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Abstract

Mango, often referred to as the “King of fruits”, occupies a superior place in the
global agricultural landscape due to its growing demand. Thus accurate identifica-
tion and classification of mango tree varieties is essential to improve quality control
and inventory management in this context. In this study, we harness the power
of well-established deep learning models, to detect the type and variety of mango
leaves by using the mango leaf image processing method. Our meticulous analysis
of accuracy and loss curves provides insight into model performance, ensuring the
model is not overfitted. Additionally, we construct a comprehensive confusion ma-
trix, highlighting the system’s ability to distinguish between different mango tree
varieties. We also introduced a detailed classification report, offering precision, re-
call, F1 score, and support for each mango tree variety. This report is a valuable
tool for stakeholders, helping them make informed decisions about quality control
and inventory management. Notably, we curated a vast dataset of 14,000 raw mango
leaf images, collected from different locations and seasons, reflecting the diversity of
mango cultivation. Our database contains 26 types of different mango leaf variants.
In the proposed system, various Deep Learning and Machine Learning algorithms
were utilized including VGG16, EfficientNetB3, MobileNetV2, InceptionV3, Xcep-
tion, ResNet50 and ViT for classification, and a comparison was made based on
their accuracy rate which is respectively 98.64%, 87.19%, 97.90%, 98.89%, 98.42%,
98.10% & 97%. By combining precision curves, loss curves, confusion matrices, and
classification reports, we provide a comprehensive performance evaluation of our
system. This work will bring a cathartic change in our agricultural economy by
easing the process of identifying mango plants.

Keywords: Mango leaf classification, Identification, Mango variations, Convolu-
tional Neural Network, Vision Transformer, Deep learning, Image classification, Im-
age recognition, Agricultural industry, Accuracy, Pre-trained models, Dataset.
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Chapter 1

Introduction

1.1 Motivation and Goals

Mango (Mangifera indica), often hailed as the “King of fruits,” holds a revered status
globally, loved for its delectable taste, nutritional richness, and a myriad of varieties.
In November 2010, Mango was honored as the National Tree of Bangladesh, signify-
ing the nation’s profound affection and demand for this tropical gem. Renowned for
its nutrition and sweetness, mango thrives in Southeast Asian countries and graces
South American landscapes as well. With over a hundred different types growing
just in Bangladesh, it truly reigns supreme in the world of fruits [4]. Accurate mango
leaf identification is crucial in many areas, including agriculture, horticulture, and
the food business. Each variety has distinctive characteristics, including differences
in tree size and leaf morphology. Mango leaf classification by kind by hand is a
difficult, error-prone operation requiring specific expertise. Thus, there arises an
urgent need for a deep learning system capable of automatically categorizing these
varieties. Deep learning, a powerful subset of machine learning, has exhibited re-
markable prowess in tackling a lot of challenges across different domains. From
image classification and object detection to text generation [24] and recommenda-
tion systems, deep learning has catalyzed advancements that resonate in numerous
applications [20] [21]. This burgeoning technology has substantially impacted the
field of computer vision, continually pushing the boundaries of image recognition.
In the agricultural sphere, mango leaf variety identification plays a pivotal role in
crop management, disease detection, and yield prediction, making it a paramount
area of research.

In this study, we employ popular Convolutional Neural Network (CNN) models and
Vision Transformer (ViT) models for mango leaf variety identification. CNNs have
long been the cornerstone of image classification, adept at automatically learning
intricate features from images, capturing both low-level patterns and high-level ab-
stractions. ViT, a recent entrant in computer vision, has showcased remarkable
performance in image recognition benchmarks. This research aims to harness the
capabilities of deep learning for mango species classification using leaf images. The
core objective is to develop a CNN architectural model tailored for mango species
classification based on leaf imagery. Crucially, we gathered a diverse and extensive
dataset comprising almost 14,000 raw mango leaf images, meticulously collected
from different geographical regions and across various seasons. This comprehensive
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dataset mirrors the rich tapestry of mango cultivation, encompassing variations in
leaf shape, color, and texture. Our deep learning models, including VGG16, Incep-
tionV3, ResNet50, Xception, EfficientNetB3, MobileNetV2, and ViT, are fine-tuned
using this dataset. Our evaluation includes the generation of accuracy curves, loss
curves, confusion matrices, and classification reports. Accuracy curves offer insights
into model convergence and overall performance during training. Loss curves shed
light on how effectively the models reduce errors as they learn from the dataset.
Confusion matrices provide a comprehensive view of the models’ proficiency in clas-
sifying mango leaves into distinct categories. Classification reports offer detailed
metrics, such as precision, recall, and F1 score, for each class, enabling a thorough
assessment of model effectiveness. The findings of this research hold significant im-
plications for the agricultural sector, particularly in mango tree management and
disease control. Our developed classification system, driven by pre-trained CNN
models, offers an efficient and reliable solution for automated mango leaf categoriza-
tion. Farmers and agricultural experts can swiftly identify and categorize mango
variations, facilitating timely action against disease transmission, optimization of
agricultural practices, and maximization of crop yields.

This research emerges from a unique and pressing need within the agricultural land-
scape for the absence of comprehensive mango leaf classification research. What
sets us apart is that we didn’t have this dataset; we had to curate it ourselves, col-
lecting a whopping 14,000 raw mango leaf pictures. This immense task motivated
us to tackle this challenge head-on. The motivation behind this endeavor is driven
by the paramount importance of addressing contemporary agricultural challenges
as the increasing demand for food production, the imperative for judicious resource
management and the necessity for precise crop oversight. This research seeks to
fill a critical knowledge gap by pioneering the classification of mango leaf varieties.
The primary goal is to harness the power of deep learning models like Convolu-
tional Neural Networks (CNNs) and Vision Transformer (ViT), to create a robust
and automated system for accurate mango leaf variety identification. This multi-
faceted research effort aims to not only expand the dataset but also to elevate model
accuracy, enable practical deployment, explore scalability to other crops, conduct
sustainability assessments, and develop user-friendly interfaces. Ultimately, our re-
search aspires to catalyze a transformative shift in agriculture with the help of
cutting-edge technology to enhance food security, optimize resource allocation, and
ensure better crop quality.
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1.2 Research Problem:

Machine learning (ML) approaches have recently gained popularity in various fields
such as environmental management and agriculture. Classification of plant species
based on leaves is a special research topic of this science. The mango tree is an exam-
ple of a plant whose accurate identification and classification can provide important
insights into farm operations, disease diagnosis, and ecosystem monitoring. Mango
leaves, one of the main components of the mango tree, exhibit unique characteristics
that can be used as important markers for species identification. However, mechan-
ical identification of mango leaves based solely on visual inspection can be cumber-
some and error-prone. Therefore, by integrating machine learning technology, we
can greatly improve the effectiveness and accuracy of mango leaf classification.
The goal of this research project is to build a compound machine-learning model for
classifying mango leaves using various parameters (color, texture, shape, etc.) and
performance indicators (accuracy, recall, etc.). In this study, we collected a dataset
of mango leaf photographs, pre-processed the images to extract relevant features,
and then used various machine learning techniques (decision trees, random forests,
neural networks, etc.) that can classify the leaves. The results of this study could
help make mango leaf classification more accurate and useful, which could be used
in agriculture and environmental management.
There are numerous studies related to classification of plants as classifying types of
mangoes, grapes, oranges, and apples based on images processing [22]; classifying
types of mangoes with CNN [18]; classifying types of mangoes, grapes, oranges,
and apples based on images using CNN [7]; Classification and Grading of Harvested
Mangoes Using Convolutional Neural Network [1]; All these mentioned research
portrays that the identification and classification of fruits is needed. Not everyone
knows about all the types of mango, and it takes experts to know the types and
characteristics. Also, it can benefit the industry that works with mango fruit-based
products like pickles, juice, and other snacks, etc. This study proposes a system
for identifying mango plant species based on leaves using the CNN method. The
main reason for preferring the CNN method from previous research is that the CNN
method offers excellent accuracy till now and almost all previous studies used the
leaves of the plant to identify and classify plant species. So, the main intention of
our research is to propose a CNN architectural model for classifying mango species
based on leaf imagery. A UNB report [32] published last year, mentioned that 200
varieties in a single tree were found in Chapainawabganj, Rajshahi. As per the re-
port, the intention was to preserve these newly recognized species besides traditional
ones in one place. So, we can say it will be a lot easier to track down the varieties
even from one tree by implementing the CNN method. Also, it would further spread
the reputation of the region as a mango-growing hub.
The results of this study could lead to major changes in the fields of agricultural
technology and environmental management. A mixed ML model proposed to classify
mango leaves can improve the accuracy of species identification while streamlining
the labor-intensive identification process. The results are also useful for ecosys-
tem monitoring, supporting sustainable agricultural practices, and early detection
of diseases and insects affecting mango plants. Overall, this study aims to bridge
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the gap between traditionally used manual classification methods and the growing
desire for effective automated methods. Harnessing the power of machine learning
models and state-of-the-art approaches can increase the accuracy and effectiveness
of mango tree species identification, promoting agricultural practices and environ-
mental protection.
When using ViT, the images of mango leaves are first transformed into sequences
of fixed-size patches and then processed via a transformer-based architecture. The
transformer’s self-attention mechanism allows the model to capture long-range de-
pendencies and relationships between numerous patches, as a result, the model is
effective in finding distinguishing traits among various mango types. The goal can
be accomplished by using ViT in the research to build a more potent feature set for
precise classification and enhance the classification accuracy of recognizing mango
varieties as a whole. To ascertain the benefits of utilizing ViT in this particular
application, the research may compare the performance of ViT-based models with
the current CNN and other machine learning models based on various performance
parameters.

1.3 Research objective

Identifying and classifying with the bare eye which plant variety of a certain mango
is very tough, challenging, and sometimes not accurate. Only the experts who work
in the agriculture field can do this job and even then there can be a lack of as-
surance sometimes. To solve this problem, using artificial intelligence will improve
the automated classification and provide accuracy. Here, we used the CNN method
in the classification of mango varieties in Bangladesh. Necessary image processing
methods were applied to the collected images of mango plant leaves to ensure iden-
tification was more precise. These methods include the enhancement of the images
to fit for analysis and the extraction of some morphological features from binary
images such as minor axis length, area, and major axis length of the leaf. We col-
lected and processed a large dataset of mango leaf photographs to provide a diverse
representation of many mango tree species and capture the features required for
classification. To create a powerful feature set for accurate classification, examine
and extract the following relevant aspects from mango leaf photos color, texture,
and shape. Leveraging each strategy to improve classification accuracy by imple-
menting and training mixed machine learning models using different methods such
as decision trees, random forests, and neural networks. We used feature selection,
parameter optimization, and model ensemble techniques to tune combined ML mod-
els, aiming to achieve the best performance in terms of accuracy, accuracy, retrieval,
and computational efficiency. To determine the accuracy, efficiency, and versatility
advantages of our model, we compare it to individual machine learning models and
other methods for classifying mango leaves based on various performance criteria.
Also, tested the resulting model against a new validation dataset and evaluated its
performance in different environmental settings and image quality variations to see
if it is applicable to real-world situations. We provided suggestions and insights for
future research on mango leaf taxonomy, considering the limitations and difficulties
of the study.

4



The usage of Vision Transformers (ViT) is one such strategy that can be investigated
to meet the goal of the study. With its excellent performance in image identification
tasks, ViT is a recent development in computer vision. The model may learn to
successfully extract global context information from the images of mango leaves by
introducing ViT into the classification pipeline, which may increase the accuracy of
differentiating between different mango kinds.
The capacity of ViT to scale to the huge dataset is advantageous when dealing with
various representations of mango tree species. To get the optimum performance in
terms of accuracy and computational efficiency, ViT can also be utilized in conjunc-
tion with the current CNN-based models and other machine-learning techniques.
Our main aim is to point out that mangoes are difficult to manually classify and
not everyone can visually identify them. Additionally, you can analyze your models,
learn about current research, and create models that are more accurate and efficient
than those currently in use. Additionally, the accuracy of the model should be evalu-
ated and improved, and suggestions for improvement should be made. By achieving
these goals, this research aims to contribute to the fields of agricultural technol-
ogy and environmental management by providing a useful automatic classification
method for mango leaves. The results of this study may improve accurate species
identification, disease detection, and ecosystem monitoring, ultimately enhancing
conservation efforts and supporting sustainable agricultural practices.
The project ultimately intends to make a contribution to the fields of agricultural
technology and environmental management by offering a more precise and effec-
tive automatic classification method for mango leaves by utilizing ViT or compa-
rable cutting-edge methodologies. The findings of this study may improve species
identification, disease detection, and ecosystem monitoring, promoting sustainable
agricultural practices and bolstering conservation efforts in relation to mango agri-
culture.
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Chapter 2

Related Work

Researchers used ML classifiers to distinguish between different mango cultivars in
Classification of (Mangifera indica) [30]. He following steps were included in this
methodology: picture acquisition, pre-processing, segmentation, feature extraction,
classification, and evaluation. Two of the classifiers, the LMT and KNN, offered
decent classification accuracy to identify among the eight mango species. LMT
required classification accuracy rates between 80.33% and 88.33% for a number
of mango varieties, while the KNN classifier reached between 88.33% to 97%, the
greatest overall categorization accuracy.
In this article [8], artificial intelligence is used to identify mango leaves. This work
proposed an automatic approach for classifying mango plant leaves based on shape
features and RST-invariant characteristics of the leaves. Leaf photos are processed
using skillful edge detection and morphological feature extraction methods. It is
believed that categorization is required in order to differentiate mango plant leaves
from one another using the data gained from characteristic selection. A separate fea-
ture from the target image is compared to a feature from the cataloged image data.
Images of leaves are processed using morphological feature extraction and canny
edge detection algorithms. The output of the classification model is produced by
an artificial neural network method based on CVIPTools. The successful method of
detection is applicable to a wide range of mango species, such as mango trees gadung
and curut. Up to 77.78% of detection accuracy can be achieved using the system.
This result could be regarded as perfect. Two classification methods, Support Vec-
tor Machine (SVM) and Fuzzy K-Nearest Neighbor (FK-NNC), are evaluated for
system enhancement in each class. The application’s performance results in an accu-
racy of up to 88.89%. Comparing this performance to the prior one, it is noticeably
better. The K-Nearest Neighbor (K-NN) algorithm experiments also produced 90%
accuracy in the choice of the optimal features for mango tree species detection.
According to the study conducted by [3], the utilization of texture as the major
characteristic for detection is justified by its ability to discern the physical attributes
of mango leaves based on their texture. The alteration in hue is easily discernible
without the aid of optical instruments.
Then, according to this study [11], Energy (C), uniformity (S), one moment (M),
five moments (M), four moments (M), and a second moment are the most effective.
Features of mango leaves image texture derived from Hue components (M). However,
the factors cannot deliver optimal performance. The K-NN method can achieve an
accuracy of 0.83 (83%). Image texture characteristics of mango leaves can provide
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the utmost level of precision. The K-NN technique can achieve an accuracy of 0.89
(89%).
In this work [2], software capable of identifying a mango variety from an image of
its leaf was effectively developed. Using the Otsu thresholding technique, the region
of interest was isolated from the background. Nine color features, seven moments
invariant features, and nine textural features were extracted using image processing
techniques. Using ten leaf image samples for each of the four mango varieties, the
software was effectively trained using the backpropagation method. The identifica-
tion accuracy of the software is 96%. It is possible to improve the accuracy of the
mango variety recognizer by utilizing more leaf image samples during training and
by ensuring that the various leaf growth stages are accurately represented.
In [27], fruit classification is proposed. If expert grading is assumed to be 100%
accurate, the performance accuracy of the proposed system for grading is nearly 90%.
Nonetheless, this variation is a result of the subjective perception of the mango by
experts, which is self-evident. In addition, the repeatability of the proposed system
is determined to be 100 percent.
Using image processing and machine learning techniques, the authors of this pa-
per [18] developed multi-parameter-based mango grading. Using image processing
techniques, color, geometric, and shape-related features were extracted. These fea-
tures were then used by pre-trained random forest classifiers to determine mango
ripeness (unripe/middle-ripe/ripe), size (small/medium/large), and shape (well-
formed/deformed). For defect segmentation, K-means clustering was used to clas-
sify mango defects as (non-defective/middle-defective/completely defective). Using
a grading formula that integrates parameter-specific quality scores according to pre-
dicted categories, the final grade was determined. The classification accuracy for
ripeness, size, and shape of Dashehari mangoes in a created dataset was 100%,
98.19%, and 99.20% respectively. Mangoes could be graded with an accuracy of
88.88% using formula-integrated grading.
This paper by Thakur, Khanna, Sheorey, & Ojha (2021) proposes the transformer-
based programmed infection discovery show ”PlantViT”, which could be a cross
breed of a Convolutional Neural Organize and a Vision Transformer[29]. The ob-
jective is to identify plant diseases from leaf pictures employing a profound learn-
ing method based on Vision Transformer. The show consolidates CNN and Vision
Transformer capabilities. The Vision Transformer is established on a multi-head
center module. The try was assessed on PlantVillage and Embrapa, two large-scale
open-source datasets for plant illness location. The proposed show accomplishes
98.61% and 87.87% accuracy on the PlantVillage and Embrapa datasets, individu-
ally, agreeing to test comes about. The PlantViT can achieve critical advancement
over the current state-of-the-art strategies in plant infection detection.
In this paper, the authors propose a novel methodology [33] that presents a unified
approach for integrating multiple features and classifiers. This approach offers sev-
eral advantages over a simplistic method where all features are concatenated and
independently provided to each classification algorithm. It requires less training
and is better suited for addressing specific problem domains. In addition to this,
the technique that has been presented is suitable for continuous learning. This in-
cludes the process of refining a learned model as well as incorporating new classes
to be distinguished. The efficacy of the proposed fusion methodology is confirmed
through its application in a semi-controlled setting, specifically in the context of a
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multi-class fruit-and-vegetable categorization task. This task is typically carried out
in environments such as distribution centers or supermarket cashiers. The findings
indicate that the proposed solution has the capability to decrease the classification
error by as much as 15% points compared to the baseline.
In this inquiry about work by Supekar Wakode (2020) a mango reviewing frame-
work based on outside parameters specifically readiness, measure, shape, and aban-
dons was created[19]. Picture-preparing methods were connected to extricate the
color, geometric, and shape-related highlights. These highlights were assisted by pre-
trained irregular timberland classifiers to determine the mango readiness (unripe/mid-
ripe/ripe), estimate (small/medium/large), and shape (well-formed/deformed) cat-
egory. K-means clustering was connected for defect division to decide the mango
imperfection category as (non-defective/mid-defective/completely-defective). Addi-
tionally, the last review was performed employing an evaluating formula that com-
bines the parameter-specific quality scores relegated, concurring to anticipated cat-
egories. Readiness, measure, and shape classification performed on a made dataset
of Dashehari mangoes accomplished a test exactness of 100%, 98.1%, and 99.20D44
separately. Formula-based coordinates evaluation might review mangoes with 88.88
% accuracy.
(Rocha et al., 2010) presents a bound-together approach that can combine numerous
highlights and classifiers that require less preparation and is more satisfactory for a
few issues than a gullible strategy, where all highlights are essentially concatenated
and encouraged freely to each classification calculation. Other than that, the dis-
played strategy is amiable to nonstop learning, both when refining a learned demon-
stration and when including modern classes to be segregated against. The presented
combination approach is approved employing a multi-class fruit-and-vegetable cat-
egorization errand in a semi-controlled environment, such as a dissemination center
or a general store cashier. The comes about appears that the arrangement is able
to decrease the classification mistake by up to 15 % with regard to the baseline[1].
The researchers in this study [4] utilized a substantial, complex convolutional neu-
ral network to categorize the 1.2 million high-resolution images in the ImageNet
LSVRC-2010 competition into 1000 distinct classes. In the evaluation of the test
data, we obtained top-1 and top-5 error rates of 37.5% and 17.0% respectively,
demonstrating a significant improvement compared to the previous state-of-the-
art performance. The neural network comprises five convolutional layers, some of
which are accompanied by max-pooling layers, and three fully-connected layers.
It is equipped with a final 1000-way softmax and possesses 60 million parameters
and 650,000 neurons. In order to expedite the training process, we employed non-
saturating neurons and leveraged a highly efficient GPU implementation of the con-
volution operation. In order to mitigate the issue of overfitting in the fully connected
layers, the researchers implemented a regularization technique known as ”dropout,”
which has been recently developed and demonstrated significant efficacy. Addition-
ally, we submitted a modified version of this model in the ILSVRC-2012 competition
and attained a first-place ranking with a top-5 test error rate of 15.3%. This out-
performed the second-best submission, which achieved a test error rate of 26.2%.
In this study, the authors [6] examine the impact of the depth of a convolutional
network on its accuracy in the context of large-scale image recognition. The primary
contribution of our study is a comprehensive assessment of networks with progres-
sively increasing depth, employing an architecture that incorporates compact (3×3)
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convolution filters. Our findings demonstrate that by increasing the depth to 16-19
weight layers, a substantial enhancement over previous configurations can be at-
tained. The aforementioned results served as the foundation for our participation
in the ImageNet Challenge 2014. In this competition, our team achieved first and
second-place rankings in the localization and classification tracks, respectively. Ad-
ditionally, we demonstrate the ability of our representations to effectively generalize
to alternative datasets, resulting in the attainment of state-of-the-art outcomes.
The two ConvNet models that have demonstrated the highest performance have
been made accessible to the public in order to encourage further investigation into
the application of deep visual representations in the field of computer vision. The
first-place entry demonstrated a test error rate of 15.3%, which outperformed the
second-place entry’s rate of 26.2%.
The algorithm proposed by Aakif and Khan (2015) consists of three distinct stages
for plant identification: i) pre-processing, ii) feature extraction, and iii) classifica-
tion. Various leaf features, including morphological features, Fourier descriptors,
and recently proposed shape-defining features, are evaluated in comparison to the
achievement of 26.2% obtained by the second-best entry[7]. The aforementioned
features are utilized as the input vector for the artificial neural network (ANN).
The algorithm has been trained using a dataset consisting of 817 samples of leaves
obtained from 14 distinct species of fruit trees. The algorithm demonstrates a high
level of accuracy, surpassing 96%. In order to assess the efficacy of the algorithm,
it was subjected to testing using the Flavia and ICL datasets. The results indicate
a 96% accuracy rate for both datasets.
The study by He et al. (2016) [9] introduces a residual learning framework that
aims to facilitate the training of deep networks, surpassing the depth of previously
employed networks. The layers are reformulated in a manner that explicitly learns
residual functions by referencing the layer inputs, as opposed to learning functions
without any reference. The authors present a comprehensive collection of empirical
evidence that demonstrates the ease of optimization and improved accuracy achieved
by residual networks when their depth is significantly increased. The authors of the
study conducted an evaluation of the dataset, comparing the performance of residual
networks with a depth of up to 152 layers to that of VGG networks. It was found
that the Residual Networks (ResNet) were 8 times deeper than the VGG networks,
while still maintaining lower complexity. A collection of these residual networks
achieves an error rate of 3.57% on the ImageNet test dataset. The outcome achieved
first place in the ILSVRC 2015 classification task. In addition, the authors provide
an analysis of CIFAR-10 utilizing models comprising 100 and 1000 layers. The
significance of the depth of representations holds great importance in various visual
recognition tasks. The 28% relative improvement on the COCO object detection
dataset was solely attributed to the highly profound representations employed by
the researchers. The utilization of deep residual networks served as the fundamental
framework for our entries in the ILSVRC and COCO 2015 competitions. Notably,
our submissions achieved first place rankings in the ImageNet detection, ImageNet
localization, COCO detection, and COCO segmentation tasks.
This paper [10] provides a thorough examination of the existing body of literature
with the objective of determining the current advancements in the application of
convolutional neural networks (CNNs) for the purpose of diagnosing and identify-
ing plant pests and diseases. Furthermore, this study highlights several challenges
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that currently hinder the performance of the models. Additionally, it identifies areas
where further research is needed to bridge existing gaps. In this context, we conduct
a comprehensive examination of studies employing diverse methodologies that have
focused on the detection of plant diseases, the characteristics of the datasets used, as
well as the specific crops and pathogens investigated. Additionally, this paper exam-
ines the widely utilized five-step methodology for the identification of plant diseases.
This methodology encompasses the stages of data acquisition, pre-processing, seg-
mentation, feature extraction, and classification. The paper examines several deep
learning architecture-based approaches that demonstrate an accelerated convergence
rate in the field of plant disease recognition. This review provides insights into the
emerging trends in utilizing CNN algorithms for diagnosing plant diseases. It also
highlights the areas that require further attention from the research community.
The proposed system [5] is a computer vision-based approach for grading mango
(Mangifera indica) fruits. It involves the extraction of various features that are re-
sponsive to the maturity level, size, and surface defects of the fruits. The maturity
prediction task has utilized the Recursive Feature Elimination (RFE) technique in
combination with Support Vector Machine (SVM) based classifiers. The determi-
nation of size and surface defects is accomplished through the utilization of various
image processing methods. The system employed Multi-Attribute Decision Making
(MADM) theory as a solution to address the issue of multiple characteristics. The
findings indicate that the rate of size detection error is approximately 3%, while the
accuracy of maturity prediction is 96% and the accuracy of surface defect detection
is 92%. The grading accuracy of the proposed system is approximately 90% when as-
suming that expert grading is completely accurate. However, the observed variation
in perceiving the mango visually is attributed to the subjective judgment of expert
individuals, a fact that is readily apparent. Additionally, it has been determined
that the proposed system exhibits a repeatability rate of 100.
The interpretation of Inception modules in convolutional neural networks as an inter-
mediate step between regular convolution and the depth-wise separable convolution
operation (consisting of a depth-wise convolution followed by a point-wise convolu-
tion) is presented by the authors [13] From this perspective, a depth wise separable
convolution can be conceptualized as an Inception module consisting of a signifi-
cantly increased number of towers. The aforementioned observation prompts us to
propose a new architectural design for deep convolutional neural networks, drawing
inspiration from the Inception framework. In this proposed design, the Inception
modules are substituted with depth-wise separable convolutions. In this study, we
demonstrate that the architecture known as Xception exhibits a slight improvement
in performance compared to InceptionV3 when evaluated on the ImageNet dataset,
which was specifically designed for Inception V3. Moreover, Xception demonstrates
a significant performance advantage over Inception V3 when assessed on a larger im-
age classification dataset consisting of 350 million images and 17,000 classes. Given
that the Xception architecture possesses an equivalent number of parameters as the
Inception V3 architecture, the observed improvements in performance can be at-
tributed to more effective utilization of model parameters, rather than an increase
in capacity.
Here, the study [31] introduces a novel disease detection model called ”PlantViT,”
which combines a Convolutional Neural Network (CNN) with a Vision Transformer.
This hybrid model is described in detail in the (Boukabouya et al., 2022). The ob-
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jective of this study is to utilize a Vision Transformer-based deep learning approach
to accurately detect and classify plant diseases using images of leaves. The model
leverages the capabilities of Convolutional Neural Network (CNN) and the Vision
Transformer. The Vision Transformer utilizes a multi-head attention module as its
foundation. The experiment was assessed using two extensive open-source datasets
for plant disease detection, namely PlantVillage and Embrapa. The experimental
findings demonstrate that the model proposed in this study attains an accuracy of
98.61% and 87.87% on the PlantVillage and Embrapa datasets, respectively. The
PlantViT demonstrates substantial advancements compared to existing state-of-the-
art techniques in the field of plant disease detection. The topic of interest is plant
disease. The vision transformer and convolutional neural network are both widely
used models in the field of computer vision. The vision transformer is a recent archi-
tecture that has gained attention for its ability to capture long-range dependencies
in images through PlantVillage an online platform that serves as a valuable resource
for individuals.
The study by [16] introduced a methodology that utilizes a fuzzy logic algorithm and
K-NN as a classification technique for mango leaves. The outcomes of the fuzzy logic
algorithm demonstrate an accuracy rate of 80% in identifying the ”Indian” mango,
72.73% for the ”carabao” mango, and 80% for the ”saperada” mango. The findings
from the K-NN classifier indicate that when k values of 1 and 2 were used, the average
accuracy was 93.33%. However, when k values of 3 and higher were employed, the
average accuracy increased to 100%. The findings of this study demonstrate the
potential efficacy of the fuzzy logic algorithm and k-NN as a classification tool for
identifying different varieties of mango commonly found in the Philippines. The
models employed in this study were found to be highly appropriate for the rapid
and efficient identification of images of mango plant leaves. The models presented
exhibit imperfections and have potential for enhancement in order to yield more
precise outcomes. The results indicate that the kNN classifier exhibited higher
accuracy compared to the fuzzy logic algorithm.
The study conducted by the authors [17] involved the development of a neural
network model known as a Multi-Layer Perception (MLP). This model was designed
to accurately classify the variety of mango based on an image of its leaf. Specifically,
the research focused on the four main mango varieties found in the Philippines,
namely Carabao, Pico, Pahutan, and Kachamita. A total of nine color features, nine
textural features, and seven Hu moments morphological features were extracted from
each leaf image sample utilizing various image processing techniques, including the
automatic threshold method of segmentation, median filter, dilation, and erosion.
The Multi-Layer Perception (MLP) consists of an input layer with 25 neurons, a
hidden layer with 50 neurons, and an output layer with 4 neurons. The performance
of the recognizer was evaluated using a dataset consisting of 40 leaf images. This
dataset included 10 samples for each variety, with some of the samples being used
during the training phase and others not. The test achieved a 96% accuracy rate.
In the aforementioned study [25], a convolution-free transformer model was devel-
oped and trained exclusively on the Imagenet dataset, resulting in a model that
exhibits competitive performance. The participants were instructed on the oper-
ation of a singular computing device within a time frame of fewer than 72 hours.
The reference vision transformer, which consists of 86 million parameters, demon-
strates a top-1 accuracy of 83.1% when evaluated on ImageNet using a single-crop
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approach, without the utilization of any external data. Furthermore, a teacher-
student strategy specifically tailored to transformers was introduced by them. The
effectiveness of this approach is contingent upon the utilization of a distillation to-
ken, which serves to facilitate the acquisition of knowledge by the student through
focused engagement with the teacher.The token-based distillation method demon-
strated a notable level of interest, particularly in cases where a convolutional neural
network is employed as the instructor. As a consequence, they are able to present
findings that are comparable to convolutional neural networks in terms of perfor-
mance on the Imagenet dataset, achieving an accuracy of up to 85.2%. Moreover,
their approach demonstrates promising results when applied to other tasks.
The utilization of GLCM and K-Nearest Neighbor (KNN) techniques was employed
by the author of this study [26]. The Prototype method is employed in system
development. The experiment involved conducting tests on a total of 60 mango
leaves, which were divided into training data and test data in an 80:20 ratio. The
accuracy of the results varied. The highest level of accuracy is achieved at K =
3 with a rate of 81%, utilizing a total of 6 features. Similarly, at K = 6, the ac-
curacy drops slightly to 78% while employing 5 features. Lastly, at K = 7, the
accuracy further decreases to 74% with the utilization of 4 features. The concept
of authenticity refers to the quality or condition of being genuine, original, or true
to its nature. In the context of state-of-the-art, it pertains to the most advanced
or cutting-edge technology One notable distinction between the present study and
prior research lies in the employed pre-processing technique, the selection of fea-
tures, and the chosen classification methodology. In this approach, the image of
the mango leaf is transformed into grayscale, followed by a subsequent feature ex-
traction procedure. Subsequently, the outcomes of the feature extraction process
will be subjected to classification through the utilization of the K-Nearest Neighbor
technique. The system generates output that corresponds to the classification of
mango leaves, including varieties such as Kweni, Lalijowo, and Madu.
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Table 2.1: List of Literature Reviews

Ref Task Classifier Dataset Accuracy

[1]
Automatic fruit and
vegetable classifica-
tion

N/A

Multi class
fruit and veg-
etable image
dataset

N/A

[2]
Shape based Features
and Neural Network
classifiers

neural
network;
computer
vision

Mango
leaf im-
ages dataset

90%

[3]
Computer vision tech-
niques in the agricul-
ture and food industry

ANN
Grain, fruits,
meat and fish
dataset

[4]
ImageNet Classifica-
tion

CNN
1.2 Million
high resolu-
tion image

N/A

[5]
Mango Fruit Grading
System

Computer
vision

Image clas-
sification
dataset

100%

[6]
Large-Scale Image
Recognition

CNN
Image clas-
sification
dataset

N/A

[7]
Automatic classifica-
tion of plants based

ANN
Different leaf
image

96%

[8]

Automatic classifica-
tion of plants based
on their leaves Mango
Leaves by Using Arti-
ficial Intelligence

ANN

Image Cap-
turing and
Image Data
Set

96% to
98%

[9]
Deep Residual Learn-
ing for Image Recogni-
tion

CNN
image clas-
sification
dataset

N/A

[10]
Plant Disease Detec-
tion

ViT

Defected
plant from
images of
leaves

98.61%

[11]
Mango Tree Varieties
Based on Image Pro-
cessing

N/A
Mango leaf
image dataset

78%

13



[13]
Deep Learning With
Depth Wise Separable
Convolutions

CNN
ImageNet
Dataset

N/A

[19]
Model Scaling for
Convolutional Neural
Networks

CNN model scaling 91.7%

[20]
Leaf Based Trees
Identification

CNN
images of
leaves

99.40%

[21]
Mango Grading Using
Image Processing

Computer
vision, ML

Image clas-
sification
dataset

88.88%

[29]
Classifying Types of
Mango Based on Leaf
Images

CNN
Colored
mango tree
leaves dataset

N/A

[31]
Plant Disease Detec-
tion

CNN, Vit
Image clas-
sification
dataset

98.61%

[32]
Mangifera indica
leaves using digital
image analysis

CNN (R-
CNN)

Correlation
based Feature
(CFS) Selec-
tion Data

88.33% to
97%

[34]
Detecting Mango Dis-
eases and Pesticide
Suggestions

DenseNet169
Defected
mango leaves
images

97.81%

[35]
Breast Cancer
Histopathological
Images Classification

ViT-DeiT
histopathology
image dataset

98.17%

Table 2.2: Comparison Table

Study Model Accuracy

[2]
Neural network; com-
puter vision

90%

[5] Computer vision 100%
[7] ANN 96%
[10] Vit 98.61%
[19] CNN 91.7%
[21] Computer vision, ML 88.88%
Our paper Vit 97%
Our paper VGG16 98.64%
Our paper Inception V3 87.19%
Our paper Resnet 50 97.9%
Our paper Xception 98.89%
Our paper EffecientNetB3 94.42%
Our paper MobileNetV2 98.10%
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Chapter 3

Datasets and Experimental Setup

3.1 Dataset in metric learning

We assessed our methodology using data we had collected ourselves. The dataset
includes almost 14,000 images of 26 unique varieties of healthy mango leaves which
is the foundation of our research.

3.1.1 Model training

When training a feature extraction network, it is usual practice to select certain
categories of images from the dataset, divide these photos into validation sets, and
then utilize the other images as training sets.

Figure 3.1: A chart of the number of datasets
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3.2 Description of data

The process of implementing the deep learning and Vision Transformer (ViT) model
began with a comprehensive and careful gathering of raw data from various locations
in the lush landscapes of Bangladesh.
For the purposes of our research experiment, we collected Mango leaves from var-
ious varieties, specifically: African jumbo, Amrapali, Baaper Bari, Bari 4, Bari 7,
Bari 8, Bari 9, Bari 11, Bari 13, Fazlee, Gopalvog, Harivanga, Himsagar, King
Brunei, Lengra, Madhurani, Moriyam, Qzai, Red Palmer, Thai Banana Mango, In-
dian totapuri, Kacha Mitha, Philippine Honey Dew, Thai Moriyam, Sabira, and
Tawani Red. The photographs in our possession were obtained from several sources,
including SOAS Agro in Feni, Bangladesh Agricultural Research Institute in Rang-
pur, Brac Nursery in Demra, as well as several unidentified gardens in Rajshahi,
Munshiganj, Tangail and Manikganj. The photographs were obtained using several
high-resolution cell phone cameras and were positioned on a pristine white surface.
The dataset that was gathered consisted of a minimum of 300 to 700 photos for each
type of mango. The primary objective of this data collection expedition centered
around the famed mango trees located in the Rajshahi Division, which are widely
recognized for their remarkable flavor and captivating qualities. There are a total
of 14,019 raw leaves. The depicted images exhibited a moderate distance and were
characterized by a lack of sharpness. We tried to maintain a constant height of
one and a half feet above the leaves, ensuring standardization of the entire image
acquisition procedure. The photographs were taken during a period of clear weather
conditions during midday, specifically between the hours of 11:00 a.m. and 3:00 p.m.
Additionally, a few of the shots were captured under the illumination of linear light
bulbs.
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Table 3.1: Table of Data Collection

Subject Deep Learning
Specific subject area Mango leaf variety classification

Type of data
Digital images of average size 128 × 128 pixels having
RGB color in JPG format.

How the data were acquired

We examine a total of 26 distinct varieties of mango
leaves that have a significant impact on mango trees.
In order to gather data from several mango gardens
throughout different regions of the country, four mango
gardens in Bangladesh were chosen based on their di-
mensions and the diversity of tree species present. The
leaf photographs were captured several days prior to the
commencement of the summer season in 2023. The vari-
ety of the trees was repeatedly validated by agricultural
experts.
Following the collection of the leaves, individual pho-
tographs of each leaf were obtained using a cell phone
camera on a white background. Approximately 14,000
pictures were captured in all.

Description of data collec-
tion

Throughout the data collection process, utmost care and
consideration were exercised to ensure the preservation
of the mango trees and their blossoms. Therefore, the
ideal time for leaf collecting was meticulously deter-
mined to be during the initial weeks of February and
March. These months were deemed optimal to avoid
any detrimental effects on the trees or their precious
mango blooms.
Moreover, raw leaves were carefully processed through a
complete cleaning procedure to remove any impurities,
such as dust particles before being added to the dataset.
The aim of this filtering process was to make the re-
sulting deep-learning model more accurate and precise.
With the raw leaves now properly prepared, a series of
detailed photographs were captured, following a thor-
ough drying process. These photographs were an essen-
tial foundation for the subsequent stages of the research,
aiding in the training and optimization of the sophisti-
cated deep learning and VIT model.

Data source location

The following mango orchards of Bangladesh are used
for data collection:
1.SOAS Agro (Feni) 2.Bangladesh Agricultural Re-
search Institute (Rangpur) 3.Brac Nursery(Demra)
4.Renowned mango gardens of Rajshahi, Chapai
Nawabganj and Munshiganj.
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Table 3.2: Data Set Table

S/L
Classification
Name

Number
of Im-
age

S/L
Classification
Name

Number
of Im-
age

01 Harivanga 566 14 Sabira 738
02 Gopal Vag 402 15 Himsagar 575
03 Lengra 61 16 King Brunia 591
04 Red palmar 69 17 African Jambo 433
05 Madhurani 225 18 Amrapali 981
06 Fazlee 415 19 Bari 4 447
07 Moriyum 455 20 Bari 7 470
08 Indian Totapori 675 21 Bari 8 659
09 Kachamitha 931 22 Bari 9 178

10
Philippines
Honey Deu

899 23 Bari 11 293

11 Taiwani Red 764 24 Bari 13 85

12 Thai Moriyom 738 25
Thai Banana
Mango

212

13 Qzai 839 26 Baper Bari 1288

The above 3.2 table highlights our dataset which comprises nearly 14,000 high-
resolution images of 26 unique mango leaf varieties, meticulously collected from
diverse locations in Bangladesh, serving as the foundation for our research.
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Chapter 4

Proposed Methodology

The proposed methodology is initiated by preparing the entire raw dataset, followed
by a thorough cleaning process to eliminate any images that exhibit blurriness. Fol-
lowing a systematic data processing approach, an embedding layer is constructed to
facilitate the application of deep learning models, such as convolutional neural net-
work (CNN) models. The process of picture acquisition involves the capture of leaf
images through the utilization of various cell phone cameras. Picture pre-processing
is a crucial initial stage in the classification of mango leaves. The completion of
this step is crucial for the preparation of data for subsequent processing by Con-
volutional Neural Network (CNN) models. The preparation pipeline encompasses
a series of meticulously selected methods aimed at enhancing features, expanding
the dataset, and standardizing the images. The segmentation phase was utilized
to isolate the leaf region and eliminate any extraneous surfaces. The subsequent
re-processing stage included enhancing the acquired image, particularly focusing on
rectifying any damaged portions. During the process of feature extraction, we ob-
tained the leaf attributes of several categories in order to conduct texture analysis.
The feature optimization process resulted in the identification of the most perti-
nent attributes for texture analysis while eliminating any extraneous features. As
a result, we produced a dataset consisting of optimized features. The classification
step involved the deployment of the LMT and KNN algorithms to discern between
different varieties of leaves. The overall success of the model training process is
influenced by the collective implementation of these phases.

Components of detection
1. VGG-16 Architecture 2. ResNet-50 Architecture 3. Inception V3 Architecture 4.
EfficientNetB3 Architecture 5. MobileNetV2 Architecture 6. Xception Architecture
7. Vision Transformer Architecture

4.1 Data Pre-processing

Data pre-processing is a vital step when working with image data in Deep learning.
Considering our dataset is completely self-collected, the orientation was variable
since the photos were taken at various sizes with a white background. Before sup-
plying data to deep learning models, we prepared it so that it could be read by
machines. We worked on image resolutions, Augmentation Techniques like rota-
tion and flipping, Gaussian Noise, Horizontal and Vertical Shearing, Gaussian Blur,
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Color Jittering, Grayscale Conversion, Grid Distortion, Optical Distortion, Affine
Transformation, and random brightness, and Rationale for Techniques like Enhance-
ment Techniques (CLAHE), Augmentation Noise and Blur Techniques in order to
implement CNN algorithms.

Image Preprocessing

In the pursuit of implementing powerful deep learning models, a crucial step involved
mandatory image pre-processing before delving into the model implementation. The
focus of this pre-processing endeavor was primarily directed toward Convolutional
Neural Network (CNN) models, which are often utilized for transfer learning, as well
as the innovative Vision Transformer (ViT) model. To cater to the specific require-
ments of these models, two distinct color scales, RGB and Gray, were considered.

For CNN models, such as VGG16, ResNet50, and Xception, it was observed that
processing images in the RGB color scale yielded more accurate results. To prepare
the data for the CNN models, an extensive range of pre-processing techniques were
applied. These techniques encompassed a multi-step approach, including rotation,
flipping, image enhancement, random brightness, and contrast adjustments, as well
as the addition of random Gaussian noise. Furthermore, horizontal and vertical
shearing, random Gaussian blurring, and random color jitter were also employed to
augment the dataset’s diversity.

To expand the dataset size, various transformation techniques such as random
grayscale conversion, random grid shuffling, optical distortion, and random affine
transformations were introduced. Finally, to standardize and facilitate model train-
ing, normalization was applied to the pre-processed images.

To expand the dataset size, various transformation techniques such as random
grayscale conversion, random grid shuffling, optical distortion, and random affine
transformations were introduced. Finally, to standardize and facilitate model train-
ing, normalization was applied to the pre-processed images.

The comprehensive data augmentation process proved to be highly effective, result-
ing in a significant increase in the dataset size from its original count of 13,898 to
a more extensive collection after pre-processing the data containing 85,156 images.
This augmented dataset played a pivotal role in enhancing the CNN models’ ability
to generalize and recognize patterns.
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4.1.1 Image Resolution

Resolution 64

The following factors led to the resolution of 64x64 pixels being chosen for ResNet50,
VGG16, MobileNetV2, and EfficientNetB3, ViT:
• Computing Efficiency: When compared to other models, these tend to have a
higher number of parameters and computing needs. It strikes a compromise be-
tween maintaining important features and minimizing computational resources by
downsampling the photos to 64x64 pixels. This resolution enables efficient training
with minimal computing burden.
• Extraction of Features at Multiple Degrees of Abstraction: These models’ archi-
tecture is built to extract features at various degrees of abstraction. While requiring
less processing resources, lower-resolution photos can frequently capture important
details. This is particularly crucial for models like the computationally efficient Ef-
ficientNetB3.

Resolution 128

The increased resolution of 128x128 pixels was used for InceptionV3 and Xception
for the following reasons:
• Complicated Architectural Design: Inception V3 and Xception are constructed
with complicated structures that can capture minute details and elaborate patterns.
These models can better utilize their specialized structures with a higher resolution
input, ensuring that no crucial information is lost during the initial processing steps.
Inception V3 demands a minimum image resolution of 71x71, while Xception de-
mands a resolution of 75x75.
• Handling Detailed Features: These models are especially good at dealing with
intricate structures and features in photos. We guarantee that they have access to
more thorough information by giving a higher-resolution input, which is necessary
for precise leaf classification.
• Resistance to Variations: Leaves can have complex structures, patterns, and tex-
tures. The models are more resistant to changes in leaf shape and texture because
they can more successfully capture these aspects with a higher-resolution input.
• Training Stability: Because they offer a more robust supply of data for the model
to learn from, higher-quality photos frequently result in more steady training. As a
result, training convergence may happen more quickly.

We attempt to optimize the performance of each model for the job of mango leaf
classification by tuning the resolution to the particular characteristics and architec-
tural details of each model.

4.1.2 Augmentation Techniques

A number of augmentation approaches are used to produce a diversified and reliable
dataset. The risk of overfitting is decreased, and the model’s capacity to generalize
to new, untested data is improved by these controlled introductions of variables into
the dataset. Each method has a distinct function:
•Rotation: By introducing variation in leaf orientations, this strategy makes the
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model resilient to various angle viewpoints.
• Flip: By simulating mirror images, horizontal flipping broadens the dataset’s di-
versity.
• Improvement: To improve contrast, Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) is used. This is very helpful for photos with different lighting.
• Random Brightness and Contrast: By exposing the model to various lighting envi-
ronments, these tweaks help it become more adaptable to real-world circumstances.
• Gaussian Noise: Adding random noise makes the model more forgiving of probable
noise in real-world photos.
• Vertical and Horizontal Shearing: These geometrical changes introduce deforma-
tions that mimic variations in leaf forms that occur naturally.
• Gaussian Blur: This method makes it simpler for the model to concentrate on
important features by reducing high-frequency noise.
• Random color changes generate variances known as ”color jittering,” which can
improve the model’s ability to generalize to various color schemes.
• Grayscale Conversion: Grayscale conversion gives the model a more straightfor-
ward representation, potentially lowering computational requirements.
• Grid Distortion: By applying distortion to a grid, local deformations are intro-
duced, further enhancing the dataset’s diversity.
• Optical Distortion: By simulating optical distortions, the model is prepared for
conceivable errors in picture acquisition.
• Affine Transformation: This combines shearing, scaling, rotation, and translation,
and offers flexibility for dealing with leaves that are oriented differently.
• Justification for Techniques: Each pre-processing method is selected with a par-
ticular objective in mind.
• Light Enhancement Techniques (CLAHE): These techniques are used to deal with
problems caused by erratic lighting conditions. The model can distinguish features
better by increasing contrast.
• Augmentation Strategies To make sure the model can recognize leaves from multi-
ple angles and orientations, rotation, flipping, and shearing imitate numerous real-
world conditions. These methods also increase the dataset, lowering the chance of
overfitting.
• Noise and Blur Techniques: The model can be trained to recognize characteristics
even in noisy or blurry photos by exposing it to images with extra noise or blur.

4.1.3 Applying Augmentation

Each image in the collection is enhanced using various methods. This produces a
varied collection of photos that provide the model marginally various viewpoints of
the leaves.
Normalization and Conversion
The photos are normalized after augmentation. To provide numerical stability dur-
ing model training, this entails scaling pixel values to the [0, 1] range. For learning
to be consistent and efficient, this phase is essential.
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4.1.4 Manually Removing the data

It was not entirely possible to collect all the data in the same lighting and environ-
ment which led to some of the images being corrupt. We manually removed those
data for the CNN models to get a better output. In ViT, we used the “failed.map”
feature to remove all the corrupt image data.

4.1.5 Pre-processed data saving

The pre-processed and enhanced images are stored as numerical arrays so that the
CNN models can be trained right away.

4.1.6 Handling imbalance in dataset

As the dataset is collected all on our own, there are some imbalances in our data.
Not all the 26 varieties contained the same amount of data which is why the augmen-
tation process helped us to balance the data. Also, a leverage of using a pre-trained
model is they are less sensitive to minority classes

Figure 4.1: Workflow Diagram
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4.2 Model Training

Images that have been pre-processed and optimized by resizing and normalization
are loaded. For simplified training, label encoding assigns distinctive values. For
generalization assessment, data is divided into training, validation, and test sets. It
is essential to check that the data dimensions comply with the model’s requirements.
For multi-class classification, labels are prepared using one-hot encoding.
The categorization of mango leaves is complex, which is in line with the neural
network design. It requires defining an optimizer, a loss function, and metrics. To
reduce errors, training improves weights. On the validation set, generalized is eval-
uated.
Based on preliminary findings, hyperparameter fine-tuning may be taken into con-
sideration. For a thorough performance assessment, the model is put to the test
on fresh data. Effective mango leaf classification using deep learning depends on a
thorough methodology that includes data preparation and review.

4.3 Model Description

Deep learning models have made substantial progress in fields including gaming,
language interpretation, and picture analysis. The advantage of using these mod-
els is that they can acquire hierarchical data representations, gradually extracting
more complicated attributes at each level. They have applications in a variety of
fields, including banking, healthcare, and other areas. In order to increase overall
precision, approaches for fine-tuning and improving are used with 6 CNN models:
VGG16, ResNet50, Efficient Net B3, Inception V3, MobileNetV2, and Xception

4.3.1 Convolutional Neural Network Models

Mango leaf classification is a crucial task that makes use of cutting-edge deep
learning architectures to correctly classify mango leaves. Six well-known mod-
els— VGG16, EfficientNetB3, MobileNetV2, Xception, InceptionV3, and ResNet-
50—take front stage in this endeavor. Each model emphasizes its own advantages
and architectural breakthroughs, ensuring a thorough examination of capabilities.
Pre-trained models are expertly refined to the subtleties of mango leaf classification
through painstaking modification.

CNN Architecture

This application is a perfect fit for the CNN model, a deep-learning technique that
has shown exceptional success in picture identification tasks. The goal of this project
is to create an effective and precise system for identifying mango varieties by au-
tomating the procedure with CNN-based ML algorithms. The process includes sev-
eral stages, beginning with a thorough dataset collection made up of high-resolution
pictures of numerous species of mango leaves. To improve the quality and stan-
dardize the images to reduce variability, pre-processing procedures are used. To
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construct and test the model, the dataset is then split into training, validation, and
testing sets and evaluate the CNN model effectively [10].

Multiple convolutional layers in the CNN architecture are created to effectively ex-
tract hierarchical information from the images of mango leaves. To reduce the loss
function and increase classification accuracy, the model is trained using back propa-
gation and optimization techniques. A thorough series of experiments is carried out
utilizing various configurations of the model to assess the efficacy of the CNN-based
mango variety detection system. To evaluate the efficacy and superiority of the sug-
gested approach, the findings are contrasted with conventional manual identification
techniques.

The model is also evaluated for generalized using previously unreleased data. The
experimental findings show that the CNN-based mango variety recognition system
outperforms manual identification techniques in terms of accuracy and efficiency.
Even in difficult situations when there are minute leaf changes between closely re-
lated mango varieties, the deep learning approach greatly decreases the time and
effort needed for classification while attaining a high degree of accuracy.

The suggested system not only helps farmers and academics quickly identify differ-
ent mango types, but it also helps increase mango cultivation’s overall productivity
and sustainability. To further increase the system’s robustness and adaptability in
real-world circumstances, future research may concentrate on growing the dataset,
improving the CNN design, and investigating the integration of other data sources.
[28]

Nonlinear activation function

The following are the most typical nonlinear activation functions used in neural net-
works:

ReLU (Rectified Linear Unit): This function converts all negative values to zeros,
adding non-linearity and enhancing the network’s ability to learn intricate patterns.
This method is advantageous for binary classification tasks because it converts the
input to a value between 0 and 1. This function maps the input to a value between
-1 and 1, which is beneficial for regression tasks.
Leaky ReLU: This function is similar to ReLU, but it permits a minor gradient when
the unit is inactive, thereby preventing ReLU issues.
ELU (Exponential Linear Unit): This function is comparable to ReLU, but it pro-
duces more negative outputs, enabling the network to learn more complex features.
In this variant of the rectified linear unit (ReLU) activation function, all negative
values are converted to zero. Instead of returning zero for negative values, the Max-
out activation function chooses the collection’s highest positive value.
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Figure 4.2: Different non-linear activation function.

Pooling Layers

The feature maps produced by the previous convolutional layers are used by pooling
layers to operate. The various facets or patterns in the input data are represented
by these feature maps. A tiny window (commonly 2x2 or 3x3) is typically slid
across the feature map during the pooling operation, with each point collecting the
maximum or average value within the window. Max Pooling and Average Pooling
are two popular varieties of pooling processes.
Max Pooling chooses the highest value from the window, highlighting the area’s
most salient feature. Through the reduction of spatial dimensions, this procedure
aids in the preservation of significant local features. For instance, max pooling may
be used to determine the most noticeable edge or texture feature within a region in
an image identification task.
In contrast, Average Pooling determines the average value for the window. When
performing tasks like semantic segmentation, it is typically used when a more com-
prehensive understanding of the area is sought.
In order for the network to be less sensitive to minute changes in the position of
features inside an image, pooling layers are essential for establishing translation
invariant. This trait is especially helpful in computer vision applications where it’s
crucial to recognize an object’s presence regardless of its precise location.
The pooling layer assists in lowering the spatial dimensions of feature maps following
convolutional processes, which is relevant to our thesis on the identification of the
mango leaf variety. In addition to improving computing performance, this dimen-
sional reduction also abstracts the most important aspects, making it simpler for
later layers to acquire higher-level representations for precise categorization.
Pooling layer factors like window size and stride can have a big impact on how
well the network performs. Therefore, it is crucial to carefully experiment with and
analyze various pooling algorithms in order to establish the best configuration for
our particular mango leaf variety identification task.
As our research develops, we will investigate how convolutional and pooling layers
work together in CNNs, hoping to take advantage of their combined strength for
reliable and accurate picture classification.

26



Figure 4.3: Sample diagram of pooling layer

Flatten Layer

In a neural network architecture, the Flatten layer acts as a link between the fea-
ture extraction layers, such as the convolutional and pooling layers, and the fully
connected layers. Its main job is to turn the two-dimensional feature maps or arrays
that the previous layers produced into a one-dimensional vector. In order to create
a linear series, the elements in the arrays must be unstacked and rearranged.
The Flatten layer is crucial because it may transform the spatial data from feature
maps into a form that can be handled by more established neural network layers,
including fully connected layers. For classification or regression tasks, it essentially
”flattens” the hierarchical representation of features learned by the earlier layers.
The Flatten layer is essential in the context of image recognition, where CNNs are
frequently utilized, as it transforms the spatial patterns and information retrieved
by convolutional layers into a format suited for making predictions.

Fully Connected Layer

Every neuron, also known as a node, creates connections with every other neuron
in the layer above and below it in the Fully Connected layer of a neural network.
Each neuron in a completely connected layer receives input from every neuron in
the layer below and transmits its output to every neuron in the layer above. This
layer is also referred to as dense or feed-forward.
Fully linked layers’ main function is to discover intricate, nonlinear correlations in the
data. These layers provide for high-level feature representation and abstraction by
allowing the network to integrate and weigh the features discovered in the preceding
layers. Fully linked layers are particularly good at identifying broad patterns and
formulating conclusions or predictions based on the data-extracted information.
In conclusion, the Fully Connected layer in a neural network architecture is in charge
of learning complex relationships between these features and making final predic-
tions or decisions, while the Flatten layer acts as a data transformation step by
reducing multi-dimensional feature maps into a one-dimensional vector. Together,
these layers are crucial elements for a variety of deep learning and machine learning
tasks, such as object detection, natural language processing, and image categoriza-
tion.
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Figure 4.4: Diagram of flatten and fully connected layer

VGG16

VGG16 is a 16-layer deep CNN model with various convolutional and fully linked
layers. To utilize feature extraction capabilities from generic visual patterns, the
model’s weights are initialized with pre-trained weights on a large-scale dataset[23].
The VGG16 architecture is a well-known option for accurate mango leaf catego-
rization. VGG16 is a well-known deep convolutional neural network (CNN) that
has excelled at a number of image categorization tasks. We enhance a pre-trained
VGG16 model to be excellent at classifying mango leaves. By removing its top
layers, the model is set up to work only as a feature extractor. This VGG16 fea-
ture extractor is layered with a custom classifier that consists of Flatten, Dense,
Dropout, and Output layers. The model can capture complex relationships and
patterns in the data because of its structure. Categorical cross-entropy is used as
the loss function and stochastic gradient descent (SGD) is used as the optimizer in
the model. To dynamically change the learning rate during training, a learning rate
reduction approach is implemented. With these elements in place, the model is iter-
atively trained on the training dataset to improve classification accuracy and reduce
the categorical cross-entropy loss function. The VGG16 architecture is efficiently
used in this method to classify mango leaves. Feeding the preprocessed mango
leaf pictures into the network and iteratively tweaking the model’s parameters to
minimize the classification loss function is how the VGG16 model is trained. The
optimization is carried out with the use of an efficient algorithm, such as stochastic
gradient descent or Adam. The model learns to distinguish distinct features and
patterns related to different mango types during the training process. The trained
model’s performance is then evaluated using metrics such as accuracy, precision,
recall, and F1-score.VGG16’s deep design enables it to learn intricate patterns and
fine-grained traits necessary for differentiating closely related mango types. The
technology detects mango varieties with excellent accuracy, beating existing manual
methods significantly [6].
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Here’s an overview of the working process of VGG16:

Layer Stacking: VGG16 has 16 weight layers, including 3 fully linked layers and
13 convolutional layers. A deep network is created by stacking the convolutional
layers on top of one another. A Rectified Linear Unit (ReLU) activation function,
which introduces non-linearity, comes after each convolutional layer.
Convolutional Layers:Small 3x3 convolutional filters with a stride of 1 and’same’
padding are used in the convolutional layers. These layers are in charge of spotting
different edges, textures, and shape patterns in the supplied image. As we go further
into the network, each convolutional layer has more filters, enabling the model to
capture more complicated characteristics.
Pooling Layers: Max-pooling layers are included in VGG16 after a number of
convolutional layers.The most crucial details are preserved while the feature maps’
spatial dimensions are reduced thanks to max-pooling. The feature maps are typi-
cally downsampled using a 2x2 window and a stride of 2.
Fully Connected Layers: VGG16 has three fully connected layers after the con-
volutional and pooling layers. As a classifier, the fully connected layers combine
the information discovered in earlier layers to generate predictions. The number of
neurons in the last fully connected layer is often equal to the number of classes in
the classification task (for example, 1,000 for ImageNet).
Softmax Activation: The softmax activation function is applied to the output of
the last fully linked layer. Softmax provides the model’s prediction for the input
image by converting the raw scores into class probabilities.
Training: By changing its weights throughout training, the VGG16 learns to min-
imize a loss function using supervised learning. Cross-entropy loss is a typical loss
function for classification applications. The model’s weights are updated during
training using backpropagation and optimization algorithms like stochastic gradient
descent (SGD).
Inference: When performing inference, the VGG16 network performs forward prop-
agation on an input image. The class with the highest probability is taken into
consideration as the projected class for the input image after the final softmax layer
generates class probabilities.
Transfer Learning: VGG16 is frequently used for transfer learning. For some
jobs, pre-trained models that were developed from massive datasets like ImageNet
can be fine-tuned using smaller datasets. The pre-trained model’s weights are up-
dated on the fresh dataset while the initial training’s lessons are kept in mind while
fine-tuning.
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Figure 4.5: Vgg16 Features

Figure 4.6: Vgg16 Model Architecture

EfficientNetB3

EfficientNetB3 is a cutting-edge deep learning model architecture introduced in 2019
by Google Research’s Mingxing Tan and Quoc V. Le.EfficientNetB3’s primary in-
novation is its compound scaling strategy, which balances model depth, width, and
resolution to outperform conventional models with similar parameter counts.
To classify mango leaves, we use the EfficientNetB3 architecture, which is renowned
for striking a balance between model size and precision. The effective scaling strat-
egy used by this model, which consistently modifies network dimensions for en-
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hanced performance, makes it particularly effective at picture classification tasks.
To specifically tailor the features obtained by EfficientNetB3 for this task, a bespoke
classifier is painstakingly built. It has elements like Output layers, Dense, Dropout,
and Batch Normalization. The Adamah optimizer is used to build the model, and
categorical cross-entropy is used as the loss function. To dynamically change the
learning rate during training, a learning rate reduction approach is implemented.
The model is iteratively trained on the training dataset with these elements in place
to improve classification accuracy. An effective base for precise mango leaf classifi-
cation is created by combining the feature extraction capabilities of EfficientNetB3
with the custom classifier.
The design of EfficientNetB3 is based on the Convolutional Neural Network (CNN)
framework, which has proven to be incredibly effective in computer vision tasks
including object detection and image categorization. Conventional CNN designs,
however, have a trade-off: either they are shallow, computationally affordable, but
have a limited capacity for representation, or they are deep, powerful, but com-
putationally intensive, making them challenging to deploy on devices with limited
resources [15].
EfficientNetB3 creates a balance between efficiency and performance by scaling these
three components together. On many test datasets, such as ImageNet, it regularly
outperforms earlier CNN architectures while requiring fewer parameters and less
processing. This makes EfficientNetB3 particularly appealing for implementation
on low-resource devices such as smartphones and embedded systems.

depth : d = αϕ (4.1)

width : w = βϕ (4.2)

resolution : r = γϕ (4.3)

s.t.α.β2.γ2 ≈ 2 (4.4)

α ≥ 1, β ≥ 1, γ ≥ 1 (4.5)

The working process of EfficientNetB3 can be broken down into several key steps:

Base Architecture Selection: The EfficientNetB3 family consists of several mod-
els, such as EfficientNetB3-B0, EfficientNetB3-B1, EfficientNetB3-B3 and so on,
with varying model sizes. The selection of the base architecture is the starting
point. Smaller models are less resource-intensive but may have reduced capacity,
while larger models can capture more complex features but require more computa-
tion.
Scaling Depth, Width, and Resolution: The central concept of EfficientNetB3s
is to scale the network’s depth (number of channels), width (number of channels),
and image resolution in a manner that optimizes performance and efficiency. Effi-
cientNetB3s use a method of compound scaling in which depth, width, and resolution
are increased simultaneously while maintaining a constant ratio.
Feature Extraction: EfficientNetB3s employ convolutional layers to extract fea-
tures. In order to detect low-level and high-level features, these layers apply a series
of learned filters to the input image or feature maps.Utilized frequently are depth-
separable convolutions, which are computationally efficient and reduce the number
of parameters.
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Feature Aggregation: Following the extraction of features, the network aggre-
gates information across multiple dimensions and layers. This is typically done
through skip connections or skip connections combined with global average pooling
(GAP).
Efficient Attention Mechanisms: To improve feature representation, some vari-
ants of EfficientNetB3s employ efficient attention mechanisms such as SE (Squeeze-
and-Excitation) or efficient self-attention. These mechanisms enable the network to
prioritize significant characteristics while suppressing irrelevant ones.
Strategy for Training: Typically, EfficientNetB3s are trained using standard deep
learning techniques, such as stochastic gradient descent (SGD) or Adam, with ap-
propriate learning rate schedules. Additionally, data augmentation, regularization
techniques, and label normalization can be used to enhance generalization.
Fine-Tuning and Transfer Learning: Transfer Learning and Fine-Tuning Effi-
cientNetB3s can be fine-tuned for particular tasks using transfer learning. Models
trained on massive datasets such as ImageNet can be modified to perform well on
task-specific datasets.
Inference and Deployment:Once trained, EfficientNetB3s can be used for in-
ference on new data and deployment. They are frequently deployed on hardware
accelerators such as GPUs and TPUs for real-time prediction efficiency.
Model Evaluation: The efficacy of the trained EfficientNetB3 model is evaluated
using appropriate evaluation metrics, such as precision, recall, F1-score, and mean
average precision (mAP).
Model Tuning (Optional): Depending on the specific task and performance re-
quirements, hyperparameter tuning and architectural modifications may be used to
further optimize the model.

The accuracy rate formula for an EfficientNetB3 convolutional neural network (CNN)
is typically calculated using the following formula:

AccuracyRate(%) = (NumberofCorrectPredictions/TotalNumberofPredictions)100
(4.6)

In this formula: Number of Correct Predictions refers to the count of correctly clas-
sified examples in your dataset. These are the predictions made by the model that
match the ground truth labels.Total Number of Predictions is the total count of
predictions made by the model on your dataset.

ResNet-50

ResNet-50 is a deep CNN model with 50 layers that uses residual connections to
successfully train very deep networks. These residual connections improve network
information flow by minimizing the vanishing gradient problem and enabling better
gradient propagation [9].
The ResNet-50 model is trained by feeding the preprocessed mango leaf images into
the network. The model’s parameters are iteratively altered during training using
an efficient optimization method, such as stochastic gradient descent or Adam, to
reduce the classification loss function.
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Figure 4.7: Basic Block Diagram of EfficientNetB3 Model

The ResNet-50 architecture proves to be a potent resource in our pursuit of precise
mango leaf classification. ResNet-50 is renowned for its efficiency in deep learning
applications, especially image identification, and it stands out for its capacity to
build very deep neural networks. The vanishing gradient problem is mitigated by
ResNet’s inclusion of residual blocks, which enable the network to learn residual
functions. Due to this innovative method, detailed characteristics can be captured
successfully by layering on top of each other. An output layer for multi-class classifi-
cation is built into a bespoke classifier, which also includes densely linked layers and
a flatten layer. The categorical cross-entropy loss function, the accuracy evaluation
metric, and the Adam optimizer are all used in the model’s construction. The incor-
poration of a learning rate reduction technique enhances the model’s convergence
and overall performance. The model is iteratively trained on the training dataset
using these components in an effort to decrease the categorical cross-entropy loss
function and boost classification precision. This approach for categorizing mango
leaves successfully takes advantage of the ResNet-50 architecture.
The ResNet-50 architecture based on leaf analysis for mango variety detection is
an extremely promising method. The established approach provides a reliable and
fast method of identifying mango varieties, benefiting the horticultural industry
and agricultural research significantly. To improve the system’s accuracy and re-
silience, further study may include investigating various deep learning architectures,
fine-tuning hyperparameters, and incorporating more data sources, such as multi-
spectral photos.
K. Simonyan and A. Zisserman and then Szeged and W. Li have mentioned in their
paper about the importance of network and depth in how the result changes signifi-
cantly. A graph for loss error count with respect to irritations of the layers can give
us an idea of how the result changes just by stacking the new layers.
When we delve into the training of deeper neural networks, we encounter a challenge
known as the ’degradation problem.’ This issue becomes apparent when, as network
depth increases, the accuracy initially improves but eventually plateaus and even
starts to decline rapidly. Remarkably, these accuracy declines are not attributable
to overfitting tan2019EfficientNetB3, and instead, the inclusion of additional lay-
ers in the model exacerbates the training error. Figure 1, as demonstrated in our
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experiments, provides a clear illustration of this phenomenon.
To address this degradation problem, the deep residual learning framework was in-
troduced as a solution, as elucidated in the paper authored by Kaiming He, Xiangyu
Zhang, Shaoqing Ren, and Jian Sun [14]. In this context, the author endeavors to de-
pict H(x) as the desired mapping and employs the mapping equation F (x) = H(x)x
to construct nonlinear layers through mapping. Consequently, the transformation
of F (x) + x seeks to restore the original mapping, thus mitigating the effects of the
degradation problem.

Figure 4.8: Residual learning: a building block

Figure 4.9: ResNet50 model architecture

34



The InceptionV3

The InceptionV3 architecture is chosen for mango variety detection. Multi-scale
filters (Inception modules) are a feature of Inception-v3 that allows the network to
record features at various spatial resolutions within the same layer. These Incep-
tion modules make it possible to efficiently and thoroughly extract features, which
strengthens the model’s capacity for representation [12].
Additionally, during training, Inception-v3 adds supplemental classifiers to interme-
diate layers. These classifiers solve the issue of disappearing gradients and stabilize
the learning process by supplying additional supervision signals and promoting gra-
dient flow.
The pre-processed photos of mango leaves are fed into the network to train the
Inception-v3 model. Using effective optimization algorithms like stochastic gradient
descent or Adam, the model’s parameters are iteratively changed to minimize the
classification loss function.

Figure 4.10: Inception module with dimension reductions

Factorized Convolutions: Inception V3 employs a technique known as ’factorized
convolutions’ to achieve a reduction in both parameter count and computational
demands within its convolutional layers. Furthermore, it continually assesses the
network’s effectiveness.
The concept behind factorized convolutional involves breaking down a conventional
convolution operation into two smaller convolution operations, each with a reduced
number of filters. In the context of Inception V3, this method dissects a standard
3x3 convolution into two smaller components: a 1x3 and a 3x1 convolution. This
strategic decomposition enables the network to utilize fewer filters, thereby dimin-
ishing the overall parameter count, all while capturing the same types of features as
a traditional 3x3 convolution.
Additionally, factorized convolutions are extended to dissect a standard 5x5 convo-
lution into two smaller counterparts: a 3x3 and either a 5x1 or a 1x5 convolution.
This technique further streamlines the network by employing fewer filters and reduc-
ing the parameter count, while retaining the capability to detect the same feature
characteristics as a standard 5x5 convolution.
Utilizing smaller convolutions is another strategy embraced by Inception V3. For
instance, it incorporates 1x1 convolutions in some of its branches. These 1x1 con-
volutions are positioned to diminish the input’s dimensionality before it undergoes
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processing by larger convolutional filters. This dual benefit enables the network to
focus on specific features, concurrently diminishing the number of parameters and
lowering computational requirements.
In some branches of the Inception modules, a 1x1 convolution is strategically placed
as a bottleneck layer before the 3x3 and 5x5 convolutional layers. The purpose of
this strategic placement is to minimize the number of input channels and parame-
ters before the data engages with the broader filters. As a result, this methodology
assists in mitigating overfitting by reducing the number of parameters and enabling
the neural network to focus on higher-level abstract characteristics.

In summary, the architecture of Inception V3 strategically incorporates a combina-
tion of smaller convolutional filters, factorized convolutions, and larger convolutional
filters to extract salient features from input images. By employing convolutional fil-
ters with fewer dimensions, the network effectively reduces input dimensionality
and keeps the parameter count in check. These measures collectively contribute to
heightened computational efficiency and improved accuracy of the network.

Figure 4.11: Mini-network replacing the 5 × 5 convolutions
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Figure 4.12: Inception V3 Architecture

The MobileNetV2 Architecture

The MobileNetV2 architecture is selected for mango variety detection. The pre-
processed pictures of mango leaves are fed into the MobileNetV2 model to train it.
During the training process, the model learns to identify distinctive traits and pat-
terns unique to various mango types. Using effective optimization algorithms like
stochastic gradient descent or Adam, the MobileNetV2 model undergoes repeated
modifications to reduce the classification loss function by adjusting its parameters
howard2017MobileNets.
We choose the MobileNetV2 architecture in our effort to classify mango leaves be-
cause of its effectiveness and adaptability for tasks with limited resources. Given
its popularity and minimal computational demands, MobileNetV2 is a great option
for image categorization on devices with constrained resources. An excellent basis
for learning features from images is provided by the initialization of the architecture
with pre-trained weights from the ImageNet dataset. The pre-trained MobileNetV2
feature extractor is followed by a bespoke classifier that consists of a single dense
layer and an activation feature for SoftMax. The model is constructed using stochas-
tic gradient descent (SGD), and the loss function is categorical cross-entropy.
To optimize the model’s convergence and performance, a learning rate reduction
method is used. With these components in place, the model is iteratively trained
on the training dataset, with weights being updated based on prediction errors to
reduce the categorical cross-entropy loss function. This method makes use of Mo-
bileNetV2’s effectiveness to deliver an efficient and resource-conserving solution for
the categorization of mango leaves.
The experimental findings show how well the MobileNet architecture distinguishes
between different mango kinds based on their leaves. MobileNet’s lightweight and
effective architecture makes it capable of processing images quickly, making it appro-
priate for real-time applications on devices with limited resources. Its efficiency and
small size make it a realistic alternative for deployment in settings with constrained
processing resources, despite the fact that it might have slightly poorer accuracy
compared to more complicated models.
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Figure 4.13: Dense-MobileNetV2 Model

These networks are known for their compact size and computational efficiency while
maintaining good performance on various computer vision tasks. Here’s an overview
of the working process of MobileNetV2:
Depthwise Separable Convolution: The main innovation of MobileNetV2 is the use
of depthwise separable convolution, which substitutes standard convolutions used in
larger networks such as VGG or ResNet.Depthwise separable convolution is made
up of two steps: depthwise convolution and pointwise convolution. Depthwise con-
volution applies a single filter to each input channel on their own followed by point-
wise convolution, which uses 1x1 convolutions to merge the depthwise convolution
outputs. This separation drastically reduces the number of parameters and compu-
tations, making MobileNet highly efficient.
Width Multiplier and Resolution Multiplier: MobileNet introduces two hyperpa-
rameters, the width multiplier α and the resolution multiplier ρ, which allow you
to control the model’s size and computational cost. The width multiplier scales the
number of channels in each layer. A smaller width multiplier results in a narrower
network with fewer parameters. The resolution multiplier scales down the input
image resolution. A smaller resolution multiplier reduces input image dimensions
and further reduces computational requirements.
MobileNet comes in various versions, such as MobileNetV1, MobileNetV2, and Mo-
bileNetV3, each with architectural improvements.MobileNetV1 introduced depth-
wise separable convolutions.MobileNetV2 added inverted residual blocks with linear
bottlenecks and skip connections, enhancing performance.MobileNetV3 introduced
features like a non-linear activation function called the Swish activation and network
architecture search to optimize model design.
Training and Fine-Tuning: MobileNets are trained using standard deep learning
techniques, including gradient descent and backpropagation, on large datasets such
as ImageNet, a method for turning on SoftMax. The model is built with stochastic
gradient descent (SGD), and category cross-entropy is used as the loss function.
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Figure 4.14: Workflow of MobileNet V2

Inference: During inference, MobileNet takes an input image, scales it according to
the resolution multiplier (if used), and passes it through the network. The depthwise
separable convolutions efficiently extract features, and the output is typically passed
through a classifier (e.g., a fully connected layer with softmax) for classification tasks
or a regression layer for object detection tasks.
Deployment on Mobile and Embedded Devices: MobileNet’s compact size and com-
putational efficiency make it ideal for deployment on mobile phones, IoT devices,
and embedded systems. Various deep learning frameworks and libraries support
MobileNet for deployment, such as TensorFlow Lite and PyTorch Mobile.

Any deep neural network model’s inference time formula, including MobileNetV2,
is often dependent on how many FLOPs (Floating-Point Operations) the model
performs on input during its forward pass. The following formula can be used to
estimate the inference time (in seconds):

InferenceT ime(seconds) = NumberofFLOPs/FLOPspersecond (4.7)

Number of FLOPs: This gauges how many floating-point operations are involved
in processing one input through the model. In the case of MobileNetV2, it is de-
termined by adding the FLOPs for all network levels. The input and output di-
mensions, filter size, and layer type—such as convolution, depthwise convolution,
or completely connected—all affect each layer’s FLOPs. FLOPs per second**: The
processing speed of the hardware on which the model is executing is indicated by
this number. The hardware’s capacity is commonly expressed in giga-FLOPs per
second (GFLOPs/s), which represents how many FLOPs it can execute in a single
second.
A deep learning framework can be used like TensorFlow or PyTorch, which fre-
quently offers built-in functions or utilities to profile the inference time for your
model on a certain hardware setup, to measure the real inference time on a partic-
ular device.
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x̂ =
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(4.8)

y = γ × x̂+ β (4.9)
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+ β (4.10)
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γx√

Var[x] + ε
+
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Var[x] + ε

)
(4.11)

Xception

The deep convolutional neural network architecture known as Xception—short for
”Extreme Inception”—was first presented by François Chollet in the 2017 publi-
cation titled ”Xception: Deep Learning with Depth Wise Separable Convolutions”
[13]. In order to reduce computational complexity and the number of parameters
in the network while retaining high accuracy, the depth-wise separable convolutions
concept, on which the Xception architecture is based, was developed. This is done
by using depthwise separable convolutions in place of conventional convolutions.
These convolutions consist of a depthwise convolution followed by a pointwise con-
volution. Image categorization is one computer vision problem where this design
has been effective.
We use the XceptionNet architecture, well-known for its efficiency in image recog-
nition applications and depth-wise separable convolutions, for mango leaf classifica-
tion. This architecture makes use of depth-wise separable convolutions, which makes
it possible to use computations and parameters more effectively. This makes it espe-
cially suitable for activities requiring less computational power. Pre-trained weights
from the ImageNet dataset are used to provide a robust baseline for feature learning
from pictures. A bespoke classifier made up of a single dense layer and a SoftMax
activation function is added to the pre-trained XceptionNet feature extractor. The
model is constructed using Stochastic Gradient Descent (SGD), with accuracy as
the evaluation metric and categorical cross entropy as the loss function. In order
to optimize the model’s convergence and overall performance, a learning rate reduc-
tion method is used to dynamically alter the learning rate during training. On the
training dataset, the model is iteratively trained with the intention of reducing the
categorical cross-entropy loss function and increasing classification precision. This
method combines a bespoke classifier with XceptionNet’s effectiveness to deliver a
reliable and resource-conserving solution for mango leaf classification.
The key to Xception’s invention is its effective use of depth-wise separable convolu-
tions, which enables it to effectively capture complicated information. When com-
pared to conventional convolutional neural networks, Xception dramatically lessens
the computational load by separating spatial and channel-wise convolutions. This
architecture enables Xception to be more parameter-efficient while still achieving
state-of-the-art performance on picture classification challenges. Since Xception can
learn complex representations from incoming data thanks to depth-wise separable
convolutions, the computer vision community has adopted it widely. This model is
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a wise choice for a number of deep learning applications due to its adaptability and
balance between accuracy and computational efficiency.

Figure 4.15: Architecture of Xception Model

Here’s an overview of the working process of Xception:

1. Depthwise Separable Convolution: The usage of depthwise separable con-
volution, which is a more efficient variation of traditional convolutions, is a key
advancement in Xception. It is divided into two steps which are depthwise convolu-
tion and pointwise convolution. Here, depthwise convolution applies a single filter to
each input channel separately, lowering computational complexity when compared
to ordinary convolutions that work on all channels simultaneously. In addition,
to generate the final feature maps, pointwise convolution uses 1x1 convolutions to
merge the results of depthwise convolution.
2. Separable Convolutions: Xception employs a series of these separable convo-
lutions in its architecture, creating a deep and efficient network. By reducing the
number of parameters and computation required in each layer, separable convolu-
tions significantly contribute to Xception’s efficiency.
3. Skip Connections: Xception incorporates skip connections, similar to those
found in residual networks (ResNets). These skip connections help mitigate the van-
ishing gradient problem, allowing for more effortless training of very deep networks.
4. Fully Convolutional Architecture: Xception is designed to be fully con-
volutional, meaning it can process input images of varying sizes without the need
for fully connected layers. This flexibility makes it well-suited for tasks like object
detection and image segmentation, where input dimensions can vary.
5. Training and Transfer Learning: Xception is trained using standard deep
learning techniques, such as stochastic gradient descent (SGD), backpropagation,
and weight initialization. Pre-trained Xception models on large datasets like Ima-
geNet can be fine-tuned for specific tasks using transfer learning, which helps boost
performance on smaller, task-specific datasets.
6. Inference:During inference, Xception takes an input image and passes it through
its deep network, applying the depthwise separable convolutions and skip connec-
tions to extract features. In image classification applications, the concluding layers
of Xception architecture often include a global average pooling layer and a softmax
classifier.
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7. Deployment and Frameworks: Xception models can be deployed on various
platforms using popular deep learning frameworks like TensorFlow and PyTorch.
Deployment options include edge devices, cloud servers, and embedded systems.

Figure 4.16: The filter bank outputs on the Xception modules have been increased

4.3.2 ViT

The Transformer architecture, which was initially created for natural language pro-
cessing, is expanded into the field of computer vision by Vision Transformers (Doso-
vitskiy et al., 2021). The prevalent understanding that pixel-level convolutions are
the most efficient method of processing images is called into question by this change.
The way visual information is processed has fundamentally changed because of ViTs,
which instead consider images as collections of discrete, non-overlapping patches.

The concept of self-attention, a process that enables the model to develop associ-
ations between various patches, is at the core of Vision Transformers (Dosovitskiy
et al., 2021). This paradigm shift makes it possible for ViTs to effectively capture
distant dependencies, contextual data, and complex patterns inside images. ViTs
display impressive versatility, adaptability, and scalability across a wide spectrum
of visual identification tasks by processing images as sequences of tokens.

The debut of Vision Transformers broadens the scope of computer vision study and
application. In this thesis, we set out on an adventure to investigate and assess the
viTs’ capabilities, concentrating on their potential in the field of mango leaf variety
identification. We seek to identify the advantages and disadvantages of ViTs and
add to the expanding body of information about this game-changing technology by
methodical experimentation, analysis, and comparison with conventional convolu-
tional neural networks. We expect that as we delve further into this research, we
will learn important lessons that not only enhance the science of computer vision
but also present workable solutions to problems associated with image classification
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in the real world.

The work process for Vision Transformers (ViT) in the context of our thesis involves
several key stages:

1. Model Selection: Choosing the Vision Transformer architecture to be used
(e.g., ViT-base, ViT-large) and deciding on specific hyperparameters such as learn-
ing rates, batch sizes, and training epochs.

2. Built the model: Divided the data randomly into 3 sections for training, test-
ing, and validation. The ratio was 70% for trains, 10% for validation, and 20% for
testing. We used two parameters called x-train and y-train. X-train defines the
data whereas y-train defines the data label. Additionally, the transformer blocks
generate a [batch-size, num-patches, projection-dim] tensor, which is then processed
by a classifier head using softmax to provide the final class probabilities.

MLP Layer: The MLP layer is part of the feedforward neural network within the
Transformer. It typically consists of two fully connected (dense) layers with an ac-
tivation function applied in between. This MLP layer is applied independently to
each patch’s embedding.
Patch Encoder: A Vision Transformer’s patch encoder divides raw input images
into fixed-sized patches, flattens and embeds the patches into a lower-dimensional
representation, and encodes the spatial relationships of the patches with position
encodings. This initial stage of image processing converts the image to a format
that is suitable for subsequent Transformer-based layers. The ViT model is capable
of capturing both local as well as global features, thus making it suitable for a vari-
ety of computer vision applications. The first fully connected layer (often called the
”hidden layer”) increases the dimensionality of the patch embeddings, allowing for
richer feature representations.
An activation function, such as the GELU (Gaussian Error Linear Unit) activation
or ReLU (Rectified Linear Unit), is applied after the first layer. The second fully
connected layer reduces the dimensionality back to the original embedding dimen-
sion.

3. Training: Initializing the ViT model with random weights and training the
model on the training dataset using a suitable optimization algorithm. Then, mon-
itor training progress by tracking loss and accuracy on the validation set.
ViT Classifier:
The Contextual Embeddings of the ViT model are processed and refined by the ear-
lier layers of the model, the Transformer architecture incorporates key components
such as the Self-Attention Mechanism and Feedforward Neural Networks.
These layers take in the contextual information of the input image and create a
set of Contexted Embeddings (Ceilings) that represent both the local and global
characteristics of the images. The Global Token, commonly referred to as the CLS
Token, is pre-programmed into the sequence of Ceilings. The CLS Token provides
a comprehensive overview of the image and provides useful information for pre-
diction. The Classification Head is composed of one or multiple Fully Connected
(Dense) Layer(s) that accept the CLS Token as input. Depending on the model
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architecture, the Classification Head can be further activated with GELU or ReLU
functions.
The ViT classifier is composed of one or more densely connected layers that accept
the CLS token as an input. Depending on the architecture of the model, activa-
tion functions such as GELU or ReLU may be used. The output layer is typically
composed of a number of units that correspond to the number of class classes in
the task. For example, each unit in an image classification corresponds to a par-
ticular class label. This output layer is used to generate class probability scores,
which indicate the likelihood that the input image belongs to each class. During
inference, the highest probability score of the class is chosen as the predicted class,
and during training the model is trained with labeled data using loss functions such
as categorical cross-epoch. Ultimately, the model’s weights, which include the clas-
sifiers as well, are adjusted via the process of backpropagation. This is done with
the objective of minimizing the loss and improving the model’s ability to accurately
classify data.

4. Model Run: Firstly, We applied the Adam optimizer to adapt the learning
rates. Then we compiled the model .

5. Evaluation: Assessing the trained ViT model’s performance on the test dataset
using evaluation metrics like accuracy, precision, recall, and F1-score and compar-
ing the ViT model’s performance with other models, such as CNNs, to evaluate its
effectiveness for mango leaf variety identification.

6.Visualization: Visualize model predictions and any intermediate representations
(e.g., attention maps) to gain insights into how the ViT processes mango leaf images.

7.Hyperparameter Tuning: Experimenting with different hyperparameters to
optimize the ViT model’s performance further.

8.Documentation and Reporting: Summarizing findings in your thesis, dis-
cussing the strengths and weaknesses of the ViT model for mango leaf variety iden-
tification.

9.Future Directions: Suggesting potential areas for future research or improve-
ments in ViT-based approaches for this task. We have added a test function to
check if the code can identify the leaves.
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Figure 4.17: ViT Workflow

Figure 4.18: Patch encoder

In this configuration 4.18, utilizing a 64x64 pixel image divided into 6x6 pixel
patches. Here, each patch contains 108 elements. With 100 patches per image, a
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total of 10,800 elements are processed through the Vision Transformer (ViT) patch
encoder. This approach enables efficient representation and understanding of the
image for tasks such as mango leaf variety identification.

Table 4.1: Ingredients and hyper-parameters for our method of Vit-Base

Methods ViT
Epochs 90
Batch Size 64
Learning Rate 0.001
Patch Size 6
Weight Decay 0.0001
Projection dim 64
Layer Normalization 128
NLP Head Units 2048,1024
Training Time 72000

This configuration 4.1 summarizes the key components of our ViT-Base method-
ology and includes critical hyper-parameters and settings that have been carefully
chosen to obtain the best performance and training process efficiency. The number
of epochs, batch size, learning rate, and other hyper-parameters have a big effect
on how the model learns and how correct it is in general. The patch size, projec-
tion dimension, and NLP head units are essential architectural elements that have
a significant impact on the model’s behavior and ability to represent data. To get
the best outcomes for our mango leaf variety identification challenge, these hyper-
parameters are adjusted and optimized.

46



Chapter 5

Experimentation and Result
Analysis

The following workflow 5.1 represents the step-by-step approach to the experimen-
tation: :

Figure 5.1: Total workflow of the experimentation
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This study used Google Colab pro to build six different deep-learning models for
precise mango leaf classification, furthering the field of artificial intelligence research.
A dataset with 13,689 leaves was carefully curated, starting with a collection of 26
different types of mango tree leaves. The datasets were subjected to significant im-
age pre-processing in order to increase overall accuracy. Visualizations were carried
out to learn more about the distribution of the data. The train and test data sets
were created by intelligently partitioning the datasets in an 80:20 ratio. Different
training epochs were used in different models to train the models while performance
was optimized.
The six models, which are VGG16, EfficientNetB3, MobileNetV2, InceptionV3, and
ResNet-50, were developed to take advantage of their unique advantages. With the
introduction of a new classifier in VGG16 that has dense layers and dropout meth-
ods, its pre-trained feature extraction was improved. EfficientNetB3 used batch
normalization and dropout layers to balance model size and accuracy. The effective
architecture of MobileNetV2 is well suited to circumstances with limited resources,
particularly on mobile devices. The average accuracy of these models was an amaz-
ing 96.52%. For specific performance indicators, including accuracy ratings and
training times, see the table below.

Table 5.1: Accuracy and training time comparison among the best-performing al-
gorithms for the binary class dataset

Model
Batch
size

Epoch
Accuracy
Score

Training
Time
(seconds)

VGG16 32 50 98.64% 3150
EfficientNetB3 32 30 87. 19% 1952
MobileNetV2 26 25 97.9% 2485
InceptionV3 32 30 98.89% 3240
Xception 32 25 98.42% 5250
ResNet-50 32 30 98.10% 2550

This table 5.1 provides a thorough evaluation of the six different models used to
classify mango leaves. VGG16 performs admirably, demonstrating strong classifica-
tion abilities with an accuracy of 98.64% and outstanding f-1, recall, and precision
scores. EfficientNetB3 performs in a balanced manner despite having a little lower
accuracy of 87.19% and maintaining respectable f-1, recall, and precision scores. In
addition to showing good f-1, recall, and precision scores, MobileNetV2 stands out
with an outstanding 97.9% accuracy, demonstrating its appropriateness for resource-
constrained situations. Although its recall score is a little lower, InceptionV3 shines
with the highest accuracy, scoring 98.89%, and excels particularly in the f-1 score.
The reliability of Xception is demonstrated by its impressive 98.42% accuracy and
consistently high scores in f-1, recall, and precision. ResNet-50 also performs well in
this classification challenge, achieving a 98.10% accuracy rate and evenly distributed
f-1, recall, and precision scores.
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5.1 Result Analysis

The categorization of mango leaves using six different convolutional neural network
(CNN) architectures—the VGG16, EfficientNetB3, MobileNetV2, Xception, Incep-
tionV3, and ResNet-50—is the focus of this study. Each model is painstakingly
customized to maximize its own advantages. A strong basis is provided by the
VGG16 model, which makes use of a unique classifier with dense layers and dropout
algorithms. It can excel at complex feature extraction thanks to this adaption. Effi-
cientNetB3 incorporates batch normalization and dropout layers to create a balance
between model size and accuracy. MobileNetV2, which is well known for its effective-
ness, is well suited for scenarios with little resources, while InceptionV3 makes use of
inception modules to effectively capture characteristics at various scales. ResNet-50,
noted for its residual connections, excels at training very deep networks, whereas
Xception, with depth-wise separable convolutions, is skilled at learning complicated
features. The combined CNN model exhibits remarkable synergy, taking advantage
of each architecture’s advantages to improve classification accuracy and resilience.
It cleverly mixes the results from the six models to improve the predictions.
VGG16 excels at classifying mango leaves, as seen by its impressive accuracy score
of 98.64% when compared to the other models. Even though EfficientNetB3 has
significantly lower accuracy (87.19%), it still demonstrates notable qualities, espe-
cially when it comes to balancing model size and accuracy. MobileNetV2 is the
second multiclass dataset, and it displays a commendable accuracy score of 97.9%,
demonstrating its effectiveness in managing circumstances with limited resources.
With a 98.89% accuracy rate, InceptionV3 excels in capturing features at multiple
scales, demonstrating its usefulness in challenging picture recognition applications.
The accuracy score for Xception, recognized for its depth-wise separable convolu-
tions, is 98.42%. With an accuracy score of 98.10%, ResNet-50, utilizing residual
connections, displays its skill in managing deep networks. After 90 epochs, the ViT
model achieves around 97% accuracy and 99.91% top-5 accuracy on the test data.
The chart comparing the algorithms offers helpful details about each one’s perfor-
mance. The outstanding accuracy scores of VGG16 and InceptionV3 demonstrate
their competence in the challenge. Despite having a little inferior accuracy, Ef-
ficientNetB3 has competitive f-1, recall, and precision scores. With its effective
design, MobileNetV2 performs well, closely followed by Xception, ResNet-50, and
ViT, further demonstrating the efficiency of these systems for picture categorization.

EfficientNetB3 distinguishes out for its effectiveness in terms of training time, fin-
ishing in 1952 seconds. Additionally exhibiting admirable training times are Mo-
bileNetV2 and ResNet-50, highlighting their potential for real-time applications.

The paper concludes with a thorough analysis of six carefully chosen CNN archi-
tectures and a ViT base model for mango leaf categorization. The combined CNN
model establishes itself as a potent ensemble, utilizing the advantages of individual
models for improved robustness and accuracy. Each model performs impressively
when tuned to play to its unique strengths, with VGG16 and InceptionV3 leading
the pack. The combined findings demonstrate the effectiveness of deep learning
models for precisely classifying mango leaves, with potential applications in agricul-
tural research and crop management.
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5.1.1 Accuracy

The accuracy rate formula for convolutional neural network (CNN) is typically cal-
culated using the following formula:

AccuracyRate(%) = (NumberofCorrectPredictions/TotalNumberofPredictions)x100
(5.1)

For VIT, Accuracy is a measure of the overall correctness of the model’s predictions.

Accuracy = (TruePositives+ TrueNegatives)/TotalSamples (5.2)

In this formula: The number of valid predictions refers to the number of instances
successfully categorized in the data collection. These are the model’s predictions
that are compatible with the ground truth labels. The total number of predictions
generated by the model on your dataset is represented by the Total Number of Pre-
dictions. True Positives (TP) are the number of positive samples that were correctly
predicted. The number of samples accurately predicted as negative is known as True
Negatives (TN). Overall Samples is the total number of samples in the dataset.

5.1.2 Precision

Precision is the percentage of accurately predicted positive instances inside the col-
lection of all positive predictions made by the model (including true positives and
false positives). Essentially, it assesses how well the model can reliably identify
positive situations while reducing the likelihood of false positives. Higher precision
reflects the model’s accuracy in positive instance recognition and false positive re-
duction, reducing the likelihood of misclassifying a negative example as positive.

5.1.3 Recall

Recall, also referred to as sensitivity, quantifies the fraction of accurate positive pre-
dictions (i.e., true positives and false negatives combined) among all actual positive
cases in the dataset. It evaluates how well the model does at correctly identifying
each positive case while reducing the likelihood of false negatives. Greater recall
lowers the likelihood of false negatives, which improves the model’s capacity to ac-
curately identify all positive situations.
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5.1.4 F1 Score

The F1 score for a CNN (Convolutional Neural Network) or any classification model
like VIT is calculated using the following formula:

F1Score = 2 ∗ (Precision ∗Recall)/(Precision+Recall) (5.3)

where:

Precision = TruePositives/(TruePositives+ FalsePositives) (5.4)

Recall(Sensitivity) = TruePositives/(TruePositives+ FalseNegatives) (5.5)

In this formula:
Precision is the ratio of true positive predictions to the total number of positive
predictions. It measures the accuracy of positive predictions made by the model.
The formula for precision is:

Precision = TruePositives/(TruePositives+ FalsePositives) (5.6)

Recall, which is also known as sensitivity or true positive rate, is the ratio of true
positive predictions to the total number of actual positive instances. It evaluates
the model’s ability to detect all positive events.

In Addition, the F1 score is the harmonic mean of precision and recall. It balances
the trade-off between precision and recall by offering a single statistic that takes into
account both false positives and false negatives. The F1 score is especially relevant
for evaluating the model’s performance on an imbalanced dataset.

The F1 score ranges between 0 and 1, where a higher F1 score indicates better
model performance. It is a commonly used metric for evaluating the classification
performance of machine learning models, including CNNs, especially in scenarios
where class distribution is uneven or where both precision and recall are important.
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5.2 VGG16

Figure 5.2: Model Accuracy graph of VGG16

The model accuracy is the percentage of images that are correctly classified by the
model. In this figure 5.2 VGG16’s model accuracy is nearly 98.6%. This signifies
that the model properly classifies 98.6 percent of the photos in the dataset. It
indicates that the model is particularly good at learning the underlying patterns in
the data. As the number of epochs increases, it also affects the model’s accuracy.
It shows that the model is evolving and improving over time. However, after about
20 epochs, the model’s accuracy reaches a point where it stops. This indicates that
the model has reached its limits and is no longer able to learn from the data.

Figure 5.3: Model Loss graph of VGG16

The model loss is the average difference between the predicted labels and the ground
truth labels. Here, as the number of epochs rises, the graph of the model loss
declines. Eventually, the model’s loss will converge to a value that represents the
lowest loss the model is capable of producing. Here, the graph will vary based on the
model and the dataset. The model loss may rise after a specific number of epochs,
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for instance, if the model is overfitting the training data. Overall, the graph of the
model loss is a useful tool for monitoring the progress of a machine-learning model.
It can help you to determine whether the model is learning and improving over time,
and it can help you to identify any potential problems with the model.

Figure 5.4: Predicted Table VGG16

Figure 5.5: Confusion Matrix of VGG 16
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In figure 5.5, a confusion matrix has been generated using our trained CNN model
with the help of test set data to predict the classes. This visualization provides a
comprehensive overview of the models’ classification performance, showcasing their
ability to accurately categorize different mango leaf varieties. Each cell in the matrix
represents the model’s predictions, allowing us to analyze true positive classifications
as well as instances of misclassification. Here, It is proven by the above figure that
for every class the model is giving an optimal result.

Figure 5.6: Classification of VGG16

The following table 5.4 presents the classification report for the VGG16 model,
including metrics like precision, recall, f1-score, and support for the given dataset. In
addition, the report indicates an f-1 score of 0.79 and also provides a comprehensive
overview of the model’s performance in terms of macro and weighted averages across
different metrics.

Table 5.2: Classification Report of VGG16

Precision Recall F1-score Support
Accuracy 0.79 20844
Macro Avg 0.66 0.70 0.70 20844
Weighted Avg 0.83 0.79 0.80 20844
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5.3 EfficientNetB3

Figure 5.7: Model Accuracy graph of EfficientNetB3

Figure 5.8: Model Loss graph of EfficientNetB3

The model accuracy of EfficientNetB3 on the dataset is 87.19%. The model accuracy
increases as the number of epochs increases. Other Hand, the model loss curve
decreases as the epoch rises. The model loss eventually converges to a value of
around 0.1, which is a relatively low loss.
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Figure 5.9: Predicted Table EfficientNetB3

Figure 5.10: Confusion Matrix of EfficientNetB3
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Figure 5.11: Classification of EfficientNetB3

Table 5.3 exhibits the classification report for the EfficientNetB3 model, presenting
key metrics including precision, recall, F1-score, and support for the specific dataset.
The report also indicates an f1-score of 0.87 which offers insights into the model’s
performance via macro and weighted averages across the various metrics.

Table 5.3: Classification Report of EfficientNetB3

Precision Recall F1-score Support
Accuracy 0.87 20844
Macro Avg 0.83 0.84 0.83 20844
Weighted Avg 0.88 0.87 0.87 20844
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5.4 MobileNetV2

Figure 5.12: Model Accuracy graph of MobileNetV2

Figure 5.13: Model Loss graph of MobileNetV2

In this case, the model accuracy is almost 0.98, which is a very high accuracy. This
suggests that the model is able to correctly classify images with a high degree of
confidence. The model accuracy increases as the number of epochs increases, which
indicates that the model is learning and improving over time. Here, the model
reaches an accuracy of 0.98 after 25 epochs. In this case, the model loss is 0.4,
which is a relatively low loss. The model loss decreases as the number of epochs
increases, which indicates that the model is learning and improving over time. The
model loss eventually converges to a value of around 0.4, which is a relatively low
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loss. The low model loss is likely due to the same factors that contributed to the
high model accuracy. In addition, the MobileNetV2 model is a very efficient model,
the training data was carefully curated, and the model was trained for a enough
number of epochs.

Figure 5.14: Predicted Table of MobileNetV2

Figure 5.15: Confusion Matrix of MobileNetV2
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Figure 5.16: Classification of MobileNetV2

Table 5.4 presents the classification report for the MobileNetV2 model, showcasing
various key metrics including precision, recall, F1-score, and support for the given
dataset. In addition, the report highlights an outstanding f1 score of 0.98, providing
a comprehensive overview of the model’s performance through macro and weighted
averages.

Table 5.4: Classification Report of MobileNetV2

Precision Recall F1-score Support
Accuracy 0.98 20844
Macro Avg 0.97 0.97 0.97 20844
Weighted Avg 0.98 0.98 0.98 20844
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5.5 InceptionV3

Figure 5.17: Model Accuracy graph of InceptionV3

Figure 5.18: Model Loss graph of InceptionV3

The above figure 5.18 shows that the model accuracy of InceptionV3 is 98.89% and
it also indicates that the model is able to learn the underlying patterns in the data
very well. However, It’s important to think about those factors that can change how
accurate the model is and take steps to stop overfitting. As the number of epochs
goes up, the model loss in the picture goes down. As the number of epochs goes up,
the validity loss also goes down. This means that the model is not overfitting the
training data and is likely to work well with new data. However, the confirmation
loss is a little bit higher than the model loss.
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Figure 5.19: Predicted Table of InceptionV3

Figure 5.20: Confusion Matrix of InceptionV3
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Figure 5.21: Classification of InceptionV3

The following table 5.5 displays the classification report for the InceptionV3 model,
showcasing metrics such as precision, recall, F1-score, and support for the given
dataset. Notably, the report emphasizes an impressive F1-score of 0.99, offering a
comprehensive overview of the model’s performance via macro and weighted averages
across these metrics.

Table 5.5: Classification Report of InceptionV3

Precision Recall F1-score Support
Accuracy 0.99 20844
Macro Avg 0.99 0.99 0.99 20844
Weighted Avg 0.99 0.99 0.99 20844
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5.6 Xception

Figure 5.22: Model Accuracy graph of Xception

Figure 5.23: Model Loss graph of Xception
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In the above graphs, The accuracy curve in the image increases as the number of
epochs increases. This is a good sign, as it indicates that the model is learning and
improving over time. The accuracy curve eventually converges to a value of around
98.4%, which is a good accuracy. The model loss in the image decreases as the
number of epochs increases. This is a good sign, as it indicates that the model is
learning and improving over time. However, the model loss is not smooth. There
are some fluctuations in the curve.

Figure 5.24: Predicted Table of Xception

Figure 5.25: Confusion Matrix of Xception
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Figure 5.26: Classification of Xception

The classification report for the Xception model is shown in Table 5.6, which in-
cludes important metrics covering precision, recall, F1-score, and support for the
particular dataset. The report provides details on the model’s performance using
macro and weighted averages across the key measures, demonstrating a remarkable
F1-score of 0.98.

Table 5.6: Classification Report of Xception

Precision Recall F1-score Support
Accuracy 0.98 20844
Macro Avg 0.98 0.98 0.98 20844
Weighted Avg 0.98 0.98 0.98 20844
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5.7 ResNet-50

Figure 5.27: Model Accuracy graph of ResNet-50

Figure 5.28: Model Loss graph of ResNet-50

In the above figure, it is shown that the accuracy curve increases as the number
of epochs increases, which indicates that the model is learning and improving over
time. The accuracy curve eventually converges to a value of around 98.10%, which
is a very high accuracy. Other hand, a lower loss indicates that the model is more
accurate. The loss curve decreases as the number of epochs increases, which indi-
cates that the model is learning and improving over time. The loss curve eventually
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converges to a value of around 0.2, which is a relatively low loss. If the loss curve
starts to increase after a certain number of epochs, it is a sign that the model is
overfitting Overall, the accuracy curve and the loss curve both show that the model
is learning and improving over time. However, it is important to monitor the loss
curve to make sure that it does not start to increase.

Figure 5.29: Predicted Table of ResNet-50

Figure 5.30: Confusion Matrix of ResNet-50
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Figure 5.31: Classification of ResNet-50

Table 5.7 showcases the classification report for the ResNet-50 model, presenting es-
sential metrics such as precision, recall, F1-score, and support for the given dataset.
Furthermore, the report underscores a high F1-score of 0.98, providing a comprehen-
sive view of the model’s performance through macro and weighted averages across
these metrics.

Table 5.7: Classification Report of ResNet-50

Precision Recall F1-score Support
Accuracy 0.98 20844
Macro Avg 0.97 0.98 0.97 20844
Weighted Avg 0.98 0.98 0.98 20844
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5.8 ViT

Figure 5.32: Model Accuracy and Loss graph of Vit

In this figure, the accuracy curve starts off low and then increases gradually. This
indicates that the model is learning and improving over time. The accuracy curve
eventually converges to a value of around 97%, which is a good accuracy. Moreover,
the loss curve starts off high and then decreases gradually. This indicates that the
model is learning and improving over time. The loss curve eventually converges to
a value of around 0.45.

Figure 5.33: Classification of ViT
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Here , the following table 5.8 displays the classification report for the Vision Trans-
former (ViT) model. The report provides key metrics such as precision, recall, F1-
score, and support for the specific dataset. The F1-score is noted as 0.97, indicating
a strong balance between precision and recall. The report also includes support
values for each class, offering a detailed understanding of the model’s performance.
This comprehensive evaluation using macro and weighted averages across metrics
provides a thorough assessment of the ViT model’s effectiveness in classification.

Table 5.8: Classification Report of ViT

Precision Recall F1-score Support
Accuracy 0.97 6938
Macro Avg 0.97 0.97 0.97 6938
Weighted Avg 0.97 0.97 0.97 6938

5.9 Final analysis report among the Architectures

From the individual classification of all the models, it is noticeable that InceptionV3
performed the best with an accuracy of 98.9%. MobileNetV2, VGG16 , Xcep-
tion, ResNet-50 and ViT models also performed well with an accuracy of 97.9%,
98.64%,98.42%,98.10% and 97% respectively. EfficientNetB3 performed relatively
lower with an accuracy of 87.19%. Except for EfficientB3, All of our CNN models
performed really well. ViT also performed really well and could be considered as an
alternative model. The comparison between the models is visualized in the figure
below.

Figure 5.34: Accuracy Rate of Different Models
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Table 5.9: Table of summary of the result analysis

Model
Accuracy
Score

f-1 Score
Recall
score

Precession
Score

VGG16 98.64% 98.64752% 98.64709% 98.65039%
EfficientNetB3 87. 19% 87.19354% 87.19055% 88.27344%
MobileNetV2 97.9% 97.90883% 97.90827% 97.91857%
InceptionV3 98.89% 98.89653% 89.34465% 89.90004%
Xception 98.42% 98.41670% 98.41681% 98.42363%
ResNet-50 98.10% 98.10640% 98.10640% 98.11277%
ViT 97% 97% 97% 98%

The table 5.9 compares the accuracy and training time of top-performing algorithms
for a binary classification dataset. Well-known models such as VGG16, Efficient-
NetB3, MobileNetV2, InceptionV3, Xception, ResNet-50, and ViT are evaluated
using accuracy, f-1 score, recall score, and precision score, indicating their respec-
tive strengths in binary classification tasks.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the end, this research has dealt with the significance of using deep learning
models to automatically identify and classify mango varieties. By using well-known
Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) models, our
suggested system has shown that it can distinguish between different types of mango
with high accuracy and efficiency. Moreover, we have a huge collection of nearly
14,000 pictures of mango leaves from places as diverse as Rajshahi, Bogura, Feni, and
Chapainawabganj. These images are like our teachers, helping us teach computers
to recognize different types of mango leaves. As shown by the accuracy curves and
loss curves, the results of our tests show that the models converged well and didn’t
overfit too much. This shows that the system can learn differentiating features from
the mango pictures and apply them well to samples it hasn’t seen before. Also, the
confusion matrix has given us useful information about how well the model works.
This has helped us find ways to improve the model and fix any misclassifications or
confusion between different mango varieties. The detailed performance measures for
each mango variety, such as precision, recall, F1-score, and support, were shown in
the comprehensive classification report. With the help of these metrics, we were able
to figure out how well the system did at correctly classifying the different kinds of
mango, giving stakeholders reliable information for making decisions about quality
control and inventory management.
In today’s world, where we need to produce more food more efficiently, our research
is extremely important. This shows that complex computer models like CNN and
Vision Transformers can greatly help farmers in growing mangoes and other crops
better. Our huge stock of photos of mango leaves, collected from different locations
and different seasons, shows the real challenges farmers face today. Using these
smart computer models and lots of imagery, we’re giving agriculture a way to be
more efficient and produce more food. In the future, we see that technology and
agriculture will become close friends in solving global food problems. Our research
guides us to use powerful computational models, such as VGG16, InceptionV3,
ResNet50, Xception, EfficiencyNetB3, MobileNetV2, and Vision Transformer (ViT)
to find smart solutions for better agriculture.
The developed system will have a lot of real-world effects on the agriculture business.
It can help farmers, distributors, and sellers make sure that mango varieties are
correctly identified and put into groups. This improves inventory management and
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quality control. Also, putting the system into automatic sorting processes could
make it easier to sort and package mangoes, making them more efficient and reducing
the amount of work that needs to be done by hand. This thesis has mostly been
about identifying and classifying mango varieties, but the suggested method can
also be used for other fruits and vegetables, giving automated classification a wider
range of uses. By using deep learning models and transfer learning techniques, our
system shows how current technologies have the potential to change the way farming
is done and make it more productive and profitable overall.
Finally, our work serves as both a contribution to the field of mango leaf vari-
ety identification and an important call for the modernization of agriculture. This
study worked to improve automated methods for classifying fruits, especially when
it comes to identifying and classifying mango varieties. When deep learning models,
accuracy curves, loss curves, the confusion matrix, and the classification report are
all put together, they give a full picture of how the system works and what it means
in real life. By automating the identification and classification process, we can make
it possible to improve quality control, inventory management, and market analysis
in the agriculture industry.

6.2 Future Work

While this research marks an important milestone in the field of automated fruit
sorting, it also opens the door to a series of exciting opportunities for future explo-
ration. First, expanding our dataset to include more mango samples, accounting
for regional variations, and incorporating multi-seasonal data, is paramount to en-
hance adaptability and reliability system reliability. Second, ensemble model min-
ing, which harnesses the collective power of diverse architectures, promises to push
classification accuracy to new heights. Developing real-time deployments for agri-
cultural environments, such as packinghouses and distribution centers, represents
a real-world evolution of our work, turning it into tangible benefits for agriculture.
people and supply chains. In addition to mangoes, extending our method to classify
other fruits and vegetables promises to meet broader agricultural needs. Integrating
human expertise into systems to facilitate continuous improvement and adaptability
as well as assess sustainability is critical to a comprehensive approach to automa-
tion agricultural chemistry. Additionally, practical implementation strategies and
user-friendly interfaces will play a key role in ensuring our technology is seamlessly
integrated into real-world agricultural operations. In short, this research not only
advances automated fruit sorting but also signifies a broader transformation in agri-
cultural practices, towards a better, more efficient future. As technology continues
to evolve, the fusion of deep learning models and automation in agriculture promises
increased efficiency, reduced waste, and heightened food security. The future avenues
outlined herein represent the next logical steps in realizing this potential and fur-
thering the impact of automated fruit classification within the agricultural industry.
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