
Optimizing Abstractive Summarization With Fine-Tuned
PEGASUS

by

Sadiul Arefin Rafi
20101120

Naimur Rahman
20101284

Kazi Nazibul Islam
20101372

Ha-mim Ahmad
20101286

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
September 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sadiul Arefin Rafi
20101120

Naimur Rahman
20101284

Kazi Nazibul Islam
20101372

Ha-mim Ahmad
20101286

i

Approval

The thesis/project titled “Optimizing Abstractive Summarization With Fine-Tuned
PEGASUS” submitted by

1. Sadiul Arefin Rafi (20101120)

2. Naimur Rahman (20101284)

3. Kazi Nazibul Islam (20101372)

4. Ha-mim Ahmad (20101286)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering on Septem-
ber, 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Farig Yousuf Sadeque
Assistant Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

Abstractive text summarization is the technique of generating a short and concise
summary comprising the salient ideas of a source text without making a subset of the
salient sentences from the source text. The introduction of transformer models such
as BART, T5, and PEGASUS has made this sort of summarization process more
efficient and accurate. The objective of this paper is to analyze the performance of
different transformer models, compare them to find an efficient model and fine-tune
the model on csebuetnlp/xlsum English corpus. The performance of the generated
summaries from the fine-tuned PEGASUS models is evaluated using the ROUGE
metric, which basically compares the auto-generated summaries with human-created
summaries. The fine-tuned PEGASUS model gives a state-of-the-art performance
on the XLSum English Corpus.

Keywords: Text Summarization; Transformer; T5; PEGASUS; BART; ROUGE
Score; SHAP.

iii

https://huggingface.co/datasets/csebuetnlp/xlsum/viewer/english

Table of Contents

Declaration i

Approval ii

Abstract iii

Table of Contents iv

1 Introduction 2
1.1 Research Problem . 3
1.2 Research Objective . 3
1.3 Workflow . 4

2 Literature Review 6

3 Description of the models 17
3.1 PEGASUS . 17

3.1.1 Internal architecture & functionality 17
3.1.2 Pre-training . 18
3.1.3 Sizes and Parameters . 18
3.1.4 Fine-tuning . 18
3.1.5 Results . 19

3.2 BART . 20
3.2.1 Internal architecture & functionality 20
3.2.2 Pre-training . 20
3.2.3 Parameters . 21
3.2.4 Fine-tuning . 21
3.2.5 Results . 21

3.3 T5 . 22
3.3.1 The Architecture of T5 . 22
3.3.2 The Text-to-Text Framework 23
3.3.3 Training the T5 Model . 24
3.3.4 Conclusion . 24

4 Description of the datasets 25
4.1 CNN/Daily Mail Dataset . 25

4.1.1 Introduction . 25
4.1.2 Description and Split . 25
4.1.3 Sample Dataset . 27

iv

4.1.4 Data Fields . 27
4.1.5 Limitations . 28

4.2 XL-Sum . 28
4.2.1 Introduction . 28
4.2.2 Variations . 28
4.2.3 Split . 28
4.2.4 Increased Usage . 28
4.2.5 Challenges . 29

4.3 XSum Dataset . 29
4.3.1 Introduction . 29
4.3.2 Variation . 29
4.3.3 Split . 30
4.3.4 Usage . 30
4.3.5 Challenges . 30

4.4 C4 . 31
4.4.1 Introduction . 31
4.4.2 Overview and Construction: 31
4.4.3 Scale and Variations: . 31
4.4.4 Split and feature . 32
4.4.5 Significance and Applications: 32
4.4.6 Usage . 32
4.4.7 Conclusion . 32

4.5 HugeNews Dataset . 33
4.5.1 Introduction . 33
4.5.2 Extraction Process . 33
4.5.3 Mixture with C4 . 33
4.5.4 Usage . 34

5 Preliminary analysis 35
5.1 PEGASUS . 35
5.2 BART . 36
5.3 T5-small . 37
5.4 Results Comparison . 37

6 Fine-tuning Flan-T5 on XLSum 38
6.1 Introduction . 38
6.2 Dataset Selection . 38
6.3 Model Selection . 38
6.4 Hyperparameter . 38
6.5 Results . 39

7 Fine-tuning PEGASUS on XLSum 40
7.1 PEGASUS Transformer Model: A Recap 40
7.2 Fine-Tuning the PEGASUS Transformer Model 40
7.3 Comparative Evaluation: PEGASUS Vs. mT5 41
7.4 In-depth Analysis of Model Performance 41
7.5 Model Dissemination . 41

v

8 Interpretation of fine-tuned PEGASUS with SHAP 43
8.1 Shapley Values and Their Mathematical Formulation 43
8.2 SHAP for summarization models . 43
8.3 Predicting pegasus xlsum output . 44

9 Conclusion 46

Bibliography 49

1

Chapter 1

Introduction

The amount of written content in modern culture is overwhelming and covers a wide
range of topics, including news journalism, scholarly research, social media posts,
and digital reviews. Automated text summarizing methods had to be created in or-
der to effectively condense and understand the vast amount of information available
due to the explosion of content. Text summarization is a specific branch of Natural
Language Processing (NLP) that aims to extract the most important information
from texts and display it in a concise, understandable manner. These approaches
enable readers to quickly understand crucial ideas and facts without reading the
entire document.

Extractive summarization and abstractive summarization are two broad categories
of text summarizing approaches. In order to create the summary, extractive summa-
rization chooses a subset of important sentences from the original text. In contrast,
abstractive summarization produces a unique summary that captures the key points
without necessarily recycling entire passages from the source material. Although em-
ploying pre-existing sentences simplifies extraction approaches, they frequently fail
to preserve coherence and capture the entire context. While producing summaries
that are more coherent and contextually accurate, abstractive approaches neverthe-
less add more complexity by necessitating the maintenance of factual integrity and
the resolution of ambiguities.

The increased need for advanced NLP systems has sparked research projects to
determine how well pre-trained language models like Pegasus can be tuned to en-
hance abstractive summarization. Traditional sequence-to-sequence architecture-
based attention-enhanced abstractive summarization models have demonstrated promis-
ing results. They do have certain limitations, though, including the occasional use
of redundant terminology and concerns with variable quality and terms that are not
commonly used. Sequence-to-sequence models’ slowness in concurrent data process-
ing is one of their significant drawbacks. The self-attention mechanism built into
the transformer architecture, which enables parallel computing over the whole input
sequence, mitigates this. The transformer is restricted in terms of its computational
complexity to O(n2d) as the layer operations are carried out on words that are ar-
ranged sequentially.

In our research, we deployed BART, T5, and PEGASUS transformer models and

2

evaluated their performance using the CNN-Daily Mail dataset. Following this as-
sessment, we fine-tuned the most effective model utilizing the XL-sum dataset to
optimize its performance.

1.1 Research Problem

As the volume of scholarly publications, articles, and legal documents continues to
expand, the task of identifying and retaining key information for specific research or
legal purposes becomes increasingly challenging. Given the constraints of time and
resources, it is often impractical for professionals to thoroughly read and compre-
hend every extensive document pertinent to their field. Consequently, succinct and
accurate summaries of such texts can serve as invaluable tools, enabling researchers
and other specialists to quickly assimilate essential information. These summaries
facilitate the efficient extraction of vital insights from a range of sources, thereby
advancing scholarly or legal inquiries.

Our forthcoming research paper aims to conduct a performance analysis of ab-
stractive text summarization using state-of-the-art transformer models, specifically
BART, T5, and PEGASUS. The goal is to identify the most effective model in terms
of both training efficiency and parameter optimization. Upon determining the op-
timal model, we intend to fine-tune it using the newly available XL-sum dataset to
further enhance its summarization capabilities.

1.2 Research Objective

The research objective of the study on the performance measurement among different
transformer models for abstract text summarization is to compare and evaluate the
effectiveness of these models on limited hardware resources. The following specific
objectives can be formulated for the study:

• Analyze the strengths and weaknesses of different transformer models for ab-
stract text summarization.

• This analysis aims to compare the respective performances of different trans-
former models on the proposed matrices, which are ROUGE-1, ROUGE-2,
and ROUGE-L.

• Analyze and identify how models are making certain decisions, as well as
diagnosing problems like over-fitting, under-fitting, data leakage, and so on.

• Examine the computational training time and parameters of different trans-
former models on training data. The main objective is to find an efficient
model that works well with limited hardware resources and can be deployed
on a large scale.

3

1.3 Workflow

In our upcoming thesis, we will take an in-depth look at all of the machine learning
models suitable for abstractive text summarization. Our workflow starts with an
initial analysis of prominent models such as PEGASUS, BART, and T5, and a selec-
tion of datasets like CNN/Daily Mail, XL-Sum, XSum, C4, and HugeNews Dataset.
After a meticulous analysis, we will opt for the most suitable models and datasets
for our work. Following this selection, we will proceed with data preprocessing,
which involves train-test splitting and tokenization. Train-test splitting involves di-
viding the dataset into different subsets. In the conventional approach, a distinct
subset is employed for training the model, while another one is utilized for testing
its performance. The objective of this split is to assess the model’s performance on
unseen data. Tokenization is a crucial part of preparing textual data for many types
of NLP models. For fine-tuning, parameters like batch size, number of epochs, and
learning rate will be taken into consideration. After that, we will conduct a rigorous
evaluation process based on suitable metrics for the summarization task. To better
understand our model’s behavior, we will employ an interpreter library like SHAP.
This tool enhances the transparency and comprehension of the model’s decision-
making process by providing a prediction of the impact of each input token on the
final summary. Finally, fine-tuned models will be compared against existing state-
of-the-art models to gauge their performance and contribution to the field. The
workflow ends with a conclusive discussion, synthesizing the findings, and laying
down the path for future research in abstractive text summarization.

4

Figure 1.1: Workflow

5

Chapter 2

Literature Review

Summarization can either be extractive or abstract. The important terms from the
source text are used to construct the summary in extractive summarization. Ab-
stractive summarization generates a summary by comprehending the source text
and rephrasing sentences in a shortened version. In 2022, Abdel-salam et al. stud-
ied the performance of extractive text summarization in different BERT models.
They have used BERTSum as a baseline model for the research. A learning rate
of 2 ∗ 10 − 3, a batch size of 3000, and a dropout rate of 10% were used to train
the DistilBERT model with the Adam optimizer. After 30,000 iterations of training
with the CNN/DM corpus, the ROUGE scores of the enhanced summarizer were
calculated. DistilBERT had poorer ROUGE-1, ROUGE-2, and ROUGE-L scores
than BERT-base by 1.6%, 3.5%, and 1.9%, respectively. The time needed to train
the two models is proportional to the number of parameters they include, and the
DistilBERT model contains 36% fewer parameters than the BERT model. In the
fine-tuned SqueezeBERT summarizer, the hyperparameters are identical to those of
the DistilBERT model. When applied to the SqueezeBERT experiment, the model
produced ROUGE scores that were either on par with or marginally better than
those obtained in the preceding DistilBERT experiment. SqueezeBERT is 1.6%,
3.35%, and 1.8% below BERT-base on the ROUGE-1, ROUGE-2, and ROUGE-L
scales, respectively. When compared to the BERT model, the SqueezeBERT model
requires 49% fewer parameters, which is closely correlated with the length of time
required to train these models. One interesting finding is that the SqueezeBERT
summarizer kept around 98% of the baseline model’s summary performance despite
a 49% drop in size. Since the original BERT-base summarizer has over 120 mil-
lion parameters but the recommended model only has 62 million, the compression
capabilities of the architecture allow for the design and use of the SqueezeBERT
summarizer for real-time summary generation [25].

BERT Models ROUGE Scores Params
ROUGE-1 ROUGE-2 ROUGE-L

BERT-base 43.23 20.24 39.63 120.5M
DistilBERT 42.54 19.53 38.86 77.4M

SqueezeBERT 42.54 19.56 38.92 62.13M

Research from See et al. (2017) emphasized abstractive summarization more since it
ensures abilities like paraphrasing, generalizing, and incorporation of real-life knowl-
edge (See et al., 2017). The uncertainty of languages made the abstractive approach

6

challenging until the development of sequence-to-sequence models. Though RNNs
were used, the system still has issues, such as a lack of attention to detail, a failure to
handle OOV (Out-of-Vocabulary), and word repetition. Therefore, to address such
issues, See et al. (2017) proposed three models. 1) Baseline sequence-to-sequence
model 2) Pointer generator model 3) Coverage mechanism model In the sequence-
to-sequence model, as tokens were given to the encoder at each stage, a series of
encoder hidden states hi were generated. In order to construct the next word in the
phrase, the decoder was given the embedding of the previous word and then used
the probability distribution of the original words. The attention distribution at was
used to produce the context vector h∗

t , which was then added to the decoder state
to produce the vocabulary distribution with learnable parameters b, b

′
, V and V

′
.

h∗
t =

∑
i

atihi

Pvocab = softmax(V
′
(V [st, h

∗
t] + b) + b

′
)

The Pointer Generator Network, the second model, could manage OOV words while
still preserving its capacity to produce new words, unlike the baseline sequence-to-
sequence model. Using a predefined vocabulary, the network generated words, and
using pointing, it copied those words verbatim from the source. Similar results were
obtained when comparing the attention distribution at and the context vector h∗

t

to the baseline model. The Generation Probability pgen was utilized as a sort of
soft switch to select whether to generate a word from the vocabulary or reproduce a
word from the input sequence. The Coverage Vector reflected how well-covered a set
of words was and was calculated by adding up the attention distributions for each
timestep in the decoder. It consisted of a learnable parameter vector that took into
account the attention mechanism’s previous decisions when making a new one, thus
facilitating the attention mechanism’s ability to avoid producing redundant text.
For experimentation, CNN/Daily Mail dataset containing long text was chosen.
The standard ROUGE metric was used for results evaluation. The results showed
the baseline model’s poor performance, while the pointer generator model achieved
a higher ROUGE score. But it still had repetition problems. Hence, the coverage
mechanism was complemented with the pointer generator to eliminate such prob-
lems, and surprisingly, it surpassed the existing best abstractive models, achieving
a much higher ROUGE score. In conclusion, See et al. (2017) model had numerous
abstractive capabilities; nevertheless, how to achieve further levels of abstraction is
still an issue that has to be researched [9].

Generating short summaries of a text may provide a brief knowledge of the con-
tents of the text, but it may still miss out on some of the essential features of the
given text. A new summarization method: the hierarchical structure was used to
extract the more salient information about longer research papers, books, or legal
documents. It primarily focused on extractive summarization using the multitasking
approach. Three long datasets, such as arXiv-Long, PubMed-Long, and Longsumm,
were used in this method, which generated similar or better performance than the
baseline (BERTsum). First, the Longsumm dataset was used, where both extrac-
tive and abstractive sets were used to train the dataset. It contained 1969 papers,
of which 20% were used for validation. To use the arXiv-Long and PubMed-Ling

7

datasets, only the datasets containing 350 tokens were considered. That generated
a total of 88,035 PubMed-Long instances and 11,149 arXiv-Long instances. Then
the trained datasets were passed on to the model, which was named a section-aware
summarizer. It considers the hierarchical structures of the documents. After the
BERTsum representation of the texts, a linear classification model was added on top
of that. For each text output, there are two losses incurred: sentence selection loss
and section prediction loss. The sentence selection predicts if the sentence will be
included in the extractive summary or not, whereas the section prediction judges if
the sentence is from the correct section. After analyzing the result, it was found that
irrespective of the token length, the multitasking approach performed better than
the BERTsum baseline in Rouge-2. And the multitasking method chooses sentences
from all parts of the texts for the extractive summary, whereas BERTsum majorly
focused on the initial parts of the texts. As a result, salient information from all the
segments of the texts can be found in the summaries [20].

To keep up with the ever-increasing output of articles and books, researchers have
been exploring new techniques to condense lengthy works into understandable sum-
maries. The pointer-generator approach is one of them. It’s an improvement from
the sequence-to-sequence model in almost all aspects. The pointer-generator method
can be used for both abstractive and extractive summarization. It uses a multi-head
attention mechanism, pointer-dropout, and two new loss functions, where the first
two improve the ROUGE scores without improving the N-gram novelty, and the loss
functions improve the N-gram novelty with a lower ROUGE score. The CNN Daily-
mail dataset was used, where the training set contained approximately 287 thousand
training pairs, with 13 thousand validation sets and 11 thousand training sets. Then
the datasets were trained by the pointer-generator model. By using the pointing
mechanism, this model extracts texts from the source text and also generates novel
words. This is a major advantage of this model, as it is able to generate new words
for its vocabulary. The source text is first given to a bidirectional LSTM, where,
through encoding and decoding, the attention distribution of source words is calcu-
lated. The model also uses a coverage mechanism to prevent repetition. Following
the calculation of a probability distribution, a trade-off between the probability dis-
tribution and the attention distribution takes place. The losses that occurred in
each step are also kept track of. To reduce the model’s dependency on the pointer
network, a dropout mechanism was used that allowed the use of a copy mechanism
only when it was essential. To maximize the usefulness of the pointer network, a
multi-head attention mechanism was subsequently implemented. After the model’s
implementation, it was found that the ROUGE score of the model was similar to or
slightly worse than the baseline’s ROUGE score, but the N-gram novelty improved
[12].

Relevance Measure and Latent Semantic Analysis are some noteworthy approaches
among several approaches to text summarization. Relevance measure can be per-
formed using the Standard IR method while identifying and extracting semantically
important sentences required by the Latent Semantic Analysis technique. Both ap-
proaches choose highly ranked and unique phrases. Between the Query-relevant
summary and Generic summary, Gong and Liu (2001) put emphasis on the latter.
The aim was to summarize the document’s essential points with fewer repetitions.

8

It was quite challenging to develop a generic summary that included the document’s
crucial points with minimum redundancy since no query or topic was passed to the
process. Hence, the process of evaluation was even more challenging. Generic text
summaries are important for defining the category and presenting the key points of
the documents. In the process, the Relevance Measure was performed first to attain
the highest relevance score. Based on the Relevance score, a sentence was added to
the summary. This addition was to be done in a loop until the summary reached the
predefined value. Relationships between the terms were captured and modeled with
the help of the Latent Semantic Analysis technique, thanks to the use of the SVD
(Singular Value Decomposition) concept. The conventional IR method lacks such
modeling. The results of the Standard IR method, the Latent Semantic Analysis
method, and three distinct human summarizers were compared and contrasted. In
the case of lengthy documents, the level of disagreement amongst these individu-
als seemed to be rather significant. For summary performance evaluation, recall,
precision, and f-score were used. In addition, the effect of several VSM weighting
strategies on text summarizing performances was explored as part of the evalua-
tions. Finally, the factors that contribute to the discrepancies between evaluators’
handwritten summaries were investigated, and human text summarizing patterns
were examined [1].

Nallapati et al. (2016) modeled abstractive text summarization with Attentional
Encoder-Decoder Recurrent Neural Networks and obtained state-of-the-art perfor-
mance on two independent datasets. New models were developed to deal with the
specific issues of abstractive summarization. The principal computational barrier
is often avoided by reducing the size of the soft-max layer in the decoder, which is
the focus of Encoder-Decoder RNN with Attention and a Large Vocabulary Trick.
Additionally, this method accelerates convergence by restricting the modeling ef-
fort to the absolutely necessary words for the example being studied. Finding the
main concepts and objects in the text that the summary is based on might be chal-
lenging. To do this, they created separate embedding matrices based on lookups
for the vocabulary of each type of tag. One natural approach to dealing with out-
of-vocabulary (OOV) words is to simply make reference to their original context.
They modeled this idea using a novel switching decoder/pointer architecture. This
architecture uses a ”switch” in the decoder to choose between using a pointer or the
generator at each time step. When the switch is activated, the decoder functions
normally, generating a word from the target vocabulary. The decoder will generate
a pointer to one of the original document’s word positions if the switch is turned
off. In order to construct a summary from a vast corpus of source documents, they
proposed a model that uses two bi-directional RNNs on the source side, one at the
word level and the other at the sentence level, to identify the key phrases. Each of
the proposed novel models yielded improved performance [5].

The usage of the graph-based algorithm ”TextRank” for text processing and its
integration into natural language applications are discussed in the research paper
(Mihalcea, n.d., 2004). Graph-based ranking algorithms evaluate the importance
of each vertex in a graph. ”Voting” or ”recommendation” refers to the process by
which they spread significant and less important information. When a vertex is
joined to another, a vote is cast. The importance of a vertex is proportional to the

9

number of votes cast for it. An individual vertex’s score is derived from the votes
cast for it. The text has been portrayed as a graph in the paper. The text is con-
verted into a node in a graph by adhering to four rules. Mihalcea, n.d. (2004), has
talked about two use cases: one is keyword extraction, and another is sentence ex-
traction, which can be seen as an extractive summarization problem. For keywords,
phrases or unigrams are considered nodes in the graph, and for the second use case,
the entire sentence is considered a node in the graph. The text units functioning
as an edge between the vertices are then related to one another. When PageRank’s
value for the nodes does not significantly change and stays within predetermined
bounds, the algorithm stops. The vertices are then arranged according to their
scores. TextRank is effective because it incorporates data that is recursively taken
from the entire text. Based only on data taken from the text itself, it was successful
in determining which phrases were the most significant in a text [2].

The concept of information overload is attributed to the increasing prevalence of
internet usage. Text summary is a potential technique that might be employed to
address this issue. Document summarization is a technique employed to decrease
the length of a document while retaining every important detail. The resulting
summary often spans approximately half the length of the original text. The ini-
tial step involves the identification and extraction of key concepts from the original
text through the creation of a symbolic representation. During the second stage,
a summary is generated using the intermediate form. Many methods have been
created specifically for summarizing texts. There are two distinct approaches to
condensing information: extraction and abstraction. The procedure of extracting
information from a source entails the act of isolating terms from their initial context
and integrating them into a concise summary. The process of abstraction involves
generating novel sentences for the purpose of summarization. The nature of a sum-
mary can vary between being informative or suggestive, contingent upon the specific
details included. Based on content, there are two primary summarization methods:
generic summarization and query-based summarization. Since it is independent of
the text’s subject matter, users of all kinds can use the generic summarizing ap-
proach. The query-based summarizing technique employs a question-and-answer
structure, where the summary is derived from the response provided to the inquiry.
The input for a single-document summary is constrained to a singular document. A
multi-document summary can be generated by inputting multiple papers pertaining
to the same subject. A monolingual system is a computer system that only under-
stands one language and can only process and provide results in that language. One
notable benefit of multilingual systems is their capacity to effectively analyze and
interpret material written in multiple languages while also generating summaries
in various languages. With the statistical method, the score of a sentence is de-
termined after taking into account characteristics such as the sentence’s title, its
location within the text, and the frequency of the phrase. Additionally, weights
are assigned to keywords to further influence the computation. The selection of the
summary is subsequently determined by identifying the phrase that possesses the
highest score. Statistical approaches employ several methodologies, such as the lo-
cation method, TF-IDF method, Lexical chain method, and Graph theory method,
among others. When endeavoring to offer a succinct summary of an extensive text,
the use of clustering proves to be a valuable technique for discerning and catego-

10

rizing segments that exhibit resemblances in terms of content or vocabulary. The
K-means algorithm is used to find the best arrangement of clusters [3].

Sankarasubramaniam et al. (2014) took an approach to text summarization by
linking Wikipedia with graph-based ranking. Sankarasubramaniam et al. (2014)
suggested an iterative ranking method for summarizing inside a bipartite sentence-
concept framework. Numerous convergence points were produced through a math-
ematical study and the design of the iterative ranking algorithm. This was followed
by a generalization and analysis of the framework to include directional/weighted
edges, query-focused summaries, and multi-document summarization. In the end,
the ROUGE measure and a user were both used to assess how well the suggested al-
gorithm performed. To gauge the efficacy of NLP-based automated summarization,
researchers have developed the ROUGE software suite. Sankarasubramaniam et al.
(2014) also discussed incremental summarization, which allows viewers to instantly
read a summary of extra material. Sankarasubramaniam et al. (2014) talked about
Wikipedia-based single-document summarization and Wikipedia-based summariza-
tion of multiple documents. A news story, a chapter of a book, or any other discrete
chunk of text may serve as the input for a single document summarizing. The ideas
in the bipartite sentence-concept graph correspond to the Wikipedia article titles
that most closely resemble the input sentences. The sentences are then sorted in or-
der of their likelihood of being used in a summary. The input of a multiple-document
summarizing process is often a group of linked documents. The same sentences may
appear in the inputs, which might make it difficult to choose summary statements.
The steady-state sentence was determined with the help of iterative updates, and
sentence ranks were derived based on a diversification objective. Finally, it was
found that by leveraging Wikipedia, the quality of the summary can be significantly
improved [4].

A further investigation was conducted to provide a synthesis of scholarly articles
pertaining to the topic of COVID-19. The rapid development of the COVID-19
epidemic resulted in a scarcity of available data. The study was split into two
separate parts: an unsupervised extractive component and a novel abstractive com-
ponent. The extractive method involves the extraction of a significant portion of
text from the original document, whereas the abstractive approach generates new
summaries by paraphrasing the content of the original paper. The initial approach
involved converting each text into a 768-dimensional representation and then apply-
ing K medoid clustering. Next, the abstractive approach was employed to construct
novel summaries utilizing the provided keywords. To provide outcomes, many model
designs were employed. The BERT model employed in the aforementioned paper
utilized a transformer encoder model that had been pre-trained. The GPT-2 model
is utilized to train both the language modeling problem and the multiple-choice
prediction task. Language modeling is a computational technique that utilizes con-
textual information and prior words to predict the next word in a given text. On
the other hand, multiple-choice prediction involves selecting the most appropriate
summary from a set of summary possibilities. The utilization of the GPT-2 model
for training these models was motivated by its auto-regressive nature, which ren-
ders it very compatible with text summarizing tasks. The model’s findings did
not exhibit any signs of overfitting. The assessment employed the F score variant

11

of the ROGUE measure, known for its high precision in evaluating performance.
The provided strategy proved beneficial for text summarizing. This paradigm pos-
sesses the potential for use in various other domains of medical research, enabling
researchers to effectively cope with the exponential growth of scientific material [15].

The PEGASUS model is a sequence-to-sequence model optimized for abstractive
text summarization through the use of gap-sentence generation as a pre-training
objective. Similar to an extractive summary, PEGASUS takes an input document
and masks important sentences before generating a single output sequence from the
remaining text. As a pre-training self-supervised objective for downstream sum-
marization tasks, it was observed that masking full sentences and producing gap
sentences from the rest of the text was useful, which was named the Gap Sentences
Generation (GSG) by Zhang et al. (2019). In GSG, each chosen gap sentence has a
mask token to replace with its corresponding position in order to provide informa-
tion to the model. Three strategies were selected for selecting gap sentences. Such
as RANDOM, LEAD, and PRINCIPAL (Zhang et al., 2019). RANDOM selects
m sentences randomly, while LEAD chooses the first m sentences. PRINCIPAL
prioritizes sentences by calculating scores based on how they compare to the rest
of the document. Though the initial model PEGASUSBASE included both GSM
and MLM (Masked Language Model), MLM did not enhance downstream tasks
at a significant number of pre-training stages. Hence, it was decided to leave it
out of the final model PEGASUSLARGE. (Zhang et al., 2019). In terms of se-
lecting a pre-training corpus, C4 and HugeNews were considered for training the
PEGASUSLARGE model on them. For downstream summarization, 12 public ab-
stractive summarization datasets were used (Zhang et al., 2019). For example,
XSum, CNN, NEWSROOM, Gigaword, and so on. Initially, a reduced-size model
with 223 million parameters, PEGASUSBASE was conducted by using 4 out of
12 datasets for faster computation. Then the pre-training was scaled up by intro-
ducing PEGASUSLARGE with 568 million parameters, which used all 12 datasets.
Finally, the result showed that PEGASUSBASE and PEGASUSLARGE had huge
performance improvements on downstream datasets. PEGASUSBASE was able to
achieve SOT on a number of datasets, but PEGASUSLARGE was successful in ex-
ceeding SOT on all downstream datasets. Moreover, since it is often challenging to
accumulate a large number of supervised instances for the purpose of fine-tuning a
summarization model, the top 10k training examples from each dataset were selected
for use in fine-tuning PEGASUSLARGE for low resource summarization. From the
data, it was seen that with just 1000 fine-tuning samples, it outperformed the state-
of-the-art on 6 of 12 datasets (Zhang et al., 2019). Finally, the human assessment
was used to validate the results, and it proved that the proposed model summaries
could deliver human-level summarization performance on a variety of datasets [22].

Gupta et al. (2022) made a comparison between pre-trained models that are used
for summarizing text, and these models are based on transformer architecture. The
transformer models are compared based on the dataset from BBC News. Manually
summarizing texts can be highly time-consuming. Automating the summarization
process will ease the situation. Besides, text summarization will also reduce the
size of files and eliminate problems related to storage. They focused on abstrac-
tive summarization, as this process creates accurate and coherent summaries. They

12

pre-processed the dataset by using the following pre-processing techniques: lower
casing the input text, eliminating punctuation from the text, eliminating frequently
occurring words, stemming, lemmatization, and contraction mapping. They made
use of the Hugging Face transformer library, which serves as an open source for
numerous NLP libraries and datasets. They used some pre-trained models from
the transformer library for summarizing texts. They used the pipeline model, the
BART model, which contains 10% more features than BERT, and words are en-
coded differently based on their position in the sentence, the T5 model, and the
PEGASUS model. Text summarization was done by each of the models, and they
were compared based on their ROUGE scores. It was observed that T5 had the
highest ROUGE score and the pipeline model had the least ROUGE score. So, the
pipeline model gave the least admissible results. From their study, we can see that
the T5 model outperformed all the other models [26].

In 2020, Pilault et al. presented a method employing neural abstractive summa-
rization to generate abstractive summaries of extensive texts, often exceeding a few
thousand words. Their approach involves an initial extractive step to train the
transformer language model on relevant data before it produces a summary. No-
tably, this technique achieves superior ROUGE scores and yields more abstractive
summaries in comparison to previous methodologies that utilized a copy mechanism.
Two separate trainable components make up their model: 1) An extractive model,
which consists of a hierarchical encoder that generates sentence representations and
is used to either identify or categorize sentences in the input and 2) The transformer
language model in the study by Pilault et al. relies on both the sentences extracted
via the extractive model and either the entire or a subset of the input document.
In terms of implementation, they utilized two neural extractive models, each fea-
turing a hierarchical bidirectional LSTM encoder with both word and sentence-level
LSTMs. In both configurations, an LSTM was employed as the decoder. Their
approach aligns with earlier work, notably the study by Nallapati et al. in 2017.
In order to identify ground truth extraction targets, the average ROUGE scores
(ROUGE-1, ROUGE-2, and ROUGE-L) were calculated for each sentence within
the document in comparison to each sentence within the generated summary. This
computational approach informs the selection of sentences that most effectively rep-
resent the essence of the original text.

SCORES extraction =
{

1
3

∑
r∈1,2,L ROUGEr

(
Si, S

′
j

)
| Si ∈ D;S ′

j ∈ T
}
.

They increased the number of ground-truth extraction sentences per output sum-
mary sentence to two because a single-sentence extraction may not always offer the
same information content as a target summary. To do this, the top 2 sentences in
D with the greatest SCORESextraction in relation to a particular sentence in T are
chosen. The 2M ordered phrases that arise serve as the context for the TLM. The
extractive summarization model provides a more structured and larger context for
the TLM during training. Similar to the pointer network, they also utilize a hier-
archical LSTM to encode the text and generate a series of sentence representations,
denoted by the notation d1 to dN , where N is the total number of sentences in the
input. Following are the steps taken to calculate the final document representa-
tion: where b, d and W are learnable parameters. Last but not least, the following

13

equation provides the likelihood that each sentence is an extractive summary:

d = tanh

(
bd +Wd

1

N

N∑
i=1

di

)
where bd and Wd are learnable parameters. Finally, the probability of each sentence
belonging to the extractive summary is given by:

oi = σ

(
Wo

[
di

d

]
+ bo

)
where σ is the sigmoid activation function.

Pilault et al. opted for a distinct approach by using a single transformer language
model that was trained from scratch with appropriately formatted data. This de-
viates from the more conventional sequence-to-sequence (seq2seq) frameworks that
utilize encoder-decoder architectures for abstractive summarization. Their method-
ology employs an initial extractive step followed by an abstractive phase, demon-
strating that transformer language models are capable of generating high-quality
summaries for extended text passages.

Importantly, the researchers were able to quantitatively evaluate the advantages
of incorporating an extractive stage. They accomplished this by comparing their
approach with an alternative abstractive model that only had access to the input
text. Their method outperformed previous extractive and abstractive summariza-
tion techniques when tested on the arXiv, PubMed, and bigPatent datasets. Addi-
tionally, their model exhibited a lower propensity for verbatim repetition of phrases
or sentences from the source material, indicating a greater level of abstraction in
the generated summaries [17].

Ensuring the accuracy of information between the produced summary and the orig-
inal content poses a significant challenge in the field of abstractive summarization.
Contemporary models that have been trained on preexisting datasets exhibit a phe-
nomenon known as entity hallucination, wherein they generate references to entities
that do not actually exist within the original text. One potential solution to ad-
dress the issue of entity hallucination is to apply a filtering process to the training
data and incorporate supplementary metrics for assessing the factual consistency
of the summaries (Nan et al., 2021). In 2021, Nan et al. introduced three metrics
specifically designed for Named Entity Recognition (NER) in summarization tasks.
Let N(t) and N(h) denote the number of named entities identified in the target
(gold summary) and the hypothesis (generated summary), respectively. The vari-
able N(h∧ s) represents the number of entities in the generated summary that have
corresponding entities in the source text.
The precision of a system, denoted by Precs, is calculated as follows:

Precs =
Number of True Positives

Total Number of Instances

Here, N(h) is used to measure the extent of hallucination with respect to the original
text. This metric alone signifies the proportion of named entities that are both
present in the source text and included in the summary.

14

A low value of Precs suggests a high degree of hallucination. According to the
authors, the root cause of the hallucination problem often resides in the training
data itself.
The Spacy Named Entity Recognition (NER) tool was employed to identify all
named entities within the gold summary of each dataset. If no named entity in the
ground truth summary corresponds to the source text, that particular sentence is
discarded.
To provide a comprehensive evaluation of the entity-level accuracy of the generated
summary, Nan et al. introduced two additional metrics: the precision-target Prect
score and the recall-target Recallt score.

prect = N(h ∧ t)/N(h)

N(h ∧ t) = Total named entities in the generated summary that can be matched
with those in the ground truth summary.

recallt = N(h ∧ t)/N(t)

N(t) = the number of named entities in the ground truth summary.[24]

Redundancy is considered a serious problem while summarizing long documents, as
there is always a tradeoff between importance and redundancy in phases called sen-
tence scoring and sentence selection, respectively. The phrase redundancy reduction
has been nearly forgotten in recent efforts on neural extractive summarization. Some
of the suggested neural approaches do care for redundancy, but they either do so
implicitly or limit themselves to relatively short documents. Hence, to address this
vague situation, Xiao and Carenini (2020) classified redundancy reduction methods
into three categories. 1) Decoders for implicitly taking redundancy into account. 2)
Learning of redundancy reduction explicitly in the sentence scoring phase. 3) Selec-
tion of the less redundant sentence in the sentence selection phase. Two new metrics
named Unique n-gram ratio and Normalized Inverse of Diversity (NID) were used in
redundancy measurement. Additionally, three new methods were introduced that
allowed for more explicit and adaptable redundancy reduction throughout the sen-
tence scoring and selection phases. Xiao and Carenini (2020) initially examined two
foundational models: Naive MMR and ExtSum-LG. Naive MMR re-ranks candidate
sentences by optimizing a trade-off between query relevance and document novelty.
In contrast, ExtSum-LG serves as a benchmark for evaluating different techniques
for reducing redundancy.
Within the first category, the study investigated SummaRuNNer Decoder and NeuSum
Decoder. The SummaRuNNer Decoder’s drawback is its inability to explicitly man-
age redundancy, as its novelty component is not directly supervised. To address
this, the NeuSum Decoder utilizes collaborative learning to score and select sen-
tences with the highest scores.
In the second category, a new method known as RdLoss was introduced. Unlike its
predecessors, RdLoss allows the decoder to exert control over the level of redundancy
in the generated summaries.
The third category comprised the existing Trigram Blocking method and the newly
proposed MMR-Select and MMR-Select+ methods. Trigram Blocking prevents a

15

sentence from being included in the summary if it does not share a trigram with
the sentences already in the summary. MMR-Select enhances flexibility by rely-
ing on a trained neural model to compute importance scores. However, because
sentence scoring and selection are decoupled in MMR-Select, the two phases could
not mutually benefit. To address this, an extension, termed MMR-Select+, was
proposed.
In summary, the study conducted a comparative analysis of the informativeness and
redundancy of various approaches falling into three distinct categories. The authors
demonstrated that their proposed methods achieved state-of-the-art performance on
ROUGE scores while significantly reducing redundancy across two datasets sourced
from scientific papers (Pubmed and arXiv). Furthermore, the study validated the
efficacy of the sentence selection phase over the sentence scoring phase in reducing
redundancy. [21]

16

Chapter 3

Description of the models

3.1 PEGASUS

The PEGASUS model, which stands for Pre-Training with Extracted Gap-Sentences
for Abstractive Summarizing, is a text summarizing model that is constructed based
on the transformer model architecture. It takes advantage of self-attention mecha-
nisms, such as the ability to deal with long-range textual dependencies and perform
computations in parallel. Unlike the classic Transformer model, PEGASUS opti-
mizes pre-training for abstractive text summarization.

3.1.1 Internal architecture & functionality

The PEGASUS model employs a transformer-based design that incorporates an
encoder-decoder framework. The text given by the user is subjected to encoding,
resulting in a series of representations that can be utilized by the decoder to generate
the intended output text. Both the encoder and the decoder consist of multilayer
feedforward and self-attention neural networks. PEGASUS inherits this structure
but alters the pre-training procedure. Self-attention is at the core of PEGASUS. This
is the idea that a model can weigh the relative significance of words in a sentence,
which allows for an understanding of context, dependencies, and relationships among
words zhang2020pegasus.

Figure 3.1: PEGASUS internal architecture

17

3.1.2 Pre-training

PEGASUS relies on a distinctive approach to self-supervised learning known as ”gap
sentence generation” in its pre-training phase. The model employs a random selec-
tion process to mask specific words inside the document and then trains itself to
reconstruct these omitted or ”gap” sentences. This approach differs from the preva-
lent practice of masking words within a text, as observed in BERT or RoBERTa.
The utilization of pretraining is particularly well-suited for tasks like summarization,
as it facilitates the model in acquiring an internal representation of the information,
which helps in understanding its gist. Sentences are chosen to be masked depending
on their significance to the overall semantics of the document. PEGASUS applies
a standard masking strategy by masking the sentences that contain the most fre-
quently occurring principal words (other than stop words). There are three primary
techniques for choosing m gap sentences from a text without replacement from a
document where the document has a total of n sentences. The first one chooses m
sentences uniformly at random. Another one, chooses the initial m sentences. The
last one selects sentences with the highest scores based on their level of significance.
The calculation of ROUGE1-F1 (Lin, 2004) serves as a measure of relevance between
the sentence and the rest of the document.

Pegasus is pre-trained on two large text corpora, namely C4 and HugeNews. The C4
corpus encompasses text derived from 350 million web pages, amounting to around
750GB of data. On the other hand, the HugeNews dataset comprises 1.5 billion ar-
ticles, totaling 3.8TB in size, which were collected from news and news-like websites
spanning the period from 2013 to 2019.

3.1.3 Sizes and Parameters

Depending on the application and computational resources, the size of the PEGA-
SUS model may vary significantly. Various model sizes have been employed for the
implementation, with each being specified by the number of attention heads, and the
number of transformer layers. Google’s basic model consists of 12 encoder and de-
coder layers, with a hidden size of 768 and 12 attention heads. As a result, there are
a total of 110 million potential parameters. Larger iterations, such as PEGASUS-
large, have a substantial parameter count of 568 million, which is split among 24
encoder and decoder layers. These models possess a hidden size of 1024 and are
equipped with 16 attention heads. PEGASUS has a complex architecture, yet it
adheres to the idea of simplicity in its architecture to facilitate interpretability and
modifications. The number of masked sentences used for pre-training is a crucial
parameter in PEGASUS. This is a hyperparameter that can be adjusted based on
the specific task at hand. A common value is to mask 15% of all sentences in the
document.

3.1.4 Fine-tuning

Fine-tuning requires providing the model with a dataset that was particularly built
for abstractive summarization. This dataset consists of pairs of source documents
and their matching human-generated summaries, such as CNN/DailyMail, and
XSum. The PEGASUS model is trained to generate summaries by conditioning

18

on the source material and the gap-sentence(s), which takes place during the fine-
tuning phase. The fine-tuning procedure often involves multiple iterations, where
several gradient-based optimization techniques, like backpropagation and stochastic
gradient descent, are employed. The objective is to minimize the level of discrep-
ancy between the model-generated summaries and the human-generated summaries
found in the training dataset.

3.1.5 Results

The model has demonstrated exceptional performance on many benchmark datasets,
reaching state-of-the-art results. In the CNN/Daily Mail dataset, the PEGASUS
model demonstrated a ROUGE-1 score of 44.17, along with ROUGE-2 and ROUGE-
L scores of 21.47 and 41.11, respectively. In XSum, the model achieved a ROUGE-1
score of 47.21, a ROUGE-2 score of 24.56, and a ROUGE-L score of 39.25, respec-
tively.

19

3.2 BART

Bidirectional and Auto-Regressive Transformers (BART) is a sequence-to-sequence
model developed by Facebook AI Research that is both flexible and powerful. BART
stands apart from the competition thanks to its innovative pre-training process,
which involves denoising corrupted text. BART can read from both the left and the
right sides, unlike standard Transformer models. It takes in a sequence, applies a
random mask to some of it (the ”noise”), and then learns to predict the original
sequence. BART’s ability to accurately model the left and right contexts is greatly
improved by this denoising autoencoder setup. Because of its bidirectional nature
and the power of the denoising objective, the application of this technique exhibits
robust performance over a wide array of subsequent tasks, rendering it a highly valu-
able asset within the realm of natural language processing. Besides, by fine-tuning
specific tasks, BART has shown impressive performance in several applications, in-
cluding text generation, translation, summarization, and comprehension.

3.2.1 Internal architecture & functionality

The BART model is based on the transformer architecture but uses various encoding
and decoding methods. BART is made up of a denoising autoencoder, which has
two primary components: an encoder and a decoder. After becoming corrupted
during pre-training, it learns how to recover the original text. A contextualized
representation of the input text is created by the encoder using a corrupted version
of the text. The decoder then uses this representation to reconstruct the original
input text. This enhances BART’s understanding of semantic and syntactic patterns
and enables it to produce more fluid, natural language.

Figure 3.2: BART internal architecture

3.2.2 Pre-training

The BART model is pre-trained using a two-step procedure that includes destroying
the text initially and then teaching it how to recreate it from scratch. In contrast to
BERT, where certain tokens are just hidden, BART entails constructing a ”noisy”
version of the input text. For this, there are several effective techniques: token
masking, token deletion, text infilling, sentence permutation, and document rota-
tion.
The reconstruction step is where BART learns. The model is trained to predict
the original, uncorrupted text given the corrupted version. Throughout this stage,

20

Figure 3.3: BART Pre-training

BART acquires a richer, more bidirectional understanding of the text and its un-
derlying semantic and syntactic structure [13].

3.2.3 Parameters

BART is offered in a variety of versions that can be identified from one another
based on how many parameters they each contain. The fundamental components
of BART are a decoder with six layers and an encoder with six layers. The model
contains close to 140 million parameters, with 12 self-attention heads per layer. The
BART-large model, on the other hand, is the largest iteration of the model and has
16 attention heads distributed across 12 layers in each of the encoder and decoder.
In BART, the model’s weights and biases are referred to as the parameters. The
BART model’s large version, which has about 406 million parameters, can discern
intricate linguistic patterns.

3.2.4 Fine-tuning

For sequence-generating tasks like abstractive summarization, BART’s autoregres-
sive decoder allows for direct fine-tuning. Denoising pre-training is closely related
to such work since information is copied from the input but manipulated. When
fine-tuned, the BART model is fed the full-length text and trained to produce the
corresponding summary as output. The model’s parameters are adjusted such that
the difference between its predictions and the human-written summary is as small
as possible. This is often quantified with a cross-entropy loss or similar sequence
generation loss function. In addition, during the last stages of tuning, it is essential
to fine-tune the training hyperparameters correctly. Variables like the training rate,
batch size, and epoch count are examples. Depending on the dataset and the task,
the ideal values for these hyperparameters may change.

3.2.5 Results

On summarization tasks, BART models received potent ROUGE scores, outper-
forming earlier state-of-the-art models on benchmark datasets. For instance, on the
CNN/Daily Mail dataset, the original research says that BART obtained a ROUGE-
1 score of 44.16, a ROUGE-2 score of 21.28, and a ROUGE-L score of 41.21. How-
ever, these ratings are subject to change based on the specific task, dataset, and

21

process used to fine-tune them.

3.3 T5

Researchers at Google have proposed a ground-breaking new way of approaching
natural language processing (NLP) challenges using their T5 (Text-to-Text Transfer
Transformer) model. In contrast to prior transformer models, T5 treats every NLP
task as a text-to-text issue, giving a uniform framework that greatly simplifies the
implementation of different tasks. The pretraining consists of both supervised and
self-supervised training. The GLUE and SuperGLUE benchmarks offer the down-
stream tasks that are used for supervised training. In self-supervised training, 15
percent of tokens are unilaterally removed to take advantage of tainted tokens, re-
move them, and exchange them with singular sentinel tokens (if a string of tokens is
chosen for elimination, the whole string is substituted with a single sentinel token)
(T5, n.d.). The distorted phrase is what goes into the encoder, whereas the original
sentence is what goes into the decoder. Both of these sentences are inputs (T5,
n.d.). The eliminated tokens, bordered by the sentinel tokens, make up the target.
Padding for encoder input may be performed on either the left or the right. T5 is
available in a range of sizes:

• t5-small

• t5-base

• t5-large

• t5-3b

• t5-11b

The t5-small model is what we’ve settled on for our thesis. The size and capacity
of the model are the key differentiators between the T5 and the T5-Small. T5,
the original model, is bigger than T5-Small, which is the scaled-down variant. The
parameter of the T5 transformer model is 11 billion. On the other hand, there are
60 million parameters at the T5-Small checkpoint (T5, n.d.).

3.3.1 The Architecture of T5

The T5 model incorporates the encoder-decoder structure of the original transformer
model presented by Vaswani et al. in 2017. Multiple layers of neural networks that
execute self-attention and feed-forward make up both the encoder and the decoder.
The feed-forward neural network analyzes each point in the sequence independently,
yet, due to its built-in self-attention mechanism, the model may focus on different
parts of the input sequence when generating an output sequence.
The transformer block, which can be expressed mathematically as follows, is the key
component of the T5 design.

22

Layer Normalization: LN(x) = LayerNorm(x)

Self-Attention: SA(x) = SelfAttention(LN(x))

Feed-forward Network: FFN(x) = FeedForward(LN(x))

A transformer block is then represented as:

x = x+ SA(x)

x = x+ FFN(x)

where x is the input to the block, SA(x) is the output of the self-attention layer,
and FFN(x) is the output of the feed-forward neural network layer. The residual
connections are represented by the ”+” operation.

Figure 3.4: T5 transformer model (Raffel, 2019)

An illustration of the T5 model. Every job that we take into consideration, from
translating and answering questions to sorting and categorizing, is reframed as train-
ing our model with some text as input in order to produce some output text. That
allows us to utilize the same model across all of our different kinds of work.

3.3.2 The Text-to-Text Framework

The text-to-text foundation is what distinguishes T5 from other systems of a similar
nature. Because both the input and the output of this method are text sequences,
it treats every natural language processing challenge as a text generation task.
In this example, the ”input” is a string of text written in the ”source” language,
and the ”output” is a string of text written in the ”target” language. The sequence
of text that needs to be classified is the input, and the textual representation of the
class label is the output, while text classification is being done.
To make this framework applicable to any NLP activity, the T5 model prefixes the
text being entered with a task-specific prefix. As a result, the framework can be
applied in any circumstance where NLP is necessary. When given information like
”classify: The movie was amazing,” T5 will output the word ”positive,” indicating
that the review should be classified as ”positive” or ”negative.”

23

3.3.3 Training the T5 Model

The ”denoising autoencoding” method is used to train the T5 model. Some parts
of the input text must be masked off (i.e., replaced with a particular symbol) before
the model can be trained to predict the original text.
T5’s training loss function is the ubiquitous cross-entropy loss, a metric for gauging
how different a given word sequence is from the one that was really spoken:

L(y, ŷ) = −Σy log(ŷ)

The Adam algorithm, a variation on stochastic gradient descent, is used during
training to minimize this loss function [19].

3.3.4 Conclusion

The T5 model stands out from its competitors due to both its versatility and its
uncomplicated style. This is accomplished by treating every NLP task as a text-to-
text problem, which enables it to perform at the cutting edge on a variety of NLP
tasks. Additionally, because of its design, which is based on the transformer model,
it can effectively capture the relationships between words in a text even though they
may be separated by a significant distance. [19].

24

Chapter 4

Description of the datasets

4.1 CNN/Daily Mail Dataset

4.1.1 Introduction

In our paper, we used the CNN/Daily Mail dataset. The CNN/DailyMail dataset
is a widely used dataset. It is an English-language dataset containing slightly more
than 300k unique news articles written by CNN and Daily Mail journalists. It was
primarily used for machine learning and comprehension. But now the datasets are
used in both abstractive and extractive summarizations. So, for our abstractive
summarization, the CNN/Data Mail dataset is really useful. We have used version
3.00 CNN/Data Mail for our dataset. We have used pre-trained BART, Pegasus,
and T5 models, which were trained on this dataset. The performances of these
models are measured by rouge-1, rouge-2, rouge-L, and rouge-Lsum scores.
The average token count for articles and highlights:

Feature Mean token count

Articles 781

Highlights 56

Table 4.1: The average token count for articles and highlights

4.1.2 Description and Split

A detailed description of the dataset:

Dataset Split Number of instances in Split

Training Pairs 287,113

Validation Pairs 13,368

Testing Pairs 11,490

Table 4.2: Description of the dataset

25

Figure 4.1: Average token count for articles and highlights

Figure 4.2: Split of the dataset

26

4.1.3 Sample Dataset

Figure 4.3: Example of the CNN/DailyMail dataset

4.1.4 Data Fields

ID: This is the SHA1 hash in hexadecimal format, which identifies the URL where
we got the story for the dataset.

Article: This is the actual text of the news article.

Highlights: These are the key points or highlights of the article, as provided by
the author.

Both whole news stories and their important highlights are included in the dataset.
These articles provide background information when questions are answered. The
highlighted phrases contain discrete things that are hidden, resulting in Cloze-style
problems where the model’s goal is to accurately guess the hidden entity. The high-
lighted sentences are combined to create a succinct summary of the article when it
comes to summarizing.

The dataset includes stories from CNN and the Daily Mail, both of which were pub-
lished between June 2010 and April 2015, respectively. These articles were taken
from the Daily Mail and CNN archives, respectively.

This dataset is especially helpful for developing algorithms that can reduce lengthy
passages of text into succinct summaries. In addition to making it simpler to un-
derstand dense quantities of information, summaries produced by models trained on
this dataset will closely resemble the language used in the original articles.

27

4.1.5 Limitations

The dataset doesn’t provide a significant number of summaries for the abstractive
summarization. So it was a challenging task due to the lack of evolution of the
abstractive summarization models. Also, as most of the CNN/ Daily Mail articles
are based on the perspectives of the USA and the UK, there are some aspects of
bias. The lengths of some articles in the dataset are significantly short, which makes
it very challenging for the models to handle.

4.2 XL-Sum

4.2.1 Introduction

An enormous dataset called XL-Sum was created especially for the job of abstractive
summarization. It stands out for its diversity; it includes more than a million pairs
of articles with expert annotations and their summaries, all taken from the BBC.

Language diversity is one of its unique characteristics; XL-Sum offers information in
44 different languages, some of which lack widely accessible datasets. It is therefore
extremely useful for research and other applications that need multilingual capabil-
ities.

The dataset performs exceptionally well in a number of domains, according to both
human assessments and intrinsic measures. It enables summaries that are both
succinct and abstract while maintaining a high standard of quality. In general, XL-
Sum is a reliable tool for creating and refining abstractive summarization models.

4.2.2 Variations

There are two versions of the XL-Sum dataset. The newer version of the dataset
includes the Traditional Chinese language. By adding this language, the XL-sum
dataset will enable better formatting, better extraction, larger evaluation splits, and
more data. With the inclusion of the Traditional Chinese language, XL-Sum became
the largest text summarization dataset publicly available.[23]

4.2.3 Split

Language Train Dev Test Total
Almost all other languages 80% 10% 10% 100%

English 93% 3.5% 3.5% 100%

4.2.4 Increased Usage

For abstractive text summarization, the usage of the XL-Sum dataset is now grow-
ing. In recent years, the usage of this dataset has increased to a great extent.

28

Figure 4.4: Usage of XL-Sum

4.2.5 Challenges

A lot of the languages had very little resources. As a result, those language samples
were very less. So, those language evaluation sets were increased for a more reliable
evaluation

4.3 XSum Dataset

4.3.1 Introduction

The XSum dataset is a massive collection of data that was developed specifically
for the purpose of performing text summarizing tasks. The dataset was developed
in 2019 and made public by academics at the University of Edinburgh. The XSum
dataset is comprised of news articles obtained from a wide variety of sources, one
of which is the internet’s collection of online news websites. The articles that are
included in the dataset cover a broad variety of subjects, including politics, sports,
entertainment, technology, and many more. The articles were published during the
years of 2015 and 2018, offering a temporal range of news coverage. The XSum
dataset has been crucial in the advancement of research in extreme summarization
and has acted as a standard benchmark for measuring the performance of a variety
of different summarizing methods.

4.3.2 Variation

There are a number of different iterations or subsets of the XSum dataset that have
been produced from it or utilized in research that is linked to it. Researchers at the
University of Edinburgh developed XSum-RoBerta by first extracting a subset of ar-
ticles from the initial XSum dataset and then creating additional summaries utilizing
the Roberta model. A variant of the XSum dataset known as XSum-Newsroom has
been created by the combination of the XSum dataset with the Newsroom dataset.

29

The Newsroom dataset includes numerous summaries for each article, as well as
articles sourced from a variety of different news outlets. Researchers wanted to in-
crease the amount of variety in the summary jobs, and one way to do this was to
provide numerous summaries for each article. To do this, they merged the News-
room dataset with XSum. The XSum-Hallucination dataset is a subset of the XSum
dataset that was developed specifically for the purpose of assessing the hallucination
capabilities of various summarization models. It is made up of articles that were
part of the initial XSum dataset, but the summaries have been tampered with in a
way that causes them to include false information or hallucinations. [8]

4.3.3 Split

Language Train Dev Test Total
Almost all other languages 90% 05% 05% 100%

4.3.4 Usage

Summarization Model Training: The XSum dataset is frequently utilized in the
process of training and fine-tuning text summarization models, particularly those
models that are focused on extreme summarization.
[16] Model Evaluation and Benchmarking: The XSum dataset is used as a
standard against which the effectiveness of various text summarization techniques
is measured. The researchers evaluate the quality and efficacy of their techniques
by contrasting the generated summaries from their models with the reference sum-
maries included inside the dataset.
[6] Transfer Learning and Pre-training: The XSum dataset has been put to use
in activities involving transfer learning and pre-training. Researchers make use of the
dataset to pre-train large-scale language models like BERT, GPT, and RoBERTa,
which may subsequently be fine-tuned for particular summarization tasks.
[10] Multimodal Summarization: Using the XSum dataset, researchers have also
explored multimodal summarization, which involves integrating textual information
with either visual or audio elements.
Model Development and Improvement: The XSum dataset is utilized by re-
searchers in order to create and enhance text summarization models.
[11]

4.3.5 Challenges

Length Constraint: This limitation makes summarizing harder since it entails
condensing material while keeping coherence and essential ideas.
Single Reference Summaries: Having only one reference summary may limit
models’ ability to learn from diverse viewpoints and limit summary coverage of cru-
cial information.
Abstraction: Both human annotators and machine learning models sometimes
struggle with summarizing complicated and nuanced information into a single state-
ment.
Limited Domain Coverage: When confronted with texts on topics that are not
well represented in the XSum dataset, models that were trained on that dataset
may face difficulty.

30

Generalization to Other Languages: The XSum dataset focuses mostly on sum-
maries of English news articles. Models trained on XSum need to be translated or
fresh datasets built in the target language before they can be applied. This creates
difficulties in ensuring that summaries across languages are of the same high quality,
style, and scope.

4.4 C4

4.4.1 Introduction

Being able to obtain reliable, high-quality datasets is essential for the development
and evaluation of machine learning algorithms in the field of natural language pro-
cessing (NLP). One such priceless resource that has drawn a lot of interest in the
NLP field is the C4 dataset, which stands for ”Colossal Clean Crawled Corpus.”
This massive dataset was produced by Google and is designed to encompass a vari-
ety of language patterns, making it a gold mine for scholars and practitioners.

The C4 dataset’s diversity in language structures enables significant improvements
in tasks involving language understanding. It is an essential tool for creating and
perfecting models aimed at bettering our understanding of human language because
of its quality and wide-ranging application. In conclusion, the C4 dataset fosters
innovation in language understanding tasks in addition to acting as a cornerstone
for NLP research.

4.4.2 Overview and Construction:

The C4 dataset which is a large-scale, publicly available dataset, is a massive collec-
tion of text data obtained by crawling and filtering web pages from various domains
and languages which involves removing duplicates, spam, and low-quality content.
Furthermore, the dataset undergoes language identification, sentence segmentation,
and tokenization to ensure proper organization and uniformity of the text. It is a
useful tool for developing and testing machine learning models used in NLP applica-
tions like sentiment analysis, machine translation, text categorization, and language
modeling.

4.4.3 Scale and Variations:

The enormous scale of the C4 dataset is one of its distinguishing features. It started
off as a collection of roughly 750GB of English-language material that was obtained
from the open Common Crawl web scrape. As of now, the dataset comes in five
variants-
c4/en: 806.87GB in JSON format
c4/en.noclean: 6.21TB in JSON format
c4/realnewslike: 36.91GB in JSON format
c4/webtextlike: 17.93GB in JSON format
c4/multilingual: 38.49 TB in JSON format

31

4.4.4 Split and feature

Most of the variants of the C4 dataset has two splits, training and validation. Each
split contains a huge number of rows/examples. Features are the variables or at-
tributes that provide information about each instance or sample in the dataset.
They represent the different dimensions or aspects of the data that are relevant
to the problem at hand. All versions of the C4 dataset has these five features:
content-length, content-type, text, timestamp, url.[14]

4.4.5 Significance and Applications:

The availability of the C4 dataset has significantly impacted the NLP research
community. It has served as a valuable resource for developing and benchmark-
ing state-of-the-art models. Large-scale language models, such as GPT (Generative
Pre-trained Transformer) versions, have been trained using the C4 dataset and have
displayed astounding performance on a variety of language understanding tasks.
Furthermore, the C4 dataset has facilitated advancements in transfer learning, where
models pre-trained on the dataset can be fine-tuned on specific downstream tasks,
leading to improved performance with less labeled data. The dataset’s broad cover-
age of topics and languages enables models to generalize better and adapt to different
domains and languages[18]

4.4.6 Usage

Figure 4.5: Number of Papers on C4.

4.4.7 Conclusion

The C4 dataset’s variation and scale make it a valuable resource in the field of
NLP. Its diverse linguistic coverage allows for cross-lingual applications and a better

32

understanding of language patterns across different cultures and domains. Addi-
tionally, the colossal size of the dataset provides ample training examples, enabling
the development of high-performance language models. As researchers continue to
explore the potential of the C4 dataset, its variation and scale will remain essen-
tial for advancing language understanding capabilities and driving progress in NLP
research.

4.5 HugeNews Dataset

4.5.1 Introduction

PEGASUS is a state-of-the-art model for abstractive text summarization tasks. Mul-
tiple datasets have been used and yielded significant results on the PEGASUS model.
The HugeNews dataset is one of them. It’s a fairly newly used dataset. The Huge-
News dataset is mainly used in the pre-training of the data. It is a huge text corpus
consisting of more than 1.5 billion text articles collected from newspapers and news-
like websites. The size of the dataset crosses 3.8TB.

4.5.2 Extraction Process

Over a six-year period (2013-2019), the news pieces were extracted. First off, a
whitelist of domains that ranged from high-quality news publishers to low-quality
sites like high school newspapers and blogs was curated to produce the dataset.
Then a web crawler was utilized to seed the domains, and heuristics were applied to
discover articles that resembled newspapers to identify them. The primary article
text was then extracted as plain text and used for summarization.

4.5.3 Mixture with C4

C4 is another huge scaled dataset used in PEGASUS. To improve the performance
of the datasets a new dataset was introduced. It was a mixture of the C4 dataset
and the HugeNews dataset. It is called the “Mixed and Stochastic” model. It is
trained on 1.5M articles instead of 500k. The dataset uses a 20% uniform noise to
sample key statements and then calculate importance scores. Also, the gap sentence
ratio used in the model was consistently between 15% and 45%.

Dataset C4 HugeNews Mixed and Stochastic
xsum 45.20/22.06/36.99 47.21/24.56/39.25 47.60/24.83/39.64

cnndailymail 43.90/21.20/40.76 44.17/21.47/41.11 44.16/21.56/41.30
gigaword 38.75/19.96/36.14 39.12/19.86/36.24 39.65/20.47/36.76
newsroom 45.07/33.39/41.28 45.15/33.51/41.33 45.98/34.20/42.18
multinews 46.74/17.95/24.26 47.52/18.72/24.91 47.65/18.75/24.95
wikihow 43.07/19.70/34.79 41.35/18.51/33.42 46.39/22.12/38.41

Train/Dev/Test data

33

4.5.4 Usage

The HugeNews is a relatively new dataset. So its usage is really limited till now. The
usage of HugeNews is mostly in the PEGASUS model only. And with the mixture
of C4 and the increased performances, now HugeNews dataset’s usage is increasing
now.

34

Chapter 5

Preliminary analysis

5.1 PEGASUS

CNN/DailyMail dataset was tested using the pre-trained pegasus. The pre-trained
google/pegasus-cnn dailymail model was loaded from Hugging Face. Rouge-1, Rouge-
2, Rouge-L, and Rouge-Lsum are the assessment metrics used to evaluate the model’s
performance. The obtained results are:

Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

PEGASUS 0.47519 0.278492 0.373879 0.42883

Table 5.1: Results from the PEGASUS

The Rouge-1 score of 0.47519 shows that the PEGASUS model does a respectable
job of capturing the overlap of unigram sequences between the generated summaries
and the reference summaries. A higher Rouge-1 score indicates greater unigram
recall and precision. The Rouge-2 score of 0.278492 indicates the model’s ability to
recognize bigram sequence overlap. Given that this score is lower than Rouge-1’s,
the model has difficulty delivering accurate summaries that are both precise and
bigram-recallable. The Rouge-L score of 0.373879 determines how similar the gen-
erated summaries and the reference summaries are by using the longest common
subsequence. This score demonstrates how well the model did at identifying longer
word sequences. A higher Rouge-L score indicates better performance in terms
of catching longer, integrated words. By taking into account both bigram and uni-
gram sequences, the Rouge-Lsum score of 0.428834 assesses the overall quality of the
generated summaries. This rating offers a thorough assessment of the model’s effec-
tiveness in producing accurate and illuminating summaries. Based on the results, it
can be seen that the model does rather well in terms of unigram recall and precision
(Rouge-1), but needs help capturing the overlap of bigram sequences (Rouge-2).
The model does rather well at capturing longer, cohesive phrases (Rouge-L) and
producing overall high-quality summaries (Rouge-Lsum).

35

https://huggingface.co/datasets/cnn_dailymail
https://huggingface.co/google/pegasus-cnn_dailymail

5.2 BART

The pre-trained BART model from the Hugging Face library named ”bart-base-
finetuned-cnn dailymail” was used for CNN/DailyMail dataset testing. The pro-
duced results from this model:

Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

BART 0.311395 0.155579 0.249109 0.293648

Table 5.2: Results from the BART

This score is lower when compared to the Rouge-1 of the prior model, indicating
that the recall and precision of unigrams may be worse in the present model. Similar
to the Rouge-1 score, this model’s Rouge- 2 score is lower than the score of the prior
model, indicating that the current model has more difficulty producing accurate
summaries in terms of bigram recall and precision. Once more, the Rouge-L score is
lower than that of the prior model, suggesting that the present model would struggle
to capture lengthier word sequences and keep the summaries coherent.
By taking into account both bigram and unigram sequences, the Rouge-Lsum score
of 0.293648 assesses the overall quality of the generated summaries. This score, like
the other metrics, is lower than the score of the previous model, indicating that the
present model might produce summaries of lower overall quality.

Here, a learning rate of 5.6e-05, a batch size of 8 for training and evaluation, and a
seed of 42 were used, according to an analysis of the hyperparameters. The optimiza-
tion algorithm and its parameters were selected using the Adam optimizer, which
has betas=(0.9,0.999) and epsilon=1e-08. The learning rate scheduler maintained a
linear schedule. Four training epochs were used to train the model.
Based on the results, it can be seen that the ”bart-base-finetuned-cnn dailymail”
model performs worse than the prior model. The current model appears to have
problems collecting unigram and bigram sequences, preserving coherence in longer
sequences, and producing high-quality summaries generally, as evidenced by the
lower scores across all evaluation metrics. It may be worthwhile to think about
modifying the hyperparameters to enhance the model’s performance, such as test-
ing various learning rates, batch sizes, or optimization strategies. Additionally,
more training epochs or a different method of fine-tuning might produce superior
outcomes. Finding the ideal setup for increasing the model’s performance on the
CNN/DailyMail dataset requires repeated testing of various configurations.

36

5.3 T5-small

The ”small” variant of T5, often known as T5-small, is a scaled-down version of
the original model that retains much of the original’s capability while being signif-
icantly computationally efficient. Compared to T5-base and T5-large, it has fewer
parameters. It is suitable in situations where either time or computing power are
limited. T5-small is a great choice for many NLP tasks, including text creation and
summarizing issues: produce some output text given some input text. T5-small is
pre-trained on a sizable corpus of text data and may be tailored for a variety of
specific applications, just like the more thorough T5 models.
Rouge-1, Rouge-2, Rouge-L, and Rouge-Lsum are the evaluation measures used to
gauge the model’s effectiveness. Here are the results:

Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

T5-small 0.354386 0.151331 0.243898 0.303233

Table 5.3: Results from the T5-small

This score is somewhat higher than BART but lower than PEGASUS in comparison
to the previous model, indicating that the present model has a modest unigram recall
and precision.

5.4 Results Comparison

Figure 5.1: Rouge scores of the pre-trained models

The result shows PEGASUS performing the best, T5 performing well and BART
performing satisfactorily. Finally, after comparing these models’ generated sum-
maries with the human written ones, it clearly shows that these models are quite
capable of doing their tasks.

37

Chapter 6

Fine-tuning Flan-T5 on XLSum

6.1 Introduction

In the NLP discipline, it is common practice to modify previously trained models for
certain tasks. This chapter describes an experiment where 20% of the XLsum En-
glish dataset was used to fine-tune the Flan-T5 model. A pre-trained mT5 baseline
was used to compare its performance to that. Fascinatingly, Flan-T5 did not out-
perform mT5 in ROUGE scores for the assigned job despite the specific fine-tuning.

6.2 Dataset Selection

The XLsum English dataset was chosen for its comprehensive and balanced corpus
specifically designed for text summarization tasks. For this experiment, 20% of the
dataset was employed to train the Flan-T5 model.

6.3 Model Selection

Flan-T5 was selected for its potential in state-of-the-art text summarization, Flan-
T5 was subjected to fine-tuning in order to adapt its capabilities to the character-
istics of the XLsum English dataset

6.4 Hyperparameter

• Learning rate: 2e-05

• Training batch-size: 8

• Evaluation batch-size: 8

• Seed: 42

• Optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

• LR scheduler type: linear

• Number of epochs: 5

38

6.5 Results

The results were evaluated using ROUGE metrics. The following data represents
the recorded scores.:

Rouge-1 Rouge-2 Rouge-L Rouge-LSUM

mT5 multilingual XLSum 37.601 15.153 29.88 -

flan-t5-xlsum 35.4133 14.4516 28.2197 28.2456

Table 6.1: Rouge scores from the pre-trained and fine-tuned models

While the FLAN-T5 model did not manage to surpass the baseline MT5 model
in terms of performance, it is important to note that this does not represent the
end of the line for improving text summarization models. As part of our ongoing
efforts, we plan to fine-tune the PEGASUS model on the same 20% subset of the
XLsum English dataset to see if it offers any improvements over the baseline and
fine-tuned FLAN-T5 models. PEGASUS is another state-of-the-art model with a
different architecture, and there is reasonable potential for it to yield better results
on the text summarization task.

39

Chapter 7

Fine-tuning PEGASUS on XLSum

The PEGASUS transformer model, which was initially created by Google AI Re-
search for abstractive summarization, is the subject of our empirical study in this
chapter. Our main focus is on the improvements made possible by perfecting this
model on the XLSum dataset. Through our efforts, we were able to create a model
that, when tested on the same dataset, performs better than the mT5 baseline.
Particularly, our improved PEGASUS model demonstrated significantly enhanced
performance in Rouge-1, Rouge-2, and Rouge-L measures.

7.1 PEGASUS Transformer Model: A Recap

The PEGASUS transformer model is renowned for using self-supervised objectives
to pretrain from a sizable corpus of text, consequently displaying appreciable ad-
vancements in the field of abstractive text summarization. The primary way that
this model differs from others is by pre-training it with an aim that prefers signif-
icant sentences over randomly chosen ones, namely the sentences that are used in
human-generated summaries.

7.2 Fine-Tuning the PEGASUS Transformer Model

A large percentage of our study and investigation is focused on fine-tuning. For
this procedure, we used 20% of the English training corpus from XLSum and the
following hyperparameters:

• Learning rate: 2e-05

• Training batch-size: 8

• Evaluation batch-size: 8

• Seed: 42

• Optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

• LR scheduler type: linear

• Number of epochs: 4

40

It is crucial to remember that these hyperparameters were chosen following a number
of tests and parameter sweeps to enhance performance. These decisions aided in our
model’s convergence and led to the production of better results.

7.3 Comparative Evaluation: PEGASUS Vs. mT5

As a baseline model for comparison, we used the mT5 model, an unsupervised multi-
lingual variant of T5. The mT5 model was also improved using the XLSum dataset,
and its Rouge scores for Rouge-1, Rouge-2, and Rouge-L were 37.60, 15.15, and
29.88, respectively [23]

Rouge-1 Rouge-2 Rouge-L Rouge-LSUM

mT5 multilingual XLSum 37.601 15.153 29.88 -

pegasus xlsum 39.121 17.467 30.894 30.892

Table 7.1: Rouge scores from the mT5 and fine-tuned PEGASUS

These results show a considerable performance gain when compared to our improved
PEGASUS model. Our model achieved Rouge scores for Rouge-1, Rouge-2, and
Rouge-L of 39.12, 17.46, and 30.89, respectively. The improvement in these measures
illustrates the efficacy of our process of fine-tuning and confirms the potency of the
PEGASUS transformer model when appropriately suited for certain workloads.

7.4 In-depth Analysis of Model Performance

The observed rise in Rouge scores signifies a notable advancement in the field of
abstractive text summarization. The Rouge-1 measure is employed for evaluating
the extent of unigram overlap between the system-generated summary and the refer-
ence summary. A higher Rouge-1 score signifies a greater degree of lexical similarity
between the reference summary and the generated summary.
The Rouge-2 methodology is employed to compute the level of bigram overlap be-
tween the system-generated summaries and the reference summaries. This criterion
emphasizes the coherence and fluidity of the resulting summary. The updated PE-
GASUS model demonstrates superior performance in generating summaries that
exhibit coherency and logical organization, as shown by a higher Rouge-2 score.
In contrast, Rouge-L takes into account the sequential order of the text and examines
the longest common subsequence shared by the system-generated summaries and
the reference summaries. This enhancement underscores the model’s capacity to
generate summaries that nearly replicate the semantic organization of the source
text, while also maintaining its logical coherence.

7.5 Model Dissemination

Given the significant improvements made possible by our method of fine-tuning, the
improved PEGASUS transformer model was subsequently released on the Hugging

41

Face Model Hub. The Hugging Face platform was chosen because it is well-liked
in the research community and has an approachable infrastructure that makes it
simple to share and include models.

With this release, we want to provide other scholars and professionals the chance to
use this improved model, put it to use in their own situations, and further advance
the art of abstractive summarization.

42

Chapter 8

Interpretation of fine-tuned
PEGASUS with SHAP

Understanding why a model generates a specific prediction is as crucial as the pre-
diction itself in the increasingly complicated world of machine learning. This un-
derstanding is crucial for establishing trust in any systems, validating models, and
making informed decisions. SHAP (SHapley Additive exPlanations), an interpreter
library designed to bring transparency and interpretability to machine learning mod-
els.

8.1 Shapley Values and Their Mathematical For-

mulation

SHAP hinges on the concept of Shapley values, a mathematical framework borrowed
from cooperative game theory. They are used to fairly allocate a specific value among
multiple contributing players in a game. In the context of machine learning, these
”players” are the features used by the model, and the ”value” being allocated is the
contribution of each feature towards making a particular prediction. The Shapley
value ϕi of a feature i in a model with N features is computed as follows:

ϕi =
∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)!

|N |!
(f(S ∪ {i})− f(S))

Here, f(S) is the prediction of the model for a given subset of features S, and |S|
denotes the cardinality of S. N is the set of all features. The term f(S∪{i})−f(S)
calculates the marginal contribution of feature i when added to a set S. The Shapley
value ϕi is calculated by taking an average over all possible combinations of features,
evaluating how much feature i contributes to every possible subset S [7].

8.2 SHAP for summarization models

The pre-trained or fine-tuned abstractive summarization model is first prepared for
analysis. This often entails tokenizing the input text and structuring it in a format

43

compatible with the specific transformer model. After initialization, the SHAP li-
brary uses the summarization model to compute the Shapley values. These values
aim to quantify the contribution of each feature—in this context, each input token
or group of tokens—to the output. Once the text sample is tokenized and fed into
the model along with its corresponding SHAP explainer, Shapley values for each
token are generated. These values serve as indicators of the level of influence each
token had in shaping the final summary output.

8.3 Predicting pegasus xlsum output

In the context of abstractive summarization models, SHAP values help in under-
standing the contributions of each feature (word or token in this case) towards
making a particular prediction. In many SHAP visualizations, blue and red colors
are used to represent the impact of a particular feature on the model’s output. In
general, blue typically indicates a feature that decreases the prediction value. On
the other hand, red signifies a feature that increases the prediction value. In the
context of abstractive summarization, a red token may be one that the model firmly
feels is necessary for the summary to include in order for it to be coherent or useful,
whereas a blue token may be one that the model feels is less significant. Once more,
a positive SHAP value for a word or token denotes that the possibility of the term
appearing in the summary is increased by its presence. A negative SHAP score, on
the other hand, decreases the likelihood of inclusion in the summary. The model is
affected in a ”negative” way by it.

Figure 8.1: pegasus xlsum output analysis using SHAP

From the above pictures, it is seen that tokens like ”mastercard” (3.2417), ”wear-
able” (4.60913), and ”payment” (2.92806) have positive SHAP values, meaning these
words strongly contribute to the model’s decision to include them in the summary.
They may be considered key aspects of the original text that the model believes are
necessary for a good, informative summary. Tokens like ”field” (-0.329) and ”ac-
cessories” (-0.114) have negative SHAP values, implying that these words are less
critical to the model’s generation of the summary. The negative values suggest that
they might be omitted or given less emphasis to make the summary more coherent,
concise, or informative. Again, despite being negative SHAP value words, words
like ”branded” (-1.8354) and ”eastern” (-1.3011) are added to the summary. It is

44

because these words hold contextual importance. They may have negative SHAP
values, but their inclusion could be contextually relevant to other parts of the sum-
mary. Again, the decision to include a word is influenced by the combined effects
of all the words in the input. So, even if a word has a negative SHAP value, the
total contribution of all the features may still result in that word being included.
Moreover, sometimes models include words for readability or coherence, even if those
words don’t add significant information as quantified by SHAP values.

Understanding the SHAP values can help in diagnosing the model’s behavior, al-
lowing for possible refinements. Overall, the use of SHAP values in interpreting
abstractive summarization models adds an essential layer of transparency for under-
standing the decision-making process of these advanced systems.

45

Chapter 9

Conclusion

In this work, we experimented with various transformer architectures to fine-tune
abstractive text summarization models on the csebuetnlp/xlsum/eng dataset. Ini-
tially, we fine-tuned the pre-trained google/flan-t5-base model, resulting in the flan-
t5-xlsum model. Despite the effort, the ROUGE scores did not meet expectations.
After finetuning, the flan-t5-xlsum model achieved ROUGE-1, ROUGE-2, ROUGE-
L, and ROUGE-LSUM scores of 35.4133, 14.4516, 28.2197, and 28.2456, respec-
tively. In contrast, the mT5 multilingual XLSum model by BUET presents ROUGE
scores of 37.601 for ROUGE-1, 15.153 for ROUGE-2, and 29.88 for ROUGE-L.
However, significant improvements were observed when we used the pre-trained
google/pegasus-cnn dailymail model for fine-tuning. We named our developed model
pegasus xlsum, which outperformed the csebuetnlp/mT5 multilingual XLSummodel
in all ROUGE metrics, achieving ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-
LSUM scores of 39.121, 17.467, 30.894, and 30.892, respectively. To quantify the
improvement, we calculated the percentage change in each ROUGE score for the
pegasus xlsum model as compared to the mT5 model. We could see a 4.04%
improvement in the ROUGE-1 score and a 3.39% improvement in the ROUGE-
L score. Our model exhibited a notable improvement, showing a 15.25% increase in
the ROUGE-2 score, which indicates a substantial enhancement in capturing more
complex sentence structures and content relationships. The table below shows the
results altogether:

Rouge-1 Rouge-2 Rouge-L Rouge-LSUM

mT5 multilingual XLSum 37.601 15.153 29.88 -

pegasus xlsum 39.121 17.467 30.894 30.892

flan-t5-xlsum 35.4133 14.4516 28.2197 28.2456

Table 9.1: Rouge scores from the pre-trained and fine-tuned models

These results indicate that the pegasus xlsum model demonstrates a noticeable per-
formance advantage over the csebuetnlp/mT5 multilingual XLSum model. Thanks
to the architectural advantages of the Pegasus model, originally designed for extrac-
tive and abstractive summarization tasks, it appears to align well with the intrica-
cies of the csebuetnlp/xlsum/eng dataset. The advancements in our pegasus xlsum
model make it a viable choice for abstractive summarization tasks.

46

https://huggingface.co/datasets/csebuetnlp/xlsum/viewer/english
https://huggingface.co/google/flan-t5-base
https://huggingface.co/SadiulArefin/flan-t5-xlsum
https://huggingface.co/SadiulArefin/flan-t5-xlsum
https://huggingface.co/SadiulArefin/flan-t5-xlsum
https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum
https://huggingface.co/google/pegasus-cnn_dailymail
https://huggingface.co/naimur900/pegasus_xlsum
https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum
https://huggingface.co/naimur900/pegasus_xlsum
https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum
https://huggingface.co/naimur900/pegasus_xlsum
https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum
https://huggingface.co/datasets/csebuetnlp/xlsum/viewer/english
https://huggingface.co/naimur900/pegasus_xlsum

Bibliography

[1] Y. Gong and X. Liu, “Generic text summarization using relevance measure
and latent semantic analysis,” in Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information retrieval,
2001, pp. 19–25.

[2] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in Proceedings
of the 2004 conference on empirical methods in natural language processing,
2004, pp. 404–411.

[3] N. Munot and S. S. Govilkar, “Comparative study of text summarization meth-
ods,” International Journal of Computer Applications, vol. 102, no. 12, 2014.

[4] Y. Sankarasubramaniam, K. Ramanathan, and S. Ghosh, “Text summariza-
tion using wikipedia,” Information Processing & Management, vol. 50, no. 3,
pp. 443–461, 2014.

[5] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al., “Abstractive text summa-
rization using sequence-to-sequence rnns and beyond,” arXiv preprint arXiv:1602.06023,
2016.

[6] A. Herbelot and M. Baroni, “High-risk learning: Acquiring new word vectors
from tiny data,” in Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, Copenhagen, Denmark: Association for Com-
putational Linguistics, Sep. 2017, pp. 304–309. doi: 10.18653/v1/D17-1030.
[Online]. Available: https://aclanthology.org/D17-1030.

[7] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30, 2017.

[8] A. See, P. Liu, and C. Manning, “Get to the point: Summarization with
pointer-generator networks,” in Association for Computational Linguistics,
2017. [Online]. Available: https://arxiv.org/abs/1704.04368.

[9] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with
pointer-generator networks,” arXiv preprint arXiv:1704.04368, 2017.

[10] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summariza-
tion,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium: Association for Computational Lin-
guistics, Oct. 2018, pp. 1797–1807. doi: 10 .18653/v1/D18- 1206. [Online].
Available: https://aclanthology.org/D18-1206.

47

https://doi.org/10.18653/v1/D17-1030
https://aclanthology.org/D17-1030
https://arxiv.org/abs/1704.04368
https://doi.org/10.18653/v1/D18-1206
https://aclanthology.org/D18-1206

[11] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the
summary! Topic-aware convolutional neural networks for extreme summariza-
tion,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, 2018.

[12] F. Boutkan, J. Ranzijn, D. Rau, and E. van der Wel, “Point-less: More abstrac-
tive summarization with pointer-generator networks,” arXiv preprint arXiv:1905.01975,
2019.

[13] M. Lewis, Y. Liu, N. Goyal, et al., “Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension,”
arXiv preprint arXiv:1910.13461, 2019.

[14] C. Raffel, N. Shazeer, A. Roberts, et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer,” arXiv e-prints, 2019. arXiv:
1910.10683.

[15] V. Kieuvongngam, B. Tan, and Y. Niu, “Automatic text summarization of
covid-19 medical research articles using bert and gpt-2,” arXiv preprint arXiv:2006.01997,
2020.

[16] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faithfulness and
factuality in abstractive summarization,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association
for Computational Linguistics, Jul. 2020, pp. 1906–1919. doi: 10.18653/v1/
2020.acl-main.173. [Online]. Available: https://aclanthology.org/2020.acl-
main.173.

[17] J. Pilault, R. Li, S. Subramanian, and C. Pal, “On extractive and abstractive
neural document summarization with transformer language models,” in Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020, pp. 9308–9319.

[18] C. Raffel, N. Shazeer, A. Roberts, et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, Jan. 2020, issn: 1532-4435.

[19] C. Raffel, N. Shazeer, A. Roberts, et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[20] S. Sotudeh, A. Cohan, and N. Goharian, “On generating extended summaries
of long documents,” arXiv preprint arXiv:2012.14136, 2020.

[21] W. Xiao and G. Carenini, “Systematically exploring redundancy reduction in
summarizing long documents,” arXiv preprint arXiv:2012.00052, 2020.

[22] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization,” in International Conference on
Machine Learning, PMLR, 2020, pp. 11 328–11 339.

[23] T. Hasan, A. Bhattacharjee, M. S. Islam, et al., “XL-sum: Large-scale multi-
lingual abstractive summarization for 44 languages,” in Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP 2021, Online: Association
for Computational Linguistics, Aug. 2021, pp. 4693–4703. doi: 10.18653/v1/
2021.findings- acl .413. [Online]. Available: https ://aclanthology.org/2021.
findings-acl.413.

48

https://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413

[24] F. Nan, R. Nallapati, Z. Wang, et al., “Entity-level factual consistency of
abstractive text summarization,” arXiv preprint arXiv:2102.09130, 2021.

[25] S. Abdel-Salam and A. Rafea, “Performance study on extractive text summa-
rization using bert models,” Information, vol. 13, no. 2, 2022, issn: 2078-2489.
doi: 10.3390/info13020067. [Online]. Available: https://www.mdpi.com/2078-
2489/13/2/67.

[26] A. Gupta, D. Chugh, R. Katarya, et al., “Automated news summarization us-
ing transformers,” in Sustainable Advanced Computing, Springer, 2022, pp. 249–
259.

49

https://doi.org/10.3390/info13020067
https://www.mdpi.com/2078-2489/13/2/67
https://www.mdpi.com/2078-2489/13/2/67

	Declaration
	Approval
	Abstract
	Table of Contents
	Introduction
	Research Problem
	Research Objective
	Workflow

	Literature Review
	Description of the models
	PEGASUS
	Internal architecture & functionality
	Pre-training
	Sizes and Parameters
	Fine-tuning
	Results

	BART
	Internal architecture & functionality
	Pre-training
	Parameters
	Fine-tuning
	Results

	T5
	The Architecture of T5
	The Text-to-Text Framework
	Training the T5 Model
	Conclusion

	Description of the datasets
	CNN/Daily Mail Dataset
	Introduction
	Description and Split
	Sample Dataset
	Data Fields
	Limitations

	XL-Sum
	Introduction
	Variations
	Split
	Increased Usage
	Challenges

	XSum Dataset
	Introduction
	Variation
	Split
	Usage
	Challenges

	C4
	Introduction
	Overview and Construction:
	Scale and Variations:
	Split and feature
	Significance and Applications:
	Usage
	Conclusion

	HugeNews Dataset
	Introduction
	Extraction Process
	Mixture with C4
	Usage

	Preliminary analysis
	PEGASUS
	BART
	T5-small
	Results Comparison

	Fine-tuning Flan-T5 on XLSum
	Introduction
	Dataset Selection
	Model Selection
	Hyperparameter
	Results

	Fine-tuning PEGASUS on XLSum
	PEGASUS Transformer Model: A Recap
	Fine-Tuning the PEGASUS Transformer Model
	Comparative Evaluation: PEGASUS Vs. mT5
	In-depth Analysis of Model Performance
	Model Dissemination

	Interpretation of fine-tuned PEGASUS with SHAP
	Shapley Values and Their Mathematical Formulation
	SHAP for summarization models
	Predicting pegasus_xlsum output

	Conclusion
	Bibliography

