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Abstract
Malware represents an intrusive computer program that is engineered by cyber-
criminals to destroy computer systems or steal and manipulate sensitive data. Mal-
ware classification is crucial to malware detection as it helps to assign malware
to a specific category according to its characteristics. Characterizing and labeling
variants of spyware is also useful as it will shed light on how they’re able to gain
access to our systems in the first place, the dangers they possess, and the necessary
preventions to take against them. In order to tackle such a serious security-related
issue, we have decided to develop an image-processing system that would help us
be faster at detecting malware while also possibly being one step ahead of cyber-
criminals. To describe and categorize sourced malware datasets, we will develop
the system using various approaches for deep learning methods and even propose
a simple CNN-based methodology of our own. The aim of our work is to show a
comparative study of malware types with experimental results, making it easier to
identify and keep track of malware that already exists while helping to detect new
ones. To be more specific, we worked with four pre-trained CNN models in order
to diversify our methods. These trained models include ResNet-50, Inception-V3,
VGG-16, and DenseNet-201. After running and testing all of the models on the
Malimg dataset, our suggested model was able to achieve a 97.64% accuracy rate in
detecting malware greyscale images. This high level of testing accuracy also slightly
outperformed some of the other cutting-edge models used in our comparison study
on the dataset. These modern and highly developed models used for comparison
include Involution, Vision Transformer (ViT), Compact Convolutional Transformer
(CCT), and External Attention Network (EANet). Finally, we employed the use
of an explainable artificial intelligence (AI) technique known as LIME to provide a
more detailed clarification of the rationale behind our model’s selection and classi-
fication of individual samples into their respective classes.

Keywords: Malware; Deep Learning; Classification; Neural Network; Convolu-
tional Neural Network (CNN); Transformer; Involution; Explainable AI (XAI); Mal-
ware Binary Image;
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Chapter 1

Introduction

1.1 Background Information
Malware uses deceit to inhibit a system from functioning correctly. Cybercriminals
benefit from the scenario by deploying additional attacks, acquiring credentials, ob-
taining user information selling, making it available as cloud resources, or making
the victims go through financial losses. They do this after acquiring access to a
system via a number of methods, such as a spam email, contaminated file, system
or firmware weakness, corrupted USB drive, or malignant web application.

Malware attacks can happen to anyone. Even though some people may be able to
recognize specific tactics attackers use to target victims with malware, such as be-
ing able to identify a spam email, malicious hackers are professional and persistently
improving their techniques to stay up with advancements in privacy and techniques.
Depending on the type of malware, malware attacks also have different appearances
and behaviors. This type of malware is designed to blend in and remain undetected
for as long as possible. A victim of a rootkit attack, for example, may not even be
aware of it.

Since ancient times, fraudsters have utilized variants of techniques to infect the max-
imum number of systems with malware. According to [32], Elk Cloner, the discovery
of the first computer malware was made in 1982 and it was found on a Mac. This
detection was quickly followed by the launch of the first computer virus for IBM
computers in 1986. The name of this virus was “Brain”.

According to [32], in the late 1980s, most of the malignant programs were hidden
in floppy disks and distributed as basic boot sectors and file-infecting viruses. As
computer networks began to be adopted and expanded in the early 1990s, so did
the amount of malicious software as distribution became easier.

As technologies standardize, the transmission of some malware types is facilitated.
The increased use of email contributed to the expansion of macro viruses that target
Microsoft Office products and enabled the distribution of spyware via email links.
According to [32], in the midst of the 1990s, people started to realize that the
transmission of malware was now majorly network-driven as enterprises began to
suffer increasingly due to mostly macro viruses.

1



Chapter 2

Problem Statement

Every aspect of the world is now digitalized. Concepts like online banking, cryp-
tocurrency, e-governance, etc. all emerged in order to fully utilize the possibilities
of the Internet. However, the downside is that all sectors now concern themselves
with data protection and security issues. [62] It is estimated that ransomware at-
tacks will reach a rate of once every 11 seconds by 2022 and due to this, $20 billion
of loss will be recorded globally in a year. According to [63] in 2018, 39% of mal-
ware victims cooperated with cybercriminals’ ransom demands, but this year, that
percentage is expected to climb to 58%. As more of these incidents happen, more
resources will be available to attackers. This will help them to increase the num-
ber of attacks of a more severe nature. Corporate and IT sectors are making great
efforts to identify malicious files and prevent security breaches. At the same time,
more malicious files are being constantly created and modified. According to [41]
in the first three-fourths of 2022, a record of 62.29 million unseen malware sam-
ples were discovered throughout all operating systems. This corresponds to around
228,164 daily malware attacks. This huge number and variants of malware make
classifying it hard. Furthermore, one malware can exhibit identifying functions of
multiple families. This can make grouping malware into their respective families
even more confusing. [37] For example, malware can infect through not only an
email attachment but via P2P networks as well. Based on these differences in func-
tionality, the application may be categorized as a Mass-mailer,a Trojan-Mail finder,
or a P2P-Worm. Consequently, all these factors make traditional ways of assorting
malware non-precise. So, we have come up with a solution that should be a more
effective and efficient way to detect and identify malware. This is useful not only
for spotting previously unknown malware but also for identifying and classifying
well-known threats. Specifically, the idea is to compare the similarities and dissim-
ilarities between malware that we already know of to get a better understanding of
the threats they pose. This will help us cope with newer threats more expertly and
take the right action as a whole.

To be more exact we are going to test a number of existing deep learning neural
network models available and benchmark them and produce a study that will help
us to create our own novel model using CNN so that we can evaluate and compare
them to get the best results. In that way, our model will contribute to building
better systems and help eliminate threats by identifying and classifying malware
more efficiently.

2



Chapter 3

Literature Review

In this literature review, a comparative study of existing works in Malware Classi-
fication using Deep Learning is conducted. A number of traditional Deep Learning
approaches are studied which showed exemplary performance in reaching similar
goals. Malware classification, detection, and identification can gain a lot of advan-
tages from the traditional Deep Learning techniques because of their flexibility of
frameworks which makes them an efficient tool for handling expert decisions. Neural
networks can help in this situation as they deal with mathematical models. In this
line of work, neural networks can help us achieve our expected goals as they will
provide methodical tools.

Anti-malware organizations initialized developing comparatively complex models de-
pending on data mining and deep learning architectures [4]. These architectures use
various data representation models to develop better malware identification systems.
Commonly SVM classifier [10][3], Naïve Bayes [1] or multiple classifiers (decision tree
combining with Naïve Bayes and SVM) [2] are used. In the case of [40], the model is
trained on converted images with a resolution of 112 ×112 and 56 ×56 using SVM,
RF, DT, and XGBOOST deep learning identifiers, resulting in 97.1% accuracy on
the Malimg dataset which transcends GIST and HOG models on both accuracy and
precision. In [12] VGG-16 based architecture is used called M-CNN which outper-
forms the baseline GIST+SVM model and achieved a 98.52% accuracy[12] on the
well-known Malimg dataset.

In [19] MSIC framework is used and the spectrogram images are fed through three
CNN classifiers with 1 layer, 2 layers, and 3 layers respectively. In [19], MSIC’s
F-measure for the CNN with the most layers was 91.6% with an accuracy of 92.8%
contrasted to 90.6% and 92.3% for general grayscale solution [19]. MSIC also proved
to be faster than the grayscale solution as it scored 0.5% more on F-measure and
accuracy in detecting malware from malignant files. A hybrid module is created
in [28] based on pre-trained architectures containing ResNet-50 and AlexNet which
gains an accuracy of 96.5% on the Malevis dataset and does even better on accu-
racy in the Malimg dataset, reaching a high of 98.52%. For larger unseen malware
samples a Frequency Domain-Based malware detection [35] is shown to be very ef-
fective with an accuracy of 96% on MaleX 1 dataset, giving it an edge over deep
learning techniques such as ResNet. In [13], the novel model uses a “3C2D” network
architecture with single-channel “bigram-dct” as inputs. As for in [17], the mal-

3



ware detection system referred to as DMDL uses a CNN architecture which shows
astounding effectiveness in categorizing malware over other baseline models, and
according to [17], they reached 99.17% accuracy on Microsoft whereas on Malimg
it was 98.52%. Another image-based machine learning approach addressed as K-
NN in [25] successfully reached 97.9% accuracy on Malimg, 94.41% on Malheur,
and 95.63% on Microsoft BIG2015 dataset putting itself appreciably ahead of other
classifiers of similar techniques such as NB, SVM, CNN. Authors of [14] focused on
transfer learning by mainly considering the datasets Malimg and Malacia. Initially,
K-NN outperforms DL by achieving 99.6% accuracy in binary and also successfully
classifying multi-class problems with an accuracy of 99.4%. However, the zero-day
simulation brought the most significant results. Here, the image-based DL model
successfully identified 79% of the malware samples with a low false positive rate of
1%. The authors in [20] merged the global and local information, thus the malware
can be classified using RF, KNN, and SVM and gains 95% system accuracy for kag-
gle dataset. Also, in [21] the presented novel machine learning solution claimed to
achieve the following accuracy for Malimg, Ember, and BIG2015 malware datasets:
0.998, 0.911, and 0.997. These results tower over other malware classifiers such
as autoencoder with Softmax, autoencoder with SVM, and PCA with Softmax.
The authors of [21] were able to achieve this height through the use of ResNet-
50 architecture including a dense CNN for classifying images. The authors in [36]
developed a modified DNN model with deep denoising Autoencoder elements for
feature compression. The test results show a fair amount of potential in [36], with
96% classification accuracy gained by means of MLP (as a subnet of complete DNN).

As stated in [18] the authors introduced ScaleMalNet, a highly scalable malware
detection framework. This framework uses deep learning to analyze the malware
that has been collected from hosts used by end-users in two steps. The tests were
performed on Malimg datasets and promised an accuracy of 96%.

In [29] the authors use a CNN model called DeepVisDroid and compare its results
with two other models, named ResNet and Inception V3. Here, the DeepVisDroid
model outperformed the previously mentioned classical CNN models by resulting in
a high 98.96% accuracy. In [27], a comparative malware classification is done be-
tween the common grayscale solution (GDMC) and deep learning based on markov
images (MDMC). Data from Microsoft and Dreblin datasets is fed through a CNN
classifier where it is proved that MDMC has better performance. It gave an average
accuracy rate of a staggering 99.264% and 97.364% on the two datasets.

Instead of typical image classification methods, [13] used a malware classification al-
gorithm called MCSC that extracts opcode sequences and encodes them while main-
taining the malware’s defining features. The final results were in favor of MCSC as
accuracy rose as high as 99.260% while maintaining an average of 98.862%.

For evaluation, the authors of [22] prioritized the macro-averaged F1-score as ac-
curacy can be a deceptive evaluation metric in large class disparity datasets. In
[15], the authors used a hierarchical CNN (HCNN) and compared its results with
two categories of approaches— hex-based and assembly-based. In [15], the HCNN
performed better than the first approach by a small but noticeable margin, specif-
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ically, it reached a 0.9913 accuracy and 0.9830 F1 score. However, for the second
approach, the results were unclear about a better performer due to the variations
in it. The authors of [23] are one of the first ones to use intermediate fusion as a
means to combine features from numerous modes and categories of data. It does
this by implementing a multimodal deep learning method that considers both the
binary part and the code of the malicious software that is in the assembly language.
Finally, with an 0.9924 accuracy and a 0.9872 F1 score, this method showed po-
tential by experimentally performing better than existing deep learning approaches.
One of the most effective deep learning frameworks ever created is a multimodal
hybrid system [22] with a staggering 0.9951 macro F1-score. The authors in [22] call
it HYDRA which consists of API-based, mnemonics-based, byte-based, and feature
fusion and classification components.

The paper [39] presents a self-supervised deep neural model built on the Vision
Transformer design, referred to as SHERLOCK. This achieves a 97% accuracy rate
in detecting binary malware, surpassing current methods in multi-class classification.
In the research, they made use of the MalNet dataset, the largest publicly available
collection of cybersecurity images, comprising 1.2 million images. This dataset in-
cludes diverse labels for each image, spanning two primary categories (malware or
benign), 47 categories for classifying malware types, and 696 categories for identify-
ing malware families. The system interprets malware images as sequences of patches,
leveraging transformer encoders for efficient processing. SHERLOCK outperforms
traditional supervised methods by generating training samples for malware synthe-
sis.

Upon conducting an extensive review of existing literature pertaining to binary im-
age malware datasets, we have made the decision to focus on developing a lightweight
Convolutional Neural Network (CNN) model for our study. Moreover, our investi-
gation revealed a scarcity of research utilizing transformers on datasets of this na-
ture. While there exist a few instances where Vision Transformer (ViT) has been
applied to malware datasets, the majority of research on CCT (Compact Convolu-
tional Transformer) has primarily focused on applications pertaining to crops and
lung illness. Thus, the decision was made to execute the malware dataset on vari-
ous transformers. In addition, we made the decision to include the Involution and
EANet models in our research, as we discovered a lack of existing literature on
the application of these models specifically for binary image malware datasets. In
conclusion, our research intends to employ LIME as an explainable artificial intel-
ligence technique to present our findings. It is worth noting that our investigation
did not yield an adequate amount of existing literature on this particular topic as
well. The papers that we did discover in close proximity to our chosen topic were
LIME projects that mostly revolved around Android malware datasets, which ex-
hibit subtle variations from the datasets we intend to analyze.
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Chapter 4

Research Objectives

We tend to classify various malware types including Backdoor, Worm, Trojan as
well as Trojan-Downloader and Rogue using traditional deep learning models. These
deep learning models will be able to classify malware using various datasets which
will help us to differentiate between these deep learning techniques and learn fur-
ther about malware classification. Additionally, we want to develop a CNN-based
Deep Learning Model. Our proposed CNN model will work on traditional datasets,
namely Malimg, Malex, Malicia, Malevis, and Microsoft BIG 2015 in order to classify
malware.

Figure 4.1: Proposed Workflow

After completing our research:
1. By the end, we will know exactly how Deep Learning methods can be used to
categorize different types of malware.
2. Compare the deep learning models and determine which is the best for malware
classification.
3. Develop a novel architecture that will classify malware.
4. Evaluate our suggested model and produce a comparative analysis with existing
pre-trained models.
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5. Evaluate our suggested model and produce a comparative analysis with existing
modern cutting-edge models.
6. Work on explainable AI in order to comprehensively showcase how our model
designated each malware sample to a specific class.
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Chapter 5

Description of the Dataset

5.1 Data Analysis

Figure 5.1: 5 random images from training dataset

Figure 5.2: 5 random images from validation dataset

Our research will primarily make use of data from the Malimg Dataset. There are
25 distinct malware family image categories in this collection. The dataset that has
been put together has a total of 9,339 images. The dataset is then divided into three
more categories: testing, training, and validation, each of which contains 934, 7473,
and 932 photos, respectively. The distributions depicted in Figure 5.5 pertain to
the validation set, whereas those shown in Figure 5.6 correspond to the training set.
Additionally, Figure 5.7 illustrates the distribution of the testing set. All the photos
are grayscale representations of malware binaries [5], with the remark that for many
malware classes, the layout and texture of the pictures within the same family are
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Figure 5.3: 5 random images from testing dataset

highly similar. These images have been arranged into 25 different groups as a result
of this commonality in vision. According to [16], These categories contain examples
of malicious software from families including Rbot!gen, Malex.gen!J, Yuner. A,
VB.AT, and Autorun.K that are known to be UPX-packed. Pictures of other family
variations including the C2Lop.gen!g and C2Lop.p as well as the Swizzor.gen!E and
Swizzor.gen!Iare also shown [16].

Figure 5.4: Distribution between test-
ing, validation and training

Figure 5.5: Distribution of Validation
Images per class

Figure 5.6: Distribution of Training
Images per class

Figure 5.7: Distribution of Testing
Images per class

5.2 Data Preprocessing
Data pre-processing is a method used to get rid of superfluous variables that don’t
help the accuracy of the CNN model. This is achieved by utilizing the ”de-noising”
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approach. [24] The initially sourced data is altered to raise the bar on the per-
formance of the CNN-based models, which yields better accuracy and outcomes.
”Image Resizing” and ”Data Augmentation” are the first and second steps in the
processing of our data, respectively. The images in the dataset we utilize range in
size; varying examples include 64 by 216 pixels, 512 by 410 pixels, etc. In accordance
with the first step of our data processing, we initially resize all these photos to 100
by 100 pixels. Then, to perform “Data Augmentation”, horizontal flips are carried
out to add to and enhance the data. Finally, to conserve computer resources, the
photographs are converted into a matrix and normalized by dividing with 255.

5.3 Detailed Distribution of Dataset
Here, table 5.1 shows the number of samples for each class in the dataset and their
specific distributions into training, testing, and validation sets.

Name Training Testing Validation
Adiler.C 102 11 9

Agent.FYI 93 11 12
Allaple.A 2337 315 297
Allaple.L 1276 155 160

Alueron.gen!J 166 16 16
Autorun.K 77 12 17

C2LOP.gen!g 159 25 16
C2LOP.P 116 17 13

Dialplatform.B 146 15 16
Dontovo.A 126 17 19
Fakerean 315 36 30

Instantaccess 351 37 43
Lolyda.AA1 171 20 22
Lolyda.AA2 144 20 20
Lolyda.AA3 94 13 16
Lolyda.AT 125 18 16

Malex.gen!J 112 17 7
Obfuscator.AD 108 20 14

Rbot!gen 129 10 19
Skintrim.N 62 7 11

Swizzor.gen!E 103 15 10
Swizzor.gen!l 110 14 8

VB.AT 328 41 39
Wintrim.BX 75 12 10

Yuner.A 648 60 92
Total 7473 934 932

Table 5.1: Training, Testing and Validation Distribution per Class
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5.4 Dataset Classes

5.4.1 Adiler.C
Adiler.C [42] is addressed as the first class of malware in the Malimg dataset which
consists of 122 dialer-type malware. It’s a trojan dialer that targets PCs with
modems connected to phone lines. It secretly dials premium-rate telephone numbers,
leading to unexpectedly high bills for the user. This particular malware was detected
and addressed by Microsoft Defender Antivirus.

5.4.2 Agent.FYI
Agent.FYI [43] is the 2nd class of malware in Malimg dataset consisting of 116
backdoor-type malware. The primary intent of most Agent variants is to download
and install adware or other harmful software onto the victim’s computer. Further-
more, these Trojans may alter configuration settings for Windows Explorer and the
Windows interface, potentially leading to additional harm and compromising the
system’s security.

5.4.3 Allaple.A
Allaple.A [44] is a malware class of Malimg dataset consisting of the highest number
of samples of worm-type malware. The sample consists of 2949 malware. Allaple.A
is a highly dangerous network worm with multi-threaded and polymorphic capabili-
ties, posing a significant threat to computer systems. It has the ability to propagate
across local area networks (LANs) and launch denial-of-service attacks against re-
mote websites. The worm spreads through exploiting vulnerabilities in unpatched
systems or weak passwords through a dictionary attack. Once infiltrated, it dupli-
cates itself in various locations and modifies the system’s registry to ensure execution
upon startup. To make detection more difficult, it employs a polymorphic engine
that encrypts its body uniquely for each infection.

5.4.4 Allaple.L
Similar to Allaple.A, Allaple.L [45] is also a class consisting of worm-type samples.
The class has a total of 1591 samples which is the 2nd highest among all the 25
classes. Worms like Allaple.L have the ability to automatically propagate to other
computers through various means, such as duplicating their own data onto portable
storage devices and shared directories, or via electronic mail transmission.

5.4.5 Alueron.gen!J
Alueron.gen!J [46] is a class of malware of 198 samples that also have worm-type
malware. It is a harmful trojan known for attempting to modify DNS settings on
network routers. The trojan presents a significant danger as it grants attackers the
potential to send malicious data to the infected computer.
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5.4.6 Autorun.K
Now, Autorun.K [47] is a Worm:AutoIT type malware class consisting of a total of
106 malware. Unlike viruses, these worms possess the capacity for self-replication
and spread to other computers without any user intervention. This particular worm
employs the Windows Autorun feature to facilitate its propagation through remov-
able drives, such as USB flash drives. When an infected drive is connected to another
computer, the worm tries to execute itself automatically, leading to its dissemination
to other PCs.

5.4.7 C2LOP.P
Another Trojan malware type class in malimg dataset is C2LOP.P [48] which consists
of 146 samples. It exhibits malicious behavior by altering web browser settings,
adding bookmarks, and displaying pop-up adverts on the affected system. This
trojan is known to arrive on a computer bundled with other software and inject its
harmful code into the Internet Explorer process. Additionally, it may make changes
to the system registry by adding specific values and data. Once active, the trojan
connects to remote websites to download and execute arbitrary files, often belonging
to the TrojanDownloader:Win32/Swizzor malware group or other variants of the
Trojan:Win32/C2Lop malware group. After accomplishing the installation of these
files, the trojan generates undesired pop-up ads and adverts on the compromised
machine.

5.4.8 C2LOP.gen!g
Following we have C2LOP.gen!g [49] with the same malware type of trojan and a
sample set of 200. C2Lop.gen!G is a generic trojan belonging to the Trojan:Win32/C2Lop
malware group. The C2Lop trojan family is notorious for its actions, which in-
volve modifying web application browser settings, adding bookmarks, and deliver-
ing undesired pop-up adverts on infected systems. It can infiltrate a computer as
a bundled file with other software and inject its malevolent code into the Internet
Explorer process upon execution. One of its hostile behaviors includes connect-
ing to remote websites to download and execute arbitrary files, typically members
of the TrojanDownloader:Win32/Swizzor malware group or other variants of the
Trojan:Win32/C2Lop malware group. After accomplishing the installation of these
files, the trojan inundated the compromised system with intrusive pop-up ads and
advertisements.

5.4.9 DialPlatform.B
Class DialPlatform.B [50] has the dialer type malware with 177 samples. This mali-
cious software takes advantage of PCs equipped with a modem connected to a phone
line, using them to dial premium-rate phone numbers while the user is unaware of it.
The consequence of this unauthorized activity is unexpected and substantial tele-
phone bills for the victims. It exclusively targets systems with modems, and once
infiltrated, it manipulates the dial-up connection to initiate costly premium-rate
calls, potentially leading to significant financial losses.
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5.4.10 Dontovo.A
Dontovo.A [51] contains 162 sample counts of Trojan downloader-type malware.
This malicious trojan is programmed to download and run files of any kind on the
compromised system. Upon activation, Dontovo.A creates a duplicate of %Win-
dows%\svchost.exe and injects its code into it, subsequently removing its original
executable. It then establishes contact with domains like ”iframr.com” to obtain
configuration data, which may include additional locations for downloads. Notably,
in real-world instances, it has been observed connecting to ”videofx4you1.com” for
this purpose. The downloaded files are stored in the %temp% directory and ex-
ecuted accordingly. At the time of detection, Dontovo.A was found to download
malware identified as Worm:Win32/Koobface.gen!D.

5.4.11 Fakerean
Under the Fakerean class [52], there are 381 samples of rogue-type malware. It
is a group of rogue security programs that employ deceptive tactics to convince
users that their PCs are infected with malware. These fraudulent programs mimic
antivirus or antimalware scanners, conducting fake scans that generate false reports
of multiple infections, prompting users to pay for the software to purportedly clean
their systems. However, in reality, Fakerean does not detect any genuine malware,
and it is not a legitimate security scanner; its primary objective is to trick users into
sending money to the developers behind the program. Some versions of Fakerean
unlawfully impersonate Microsoft products by using counterfeit product names or
logos. Even if users fall for the ploy and pay to ”unlock” the application, it remains
ineffective since there is no actual malware present. Various iterations of Fakerean
may also manipulate computer settings, terminate processes or system services, and
restrict access to specific websites.

5.4.12 Instantaccess
Instantaccess [53] is a Dialer-type malware class with 431 samples. It is a deceptive
dialer program that tempts users with the offer of premium services from a website
but, instead, connects to high-cost numbers, leading to unexpected and costly phone
charges. Furthermore, this program drops a trojan into the system, posing additional
security risks. When activated, InstantAccess creates duplicates of itself and alters
the system registry to ensure automatic implementation during Windows startup. It
also introduces new files, folders, and shortcuts, including ”Superbabes,” attempting
to lure users into activating them. If the ”Superbabes” icon is clicked, a dialog
window may appear. To maintain its persistence, the dialer may make further
modifications to the system registry.

5.4.13 Lolyda.AA1, Lolyda.AA2, Lolyda.AA3
The 13, 14, and 15th classes are Lolyda.AA1, Lolyda.AA2, Lolyda.AA3 [54] all of
them have the same password stealer type malware with slight variations. That’s
why Microsoft addressed them together under their Lolyda.AA threat. The ist, 2nd,
and 3rd type has 213,184 and 123 samples respectively. PWS:Win32/Lolyda.AA
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variations are trojans that are designed to illicitly gather sensitive information asso-
ciated with well-known online games and transmit it to a remote attacker. Addition-
ally, this trojan has the capability to download and run files of any kind, potentially
further compromising the infected system.

5.4.14 Lolyda.AT
Lolyda.AT [55] is a member of a family of trojans that transfers account information
from well-known online games to a remote site for theft. It can also kill processes,
collect screenshots, and hook certain APIs.

5.4.15 Malex.gen!J
Malex.gen!J [56] is a malicious trojan that is able to access affected PCs without
a user’s permission and knowledge. Once installed on a compromised machine,
this trojan can execute numerous malicious activities that can harm your operating
system and its core functionalities. It is able to open a backdoor to allow remote
attackers to gain access to the corrupted machine, which can cause identity theft.
Furthermore, it can change a PC’s system settings, block anti-virus software, and
show annoying popup advertisements in order to prevent the user from identifying
the actual problem underneath.

5.4.16 Obfuscator.AD
The trojan is known as Obfuscator.AD [57]. It operates covertly by retrieving malev-
olent files from a distant server and thereafter initiating their installation and exe-
cution.

5.4.17 Rbot!gen
Rbot!gen [58] [59] is a type of backdoor malware - a remote administration utility
program that, upon installation on a computer, enables a user to have access to
and exercise control over a network or the Internet. Once a computer becomes in-
fected, the trojan establishes a connection with a designated Internet Relay Chat
(IRC) server and proceeds to join a certain channel in order to receive instructions
from malicious actors. Furthermore, the trojan has the capability to disseminate to
additional computer systems through several means, such as conducting scans for
network shares that possess vulnerable passwords, exploiting vulnerabilities within
the Windows operating system, and propagating via backdoor ports that have been
opened by other types of malicious software families. The presence of a backdoor
enables a remote assailant to engage in a range of activities, including data theft,
execution of Denial-of-Service attack orders on the compromised system, or unau-
thorized access to other devices within a local network.

5.4.18 Skintrim.N
Skintrim.N falls under the category of Trojan that downloads other risks onto the
victim’s computer.
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5.4.19 Swizzor.gen!E, Swizzor.gen!I
Swizzor.gen!E and Swizzor.gen!I are both Trojan Downloaders. Trojan downloaders
install themselves and wait for an Internet connection to establish a connection with
a remote server or website in order to initiate the downloading of malicious software
onto the infected computer. .

5.4.20 VB.AT
VB.AT is a worm that propagates through peer-to-peer (P2P) networks. Addition-
ally, it attempts to deactivate many programs on compromised PCs.

5.4.21 Wintrim.BX
Wintrim [60] is a group of trojans that exhibit pop-up adverts based on the user’s
keywords and surfing history. In addition, the various iterations of this software
possess the capability to watch the user’s actions, acquire apps, and transmit system
data to a distant server.

5.4.22 Yuner.A
Yuner.A is a worm-type malware. Worms spread automatically across PCs. They
can duplicate themselves on portable discs, network files, or over email.
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Chapter 6

Pre-trained Models

6.1 ResNet-50
The ResNet 50 model (Residual Networks) can be implemented in a wide variety of
ways. The ‘50’ in its name indicates that it can function with as many as 50 layers
of neural networks. According to [6], the majority of the uses for this ResNet 50
model are in the area of computer vision, and it can offer a solution to the vanishing
gradient problem. We use 64 distinct kernels in the first convolutional layer of our
model, each of which is 7 × 7 in size and has a stride of 2. Then, with a stride
value of 2, a MaxPooling layer with dimensions of 3 by 3 is shown. Then, we have
three 3 x 3 instances of the 64 kernels and three 1 x 1 instances of both 64 kernels
and 256 kernels. At this point, we are bringing the total to nine levels. Then we
will be allowed to observe 1 x 1 with 512 kernels, 3 by 3 with 128 kernels, and 1
by 1 with 128 kernels, bringing the total number of layers to 12. The next set of
operations includes 1 x 1 and 3 x 3 with around 256 kernels, as well as 1 x 1 with
1024 kernels, producing 18 layers. Finally, we see 1 x 1 and 3 x 3 with a big number
of 512 kernels, as well as 1 x 1 with an even bigger number of 2048 kernels. The last
convolutional layer brings the total amount of layers to 9. This network was given
the name ResNet 50 since we can observe a total of 50 layers in the final output.
The bottom layer is an average pool, while the next layer is a fully-connected one.
Then there is a softmax function that is used to set the total amount of neurons in
this layer based on instances of unique classes in the Malimg Dataset.

Figure 6.1: Architecture of ResNet-50
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Figure 6.2: ResNet-50 Accuracy Figure 6.3: ResNet-50 Loss

Layers ResNet 50 Number of Layers
2D Convolutional Layer 7 x 7, 64, stride 2 1

2D Convolutional Layer

3 x 3 max_pool, stride 2
[1 x 1, 64] x 3
[3 x 3, 64] x 3
[1 x 1, 256] x 3

9

2D Convolutional Layer
[1 x 1, 128] x 4
[3 x 3, 128] x 4
[1 x 1, 512] x 4

12

2D Convolutional Layer
[1 x 1, 256] x 6
[3 x 3, 256] x 6
[1 x 1, 1024] x 6

18

2D Convolutional Layer
[1 x 1, 512] x 3
[3 x 3, 512] x 3
[1 x1, 2048] x 3

9

Average Pool, 25 1

Table 6.1: Layers of ResNet-50

6.2 Inception V3
According to [9], Reducing the amount of processing resources required to run the
software by incorporating numerous changes to the preceding Inception architectures
is a key focus of Inception version 3. We didn’t make many changes to the layers
during this stage of the process, but we did create an output layer with 25 nodes
to account for the number of malware categories in the Malimg dataset. Because
factorized convolution reduces the overall number of parameters used in a network,
it is valuable for monitoring network efficiency and lowering the computer efficiency
necessary to do so. Convolutions that are larger are gradually being replaced by
convolutions that are smaller since they will speed up training. The amount of
processing power required is decreased if a completely linked layer is present before
a 3 x 3 convolution layer since the weights of the 3 x 3 layer can then be shared among
themselves. This further reduces the overall amount of parameters needed for the
method. The previous asymmetric convolutions approach uses a 1 x 3 convolutional
layer, and then again a 3 x 1 convolutional layer, as opposed to a single 3 x 3 layer.
Minor CNN layers are also produced between the layers during the training process,
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Figure 6.4: Architecture of Inception V3

and the loss from these layers is contributed to the loss from the primary network.
In order to reduce the size of the grid, pooling layers are used as a solution.

Figure 6.5: Inception V3 Accuracy Figure 6.6: Inception V3 Loss

6.3 VGG-16
VGG16 is one of the most well-known CNN models for object detection and classifi-
cation. This model was suggested by Simonyan and Zisserman in [8], they analyzed
the networks and enhanced the depth using an architecture with incredibly small (3
by 3) convolution filters, which at that time demonstrated a notable advancement
over many previous state-of-the-art setups. The model that they developed (which
was later named VGG 16) attained an accuracy of 0.927 on the sourced collection of
pictures called ImageNet which contains almost 14 million images. There are sixteen
layers in this model with adjustable parameters as well as a few 2D max-pooling
layers. Thirteen of these are convolutional layers and the rest three are completely
linked layers due to the usage of the AlexNet ReLU. The initial 2 layers have 64
channels of a 3 by 3 filter size with similar padding. This value of 64 is multiplied
by 2 in every block that follows after it until a final number of 512 is reached. For
our model, we do not have any hidden layers but one output layer of 25 nodes that
helps categorize the malware images.
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Figure 6.7: VGG-16 Accuracy Figure 6.8: VGG-16 Loss

6.4 DenseNet201
DenseNet-201 translates to Dense Convolutional Network which is a pre-trained
CNN model that is a certain layer deep. According to [11], the general DenseNet
has [L(L+1)]

2
direct connections, when compared to regular L-layer convolutional net-

works, where just L connections are present (one between each layer and the next).
So, what happens instead is that the previous layers’ feature maps are used as inputs
for every layer, and each layer’s self-feature maps ( that belong to themselves ) are
used as inputs for all upcoming layers. DenseNets offer a lot of advantages including
a way to tackle the vanishing-gradient issue, having significantly lower parameters,
improving feature propagation, and promoting feature reuse. The DenseNet-201 we
use is one of the variations of this model except it has 201 layers. As we can see
in [26], DenseNet-201 is one of the better variations to use because of its promising
results.

Figure 6.9: Architecture of DenseNet201

Figure 6.10: DenseNet201 Accuracy Figure 6.11: DenseNet201 Loss
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Layer Output Shape Parameters
(InputLayer) [(None, 100, 100, 3)] 0

(Conv2D) (None, 100, 100, 64) 36928
(MaxPooling2D) (None, 50, 50, 64) 0

(Conv2D) (None, 50, 50, 128) 73856
(Conv2D) (None, 50, 50, 128) 147584

(MaxPooling2D) (None, 25, 25, 128) 0
(Conv2D) (None, 25, 25, 256) 295168
(Conv2D) (None, 25, 25, 256) 590080
(Conv2D) (None, 25, 25, 256) 590080

(MaxPooling2D) (None, 12, 12, 256) 0
(Conv2D) (None, 12, 12, 512) 1180160
(Conv2D) (None, 12, 12, 512) 2359808
(Conv2D) (None, 12, 12, 512) 2359808

(MaxPooling2D) (None, 6, 6, 512) 0
(Conv2D) (None, 6, 6, 512) 2359808
(Conv2D) (None, 6, 6, 512) 2359808
(Conv2D) (None, 6, 6, 512) 2359808

(MaxPooling2D) (None, 3, 3, 512) 0
(CustomFlatten) (None, 4608) 0

(Dense) (None, 25) 115225

Total Params: 14,829,913
Trainable params: 115,225
Non-trainable params: 14,714,688

Table 6.2: Layers with output shape and parameters of VGG-16
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Chapter 7

Methodology

7.1 Convolutional Neural Network

Figure 7.1: Illustration of our proposed Architecture

Convolutional Neural Networks are currently very well-known and widely used deep
learning networks in machine vision implementations. Following the enrichment of
large image-based data sets, CNNs were finally able to become particularly signif-
icant with the introduction of Alexnet in 2012. CNNs are specifically designed to
emulate the visual processing capabilities of humans by transforming images into a
more compact representation while preserving essential features.

The system employs a process known as convolution, where a filter or kernel is ap-
plied to the input image to generate convolved features. This operation is repeated
across multiple layers of artificial neurons, allowing for the extraction of increasingly
complex features. Ultimately, the final layer produces confidence scores that indi-
cate the probability of the input image belonging to specific classes.

In order to address computational complexity, pooling layers are utilized. Convolved
features’ spatial dimensions can be shrunk with the use of layers like average and
max pooling. Max pooling, as the name suggests, selects the biggest value within
a kernel, and average pooling reveals the average. Max pooling is still the favored
one due to its efficacy in suppressing noise.
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While CNNs do have their limitations and face challenges in comprehending con-
text, they have brought about a paradigm shift in artificial intelligence. They are
extensively utilized in various domains, including facial recognition, image search,
augmented reality, and other applications. However, it is also to be noted that
despite these great advancements, achieving human-like intelligence still remains a
formidable task.

7.1.1 Proposed Model
A model’s computation speed rises with fewer parameters so our main goal is to
implement a minimum number of parameterized variables while maintaining decent
results. To begin with, a 3-channel image with a resolution of 100 by 100 pixels from
the dataset’s preprocessing step serves as the basis for our CNN model. Thirteen
Conv2D layers with a kernel size of 3 x 3 are used. In addition, we apply a 15%
dropout before the ninth and tenth Conv2D layers, a second 15% dropout after these
two mentioned Conv2D layers, and then we add a third dropout of the same value
to end the model in our experiment. We do this to prevent the model from perfectly
matching its training data called overfitting. Additionally, to lessen the burden on
the computer system, we use six MaxPooling layers that have a pool size of 2,2.

ReLU is the activation function that will be utilized for our model because it gives
deep learning models the ability to be non-linear and addresses the problem of van-
ishing gradients. When compared to other functions of this sort, for example, the
Sigmoid or Tanh, ReLU’s gradient is more unsaturated, which drastically quickens
the development of stochastic gradient descent. After converting the values into a
1D array, we start by adding fully connected layers to the CNN, beginning with 512
nodes. Moving on, the Softmax activation function is implemented as a network
classifier in the final output layer. This classifier is a generalized binary variation of
logistic regression. Since all nodes can be categorized using the softmax function, it
is provided near the end of the result.

Furthermore, the optimizer is Adam and it helps to contribute to maximizing pro-
duction efficiency with a learning rate of 0.0001. We also set the model’s maximum
runtime at 35 epochs with 32 batch sizes. After several model modifications, we de-
velop our Deep CNN architecture. We created the model by making use of enhanced
hyperparameters. This architecture uses a lesser amount of processing resources and
offers a very promising performance while reducing the number of parameters.

7.1.2 Explainable AI
The Explainable AI model employed in our study is LIME. Once the prediction
generated by our Convolutional Neural Network (CNN) model concludes, the im-
age will be then passed to the Local Interpretable Model-agnostic Explanations
technique, referred to as LIME. This technique will then provide an explanation for
the assignment of the image to a certain class as determined by our suggested model.

LIME’s model-independent nature enables its compatibility with a wide range of
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Layer Output Shape Parameters
(Conv2D) (None, 100, 100, 8) 224

(BatchNormalization) (None, 100, 100, 8) 32
(Conv2D) (None, 100, 100, 8) 584

(BatchNormalization) (None, 100, 100, 8) 32
(MaxPooling2D) (None, 50, 50, 8) 0

(Conv2D) (None, 50, 50, 16) 1168
(BatchNormalization) (None, 50, 50, 16) 64

(Conv2D) (None, 50, 50, 16) 2320
(BatchNormalization) (None, 50, 50, 16) 64

(MaxPooling2D) (None, 25, 25, 16) 0
(Conv2D) (None, 25, 25, 32) 4640

(BatchNormalization) (None, 25, 25, 32) 128
(Conv2D) (None, 25, 25, 32) 9248

(BatchNormalization) (None, 25, 25, 32) 128
(MaxPooling2D) (None, 12, 12, 32) 0

(Conv2D) (None, 12, 12, 64) 18496
(BatchNormalization) (None, 12, 12, 64) 256

(Conv2D) (None, 12, 12, 64) 36928
(BatchNormalization) (None, 12, 12, 64) 256

(MaxPooling2D) (None, 6, 6, 64) 0
(Dropout) (None, 6, 6, 64) 0
(Conv2D) (None, 6, 6, 96) 55392

(BatchNormalization) (None, 6, 6, 96) 384
(Conv2D) (None, 6, 6, 128) 110720

(BatchNormalization) (None, 6, 6, 128) 512
(MaxPooling2D) (None, 3, 3, 128) 0

(Dropout) (None, 3, 3, 128) 0
(Conv2D) (None, 3, 3, 128) 147584

(BatchNormalization) (None, 3, 3, 128) 512
(Conv2D) (None, 3, 3, 256) 295168

(BatchNormalization) (None, 3, 3, 256) 1024
(Conv2D) (None, 3, 3, 512) 1180160

(BatchNormalization) (None, 3, 3, 512) 2048
(MaxPooling2D) (None, 1, 1, 512) 0

(Dropout) (None, 1, 1, 512) 0
(Flatten) (None, 512) 0
(Dense) (None, 512) 262656
(Dense) (None, 25) 12825

Total params: 2,143,553
Trainable params: 2,140,833
Non-trainable params: 2,720

Table 7.1: Layers with output shape and parameters of proposed model
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machine learning or deep learning models. LIME facilitates comprehension of the
inner workings of a model and makes predictions by focusing on what features have
been extracted from the image. The input image undergoes a slight alteration, and
subsequently, the impact of this modification on the previous prediction is examined.
When an interpretable model is used to localize it, there is a potential for faithfully
explaining the predictions made by any classifier or regressor. LIME, in its funda-
mental essence, examines the relationship between input and output within a model
by hypothesizing the presence of a black box machine learning model connecting the
two.

In reference to the figures provided below, the malware class under analysis is the
Dontovo.A. In order to comprehensively analyze and clarify the discernible patterns
observed within a selected class, three different samples from Dontovo.A are chosen
and examined. It is important to acknowledge that the aforementioned patterns
have been generated through the use of the explainable AI technique called LIME.
This technique serves the purpose of aiding our comprehension of how our suggested
model assigns samples to their various classes.

Figure 7.2: Original Predicted Image

Figure 7.2 depicts the images that our model deems most accurately represent the
visual manifestation of Dontovo.A. The images, together with the model, are then
transmitted to LIME for joint analysis. Subsequently, the system provides an expla-
nation of the specific aspect of the image that led our Convolutional Neural Network
(CNN) to determine that it represents the presence of Dontovo.A.

Figure 7.3: Excluded Part
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Upon comparing Figure 7.2 with Figure 7.3, it becomes apparent that a significant
portion of the pixelated grey area has been effectively removed from the image. This
outcome mostly stems from the fact that our Convolutional Neural Network (CNN)
model has reached a particular deduction that the excluded area is not useful for
detecting the malware class, and this has been confirmed by LIME.

Figure 7.4: Differentiating Included and Excluded Part

Figure 7.4 represents a subset of Figure 7.2 and Figure 7.3, only focusing on the ar-
eas encompassed by the CNN prediction model. This subset disregards any external
factors and solely considers the original image when making decisions.

Figure 7.5: Color Coded Part

The output presented in Figure 7.5 depicts the outcomes obtained from the use of
the LIME technique. This visualization effectively represents many facets of the
convolutional neural network (CNN) model’s prediction through the utilization of
color codes. In this particular case, the yellow portions indicate that these regions
have been utilized for the explicit aim of predicting and making informed choices.

The heatmap depicted in Figure 7.6 illustrates the binary malware representation
in a chart-like manner. In this context, the data in Figure 7.6 is categorized into
two groups, namely legitimate and invalid, based on the majority of the information
provided. The blue segment represents valid data that was taken into account for
the aforementioned prediction.
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Figure 7.6: Heat Map

Upon comparing the heatmaps of three distinct samples of Dontovo.A malware class,
a discernible pattern becomes evident. It is apparent that the largest cluster of the
darker blue hue is consistently located in a similar area across all the pictures. As
previously indicated, the use of these blue regions is of greatest importance in the
decision-making process for the allocation of samples to their respective classes. In
addition to this notable similarity, certain samples exhibit scattered occurrences of
minor and insignificant quantities of red, which are deemed irrelevant for recognizing
the malware class. Additionally, each of the three samples exhibits a thin, faint blue
segment towards the end of all the heatmaps, resembling a straight line.

7.2 Involution
The involution neural network is proposed by the authors of [34]. The utilization
of convolution has played a pivotal role in contemporary neural networks, serving
as a catalyst for the fast advancement of deep learning in the area of machine vi-
sion. However, in the paper [34], the authors critically examine the essential ideas
underlying standard convolution layers as applied to computer vision works, with a
particular focus on channel-specific and spatial-agnostic aspects. In this study, they
provide a novel synchronous procedure for deep neural architectures that involve the
inversion of the established design principles of convolution. The authors refer to
this operation as “Involution”. Furthermore, they want to clarify the recently famous
self-attention procedure and incorporate it into the involution classification as an
excessively sophisticated embodiment. The suggested involution mechanism has the
potential to serve as a foundational component for constructing advanced neural
networks designed for visual recognition. These networks can be utilized in vari-
ous deep learning models to achieve high performance on well-known benchmarks
such as ImageNet categorization, COCO detection, and segmentation, as well as
Cityscapes segmentation. So, in light of the remarkable prospects for advancement
in the domain of computer machine vision, we have made the decision to include
the Involution Neural Network as a part of our work on the Malimg dataset.

When compared to regular or depth-wise convolution, involution kernels exhibit
some unique properties. Unlike them, involution kernels are designed to incorporate
transforms having opposite attributes in both the channel and spatial domains, giv-
ing them their name. The model incorporates equations that represent two linear
transformations, which together form a bottleneck structure. This structure allows
for efficient processing by controlling the intermediate channel dimension through
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Layer (type) Output Shape Parameters
(InputLayer) (None, 100, 100, 3) 0
(Involution) ((None, 100, 100, 3), (None, 100, 100, 9, 1,1)) 26

(ReLU) (None, 100, 100, 3) 0
(MaxPooling2D) (None, 50, 50, 3) 0

(Involution) ((None, 50, 50, 3), (None, 50, 50, 9, 1, 1)) 26
(ReLU) (None, 50, 50, 3) 0

(MaxPooling2D) (None, 25, 25, 3) 0
(Involution) ((None, 25, 25, 3), (None, 25, 25, 9, 1, 1)) 26

(ReLU) (None, 25, 25, 3) 0
(Flatten) (None, 1875) 0
(Dense) (None, 64) 120064
(Dense) (None, 25) 1625

Total params: 121,767
Trainable params: 121,761
Non-trainable params: 6

Table 7.2: Layers with output shape and parameters of the Involution

a reduction ratio “r”. The presence of Batch Normalisation and the utilization of
non-linear activation functions that alternate between two linear projections are also
suggested. In contrast to convolution kernels, the shape of involution kernels is also
contingent upon the form of the input feature map. To construct the complete
network incorporating involution, the authors in [34] adopt the design approach
of ResNet [7], which involves the sequential arrangement of residual blocks. This
choice is motivated by the sophisticated architecture of ResNet, which facilitates
the exploration of novel concepts and enables effective comparisons. In this study,
they propose the substitution of involution for 3 by 3 convolution at all bottleneck
sites in both the stem and trunk of ResNet. Specifically, they suggest using 3 × 3
or 7 × 7 involution for categorization or dense prediction in the stem, and 7 by 7
involution for all tasks in the trunk. However, proceeded by keeping all the 1 × 1
convolutions for channel fusion and projection. The intricately reconfigured units
come together to form a novel breed of exceptionally efficient foundational or fun-
damental networks, referred to as RedNet.

Redundancy in neural networks increases when spatial and channel information in-
terweaves. However, the RedNet carefully decouples information exchanges for a
good accuracy-efficiency trade-off. In particular, the kernel generation stage im-
plicitly scatters one pixel’s channel dimension information to its spatial neighbor-
hood, and the large and dynamic involution kernels receive information in an en-
riched receptive field. Interspersed with 1 x 1 convolutions, linear transformations
are essential for channel data exchange. In summary, spatial-alone, channel-alone,
and channel-spatial interactivity affect information transmission, enabling network
miniaturization.

To examine the architectural aspects and operations of involution from an alterna-
tive standpoint, the final output after performing the involution operation is demon-
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Figure 7.7: Involution Loss Curve
Figure 7.8: Involution Accuracy
Curve

strated in Figure 7.9.

Figure 7.9: Output from Involution

7.3 Transformers

7.3.1 Vision Transformer
According to the authors of [30], Vision Transformers or ViT needs a sizable amount
of data. As a result, they advised training the model on a big dataset before fine-
tuning it on a dataset of a smaller size. The model can outperform the most sophis-
ticated Convolutional Neural Network models if this is followed.

However, compared to what Vision Transformers needs, our dataset is far smaller.
Instead, we will use a small data set to train our ViT model. Shifted Patch Tok-
enization and Locality Self Attention are two methods suggested by the authors of
[33] for achieving this.

As illustrated in Fig. 7.12, Moved Patch Tokenization involves taking a photograph
before shifting it diagonally. Then, we combine the original image with diagonally
shifted pictures. The concatenated image patches are then extracted. After that,
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Layer (type) Output Shape Parameters
(InputLayer) (None, 100, 100, 3) 0
(Sequential) (None, 72, 72, 3) 7

(Patches) (None, None, 108) 0
(PatchEncoder) (None, 144, 64) 16192

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128

Table 7.3: Layers with output shape and parameters of the ViT

the patches are flattened into one dimension. Before being projected, the image is
then treated to layer normalization. A visual representation of this Patch Tokeniza-
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Layer (type) Output Shape Parameters
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(MultiHeadAttention) (None, 144, 64) 66368

(Add) (None, 144, 64) 0
(LayerNormalization) (None, 144, 64) 128

(Dense) (None, 144, 128) 8320
(Dropout) (None, 144, 128) 0
(Dense) (None, 144, 64) 8256

(Dropout) (None, 144, 64) 0
(Add) (None, 144, 64) 0

(LayerNormalization) (None, 144, 64) 128
(Flatten) (None, 9216) 0
(Dropout) (None, 9216) 0
(Dense) (None, 2048) 18876416

(Dropout) (None, 2048) 0
(Dense) (None, 1024) 2098176

(Dropout) (None, 1024) 0
(Dense) (None, 25) 25625

Total params: 21,682,144
Trainable params: 21,682,137

Non-trainable params: 7

Table 7.4: Layers with output shape and parameters of the ViT (cont.)
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Figure 7.10: Illustrations of Shifted Patch Tokenization

Figure 7.11: Locality Self Attention

tion technique is shown in Figure 7.10.

The Locality Self Attention technique is an additional approach that involves ex-
tracting a query, key, and value from a singular input source. The final step is
utilizing the dot product operation to assess the degree of resemblance existing be-
tween our query and the key. The dot product in question will result in significant
self-token relations, as opposed to interactions between different tokens. Prior to
applying the softmax function, it is customary to adjust the dot product of the query
and key by dividing it by the square root of the dimension of the key. This scaling
is performed to mitigate the potential issue of encountering an extremely small gra-
dient. Following the scaling of the dot product, the softmax function is employed.
Furthermore, the softmax function has the potential to increase the probability of
self-token links compared to interactions between different tokens. In order to ad-
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dress this concern, the authors of reference [61] suggest the implementation of a
masking technique that involves concealing the diagonal of the dot product. The
modification of the value is carried out by utilizing the attention weights as the
concluding phase. The operational idea is depicted in Figure 7.11.

The Formula for the whole Locality self technique in its entirety is given below:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7.1)

Figure 7.12: Tokenized Patches

Figure 7.13: ViT Loss Curve Figure 7.14: ViT Accuracy Curve
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7.3.2 Compact Convolutional Transformers
The Compact Convolutional Transformer (CCT), often known as CCT, is a method
proposed in a paper [38] for training transformers with limited data.

Layer (type) Output Shape Parameters
(InputLayer) (None, 100, 100, 3) 0
(Sequential) (None, 100, 100, 3) 0

(CCTTokenizer) (None, 625, 128) 76224
(TFOpLambda) (None, 625, 128) 0

(LayerNormalization) (None, 625, 128) 256
(MultiHeadAttention) (None, 625, 128) 131968

(StochasticDepth) (None, 625, 128) 0
(Add) (None, 625, 128) 0

(LayerNormalization) (None, 625, 128) 256
(Dense) (None, 625, 128) 16512

(Dropout) (None, 625, 128) 0
(Dense) (None, 625, 128) 16512

(Dropout) (None, 625, 128) 0
(StochasticDepth) (None, 625, 128) 0

(Add) (None, 625, 128) 0
(LayerNormalization) (None, 625, 128 256
(MultiHeadAttention) (None, 625, 128) 131968

(StochasticDepth) (None, 625, 128) 0
(Add) (None, 625, 128) 0

(LayerNormalization) (None, 625, 128) 256
(Dense) (None, 625, 128) 16512

(Dropout) (None, 625, 128) 0
(Dense) (None, 625, 128) 16512

(Dropout) (None, 625, 128) 0
(StochasticDepth) (None, 625, 128) 0

(Add) (None, 625, 128) 0
(LayerNormalization) (None, 625, 128) 256

(Dense) (None, 625, 1) 129
(TFOpLambda) (None, 625, 1) 0
(TFOpLambda) (None, 1, 128) 0
(TFOpLambda) (None, 128) 0

(Dense) (None, 25) 3225

Total params: 410,842
Trainable params: 410,458
Non-trainable params: 384

Table 7.5: Layers with output shape and parameters of the CCT

The methodology employed in this approach bears resemblance to the process of
Tokenization in the Vision Transformer (ViT) model. In this context, stochastic
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depth is utilized as a regularisation technique. It has a resemblance to a Dropout
layer, with the distinction that instead of deactivating an individual node, an entire
block of nodes inside a layer is rendered inactive. Used mainly prior to the residual
blocks of a Transformer Encoder. Before reaching the transformer, the input un-
dergoes Convolutional Tokenization. The components of the architecture include a
convolutional layer, a pooling layer, and a reshape operation. Once the input data
has undergone convolutional tokenization, it proceeds to the Transformer model
with Sequence Pooling. The identical data augmentation procedures employed in
prior models have been implemented. The incorporation of attention pooling, al-
ternatively referred to as sequence pooling, has been implemented within our CCT
model. In the Vision Transformer (ViT) model, only the feature maps that corre-
spond to the tokens are utilized for the purpose of categorization. In the context of
Compact Convolutional Transformers, it is noteworthy to mention that the result-
ing output of the Transformer Encoder undergoes a weighting process prior to being
transmitted to the classification layer. Figure 7.15 depicts the functional mechanism
of Compact Convolutional Transformers.

Figure 7.15: Architecture of CCT

Figure 7.16: CCT Loss Curve
Figure 7.17: CCT Accuracy
Curve

7.3.3 EANet
The idea of an External Attention Network was first suggested by the authors of [31].

Attention mechanisms, particularly self-attention, have assumed a progressively sig-
nificant part in the deep feature depiction of visual computer works. Self-attention
is a mechanism that enhances the feature representation at each position by cal-
culating a weighted addition of features based on the pairwise affinities between
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all positions. This enables the model to capture long-range dependencies inside an
individual sample. Nevertheless, it is worth noting that self-attention exhibits a
quadratic complexity and fails to consider the potential correlation that may ex-
ist among distinct samples. This study introduces a novel attention operation re-
ferred to as external attention. This mechanism relies on two external, small-scale,
comprehensible, and mutually accessible memory systems. Implementation of this
mechanism is straightforward, involving the use of two cascaded linear layers and
normalization layers. Notably, external attention serves as a convenient alternative
to self-attention in prevalent architectures. The algorithmic complexity of external
attention is linear, and it takes into account the connections between all data in-
stances in an implicit manner. In order to enhance the external attention model
for image classification, they also integrate the multi-head mechanism into the ex-
isting framework, resulting in an all-MLP architecture known as external attention
MLP (EAMLP). The research conducted a series of comprehensive experiments on
varieties of computer vision tasks, including picture categorization, object detec-
tion, semantic segmentation, instance segmentation, image production, and point
cloud study. The results obtained from the method demonstrate similar or better
performance compared to the self-attention operation and several of its versions.
Additionally, the method achieves these results with significantly reduced computa-
tional and memory requirements.

Figure 7.18: EANet Loss Curve
Figure 7.19: EANet Accuracy
Curve
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Chapter 8

Result & Analysis

8.1 Experimental Results
We compared our carefully designed CNN model results with those of the four other
pre-trained models that incorporate the same network architecture. The names of
these pre-trained models are Inception V3, DenseNet-201, ResNet 50, and VGG
16. Out of these 4 models, VGG 16 has the least amount of parameters (14,829
thousand of them to be exact). However, it will be astounding to note that our
proposed model even far surpasses a popular image recognition model like VGG 16
in terms of parameter optimization. To be more specific, the model we have de-
signed has high assessment metrics and great outcomes while maintaining only 2.1
million parameters. A model achieving an accuracy of 0.9930 during training and
0.9764 during testing with such a low amount of parameters is an impressive feat.
These comparison values for the parameters can be viewed in Table 8.3. This dis-
tinguishes our model from others that are already in use. Other than that, certain
measurements and metrics have been used in this study to properly compare results.
These measures include recall, F1, accuracy, and precision. It is to be noted that
the metrics for this study will be calculated according to the multiclass classification
purposes.

Training Details
Optimizer Adam

Learning Rate 0.0001
Batch Size 32
Epoch 35
Image Size 100 X 100

Table 8.1: Parameters used to train our model

A model’s accuracy is the proportion of correct predictions a model makes compared
to all the right answers that are actually possible.

The level of precision is used to assess how accurate an identification percentage is in
a model, basically the quality of a positive prediction. Take the total of all expected
positive outcomes (TP) and divide it by the total of all expected and actual positive
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outcomes (TP + FP) to get the precision. It is calculated by applying the formula:

Precision =
TP

TP + FP
(8.1)

Recall is a metric that helps us understand a model’s ability to detect positive sam-
ples. It measures the proportion of accurate positive predictions among all possible
positive predictions. The recall rate is calculated by finding the ratio of true pos-
itives (TP) to total data (TP + FN). The formula for determining recall is given
below:

Recall =
TP

TP + FN
(8.2)

The F1 Score is frequently used to assess the performance of machine learning (ML)
models. This measure is created by averaging accuracy and recall. The F1 Score is
known by using the following formula:

F1 =
2×Recall × Precision

Recall + Precision
(8.3)

Deep
Learning

Architecture
Accuracy Epochs Recall Precision Loss F1-Score

Inception V3 0.7909 35 0.7780 0.8044 0.6659 0.7909
ResNet50 0.9418 35 0.9418 0.9418 0.1979 0.9418

DenseNet-201 0.8879 35 0.8879 0.8879 0.6606 0.8879
VGG16 0.9407 35 0.9407 0.9407 0.1992 0.9407

Proposed
Model 0.9795 35 0.9795 0.9795 0.0796 0.9795

Table 8.2: Comparison of Validation using various measures

The testing accuracy of our model, along with the other measures, shows potential
when compared to older methods and research that use a dataset like Malimg. The
cost of the preprocessing power needed by the alternative models was higher but our
method is different as it requires fewer parameters. The comparison between the
validation and testing phases and their respective measurements including accuracy,
recall, precision, etc. can be found in tables 8.2 and 8.3.

We made sure that the number of epochs, picture size, and learning rate were all
kept constant across all pre-trained models so that we can draw an unbiased com-
parison with our proposed model.

The Malimg dataset has been subjected to analysis using contemporary machine-
learning models that have been recently developed. Some of these models were
introduced as recently as 2021. This is conducted in order to establish a comprehen-
sive comparison between our proposed model and newer computer vision technology.
The dataset is trained using modern models such as Involution, Vision Transformer
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(ViT), Compact Convolutional Transformer (CCT), and External Attention Net-
work (EANet). These aforementioned models are characterized by their complex
nature, offering numerous advanced benefits. As an example, the parameters of the
CCT (410,842) exhibit a notably low value, surpassing even the already deemed low
value of our proposed model (2.1 million). These comparison values for the param-
eters can be seen in Table 8.4. All of these models have been run on the Malimg
dataset and have yielded good and comparable outcomes. However, our proposed
model surprisingly outperformed all of them in terms of testing accuracy with a
value of 97.64%.

Deep
Learning

Architecture
Accuracy Recall Precision Loss F1 Score Parameters

Inception V3 0.7602 0.7462 0.7759 0.8684 0.7608 21,854,009
ResNet50 0.9283 0.9236 0.9256 0.2834 0.9246 24,406,937

DenseNet-201 0.8694 0.8729 0.8729 0.7894 0.8729 18,754,009
VGG16 0.9411 0.9427 0.9427 0.2291 0.9427 14,829,913

Proposed
Model 0.9764 0.9708 0.9729 0.1568 0.9718 2,143,553

Table 8.3: Comparison of Testing using various measures

Figure 8.1: Comparison of pa-
rameters

Figure 8.2: Training vs Testing
Accuracy of Models
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Accuracy Comparison with Transformers
Architecture Name Testing Accuracy (%) Parameters

Compact Convolutional Transformers (CCT) 97.43% 410,842
Involution 92.83% 121,767

Vision Transformer (ViT) 95.93% 21,682,144
Vision Transformer

with Shifted Patch Tokenization and
Locality Self Attention

95.18% 18,033,696

External Attention Network (EANet) 96.79% 500,128
Proposed Model 97.64% 2,143,553

Table 8.4: Accuracy Comparison with Transformers and other state of the art models

Graph of model accuracy and model loss of our projected methodology is shown
below:

Figure 8.3: Accuracy of our
model Figure 8.4: Loss of our model

The accuracy and loss curves are shown in Figures 8.3 and 8.4, respectively. The
curves demonstrate that our model has a very excellent fit with no under-fitting or
over-fitting because there is little difference between training and validation. Addi-
tionally, the accuracy of its predictions is fairly stable. Dropouts and group normal-
ization were used to make the model stable and less complex. These methods allow
neurons to learn more on their own.
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8.2 Confusion Matrix
Confusion Matrix of our suggested methodology is displayed here. On the horizon-
tal side the predictions are showed as well as on the vertical side true responses are
showed. As we can see, our suggested model is acting quite satisfactory predicting it.

Figure 8.5: Confusion Metrix
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8.3 Classification Report
Classification report is shown in the table below:

Classes Precision Recall F1-Score Support
Adialer.C 1.00 1.00 1.00 11
Agent.FYI 1.00 1.00 1.00 11
Allaple.A 0.98 1.00 0.99 315
Allaple.L 1.00 0.97 0.98 155

Alueron.gen!J 1.00 1.00 1.00 16
Autorun.K 1.00 1.00 1.00 12
C2LOP.P 0.76 0.76 0.76 17

C2LOP.gen!g 0.89 0.96 0.92 25
Dialplatform.B 1.00 1.00 1.00 15

Dontovo.A 1.00 1.00 1.00 17
Fakerean 0.97 0.97 0.97 36

Instantaccess 1.00 1.00 1.00 37
Lolyda.AA1 0.91 1.00 0.95 20
Lolyda.AA2 1.00 0.95 0.97 20
Lolyda.AA3 1.00 1.00 1.00 13
Lolyda.AT 1.00 1.00 1.00 18

Malex.gen!J 1.00 0.94 0.97 17
Obfuscator.AD 1.00 1.00 1.00 20

Rbot!gen 1.00 1.00 1.00 10
Skintrim.N 1.00 1.00 1.00 7

Swizzor.gen!E 0.69 0.60 0.64 15
Swizzor.gen!I 0.53 0.57 0.55 14

VB.AT 1.00 0.98 0.99 41
Wintrim.BX 1.00 0.92 0.96 12

Yuner.A 1.00 1.00 1.00 60

Accuracy 0.97 934
Macro Average 0.95 0.94 0.95 934

Weighted Average 0.97 0.97 0.97 934

Table 8.5: Classification Report
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Chapter 9

Analysis & Future Research

9.1 Analysis
Due to the presence of several interconnected layers, our model has shown great
stability. Our model is able to avoid the typical problems brought on by overfitting
by incorporating several methods like batch normalization and dropouts.

Furthermore, a comparison was made between our suggested model and other cutting-
edge models, namely Vision Transformer (ViT), CCT (Compact Convolutional Trans-
former), External Attention Network (EANet), and Involution. These mentioned
complex and advanced models have been recently introduced in the domain of com-
puter vision. These models serve as exemplary instances that might inspire and
inform the ongoing development of our own model. All these state-of-the-art mod-
els yielded favorable and comparable outcomes on the Malimg dataset, which had
been mainly optimized for our proposed model. Furthermore, some of these models,
like CCT, have remarkably low parameters beyond the capabilities of our proposed
model. Ultimately, we made the decision to employ the explainable artificial intel-
ligence (AI) methodology known as LIME in order to get a deeper comprehension
and provide a clear demonstration of the rationale behind our model’s classification
of malware classes. This approach can be crucial in advancing our research and
enhancing the progress of our model’s development.

The assessment measures show that our model is likewise very well-balanced in terms
of the outputs with minimal parameters when using images with a lower resolution-
based foundation. This model may also be used by an integrated web-based system
embedded with our deep learning models to identify the exact class of malware that
is infecting their computers and take appropriate actions accordingly.

There are a few issues that need to be handled with the research despite the model’s
well-balanced ability to detect malware families. As is well known, there are more
and more various sorts of cyberattacks every day, which results in a steady influx of
fresh malware. The Malimg Dataset is unquestionably not updated to reflect these
new kinds of computer infections, and its data count remains constant. Working
with datasets that automatically update themselves or creating one that can do the
same might be a solution to this problem.
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9.2 Future Research
We intend to evaluate our proposed model against more state-of-the-art models in
the future. Our methodology can be enhanced by integrating sophisticated mech-
anisms from other advanced models. Increasing the number of models that are
trained and studied would facilitate the achievement of this objective. For instance,
the Compact Convolutional Transformer (CCT) exhibits a notably low parameter
value, and it can be feasible to integrate the technology responsible for maintaining
this low parameter count into our own model. Other than that, examples of newer
models that we plan to run a comparison on in the future include the ConvMixer
Transformer, Swin Transformer, etc. Future plans also include working on a reduc-
tion in time and space-based complexity.

We plan to keep on gathering fresh malware photos from more sources and families,
as well as details about the malware’s greyscale structure patterns, image quality,
etc. This will help us to broaden the limitations of the study and increase the
amount of raw information we have available. One of the best ways to collect more
data about malware is to retrieve it from other existing datasets like Microsoft BIG
2015, Malex, MalNet, etc. We will have the capacity to do a comparative analysis
encompassing all the datasets in this manner.

Because of how small and light our model is, we can easily publish it to a website or
create an application that anyone with ordinary access to the internet may utilize
on low-powered computing devices. However, we need to incorporate a technology
that converts the malware found in the victim’s computer into their binary image
representations beforehand. Indeed, it is a verifiable fact that numerous antivirus
software applications possess the capability to promptly notify users of the identifi-
cation of malicious software present on their computer systems. Nevertheless, there
exists a subset of individuals who harbor reservations and exhibit reluctance toward
the utilization of antivirus software. Our primary objective is not to promote our-
selves as an antivirus solution, but rather to provide educational resources on various
categories of malware, their origins, and their functionalities in a comprehensive and
informative manner. Everyone will be able to easily identify the spyware that may
have potentially harmed or will harm their machine using this method. This will
also raise awareness about the different types of computer infections and help the
general public be more knowledgeable and better equipped against cyber attacks.
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Chapter 10

Conclusion

To diversify our techniques and properly prove the effectiveness of our work, we
worked with four pre-trained CNN models. These trained models including ResNet-
50, Inception-V3, VGG-16, and DenseNet-201 helped us to show that we developed
a very optimized model. We were able to detect malware in greyscale photos with a
97.64% accuracy rate after running and evaluating our model (in the testing phase).
We used various metrics to further evaluate and strengthen our comparative study
namely accuracy, precision, recall, F1 Score, etc. The final model provided satisfy-
ing results with a surprisingly low amount of parameters (2.1 million to be precise).
This low amount definitely helped us to set our model apart from the others that we
tested as low parameters make a model more versatile and help conserve computer
resources.

Our suggested model was tested on the Malimg dataset, and a comparative study
was conducted among recently introduced state-of-the-art models, including Vision
Transformer (ViT), CCT (Compact Convolutional Transformer), External Atten-
tion Network (EANet), and Involution. It is imperative to acknowledge the limited
availability of literature pertaining to the performance of these advanced models
on binary image malware datasets. As a result, our comprehensive comparative re-
search represents one of the initial efforts in this area. Furthermore, the comparative
analysis facilitated the generation of innovative ideas to enhance the advancement
of our own model. While our model did not outperform them in all aspects, it
demonstrated a minor improvement in testing accuracy. In the end, we opted to
employ an explainable artificial intelligence (AI) technique known as LIME in our
study. This approach allows us to thoroughly demonstrate the precise manner in
which our model assigns samples to distinct classes. Furthermore, we are also very
hopeful of making further changes in the future by including a wider dataset, AI
components, and the incorporation of the comparison analysis of more advanced
and state-of-the-art models.

Now, why is our project important? Malware intrusions have become a severe secu-
rity concern in recent years, resulting in hefty losses in every aspect of our lives. At
this time, malware variations and their classifications are rapidly evolving. Undeni-
ably, it is paramount to have profound knowledge regarding malware classification
so that we can swiftly and effectively categorize malware for better understanding
and control of our ever-evolving cyberspace. Consequently, with this comprehen-
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sive research using diverse deep learning methods we can exhibit a coherent and
less asset-consuming image processing system. We used various methods and mea-
surements in order to mold a well-organized system for better identification and
analysis of different malware attributes. Hence, this all-inclusive research will not
only help normal civilians to better understand how to deal with cyber attacks
but help malware and forensic analysts to understand, adapt and design a better
deterrent against today’s ever-evolving malware.
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