be computed. The network culminates in a layer that aggregates
information on a global scale. Through the process of aggregating over all feature
maps within this particular layer, the input undergoes a transformation, resulting
in the creation of a vector that possesses a predetermined length. After the global
average pooling layer, there is an entirely linked layer with Softmax activation. In
this particular stratum, the number of output categories is determined by the vec-
tor representation.Using TensorFlow, we instantiated the DenseNet201 architecture
using the tf keras.applications.densenet.DenseNet201 function. The architecture of
Densenet201 is shown in the figure 4.7
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4.2.7 EfficientNetBO

The convolutional neural network design known as EfficientNetBO0 is the most space-
efficient in the EfficientNet family. Despite being smaller and faster to process, the
5.3-million-parameter model outperforms previous models in a variety of computer
vision applications. The compound scaling technique used in EfficientNetB0’s ar-
chitectural design maintains uniform depth, width, and resolution as the network
grows in size. To strike a good balance between the network’s depth, width, and
resolution, this method uses a simple yet incredibly efficient compound coefficient.
In order to create models with more accuracy and efficiency than previous Convolu-
tional Neural Networks (ConvNets), EfficientNetB0 uses neural architecture search
(NAS) to design a revolutionary foundational network and then scale it up. Ap-
plications such as image classification, object recognition, and segmentation have
found great success with the EfficientNetB0O model. In particular, it has shown con-
siderable improvement in performance compared to baseline models developed in
the past.The figure 4.8 shows the architecture of EfficientNetB0
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Figure 4.8: EfficientNetB0 Architecture

4.2.8 Ensemble Model-X1

To apply ensemble approach, firstly every single model is fine-tuned. As the dataset
has 7 classes for that reason top layer is removed and after that 10 layers is freeze to
Globalaveragepooling2D layer and Dense layer is added and it is used for every solo
models. As for the ensemble approach when using pre-trained models in an ensemble
or transfer learning situation, it is a good idea to freeze the top layers and add new
layers like global average pooling. It lets you use the information stored in the pre-
trained layers while changing the model to your unique task. This keeps the model
from becoming too good at your task and gives the ensemble method more variety,
which improves performance overall. The Figure below 4.9 shows the Architecture
model. Model averaging is a type of ensemble method in which a lot of smaller
models are put together to make a single guess.At a model-averaging ensemble, the
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results of several learned models are averaged together. Since each model has its
own pros and cons, it’s usually best to make a few different ones that can pull out
different traits before mixing the predictions of those models. The ensemble method
could be used in many different ways, such as the simple average, the weighted
average, and the weighted sum. One problem with the average method is that each
model adds the same piece to the ensemble forecast. So, the execution doesn’t get
better and, in the worst case, may even get worse. Because of this, the best way to
improve overall performance is with a weighted sum ensemble. It combines estimates
from a lot of different models, giving each model’s input a certain amount of weight
based on how good it is. It can do better than any of the different types in every
way.
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Figure 4.9: Ensemble Model-X1 Architecture
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Chapter 5

Results and Discussion

5.1 Results

5.1.1 NasNetMobile
Model Accuracy

For the model NasNetMobile, we can see in the figure 5.1 initially the train accuracy
shows approximately 0.98. The train accuracy almost reaches its optimal which is
around 1.00 when the epoch is 15. After 40 epochs the training accuracy remains
to approximately at 1.00.If we look at the validation accuracy at the initial stage,
it shows 0.1 approximately, which fluctuates later on when the epoch increases.It
reaches a highest value 0.99 approximately when the epoch is 40.After 40 epochs
the validation accuracy comes to approximately at 0.99.
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Figure 5.1: NasNetMobile Model Accuracy curve

Model Loss

For the model NasNetMobile, We can see in the figure 5.2 initially the train loss
shows approximately 0. The train loss remains around approximately 0 with the
increase in epoch. If we look at the validation loss at the initial stage, it shows
100 approximately, which increases and decreases when the epoch increases, but
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the curve drastically shows a spike in which the validation loss increases to 1300
approximately after the Tth epoch, it was the highest validation loss. After the
drastic increase, the validation loss curve drops to approximately O after the 14th
epoch and remains the same throughout the 40th.
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Figure 5.2: NasNetMobile Model Loss curve

Confusion Matrix

The Confusion Matrix for NasNetMobile shown in figure 5.3 describes- Acne: Out
of 200 instances that truly belong to Acne, the model correctly predicted all 197
instances as Acne. There were no misclassifications for this class.Dermatofibroma:
Among the 255 instances belonging to Dermatofibroma, the model accurately iden-
tified 239 as Dermatofibroma. It misclassified 3 instances as Acne, 2 instances as
Eczema, 10 instances as Melanoma, and 1 instance as Solar Lentigo.Eczema: For
the 221 instances of Eczema, the model correctly classified all of them as Eczema.
There were no misclassifications for this class.Melanoma: Among the 223 instances
of Melanoma, the model accurately predicted all 223 instances as Melanoma. There
were no misclassifications for this class.Psoriasis: Out of 222 instances belonging to
Psoriasis, the model correctly identified all 222 instances as Psoriasis. There were no
misclassifications for this class.Scabies: For the 195 instances of Scabies, the model
correctly predicted 193 as Scabies. It misclassified 1 instance as Psoriasis and 1
instance as Solar Lentigo.Solar Lentigo: Among the 217 instances of Solar Lentigo,
the model accurately predicted all 217 instances as Solar Lentigo. There were no
misclassifications for this class.
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Figure 5.3: NasNetMobile Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.4 for different skin conditions, including Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, all ex-
hibit perfect discrimination with an AUC of 1.00 each. These curves collectively
signify that the classification model is exceptionally accurate in distinguishing be-
tween these specific skin conditions and non-condition cases. In essence, the model
consistently achieves both high sensitivity and high specificity across these derma-
tological diagnoses, suggesting its robust performance and reliability in correctly
identifying these skin conditions.
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Figure 5.4: NasNetMobile ROC curve
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5.1.2 MobileNet

Model Accuracy

For the model MobileNet, We can see in the figure 5.5 initially the train accuracy
shows approximately 0.72. When the epoch reaches 15, the train accuracy almost
reaches its optimal which is around 0.94. After 40 epochs the training accuracy
increases and comes to approximately at 0.96.1f we look at the validation accuracy
at the initial stage, it shows 0.58 approximately, which fluctuates later on when
the epoch increases.It reaches a highest value 0.97 approximately when the epoch is
38.After 40 epochs the validation accuracy comes to approximately at 0.96.
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Figure 5.5: MobileNet Model Accuracy curve
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Model Loss

For the model MobileNet, We can see in the figure 5.6 initially the train loss shows
approximately .75. When the epoch is between 5 to 10 times, the train loss decreases
to 0.1 and less and continues to decrease with the increase in epoch.After 40 epochs
the train loss is approximately 0.05 If we look at the validation loss at the initial
stage, it shows 1.7 approximately, which increases and decreases when the epoch
increases, but the curve drastically increases to 3.9 approximately when the epoch is
33. After 40 epochs the validation loss drops and becomes around .25 approximately.
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Figure 5.6: MobileNet Model Loss curve

Confusion Matrix

The Confusion Matrix for MobileNet shown in figure 5.7 describes- Acne: Out of
200 instances that truly belong to Acne, the model correctly predicted 184 instances
as Acne. However, it misclassified 11 instances as Dermatofibroma, 1 instance as
Eczema, 2 instances as Melanoma, and 2 instances as Psoriasis. There were no
instances misclassified as Scabies or Solar Lentigo. Dermatofibroma: Among the
255 instances belonging to Dermatofibroma, the model accurately identified 240 as
Dermatofibroma. It made mistakes by classifying 1 instance as Acne, 3 instances as
Eczema, 8 instances as Melanoma, 2 instances as Psoriasis, and 1 instance as Solar
Lentigo. There were no instances misclassified as Scabies. Eczema: For the 221
instances of Eczema, the model correctly classified 220 as Eczema. It misclassified
1 instance as Psoriasis. There were no instances misclassified into other classes.
Melanoma: Among the 223 instances of Melanoma, the model accurately predicted
219 as Melanoma. It misclassified 2 instances as Dermatofibroma and 2 instances
as Eczema. There were no instances misclassified into other classes. Psoriasis:
Out of 222 instances belonging to Psoriasis, the model correctly identified 221 as
Psoriasis. It misclassified 1 instance as Scabies. There were no instances misclassified
into other classes. Scabies: For the 195 instances of Scabies, the model correctly
predicted 192 as Scabies. It misclassified 3 instances as Psoriasis. There were no
instances misclassified into other classes. Solar Lentigo: Among the 217 instances of
Solar Lentigo, the model accurately predicted 194 as Solar Lentigo. It misclassified 5
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instances as Eczema, 5 instances as Melanoma, and 12 instances as Psoriasis. There
were no instances misclassified into other classes.
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Figure 5.7: MobileNet Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.8 for various skin conditions, such as Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, de-
pict strong discriminatory performance with AUC values ranging from 0.97 to 1.00.
These curves collectively demonstrate that the classification model exhibits high ac-
curacy in distinguishing these specific skin conditions from non-condition cases, as
indicated by their AUC values close to 1.00. While Dermatofibroma and Psoriasis
exhibit slightly lower AUC values, they still showcase effective discrimination capa-
bilities. Overall, the model demonstrates its reliability in correctly identifying these
skin conditions, making it a valuable tool in dermatological diagnoses.
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5.1.3 DenseNet201
Model Accuracy

For the model DenseNet201 we can see in the figure 5.9, initially the train accuracy
shows approximately 0.67. When the graph reaches to 15 epoch, the train accu-
racy almost reaches its optimal which is around 0.95. After 40 epochs the training
accuracy increases and comes to approximately at 0.99.If we look at the validation
accuracy at the initial stage, it shows 0.5 approximately, which fluctuates later on
when the epoch increases.It reaches a highest value 0.94 approximately when the
epoch is 35.After 40 epochs the validation accuracy comes to approximately at 0.87.
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Figure 5.9: DenseNet201 Model Accuracy curve

Model Loss

For the model DenseNet201 we can see in the figure 5.10, initially the train loss
shows approximately 1.1. When we epoch 5-10 times, the train loss decreases to
0.5 and less and continues to decrease with the increase in epoch. If we look at the
validation loss at the initial stage, it shows 1.8 approximately, which increases and
decreases when we epoch twice, but the curve drastically increases to 5.4 approx-
imately after the third epoch. After the drastic increase, the validation loss curve
drops to approximately 1.7 after the fifth epoch. With the increase in epoch, the
validation loss curve has a considerable number of ups and downs.
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Figure 5.10: DenseNet201 Model Loss curve

Confusion Matrix

The Confusion Matrix for Densenet201 shown in figure 5.11 describes- Acne: Out of
200 instances that truly belong to Acne, the model correctly predicted 148 instances
as Acne. However, it misclassified 11 instances as Dermatofibroma and 2 instances
as Melanoma. Additionally, it incorrectly classified 39 instances as Solar Lentigo.
Dermatofibroma: Among the 255 instances belonging to Dermatofibroma, the model
accurately identified 215 as Dermatofibroma. It misclassified 6 instances as Acne, 2
instances as Melanoma, 2 instances as Psoriasis, and 1 instance as Scabies. Addi-
tionally, it incorrectly classified 29 instances as Solar Lentigo. Eczema: For the 221
instances of Eczema, the model correctly classified 210 as Eczema. It misclassified
1 instance as Acne, 4 instances as Dermatofibroma, and 1 instance as Psoriasis.
Additionally, it incorrectly classified 2 instances as Scabies and 3 instances as Solar
Lentigo. Melanoma: Among the 223 instances of Melanoma, the model accurately
predicted 182 as Melanoma. It misclassified 4 instances as Acne and 9 instances as
Dermatofibroma. Additionally, it incorrectly classified 28 instances as Solar Lentigo.
Psoriasis: Out of 222 instances belonging to Psoriasis, the model correctly identified
177 as Psoriasis. However, it misclassified 33 instances as Scabies and 12 instances
as Solar Lentigo. There were no instances misclassified into other classes. Scabies:
For the 195 instances of Scabies, the model correctly predicted 193 as Scabies. It
misclassified 1 instance as Melanoma and 1 instance as Solar Lentigo. There were no
instances misclassified into other classes. Solar Lentigo: Among the 217 instances
of Solar Lentigo, the model accurately predicted 216 as Solar Lentigo. It misclassi-
fied 1 instance as Dermatofibroma. There were no instances misclassified into other
classes.
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Figure 5.11: Densenet201 Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.12 for various skin conditions, such as Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, de-
pict strong discriminatory performance with AUC values ranging from 0.97 to 1.00.
These curves collectively demonstrate that the classification model exhibits high ac-
curacy in distinguishing these specific skin conditions from non-condition cases, as
indicated by their AUC values close to 1.00. While Dermatofibroma and Psoriasis
exhibit slightly lower AUC values, they still showcase effective discrimination capa-
bilities. Overall, the model demonstrates its reliability in correctly identifying these
skin conditions, making it a valuable tool in dermatological diagnoses.
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Figure 5.12: Densenet201 ROC curve
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5.1.4 Xception
Model Accuracy

After running Extreme Inception (Xception) was capable of differentiating between
different types of skin diseases with an accuracy of 86% in figure 5.13.Initially the
train accuracy shows approximately 0.69. When the epoch 15 reaches, the train
accuracy almost reaches its optimal which is around 0.95. After 40 epochs the
training accuracy increases and comes to approximately at 0.97.If we look at the
validation accuracy at the initial stage, it shows 0.67 approximately, which fluctuates
later on when the epoch increases.It reaches a highest value 0.96 approximately when
the epoch is 31.After 40 epochs the validation accuracy comes to approximately at
0.86.
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Figure 5.13: Xception Model Accuracy curve

Model Loss

In the figure 5.14 initially the train loss shows approximately 0.9. When the epoch
increases to 510 times, the train loss decreases to 0.1 approximately and less and
continues to decrease with the increase in epoch. If we look at the validation loss
at the initial stage, it shows 2.6 approximately, which increases and decreases with
increases with the epoch. Eventually it reaches to 0.95 when the epoch reaches to

40.
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Figure 5.14: Xception Model Loss curve

Confusion Matrix

The Confusion Matrix for Xception shown in figure 5.15Acne:Out of 200 instances
that truly belong to Acne, the model correctly predicted 189 instances as Acne.
However, it misclassified 2 instances as Dermatofibroma, 1 instance as Eczema, 2
instances as Melanoma, 5 instances as Scabies, and 1 instance as Solar Lentigo.
Dermatofibroma: Among the 255 instances belonging to Dermatofibroma, the model
accurately identified 197 as Dermatofibroma. It made mistakes by classifying 13 in-
stances as Acne, 14 instances as Melanoma, 2 instances as Psoriasis, 7 instances
as Scabies, and 22 instances as Solar Lentigo.Eczema:For the 221 instances of
Eczema, the model correctly classified 195 as Eczema. It misclassified 1 instance
as Acne, 4 instances as Psoriasis, 17 instances as Scabies, and 3 instances as So-
lar Lentigo.Melanoma:Among the 223 instances of Melanoma, the model accurately
predicted 193 as Melanoma. It misclassified 4 instances as Dermatofibroma, 9 in-
stances as Scabies, and 17 instances as Solar Lentigo, while correctly classifying
193 instances.Psoriasis:Out of 222 instances belonging to Psoriasis, the model cor-
rectly identified 150 as Psoriasis. It incorrectly classified 1 instance each as Acne
and Melanoma, and 64 instances as Scabies, while the remaining 7 instances were
correctly classified as Solar Lentigo.Scabies:For the 195 instances of Scabies, the
model correctly predicted all of them as Scabies. There were no misclassifications
into other classes.Solar Lentigo: Among the 217 instances of Solar Lentigo, the model
accurately predicted 207 as Solar Lentigo. It did misclassify 10 instances as Scabies,
but did not misclassify any into the other classes.
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Figure 5.15: Xception Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curve form the figure 5.16 for each skin conditions, including Acne, Der-
matofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, demon-
strate strong discriminatory power with AUC values mostly exceeding 0.98. These
curves collectively indicate that the classification model performs exceptionally well
in distinguishing these specific skin conditions from non-condition cases. The near-
perfect AUC values of 1.00 for Acne, Eczema, and Solar Lentigo, along with high
AUC values for the others, underscore the model’s remarkable accuracy in correctly
identifying these dermatological conditions, making it a highly reliable tool for der-
matological diagnoses.
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Figure 5.16: Xception ROC curve
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5.1.5 EfficientNetBO
Model Accuracy

For the model EfficientNetB0, We can see in the figure 5.17 initially the train accu-
racy shows approximately 0.38. The train accuracy almost reaches its optimal which
is around 0.97 when it is approximately 20 epoch. After 40 epochs the training ac-
curacy increases and comes to approximately at 0.99.If we look at the validation
accuracy at the initial stage, it shows 0.27 approximately, which fluctuates later on
when the epoch increases.It reaches a highest value 0.92 approximately when the

epoch is 34. After 40 epochs the validation accuracy comes to approximately at
0.606.
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Figure 5.17: EfficientNetBO Model Accuracy curve

Model Loss

For the model EfficientNetB0, We can see in the figure 5.18 initially the train loss
shows approximately 1.5. When the epoch decreases to 5-10 times, the train loss
decreases to 0.19 and less and continues to decrease with the increase in epoch.After
40 epochs the training loss decreases and comes to approximately at 0.02. If we
look at the validation loss at the initial stage, it shows approximately 13.9, which
increases and decreases when the epoch increases.With the increase in epoch, the
validation loss curve has a considerable number of ups and downs.After 40 epochs
the training loss decreases and comes to approximately at 0.60.
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Figure 5.18: EfficientNetB0O Model Loss curve

Confusion Matrix

The Confusion Matrix for EfficientNetB0O shown in figure 5.19-Acne Out of 200 in-
stances that truly belong to Acne, the model correctly predicted 133 instances as
Acne. However, it misclassified 30 instances as Dermatofibroma, 10 instances as
Eczema, 19 instances as Melanoma, and 8 instances as Solar Lentigo. There were
no instances misclassified as Psoriasis or Scabies. Dermatofibroma Among the 255
instances belonging to Dermatofibroma, the model accurately identified 148 as Der-
matofibroma. It made mistakes by classifying 48 instances as Acne, 2 instances as
Eczema, 35 instances as Melanoma, and 22 instances as Solar Lentigo. There were
no instances misclassified as Psoriasis or Scabies. Eczema For the 221 instances
of Eczema, the model correctly classified 192 as Eczema. It misclassified 15 in-
stances as Acne, 3 instances as Dermatofibroma, 6 instances as Melanoma, and 5
instances as Solar Lentigo. There were no instances misclassified as Psoriasis or
Scabies. Melanoma Among the 223 instances of Melanoma, the model accurately
predicted 128 as Melanoma. It misclassified 36 instances as Acne, 40 instances as
Dermatofibroma, 2 instances as Eczema, 1 instance as Scabies, and 16 instances as
Solar Lentigo. There were no instances misclassified as Psoriasis. Psoriasis Out of
222 instances belonging to Psoriasis, the model correctly identified 41 as Psoria-
sis. However, it misclassified 9 instances as Acne, 20 instances as Dermatofibroma,
67 instances as Eczema, 4 instances as Melanoma, 2 instances as Scabies, and 79
instances as Solar Lentigo. Scabies For the 195 instances of Scabies, the model cor-
rectly predicted 120 as Scabies. It misclassified 20 instances as Acne, 5 instances as
Dermatofibroma, 8 instances as Eczema, 1 instance as Melanoma, and 41 instances
as Solar Lentigo. There were no instances misclassified as Psoriasis. Solar Lentigo
Among the 217 instances of Solar Lentigo, the model accurately predicted 167 as So-
lar Lentigo. It misclassified 21 instances as Acne, 18 instances as Dermatofibroma,
2 instances as Eczema, 9 instances as Melanoma, and no instances as Psoriasis or
Scabies.
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Figure 5.19: EfficientNetB0O Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.20 for various skin conditions, including Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, show
good but varying discriminatory performance, with AUC values ranging from 0.79
to 0.95. While some conditions, such as Eczema, exhibit a higher AUC of 0.95,
indicating strong discrimination, others like Psoriasis have a slightly lower AUC of
0.79. Overall, the model demonstrates reasonable accuracy in distinguishing these
specific skin conditions from non-condition cases. However, it’s important to note
that there is room for improvement in the model’s performance, particularly for
Psoriasis, Dermatofibroma, and Acne, where the AUC values are comparatively
lower. Further refinement of the model may enhance its reliability as a diagnostic
tool for dermatological conditions.
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Figure 5.20: EfficientNetB0O ROC curve
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5.1.6 InceptionV3
Model Accuracy

For the model InceptionV3, We can see in the figure 5.21 initially the train accuracy
shows approximately 0.43. The train accuracy almost reaches its optimal which
is around 0.97 when it is approximately 15 epoch. After 40 epochs the training
accuracy increases and comes to approximately at 0.98.If we look at the validation
accuracy at the initial stage, it shows 0.32 approximately, which fluctuates later on
when the epoch increases.It reaches a highest value 0.88 approximately when the
epoch is 37. After 40 epochs the validation accuracy comes to approximately 0.79.
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Figure 5.21: InceptionV3 Model Accuracy curve

Model Loss

For the model InceptionV3, 5.22 initially the train loss shows approximately 1.4.
When the epoch decreases to 5-15 times, the train loss decreases to 0.12 and less
and continues to decrease with the increase in epoch.After 40 epochs the training
loss decreases and comes to approximately at 0.03. If we look at the validation
loss at the initial stage, it shows approximately 2.4, which increases and decreases
when the epoch increases.With the increase in epoch, the validation loss curve has
a considerable number of ups and downs.After 40 epochs the training loss decreases
and comes to approximately at 1.3.
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Figure 5.22: InceptionV3 Model Loss curve

Confusion Matrix

The Confusion Matrix for InceptionV3 shown in figure 5.23Acne Out of 200 instances
that truly belong to Acne, the model correctly predicted 100 instances as Acne.
However, it misclassified 32 instances as Dermatofibroma, 1 instance as Eczema, 48
instances as Melanoma, 17 instances as Psoriasis, and 2 instances as Solar Lentigo.
There were no instances misclassified as Scabies. Dermatofibroma Among the 255
instances belonging to Dermatofibroma, the model accurately identified 193 as Der-
matofibroma. It made mistakes by classifying 1 instance as Acne, 1 instance as
Eczema, 47 instances as Melanoma, and 13 instances as Psoriasis. There were no
instances misclassified as Scabies or Solar Lentigo. Eczema For the 221 instances
of Eczema, the model correctly classified 209 as Eczema. It misclassified 1 instance
as Acne, 2 instances as Melanoma, and 4 instances as Psoriasis. There were no
instances misclassified as Dermatofibroma or Solar Lentigo. Melanoma Among the
223 instances of Melanoma, the model accurately predicted 216 as Melanoma. It
misclassified 5 instances as Dermatofibroma and 2 instances as Eczema. There were
no instances misclassified as Acne, Psoriasis, Scabies, or Solar Lentigo. Psoriasis
Out of 222 instances belonging to Psoriasis, the model correctly identified 216 as
Psoriasis. However, it misclassified 3 instances as Dermatofibroma, 1 instance as
Eczema, and 1 instance as Melanoma. There were no instances misclassified as
Acne, Scabies, or Solar Lentigo. Scabies For the 195 instances of Scabies, the model
correctly predicted 120 as Scabies. It misclassified 4 instances as Eczema, 4 in-
stances as Melanoma, 65 instances as Psoriasis, and 2 instances as Solar Lentigo.
There were no instances misclassified as Acne or Dermatofibroma. Solar Lentigo
Among the 217 instances of Solar Lentigo, the model accurately predicted 165 as
Solar Lentigo. It misclassified 6 instances as Acne, 9 instances as Dermatofibroma,
2 instances as Eczema, 15 instances as Melanoma, and 19 instances as Psoriasis.
There was one instance correctly classified as Scabies.
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Figure 5.23: InceptionV3 Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.24 for various skin conditions, including Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, show
good but varying discriminatory performance, with AUC values ranging from 0.79
to 0.95. While some conditions, such as Eczema, exhibit a higher AUC of 0.95,
indicating strong discrimination, others like Psoriasis have a slightly lower AUC of
0.79. Overall, the model demonstrates reasonable accuracy in distinguishing these
specific skin conditions from non-condition cases. However, it’s important to note
that there is room for improvement in the model’s performance, particularly for
Psoriasis, Dermatofibroma, and Acne, where the AUC values are comparatively
lower. Further refinement of the model may enhance its reliability as a diagnostic
tool for dermatological conditions.
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Figure 5.24: InceptionV3 ROC curve
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5.1.7 Resnet50

Model Accuracy

For the model Resnet50, We can see in the figure 5.25 initially the train accuracy
shows approximately 0.55. The train accuracy almost reaches its optimal which
is around 0.98 when it is approximately 12 epoch. After 40 epochs the training
accuracy increases and comes to approximately at 0.99.If we look at the validation
accuracy at the initial stage, it shows 0.27 approximately, which fluctuates later on
when the epoch increases.It reaches a highest value 0.92 approximately when the
epoch is 38. After 40 epochs the validation accuracy comes to approximately at
0.92.
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Figure 5.25: ResNetb0 Model Accuracy curve

Model Loss

For the model Resnet50, We can see in the figure 5.26 initially the train loss shows
approximately 1. When the epoch decreases to 5-10 times, the train loss decreases
to 0.1 and less and continues to decrease with the increase in epoch.After 40 epochs
the training loss decreases and comes to approximately at 0.01. If we look at the
validation loss at the initial stage, it shows approximately 11, which increases and
decreases when the epoch increases.With the increase in epoch, the validation loss
curve has a considerable number of ups and downs.After 40 epochs the training loss
decreases and comes to approximately at 0.8.
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Figure 5.26: ResNet50 Model Loss curve

Confusion Matrix

The Confusion Matrix for ResNet50 shown in figure 5.27 Acne Out of 200 instances
that truly belong to Acne, the model correctly predicted 186 instances as Acne.
However, it misclassified 10 instances as Dermatofibroma, 3 instances as Melanoma,
1 instance as Psoriasis. There were no instances misclassified as Eczema, Scabies, or
Solar Lentigo. Dermatofibroma Among the 255 instances belonging to Dermatofi-
broma, the model accurately identified 198 as Dermatofibroma. It made mistakes by
classifying 25 instances as Acne, 3 instances as Eczema, 16 instances as Melanoma,
10 instances as Psoriasis, and 3 instances as Solar Lentigo. There were no instances
misclassified as Scabies. Eczema For the 221 instances of Eczema, the model cor-
rectly classified 209 as Eczema. It misclassified 1 instance as Acne, 7 instances
as Psoriasis, 3 instances as Scabies, and 1 instance as Solar Lentigo. There were
no instances misclassified as Dermatofibroma or Melanoma. Melanoma Among the
223 instances of Melanoma, the model accurately predicted 204 as Melanoma. It
misclassified 2 instances as Acne, 11 instances as Dermatofibroma, 1 instance as
Eczema, and 3 instances as Solar Lentigo. There were no instances misclassified
as Psoriasis or Scabies. Psoriasis Out of 222 instances belonging to Psoriasis, the
model correctly identified 215 as Psoriasis. However, it misclassified 6 instances as
Scabies. There were no instances misclassified as Acne, Dermatofibroma, Eczema,
Melanoma, or Solar Lentigo. Scabies For the 195 instances of Scabies, the model
correctly predicted 188 as Scabies. It misclassified 7 instances as Psoriasis. There
were no instances misclassified as Acne, Dermatofibroma, Eczema, Melanoma, or
Solar Lentigo. Solar Lentigo Among the 217 instances of Solar Lentigo, the model
accurately predicted 211 as Solar Lentigo. It misclassified 2 instances as Acne, 1 in-
stance as Eczema, and 1 instance as Psoriasis. There were no instances misclassified
as Dermatofibroma, Melanoma, or Scabies.
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Figure 5.27: ResNet50 Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.28 for various skin conditions, including Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, all ex-
hibit excellent discriminatory performance, with AUC values ranging from 0.99 to
1.00. These curves collectively highlight the model’s outstanding accuracy in distin-
guishing these specific skin conditions from non-condition cases. Melanoma, Psori-
asis, Scabies, and Solar Lentigo achieve a perfect AUC of 1.00, signifying flawless
discrimination, while the other conditions are close behind with AUCs of 0.99. These
results underscore the model’s exceptional reliability and effectiveness as a diagnostic
tool for dermatological conditions, making it an invaluable asset in clinical practice.
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Figure 5.28: ResNet50 ROC curve
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5.1.8 Ensemble Model- X1
Model Accuracy

For the model Ensemble Model- X1, We can see in the figure 5.29 initially the train
accuracy shows approximately 0.97. The train accuracy almost reaches its optimal
which is around 1.00 when it is approximately 5 epoch. After 40 epochs the training
accuracy increases and comes to approximately at 0.99.If we look at the validation
accuracy at the initial stage, it shows 0.70 approximately, which fluctuates later on
when the epoch increases.It reaches a highest value 0.96 approximately when the
epoch is 38. After 40 epochs the validation accuracy comes to approximately 0.94.
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Figure 5.29: Ensemble Model Accuracy curve

Model Loss

For the model Ensemble Model- X1, We can see in the figure 5.30 initially the train
loss shows approximately 0.1.After 40 epochs the training loss decreases and comes
to approximately at 0.01. If we look at the validation loss at the initial stage, it shows
approximately 1, which increases and decreases when the epoch increases.With the
increase in epoch, the validation loss curve has a considerable number of ups and
downs.After 40 epochs the training loss decreases and comes to approximately at
0.5.
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Figure 5.30: Ensemble Model Loss curve

Confusion Matrix

The Confusion Matrix for Ensemble Model- X1 shown in figure 5.31 Acne:Out of
200 instances that truly belong to Acne, the model correctly predicted 181 instances
as Acne. There were no instances misclassified as any other class. Dermatofibroma:
Among the 255 instances belonging to Dermatofibroma, the model accurately identi-
fied 231 as Dermatofibroma. It made mistakes by classifying 5 instances as Acne, 16
instances as Melanoma, 3 instances as Psoriasis. There were no instances misclassi-
fied as Eczema, Scabies, or Solar Lentigo.Fczema: For the 221 instances of Eczema,
the model correctly classified 215 as Eczema. It misclassified 2 instances as Acne, 1
instance as Melanoma, and 2 instances as Psoriasis. There were no instances mis-
classified as Dermatofibroma, Scabies, or Solar Lentigo.Melanoma: Among the 223
instances of Melanoma, the model accurately predicted 221 as Melanoma. There
were no instances misclassified as any other class. Psoriasis: Out of 222 instances
belonging to Psoriasis, the model correctly identified 217 as Psoriasis. It misclas-
sified 3 instances as Acne, 1 instance as Scabies, and 1 instance as Solar Lentigo.
There were no instances misclassified as Dermatofibroma, Eczema, or Melanoma.
Scabies: For the 195 instances of Scabies, the model correctly predicted 165 as Sca-
bies. It misclassified 1 instance as Acne, 1 instance as Dermatofibroma, 1 instance as
Melanoma, 25 instances as Psoriasis, and 2 instances as Solar Lentigo. There were
no instances misclassified as Eczema. Solar Lentigo: Among the 217 instances of
Solar Lentigo, the model accurately predicted 207 as Solar Lentigo. It misclassified
3 instances as Acne and 7 instances as Dermatofibroma. There were no instances
misclassified as Eczema, Melanoma, Psoriasis, or Scabies.
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Figure 5.31: Ensemble Confusion Matrix

Receiver Operating Characteristic Curve

The ROC curves form the figure 5.32 for various skin conditions, including Acne,
Dermatofibroma, Eczema, Melanoma, Psoriasis, Scabies, and Solar Lentigo, all ex-
hibit excellent discriminatory performance, with AUC values ranging from 0.99 to
1.00. These curves collectively highlight the model’s outstanding accuracy in dis-
tinguishing these specific skin conditions from non-condition cases. Acne, Eczema,
Melanoma, Psoriasis, Scabies, and Solar Lentigo achieve a perfect AUC of 1.00,
signifying flawless discrimination, while the other conditions are close behind with
AUCSs of 0.99. These results underscore the model’s exceptional reliability and effec-
tiveness as a diagnostic tool for dermatological conditions, making it an invaluable
asset in clinical practice.
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5.2 Discussion

The analysis tried to make predictions using the models covered below as shown
in the table 5.1. The study found that the chosen algorithms are reasonably good
at detecting skin diseases in digitized skin scans. Therefore, NasNetMobile, on the
other hand, has the best metrics. That confirms the findings of the study here. From
our study, we can find that NasNetMobile obtained an F1-score of 0.99, better than
the present report’s results.This research complements their findings by evaluating
the model against others like it to guarantee satisfactory outcomes.

From our study, we get better accuracy, precession call, and f-1 score in MobileNet
and Resnet50 Model. Because the data was insufficient to use train, validation, and
splitting operations.

In NasNetMobile, we found a mean accuracy of 99%, and a precession of 0.99. F-1
score of 0.99 and mean recall of 0.99. In the MobileNet model, the mean precession
is 0.96, the mean recall is also 0.96, the mean f-1 score is 0.96 and the accuracy is
96% . The scores are close to NasNetMobile. But in NasNetMobile, we get more
accuracy and better precession calls.

More specifically, when comparing skin diseases, our technique can distinguish be-
tween affected skin and normal skin. As a consequence of this, it is extremely
important to differentiate it from other conditions that display themselves as sores
on the skin. This study only looked at four different labels, however previous re-
search has looked at a far larger number.

Several skin diseases are being investigated. Apart from acne, solar lentigo, psoriasis
etc, the 'many models’ technique has also been used to detect other diseases. One
of the benefits of using a variety of models is that the researcher is given the oppor-
tunity to evaluate each one and determine which one has produced the best results.
Images of dermatofibroma, eczema, acne etc may be hard to come across right now
due to their scarcity. A number of the photographs on Google may not be of the
disease, although they are labeled as their designated names by certain websites.
Before incorporating skin scans in model prediction and training, researchers must
pay a microbiologist to evaluate them.

Table 5.1: Preliminary Computational results of the ML algorithms used during this
studies

Model Precision Recall FiScore Accuracy | AUC
NasNetMobile 0.99 0.99 0.99 0.99 1.00

MobileNet 0.96 0.96 0.96 0.96 0.987
Resnet50 0.92 0.92 0.92 0.92 0.995
Densenet201 0.90 0.87 0.88 0.87 0.987
Xception 0.89 0.86 0.87 0.87 0.993
InceptionV3 0.84 0.80 0.79 0.80 0.864
EfficientNet BO 0.68 0.61 0.59 0.61 0.864
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

The identification and classification of skin conditions like as acne, melanoma, solar
lentigo, dermatofibroma, psoriasis, and scabies have garnered significant attention in
the academic real of deep learning. Various models, including Xception, Inception,
DenseNet201, NASNetMobile, DenseNet201, ResNet, and EfficientNet, are now be-
ing explored and studied in this context. The utilization of deep learning models
has demonstrated promising outcomes in the identification and categorization of der-
matological illnesses. Several significant findings have emerged from recent study,
which are outlined below:There is nothing in an individual’s text that could be used
for academic revision. Detecting skin problems can be challenging due to the visual
proximity effect and the intrinsic intricacy of human skin. Deep learning method-
ologies can be employed to develop frameworks capable of discerning a wide range of
dermatological disorders. The identification of skin diseases can now be facilitated
by the utilization of a smartphone’s camera and advanced image processing tech-
niques. A novel approach in the field of cutaneous illness involves the development
of an adaptive federated machine learning model. This model demonstrates the
capability to accurately detect various ailments pertaining to the skin, while also
exhibiting the potential for continuous improvement in accuracy over time.Previous
research has demonstrated that the utilization of deep learning techniques has the
potential to automatically detect cutaneous lesions, given an adequate number of
training instances. Deep transfer learning shows promise for the classification of
melanoma, a particularly deadly form of skin cancer. Using deep learning algo-
rithms has shown a lot of potential for diagnosing and classifying skin conditions.
However, the quality and quantity of the training data greatly affect the accuracy
of these models. More research is needed to increase the precision and consistency
of deep learning models for skin disease diagnosis.

6.2 Future Works

There existing prospective future improvements and additions that might be ap-
plied. The computational efficiency of our suggested model is enhanced as it has
been designed for utilization on low-power devices. Furthermore, the integration of
skin disease detection technology with a tailored mobile application can provide a
platform for acquiring comprehensive knowledge regarding various manifestations,
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underlying factors, therapeutic approaches, and other pertinent aspects related to
the identified illness. Potential enhancements to the model should be implemented
in order to enable comprehensive identification of all skin conditions across global
regions. There are several potential enhancements that may be achieved through the
modification of the model. To commence, it is recommended to procure novel der-
matological imaging datasets and integrate them into the training data repository in
order to enhance its diversity and amount.The efficacy of the model in detecting less
prevalent diseases can be improved by providing it with training to identify uncom-
mon or distinctive instances within the categories of skin disorders. Furthermore,
extensive hyperparameter tuning and optimization were necessary for both the indi-
vidual CNN models and the ensemble model. This was followed by an examination
of various optimization strategies and learning rate schedules in order to improve
convergence and overall performance.In addition, we explore several transfer learn-
ing techniques, such as layer freezing and layer unfreezing, in order to identify the
most optimal approach for the goal of detecting skin diseases.Ultimately, the ensem-
ble model undergoes fine-tuning. To maximize the performance of CNN models, it
is advisable to initially refine the fusion strategy employed by the ensemble model.
Subsequently, conducting experiments to assess the impact of adding or eliminating
models would facilitate the identification of the most effective configuration.
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