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Abstract

Misdiagnosis in medical imaging is a critical concern, risking patients’ health due
to the pivotal role of radiologists’ accuracy in diagnostics. Current cross-checking
methods for radiologists’ decisions are limited, potentially leading to errors and
treatment delays. This study introduces a data processing technique and an ad-
vanced prediction system for improving disease detection accuracy in medical im-
ages. Our main goal is to contribute to healthcare by developing a system capa-
ble of achieving human-level or higher accuracy in disease detection across diverse
medical image types. To achieve this, we utilize deep learning techniques, specifi-
cally Convolutional Neural Networks (CNNs), and leverage Transfer Learning with
pre-trained models. Data processing plays a crucial role, given the importance of
image availability and quality. We apply image enhancement techniques such as
Histogram Equalization, Adaptive Histogram Equalization (AHE), and Contrast
Limited Adaptive Histogram Equalization (CLAHE) to enhance image quality and
augment a limited training dataset. The advanced ensemble approach significantly
enhances the overall accuracy and reduces individual model variance. Validation
of our approach using confusion matrices reveals that selective class-wise voting
achieves the highest accuracy at 95.27% on the testing dataset. Additionally, our
customized weighted voting approach achieves an accuracy of 94.07% on the test
set. These results emphasize the effectiveness of our ensemble techniques in improv-
ing disease detection accuracy. Our ensemble techniques offer substantial accuracy
improvements, promising more accurate and reliable medical diagnoses.

Keywords: Misdiagnosis, Deep learning, Ensemble learning, Confusion matrices,
Selective class-wise voting, Histogram equalization, Adaptive histogram equaliza-
tion, Contrast limited adaptive histogram equalization, Transfer learning.
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Chapter 1

Introduction

1.1 Medical Image and Diagnosis

With the advancement of science and technology, the medical sector has too become
highly developed in the modern era. Broadly, medical sectors can be divided into
three correlated parts, they are- diagnosis, analysis and treatment. After being
concerned about certain symptoms of one’s physical or mental health, he or she
visits a doctor. The doctor typically advises some medical tests or medical images.
A medical image is a visual representation of the internal body or organs. Each
type of medial image machine uses different types of imaging techniques. Hence,
in order to find out the appropriate inner visuals, doctors need a certain type of
medical image for diagnosing certain diseases or medical problems. Three of the
major medical images are familiarized below in a nut-shell:

Image type | Methods Diagnoses

X-ray Uses electromagnetic radiations | Lung diseases, osteoarthritis,
to create images of bones, lungs | fractures etc
and other structures

MRI Uses strong magnetic fields and | Brain tumors, Alzheimer’s dis-
radio waves to produce detailed | ease, other tumors (pituitary,
images of soft tissues like brain, | meningioma, glioma) etc.
muscle etc.

CT Scan | Combines X-rays and computer | Stone/Cyst/Tumor in kidneys,

processings for generating de- | Lung cancer etc.
tailed cross-sectional images of
the inner body.

Table 1.1: Different Types of Medical Imaging

There are many other medical images, such as: Ultrasound, PET scan, ECG, Fluo-
roscopy etc. Understanding these kinds of images plays a significant role in detecting
numerous diseases. The professionals who are trained for this work are called Ra-
diologists. They perform certain actions on a patient’s body under the instruction
of a physician. Then, the produced image sample is seen, a decision is inferred af-
ter a thorough analysis and the report is passed to the doctor. Finally, the doctor
provides the most suitable treatment to cure that patient. Here, the whole process
relies upon the decision made from the image.



Sadly, this process will not be effective at all, if the diagnosis goes wrong at the very
beginning. In many cases, misdiagnosis pushes a life towards death in the end. The
study [1] by Seigal et al. (2017) highlights that 1325 claims out of 29,777 medical
malpractice filed cases had ‘Radiology’ as the ‘Primary Responsible Service’ between
the years 2010 and 2014. After a rigorous review, they found that 42% of the claims
resulted in high severity clinical injuries including 235 deaths. These numbers are
based on a 5-years study over 25 states of the United States of America only. So,
it is unimaginable what effect this error from the radiology department has been
creating since a very long time. Medical sector is not lagging behind only because of
the misinterpretation of the images by the radiologists. The study shows that 23%
of the cases had reasons for communication errors from both the ends, patients and
radiologists.

(%0)

High Low Medium
Severity

Figure 1.1: Severity of the dangers for the misdiagnosis cases according to the study
published in 2017

The interpretations from the medical images are made by radiologists by using
just their ‘seeing capability’. Sometimes, the professional radiologists oversee a tiny
nodule inside the organ which can eventually result in malignancy. The images
contain many details that it is not impossible for even a professional to omit this
mistake. In an X-Ray, the white/black intensity can help to deduce what is the
severity of the danger, a small alien structure in the brain image can easily remain
unnoticed by a human vision. A mistake made in the first phase of the disease can
lead to a very dangerous case eventually. Every life in this world has the right to
live in good health, so it is not expected that a tiny mistake will violate or sabotage
some of the lives. Above all, ‘to err is human’.

Artificial Intelligence has become the sensation in this era of technology. It has
been giving us more and more in every aspect of our lives. Scientists are becoming
accustomed to the usage of Al in their own fields of work. Medical department is no
different than others. It is being flourished with various facilities with the help of



Al Yet, some challenges are yet to be overcome. Our research has always focused
on the challenge which is introduced above. We expect that the outcome of our
research can be the beginning of building a deeply interconnected network between
medical practice and Al

1.2 Research Problem

As depicted in Figure 1.1, the risk factor for every misdiagnosis case is very high, the
problem remains in between the radiologists’ decision and the doctors’ treatment as
per the decision. There are currently a very few ways to cross-check the decision
made by the radiologist. Most often, the samples are passed to other radiologists
for their decisions. In this way, the problem remains unsolved. Again, not every
radiologist can analyze all kinds of medical images. Only the trained individuals
can perform this action. Hence, hiring trained radiologists or training more people
to be good radiologists may or may not enhance the current state of the diagnosis.
Moreover, there is no strong universal technical system which can read all kinds of
medical images by itself. An automated system can find patterns from a number of
samples. Later, it can use the information in reading newer samples. Also, in this
way, the system can detect anomaly cases easily. Therefore, if a system can be built
which will work between the radiologists and doctors in order to cross-validate the
decisions made by the radiologist, it will be able to send a comparison report to the
doctor. Finally, the doctor can see both the radiologist’s and system’s prediction
over the sample. Thus, being quite sure of the disease, the doctor can provide proper
treatment to the patient from the earliest phase of diagnosis.

1.3 Research Objectives

The main goal of this study has always been to contribute to the healthcare depart-
ment with a great impact. So, we aim that our study will be helpful in building
a system that can detect diseases at a human level or more than that if possible.
The system should have the ability to read multiple types of medical images and
predict the diseases with the highest accuracy possible. If this system can be de-
veloped with an immense amount of data, it can serve the purpose accurately in
the diagnosis section. There are advancements occurring in medicine technologies
as well. So, with the help of the prediction system we aim to build in future, the
healthcare department can successfully flourish with the development it needs now.
Moreover, using the prediction system, more and more radiology training programs
can be arranged. Summing all of these together, the major problems in the medical
diagnosis can be eradicated in future.



Chapter 2

Related Work

Medical imaging is an important part of many clinical uses, including the detection,
diagnosis, tracking, and study of different medical diseases. In the past few years,
the contribution of machine learning has changed the way of analyzing medical im-
ages, moving it from human observation to automatic methods. Experts have been
using deep learning too in order to come up with new ways to diagnose and track
the status of diseases, which is improving medical practices gradually. In 2021,
Barragan-Montero et al. published a review on the usage of AI, ML and DL tech-
nologies on medical image analysis [2]. Figure 2.1 highlights how AI technologies
have been impacting medical image analysis on the basis of a review on the basis
of 10 years of PubMed publications. Researchers are constantly looking into DL
methods, which are quickly becoming a popular area of study. DL models have
been made and improved to handle complicated medical image datasets. These
models use their abilities to learn complex patterns and traits from a vast amount
of image data. This makes it possible for detecting the patterns and classifying into
some labels with great accuracy. The application of DL in medical image analysis
has opened up new ways to make better diagnoses and come up with personalized
treatment plans. As DL models can be improved, there are doors to simplify the
paths research process, to speed up any diagnosis, and to help healthcare workers
in making more informed precise decisions. The DL models that have been made
so far have shown that they have a lot of promise to improve how medical images
are interpreted. As the field keeps improving, the ongoing study and growth in DL-
based medical image analysis holds a lot of potential in it. When these methods are
combined with a lot of medical imaging data, it opens the door for improvements
in early disease detection, accurate diagnoses, and better treatment strategies. By
using the power of DL, medical workers can get useful insights from medical images.
This can change the way healthcare is done and, in the end, improve the results in
every case.

Two approaches have often been applied to deal with this kind of classification based
problems. They are Transfer Learning and Data Augmentation. Training a deep
learning model from scratch can be very time-consuming and expensive, especially
if a vast amount of data is needed. Transfer learning allows to use a pre-trained
model that has already been trained on a huge dataset. In this way, a lot of time
and money can be saved. Data Augmentation increases the number of samples
in the dataset by making slight variations in the already existing samples. These
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Figure 2.1: Number of publications since 2010 till 2020 in the PubMed repository,
containing keywords related to AI/ML/DL methods in the title and/or abstract.|2]

variations can be tweaked a little or more by tuning the parameters for respective
techniques. Some of the most used augmentation techniques for image classification
are Rotation, Gaussian Blur, Flipping, Noise Injection etc.

Shyni and Chitra (2022) conducted a comparative study [3] of X-ray and CT images
in COVID-19 detection using image processing and deep learning techniques. They
showed that applying image augmentation bumped up the accuracy of the models
highly. Figure 2.2 shows the increase in the accuracy of the models after applying
various image augmentation techniques.

The study [4] by Hussein et al. developed a hybrid architecture of CLAHE and
CNN which outperformed traditional methods by roughly 20% in terms of accuracy.
The authors evaluated three different CNNs for classifying lung diseases from CXR
images. The first one was a support vector machine (SVM), which achieved an accu-
racy of 68%. The second network being a pre-trained VGG19 network achieved an
accuracy of 84% after applying CLAHE. The third network was a custom-designed
CNN, which achieved an accuracy of 91%. The authors found that the accuracy
of the CNN networks decreased as the size of the dataset increased because of the
dataset being heavily imbalanced. Despite the limitations, they believe that the
proposed model can be used in hospitals, medical clinics, and radiology clinics to
assist specialists in identifying lung diseases. The model is able to classify three
different types of lung diseases, including COVID-19, pneumonia and tuberculosis.
The authors suggested that future research should focus on improving the accuracy
of the model and on evaluating the model on larger datasets.

Taresh et al. presented a study [5] on the use of transfer learning to train CNN
models for the automatic detection of COVID-19 from CXR images. The authors
used a dataset of 5,000 chest X-ray images to train and evaluate three different
trained CNNs: VGG16, ResNet50, and MobileNet applying Transfer Learning. The
results showed that all of the networks were able to achieve high accuracy in de-
tecting. VGGI16 achieved the highest accuracy of 98.28%, followed by ResNet50
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Figure 2.2: Accuracy of the models with and without applying image augmenta-
tion.[3]

(98.12%) and MobileNet (97.96%). The authors concluded that transfer learning is
an effective way to train CNNs for COVID-19 detection, and that the CNNs they
trained are able to achieve high accuracy on both large and small datasets. The au-
thors believe that the results of the study are still significant, and that they provide
evidence that transfer learning can be used to train effective CNNs for COVID-19
detection.

Yimer et al. did a research [6] with the aim of improving the diagnosis of lung dis-
eases from CXR images using an Al-based multi-class classification approach. They
proposed a method using the Xception model which was trained using labeled image
data with data augmentation. They had pre-processed the images with the Median
filter to remove salt and pepper noise from the images and CLAHE for enhancing
the contrast. The results showed that the Median filter effectively removed noise
without compromising edge preservation. The CLAHE method outperformed global
histogram equalization and AHE in enhancing image contrast, making it the chosen
technique for their study.

Khan et al. presented a study [7] proposed a DL model based on the Xception ar-
chitecture for detecting COVID-19 cases from CXR images. The authors evaluated
the model two different datasets and found outstanding performance on both. They
experimented the model by executing 4-class, 3-class, and binary class classification
tasks. The model achieved accuracies of 89.5%, 94.59%, and 99%, respectively. Ad-
ditionally, the model achieved an accuracy of 90% on the second dataset. The recall
for COVID-19 cases was also high, indicating a low number of false negatives, which



is crucial in minimizing missed COVID-19 cases. Compared to CovidNet, VGG19
and other CNN models, CoroNet demonstrated higher accuracy in different classifi-
cation tasks. However, the study faced some challenges including getting the access
to a larger and diverse dataset. In summary, the proposed CoroNet model based on
the Xception architecture showed superior performance in detecting COVID-19 cases
from chest X-ray images, outperforming other state-of-the-art deep learning models.

Rajpurkar et al. developed a CNN named CheXNet [8] which outperformed radi-
ologists on this task, with an F1 score of 0.435 (95% CI 0.387, 0.481). This points
that CheXNet was able to correctly identify pneumonia in CXR images with an
accuracy of 43.5%, which is significantly higher than the average accuracy of radiol-
ogists (38.7%). The authors also extended CheXNet to classify 14 different thoracic
diseases, and found that it achieved state-of-the-art results on all 14 classes. This
means that CheXNet is able to accurately identify a wide range of thoracic prob-
lems, including pneumonia, consolidation, edema, effusion, emphysema, and fibro-
sis. Comparing CheXNet to the previous state-of-the-art algorithms they found that
CheXNet outperformed this model on 13 classes. This suggests that CheXNet is
capable of learning more complex relationships between features than those models.
The authors trained and evaluated CheXNet on the ChestX-rayl4 dataset which
contains over 100,000 CXR images with 14 different thoracic pathologies. The au-
thors used the bootstrap method to construct 95% confidence intervals for the F1
scores.

Kumar et al.discussed in their study [9] that T the development of an Android app
named "Disease Prediction using Artificial Intelligence” (DPAI), which allows users
to predict diseases and view disease trends. The app utilizes ML models for predict-
ing diseases, and real-time coefficients and intercepts are fetched from a Firebase
database. The accuracy and transparency of the predictions are displayed to the
users. The authors splitted the dataset into 65:10:25 for training, cross-validation
and testing respectively. They evaluated their proposed model’s performance against
existing ML models on binary classification problems for predicting diabetes, heart
disease, and COVID-19. The proposed model outperformed all the existing models
by 1.2746% in terms of accuracy and 1.3926% in terms of F-measure. Overall, the
results demonstrate the effectiveness of the DPAI app and its superior performance
in disease prediction compared to existing models.

The research [10] done by Saeedi et al. had an aim to develop two DL networks and
six machine learning techniques for classifying MRI images into brain tumor cate-
gories: glioma, meningioma, pituitary gland tumor, and healthy brain. They used a
dataset containing 3264 T1-weighted contrast-enhanced MRI images. Comparisons
were made with studies using a well-known MRI dataset for tumor detection, and
their study utilized a larger dataset with four categories. The proposed 2D CNN
achieved 96.47% training accuracy and 93.45% validation accuracy, while the con-
volutional auto-encoder achieved 95.63% training accuracy and 90.93% validation
accuracy. Precision, recall, and F-measure values for both networks were analyzed
for the four classes. Comparisons were made with studies that employed other neu-
ral networks for tumor classification, and the proposed 2D CNN performed better,
achieving higher accuracy. Additionally, six ML techniques were applied for tumor



classification, and the proposed methods outperformed previous studies in terms of
accuracy. Despite the success of the proposed models, a limitation was the small
size of medical image databases, which restricted availability for training deep neu-
ral networks. Data augmentation techniques were used to address this challenge.
Overall, the research presented two effective DL networks and showed promising
results in brain tumor classification, with potential applications in cancer detection
using MRI or CT scans.

Mohsen et al. presented that the performance evaluation of their proposed method-
ology [11] was based on a comprehensive set of evaluation metrics, including average
classification rate, average recall, average precision, average F-Measure, and aver-
age area under the ROC curve (AUC). These metrics were computed for all four
classes: normal, glioblastoma, sarcoma, and metastatic bronchogenic carcinoma tu-
mors. Upon thorough evaluation and comparison with other classifiers, the DNN
classifier emerged as the most prominent performer, exhibiting superiority across
all measured performance criteria. It achieved the highest scores in all the metrics.
KNN with K=1 and LDA also demonstrated commendable performance, validating
their potential in this context. On the other hand, KNN with K=3 and SMO dis-
played relatively lower performance in the given evaluation metrics. These findings
underscore the remarkable capabilities of the DNN classifier in accurately classifying
brain MRI images, hinting at its profound implications for clinical applications and
medical research.

Gaur et al. highlighted an in-depth comparison [12] of methodologies and state-
of-the-art models for the analysis of brain MRI image and classification of brain
tumors. The comparison shows the effectiveness of DL-based approaches, particu-
larly CNNs, when combined with advanced techniques like PCA and KSVM, leading
to improved accuracy and reduced computation time in brain tumor diagnosis. The
authors emphasized upon the importance of explainable AI (XAI) in medical image
analysis. Hence, they used SHAP and LIME methods to provide the visualization
of the learning of CNN models. The visuals explain the contribution of individ-
ual features and important regions for classification. The CNN model achieved a
training accuracy of 94.64% and an overall test accuracy of 85.37%, with 26 wrong
predictions. K-fold cross-validation demonstrated almost 100% training accuracy.

Alsubai et al. chose DL models, CNN and CNN-LSTM, to apply their proposed
technique for brain tumor classification [13]. The performance evaluation of the
CNN model achieved a training accuracy of 99.4%, validation accuracy of 98.3%.
The evaluation of the CNN-LSTM model shows that it outperformed the CNN
model with training and validation accuracy of 99.8% and 98.5%, respectively. The
CNN model achieved an accuracy of 98.6%, precision of 98.5%, recall of 98.6%, and
Fl-measure of 98.4%. On the other hand, the hybrid CNN-LSTM model performed
even better, with an accuracy of 99.1%, precision of 98.8%, recall of 98.9%, and F1-
measure of 99.0%. The pre-processing steps are the same as those used in both of
the techniques. In summary, the proposed CNN-LSTM model exhibits outstanding
results in brain tumor classification, outperforming previous techniques and demon-
strating its potential for accurate and efficient diagnosis.



Khan et al.[14] proposes two deep learning models for brain tumor classification.
One of them is 23-layered CNN and the other Fine-tuned CNN with VGG16. The
23-layered CNN achieved an overall prediction accuracy of 97.8% on the Figshare
dataset and 100% on the Harvard Medical dataset. The ”Fine-tuned CNN with
VGG16” achieved 100% accuracy on dataset 2 although some overfitting issue was
seen. Existing state-of-the-art methods were outperformed by the proposed models
for binary and multi class tumor classification. Data imbalance was addressed as
one of the major challenges in executing the study. The models demonstrated high
accuracy, precision, recall, and F1-measure. Comparisons with other studies showed
the superiority of their proposed models.

Noreen et al.[15] used DL models, specifically DenseNet and Inception-v3 architec-
tures and presented a study on the classification of brain tumor. Specific hyper-
parameters, such as a learning rate of 0.0001, 100 epochs, and an Adam optimizer
were applied while training the models. The authors split the dataset into 80:20
for training and testing respectively. They explored various bottom layers of the
Inception-v3 and DenseNet201 blocks to extract features for brain tumor classifica-
tion. The results of this study demonstrate that a combination of features extracted
from various layers of Inception-v3 and DenseNet201 significantly improves classifi-
cation accuracy compared to individual block feature extraction methods. The pro-
posed approaches achieve high accuracies of up to 99.51%. The ROC curves indicate
outstanding performance for glioma and pituitary tumor classes, while meningioma
being less effective. The study further analyzes feature maps and discusses the chal-
lenges of classifying brain tumors due to their diverse shapes, sizes, and positions
within MR images.

Yildirim et al. presented in their study [16], a DL model was developed to detect kid-
ney stones from CT images of abdomen. They used 1453 CT images splitting them
into 80:20 for the training and validation purposes. After training for 40 epochs, the
model’s performance was evaluated on 346 unseen test images. The model scored
an accuracy of 96.82% and a recall of 95.76%. To show the interpretability of the
model’s decision-making process, they applied Grad-CAM to visualize the regions
of interest on the images where the model focused to obtain the prediction label.
The model successfully detected kidney stones in most cases, however, some images
were misclassified due to factors like the presence of rib tips, calcified areas, and
other organs in the image. The authors expect future work could involve collecting
images from different sources to validate the model’s performance in diverse settings.
Additionally, both axial and sagittal planes of image could be used to evaluate the
model’s performance.

The study conducted by Shakeel et al.[17] presented that the Improved Profuse
Clustering Technique (IPCT) and Deep Learning with Instantaneously rained neu-
ral networks (DITNN) can improve lung cancer detection and classification system
using CT images. They tested both thew approaches in respect of various seg-
mentation metrics, outperforming other segmentation methods like fuzzy c-means,
global threshold, watershed, and Sobel. The IPCT method gained high scores
in all the metrics. For the classification of lung cancer, different techniques were
compared, including Radial Basis Neural Network (RBNN), Convolution Neural



Networks (CNN), Hopfield Neural Network (HNN), Learning Vector Quantization
(LVQ), and the proposed DITNN. The DITNN achieved the lowest error rate in
detecting lung cancer. The deep learning approach in DITNN demonstrated its
effectiveness in feature extraction and matching. The DITNN outperformed other
methods in all metrics, achieving an overall precision of 98.43%, recall of 98.36%,
and Fl-measure of 98.42%. This study’s outcome suggests that the DITNN ap-
proach is highly reliable for lung cancer detection and classification.

Islam et al.[18] reported that the Swin Transformer can become one of the most
effective options for diagnosing kidney diseases ufrom CT images. The authors
highlighted a comparison of six different models including InceptionV3, EANet,
Resnet50, CCT, VGG16, and Swin Transformers for classification of 3 types of kid-
ney problems on CT images using all the major evaluation metrics by predicting the
models on unseen data. They employed Tenfold cross-validation to obtain averaged
results. Among the models, the Swin Transformer achieved the highest accuracy of
99.30%. With an accuracy of 61.60%), InceptionV3 showed the worst performance.
The Swin Transformer gained the highest recall for kidney cyst, normal, stone, and
tumor class images, with values of 0.996, 0.981, 0.989, and 1, respectively. It was
particularly effective at detecting kidney stones and tumors. Resnetb0 created the
least impact in detecting kidney tumors and stones, with recalls of 0.295 and 0.462,
respectively. In terms of precision, the Swin Transformer also achieved the highest
values for all classes, with an average score of 0.992. The highest Fl-score for all
classes was observed in the Swin Transformer model, with values of 0.996, 0.998,
0.985, and 0.996. The GradCam analysis of the InceptionV3, VGG16, and Resnet
models provided the visuals of the models’ decision-making processes. The Swin
Transformer showed focused attention on small regions of interest which led to more
accurate predictions than others.

Gharaibeh et al.[19] stated that DL has shown promising results compared to tra-
ditional ML methods in classifying kidney tumors from CT images. Their study
consisted of 3 parts including classification and segmentation of tumors based on
CT images. They used 109 CT scans for their study. They found that usage of
ML techniques achieved highest accuracy of 95%. On the contrary, DL approach
scored an accuracy of 97.3% on 369 CT scans aiming to classify between the same
classes. Their segmentation studies focused on detecting the tumor nodules within
the kidney and they achieved accuracy rates of 97.7% and 96.9% using V-Net and
3D U-Net both based on 210 CT scans. Some studies combined classification and
segmentation models which scored accuracy rates of 90-99% on 300 CT scans. They
also experimented a multi-model study using SVM, CNN, and InceptionV3, which
achieved an accuracy rate of 93.39% on 196 CT scans. The authors report a challenge
that they faced is the limited availability of medical image data. This limitation led
to risks of overfitting which reduced the performance of the models. The authors
expect future works based on this work should include trials of using smaller models
and a proper augmentation of the images.
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Chapter 3

Research Methodology

3.1 Data Processing

The main material required for our study is vast amount of medical images. After
a thorough lookup online, we found several images. However, the amount of the
images were not enough for a neural network to properly learn the patterns from
the images. Moreover, the quality of them were not good enough to distinguish the
correct information needed for classification. Hence, we applied some image process-
ing techniques to enhance the quality of the images and then some augmentation
techniques to increase the amount of total trainable images. All these techniques
are briefly introduced in the following subsections.

3.1.1 Histogram Equalization

Histogram equalization is a technique for enhancing the contrast of an image. It
increases the global contrast of an image with close contrast values by spreading out
the most frequent intensity values. Thus, this technique increases the local contrast
value where the value is notably low. When working with colorful images, applying
histogram equalization separately to the Red, Green, and Blue (RGB) components
can affect the color balance of the image [20]. Figure 3.2 represents an image from
our dataset where we applied Histogram Equalization and the Histogram for the
image.

Original X-ray Image Histogram
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Figure 3.1: Original X-ray image sample and its Histogram
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Histogram Equalized Image Histogram
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Figure 3.2: Effect of applying Histogram equalization on a X-ray image and the
Histogram of the processed X-ray image

3.1.2 Adaptive Histogram Equalization (AHE)

Unlike ordinary histogram equalization, Adaptive Histogram Equalization, shortly
knows an AHE, generates multiple histograms of an image. Each histogram corre-
sponds to a specific part of that image. After a computation taking all the generated
histograms, this technique adjusts the brightness of the image. This ultimately en-
hances local contrast and defines edges in different regions of the image. Moreover,
it can adapt to the equalization process for the characteristics of each area, which
result in more refined and region-specific contrast enhancement [20]. Figure 3.3 rep-
resents an image from our dataset where we applied AHE and the final Histogram
for the image.

AHE Image Histogram
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Figure 3.3: Effect of applying AHE on a X-ray image and the Histogram of the
processed X-ray image

3.1.3 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Contrast Limited Adaptive Histogram Equalization, also known as, CLAHE, distin-
guishes itself from regular adaptive histogram equalization with its ability to limit
the contrast adjustment. Using this technique, the contrast limiting process is ap-
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plied to each local region of the input image. This produces the derivation of a
specific transformation function. CLAHE was primarily introduced to encounter
the challenge of over-amplification of noise that could be generated with traditional
AHE methods. CLAHE has the ability to effectively control that amplification of
contrast by limiting the contrast to each region so that prevention of the adverse
impact of noise exaggeration can be addressed. This unique characteristic makes
CLAHE particularly well-suited for applications in which the preservation of im-
age details is crucial, as it maintains better balance between contrast enhancement
and noise management. Hence, CLAHE has found widespread utilization in vari-
ous image processing tasks, such as medical imaging, surveillance, and other fields
where enhancing local contrast while minimizing noise artifacts is of paramount im-
portance [20]. Figure 3.4 represents an image from our dataset where we applied
CLAHE and the final Histogram for the image.

CLAHE Image Histogram
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Figure 3.4: Effect of applying CLAHE on a X-ray image and the Histogram of the
processed X-ray image

3.1.4 Image Normalization

Image Normalization is a process in image processing that changes the range of pixel
intensity values. This process aims to convert an input image into a range of pixel
values that are more normal to the senses, hence the term normalization. The linear
normalization of a digital image is performed following this formula:

Output_ channel = 255 - nput_ channel — min

max — min

For a greyscale image, we only need to normalize using one channel. However, for
an RGB image that contains 3 color channels, we need to normalize every channel
using this formula.

3.1.5 Augmentation Techniques

By augmenting the training dataset with diverse variations of the original images,
these techniques introduce valuable variations that make the model familiarised with
immense amount of image which gives the model robustness and increase its impact
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on prediction. There are numerous techniques for augmenting images. Following is
a brief discussion on the techniques that we have applied on our training samples.
Overall, image augmentation techniques are a fundamental section in the workflow
of a deep learning study as it allows models to learn a wider range of features and
achieve superior performance on various tasks.

Rotation

It is one of the positional augmentation techniques. Rotating images introduces
geometric variations of the image to the model. Rotated imaged enable the model
to recognize objects from different perspectives.

Gaussian Filter

Gaussian filter helps to reduce the amount of noise and smooth out pixel values in
an image. This is particularly useful for reducing the impact of small, irrelevant
details or noise on the model’s performance. It aids the model in focusing on the
essential features of an object and improves its ability to generalize to new, noisy
inputs.

Scale

Scaling images to different sizes allows the model to recognize objects at various
scales. Particularly when objects in real-world scenarios may appear at different
distances or sizes, this technique come in handy. By training with scaled images, a
model can gain a better view of objects varying dimensions.

Shear

A model may have to recognize objects in distorted or skewed scenarios. Sheared
images are beneficial in this particular scenario. It helps in enhancing the model’s
robustness other forms of geometric deformations of the input image.

Jitter

Jittering refers to adding random noise to the pixel values of an image. This assists
the model to become tolerant to noisy variations of the image.

Flipping

Flipping is another positional image augmentation technique. Flipping can be done
by two ways- Horizontal or vertical. Horizontal or Vertical Flipping mirrors the
image and enables the model to recognize objects irrespective of their left-right or
up-down orientation respectively. This augmentation is particularly useful for tasks
where object orientation does not affect the overall context.
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Sharpen

Sharpening an image enhances the edges and fine details. This technique can make
the model more sensitive to object boundaries and improve its ability to understand
the pattern more accurately.

3.2 Convolutional Neural Network (CNN)

A type of deep neural network known as a convolutional neural network (CNN)
is typically used to analyze visual images. It utilizes an exceptional strategy called
Convolution. Convolution is a mathematical operation on two functions that results
in the creation of a third function that describes how one function is altered by the
other. Multiple artificial neuron layers build a CNN. Each layer in a CNN generates
a number of activation functions for the next layer when an image is input. Typi-
cally, basic features like horizontal or diagonal edges are extracted in the first layer.
This output is sent to the next layer, which looks for more complicated features like
combinational edges or corners. It is able to identify even more complex features,
such as faces, objects, and so on, as we progress deeper into the network. The clas-
sification layer generates a set of confidence scores (values between 0 and 1) that
indicate the image’s likelihood of belonging to a "class” based on the activation map
of the final convolution layer. For instance, the output of the final layer of a CNN
that detects horses, dogs, and cats is the possibility that the input image contains
any of those animals. CNN models have several common layers. The LeNet-5 CNN

architecture is the pioneer to modern CNNs. A discussion regarding its 7 layers are
highlighted in table 3.1

3.3 Transfer Learning

Transfer Learning is a widely used technique in the modern realm of Al, especially
in the domain of deep learning. It involves leveraging the knowledge gained from a
pre-trained model on one specific task and then applying that knowledge to improve
the performance on a different and new model. The pre-trained model works as a
feature extractor for the new task. By leveraging the learned representations from
the previous task, the model can generalize better on the new task, even when data
for the new task is limited or scarce. This is particularly advantageous because it
allows for the efficient reuse of knowledge and effectively reduces the need for large
amounts of training data for the new task. Moreover, it saves a lot amount of time
in the training phase as well. Hence, it has has become a fundamental approach
across many domains in classification problems.

3.3.1 EfficientNetV2S

Figure 3.5 contains the architecture of EfficentNetV2S model. It is one of the two
pre-trained models that we kept in our study.
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Table 3.1: LeNet-5 Layers and Components

Layer

Description

Input Layer

An input image with a shape of 32x32 pixels.

Convolutional Layer

This layer extracts various features from the input image. Sliding
filters of size 5x5 are applied to the input image, and the dot prod-
uct is computed between the filter and corresponding parts of the
image. This produces 6 feature maps of size 28x28x6. The output
of this layer provides information about corners and edges of the
image.

Pooling Layer

The pooling layer, a fundamental layer of CNN; is used to solve
computer vision tasks, including image segmentation, image classi-
fication, and image detection. This layer works by downsampling
the previously generated feature map, which has two types: max
pooling and average pooling. Max pooling proceeds to preserve the
most essential features and reduce the spatial dimensions. Mean-
while, average pooling helps reduce sensitivity to noise in the input.
A pooling layer is implemented in each channel of the input feature
maps, resulting in a reduced-size feature map. In a nutshell, the
layer reduces the spatial dimension of the input feature maps. This
downsampling helps improve translation invariance, computational
complexity, select essential features, etc.

Convolutional Layer

This layer performs another convolution with 16 filters of size 5x5
on the feature maps from the previous layer, followed by another
Pooling Layer. This further reduces the size of feature maps to
5x5x16.

Fully Connected Layer x2

The neurons and the weights and biases that make up the Fully
Connected (FC) layer are used to connect the neurons between two
distinct layers. In most CNN architectures, these layers come before
the output layer and make up the last few layers. The FC layer
receives the flattened input image from the preceding layers. The
classification process gets under way at this point. This layer is a
fully connected convolutional layer with 120 filters of size 5x5. FEach
of the 120 units in this layer is connected to the 400 (5x5x16) units
from the previous layer. The layer performs numerical operations
and serves as a precursor to the classification process. This layer
follows another FC layer next to itself with 84 units, providing
additional computations for classification.

Output Layer

The seventh layer, a softmax output layer with N possible classes
based on the number of classes in the dataset. The final output of
the network after passing through the previous layers will be the
predicted class probabilities for the input image.

Dropout Layer

Overfitting occurs when a model performs poorly when applied to
fresh data while it performed well on the training data. A dropout
layer is used to solve this issue, in which a few neurons are removed
from the neural network during the training process, resulting in
a smaller model. For example, 30% of the nodes in the neural
network are removed from the network at random if a dropout of
0.3 is applied. A ML model’s performance is enhanced by dropout
because it simplifies the network and prevents overfitting.

Activation Functions

The activation function at the network’s end determines which
model information is to pass forward and which is to fire back.
The web gets non-linearities as a result of this. The activation
functions commonly used are the ReLU, Softmax, tanH, and Sig-
moid functions, and there is a function for each part. In a CNN
model, the sigmoid function is used for binary classification. The
softmax part is used for multi-class types.
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Figure 3.5: Architecture of EfficientNetV2S. [21]

3.3.2 InceptionResnetV2

Figure 3.6 contains the architecture of InceptionResnetV2 model. It is one of the
two pre-trained models that we kept in our study.

3.4 Confusion Matrix

The confusion matrix is an evaluation technique to justify a model’s performance
in classification tasks by breaking the prediction into four categories: true positive,
true negative, false positive, and false negative. Usually, the method assists in com-
puting accuracy, precision, fl score, and recall. The hypothesis obtained through
the technique helps fine-tuning and also helps to make the models more efficient,
resulting in more vigorous decision-making ability. In addition, the diagonal value
of the confusion matrix represents the count of the model’s correct prediction, true
positive and true negative values. True positive values indicate the samples be-
long to positive classes that are also classified correctly as positive class instances.
Meanwhile, true negative values are those values that belong to the negative classes
that are classified correctly as negative class samples. Moreover, the values above
the diagonal represent the samples that belong to the negative class but the model
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Figure 3.6: Architecture of InceptionResnetV2. [22]

classified them as positive class; meanwhile, the values below the diagonal represent
samples that belong to the positive class but are classified as negative class instances.
Thus, by visualizing the confusion matrix we can interpret models classifying ability
per class as well as get an overall view of the result.

3.5 Ensemble Learning

Ensemble Learning in the context of deep learning refers to a powerful technique
where multiple deep learning models are combined to create a single, stronger pre-
dictive model. The idea behind ensemble learning is that by leveraging the diverse
strengths and weaknesses of individual models, the overall performance and gener-
alization capability can be significantly improved. In the context of deep learning,
ensemble learning can be achieved in various ways, such as- Bagging, Boosting,
Stacking. Ensemble Learning can lead to improved performance and robustness by
reducing overfitting, capturing complementary patterns in the data, and enhancing
the model’s ability to generalize to unseen data. It is particularly effective when in-
dividual models have varying strengths, as the ensemble can leverage these diverse
aspects to achieve better overall performance. However, it’s important to note that
ensemble learning can be computationally expensive and may require additional re-
sources for training and inference. Hence, this method should be in consideration
where accuracy of the prediction needs more priority than the complexity of the
whole system.
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3.6 Explainable AI

Explainable Artificial Intelligence (XAI) is a bunch of cycles and strategies that
permits human clients to understand and believe the outcomes and results made
by Al calculations. Explainable artificial intelligence (XAI) is utilized to depict a
Al model’s learning. It describes model exactness, decency, straightforwardness and
results in simulated intelligence controlled direction. XAI is urgent for an associa-
tion in incorporating trust and certainty while putting computer based intelligence
models into creation. Man-made intelligence reasonableness likewise assists an asso-
ciation with taking on a mindful way to deal with man-made intelligence improve-
ment. Furthermore, not even the specialists or information researchers who make
the calculation can comprehend or make sense of what precisely is going on inside
them or how the simulated intelligence calculation showed up at a particular out-
come. There are many benefits of understanding how an Al empowered framework
has prompted a particular result correctly.

3.6.1 Grad-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) is a cutting-edge tech-
nique that leverages the gradients of target concepts within a deep-learning model
to produce localization maps. These maps highlight the crucial regions within an
image that contributed to the model’s predictions. Grad-CAM is renowned for its
versatility and accuracy, making it a valuable tool for interpreting complex CNNs.
Our research applied Grad-CAM to the EfficientNetV2-S model to visualize the re-
gions of interest in medical images that influenced the model’s diagnostic decisions.
By doing so, we aimed to shed light on the ‘black box’ nature of deep learning
models in medical image analysis. Results and Insights Initial Grad-CAM Visual-
ization We began by generating Grad-CAM heatmaps for the last convolutional layer
(‘conv2d_1") in our model. This layer was expected to provide the most accurate
visual explanation of the classified object. However, the initial results could have
been more precise, with the heatmap encompassing multiple regions, including parts
of the background and unrelated things. This led us to question what the model was
considering when diagnosing. Analyzing All Model Layers To gain a deeper under-
standing, we extended our analysis to visualize Grad-CAM heatmaps from all model
layers. We observed distinct patterns: Early layers (blocks 1 through 3) detected
contours and borders. Middle layers began identifying relevant concepts. Late lay-
ers incorporated spatial information from early and concept-based leads from the
middle layers. This analysis revealed the model’s progression in identifying crit-
ical features within images. This research demonstrates the significant potential
of Grad-CAM as a tool for enhancing the interpretability of deep-learning models
in medical image analysis. By visualizing the decision-making process, we gained
insights into model strengths and weaknesses, which allowed us to improve model
performance. Our findings highlight the iterative nature of machine learning, where
models are continually refined and validated. These techniques will contribute to
more transparent and trustworthy Al models in medical diagnosis, ultimately ben-
efiting patients and healthcare professionals. We plan to refine our models further,
explore additional interpretability techniques, and collaborate with medical practi-
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tioners to ensure the practical application of Al in healthcare. Transparency and
continuous improvement are the keys to unlocking the full potential of deep learning
in medical image analysis. Please note that you should adapt this report to your
specific research findings, dataset, and model architecture. Additionally, include
experimental results, statistical analysis, and references as necessary to provide a
comprehensive and scientifically sound research report.

3.6.2 Back-Propagation

Deep learning models have demonstrated remarkable potential in revolutionizing
the field of medical image analysis. However, the inherent complexity of these mod-
els often renders them enigmatic, akin to impenetrable “black boxes”. This opacity
presents a significant challenge in comprehending the decision-making processes that
underlie their diagnostic capabilities. In this context, Backpropagation emerges as a
fundamental and versatile technique. While traditionally applied for training neural
networks, it also serves as a powerful instrument for enhancing the interpretability
of these models. Backpropagation provides a unique vantage point to unravel the
intricacies of deep learning’s inner workings. The Backpropagation process involves
a series of interconnected steps. It commences with a forward pass, where input data
traverses the intricate network of layers within the model. These layers apply a cas-
cade of transformations to the input, ultimately leading to the model’s prediction.
Central to Backpropagation is the computation of a loss function, which quantifies
the disparity between the model’s prediction and the ground truth. The primary
objective during training is to minimize this loss, a task facilitated by Backpropaga-
tion. The crux of Backpropagation, the backward pass, is where gradients are metic-
ulously calculated. These gradients represent the sensitivity of the loss function to
minute changes in each parameter and input variable. Armed with these gradients,
optimization algorithms, such as gradient descent, iteratively adjust the model’s
parameters—comprising weights and biases—toward minimizing the loss. While
Backpropagation’s primary function remains model training, it uniquely positions
itself to offer insights into the model’s decision-making process. By inspecting the
gradients associated with input medical images, researchers and practitioners gain
valuable insights into the model’s sensitivity to various regions within the image.
Positive gradients pinpoint regions within the image that, when enhanced, would
increase the loss, thereby underscoring the clinical significance of those features.
Conversely, negative gradients signify areas where the model places less reliance,
potentially revealing subtleties and complexities in the diagnostic considerations.
Backpropagation emerges as an indispensable asset in the ongoing pursuit of trans-
parent and interpretable deep-learning models for medical image analysis. It facili-
tates a deeper understanding of feature importance and model sensitivity, advancing
the field and ultimately benefitting patients and healthcare professionals.
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Chapter 4

Implementation

4.1 Work Plan

Figure 4.1 contains a flow-chart depicting our work-plan of the whole study.
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Figure 4.1: Workplan of the study.

4.2 Dataset Collection

For our study, we needed a vast amount of medical image for training the models.
We collected three types of medical images: X-ray, MRI and CT images. All the
data for this research can be found in table 4.1
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Image Type | Dataset Name Reference | Total Samples | Taken Samples

X-Ray | COVID-19 Radiog | [23], [24] 21,165 21,165
raphy Database

X-Ray Knee Osteoarthritis [25] 9,786 8,260
Severity  Grading
Dataset

MRI Brain Tumor Classi- 26] 3,264 3,264
fication (MRI)

MRI Br35H :: Brain Tu- 27] 3,861 3,000
mor Detection 2020

CT Tmage | CT KIDNEY | [1§] 12,446 12,446

DATASET: Normal-
Cyst-Tumor and
Stone

CT Image | The 1Q- | [28]-[30] 1,190 1,097
OTH/NCCD  lung
cancer dataset

Table 4.1: Overview of the datasets used for the study.

4.3 Dataset Preparation

After collecting all the datasets from publicly accessible online sources, the classes
for each dataset was noted. Combining all of them, we found 18 classes including
the medical images containing of both the patients and normal ones. We splitted
all the images in a ratio of 70:30 for training and validation purposes respectively.
Then, half of the validation samples were moved to a different directory storing
them as unseen testing samples. In total, our dataset consisted of 18 classes, 34,178
training images. We named this dataset as mir/§. Notably, miri8 is highly im-
balanced dataset. We created another dataset by applying a custom-built method
to reduce the the imbalance among classes, which is discussed in the next section.
This gave us another dataset containing a total of 74,366 images in 18 classes. We
named this dataset as mir1§ v2. This new dataset had less imbalance among the
classes. Notably, among the 18 classes, 13 of them pertain to various diseases, while
the remaining 5 classes describe the normal condition of the organs- Brain, Lungs,
Kidney and Knee. Table 4.2 is added below for showing the number of training
samples in each dataset.

4.4 Data Processing

In order to handle this highly imbalanced dataset (mir18), we have developed a new
way of Data Processing combining Image Processing and Data Augmentation. In our
train data, we have many classes under 1000 and some classes over 1000 even 7134.
Methodically, this type of data cannot leverage the training of our models. Besides,
the model will encounter overfitting as well as cannot classify those classes under
1000 with a satisfying accuracy. Due to this reason, we have applied a combination of
different Image Processing Techniques and Normalization to the classes under 1000
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Class Labels mir_18 mirl8 v2
- Train ‘ Valid ‘ Test Train ‘ Valid ‘ Test
Benign Lung Cancer 84 18 18 3024 18 18
Brain Tumor 1050 225 225 4000 225 225
Covid 2531 542 543 4000 542 542
Kidney Cyst 2596 556 557 4000 556 557
Glioma Tumor 578 123 125 4000 123 125
Lung Opacity 4208 901 903 4208 901 903
Malignant Lung Cancer || 392 84 85 4000 84 85
Meningioma Tumor 575 123 124 4000 123 124
No Brain Tumor 1326 284 285 4000 284 285
No Lung Cancer 291 62 63 4000 62 63
No Osteoarthritis 2277 487 489 4000 487 489
Normal Kidney 3553 761 763 4000 761 763
Normal Lung 7134 1528 1530 7134 1528 1530
Osteoarthritis 3503 749 755 4000 749 755
Pituitary Tumor 278 124 125 4000 124 125
Kidney Stone 963 206 208 4000 206 208
Kidney Tumor 1598 342 343 4000 342 343
Viral Pneumonia 941 201 203 4000 201 203

Table 4.2: Number of training samples in datasets mirl8 and miri8 v2.

samples to expand those classes to 1000 samples per class. In this method, for every
original image we get 4 different images with different techniques applied including
the original image. The motivation behind applying this method is basically Image
Processing Techniques will create new samples which may derive new features that
can help the model to learn new patterns. In the next stage, we applied a series
of augmentation techniques on the train data to make them expand to a certain
threshold (4,000). This method will introduce a large number of images that may
assist the model in learning new patterns but may not be as useful as the first stage
we applied. Figure 4.2 shows the workflow of the custom-built image processing
function. We approached another method of preprocessing the images. In this
method, we found out which images were specifically being predicted as wrong labels.
Most of these images were X-ray images. A new augmentation approach suitable
for X-ray was applied on these images. We kept this new dataset as miri8 vs.
Although, we found very less accuracy of the models trained on this dataset in the
prediction phase. Some outputs from the processing technique on a single raw X-ray
image can be found in figure 4.3. Finally, we resized all the images to a dimension
of (224,224,3) with a batch size of 32.

23



Analyzing Different
Technigues

ClassSample
=1000

A

Image Processing

ClassSample ==

£
1000

h 4

ClassSample
== 4000

Analyzing Different < : -
Techniques Data Augmentation Final Train Data

A

Mo

Figure 4.2: Flow-chart of the Data Processing Method.
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Figure 4.3: Visualization of processed images with different types of parameters.

4.5 Training Models

Our research is carried on a system with the following system configurations and
software. Python 3.9.13 is used and implemented using Jupyter Notebook 6.4.12.
and Tensorflow v2.10.0, respectively, on Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz
with 16 GB RAM. We used NVIDIA Gefore RTX 3060 GPU for an efficient training
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purpose.

After a thorough research, we picked several pre-trained models and added 2 convo-
lutional layers and a dropout of 0.5 onto them. or our study, we have used several
pre-trained models such as: VGG16, VGG19, DenseNet121, ResNet50, Efficient-
NetV2S, InceptionResNetV2. We used all the models’ stored weights from imagenet
and trained them using both of our datasets. After checking the predictions, we
finally picked two of them. These models are- EfficientNetV2S and InceptionRes-
netV2. While using these models, we followed two approaches. First approach being
the typical keeping the base layers of the models frozen and in the other approach we
kept the layers trainable. In some cases, we found that keeping the layers trainable
had a good impact on both the training accuracy and the cross-validations. Also, it
helped in keeping the validation loss very low in numbers. Hence, we finally came
up with two approaches of training using two CNN models on two different datasets.
Table 4.3 portrays the overview of all our trials and the naming convention for better
understanding of the Result Analysis section.

Model # | Pre-trained Model Name Dataset used for training | Base Layer
Model 1 | EfficientNetV2S mirl8 v2 Trainable
Model 2 | EfficientNetV2S mirl8 v3 Frozen

Model 3 | InceptionResNetV2 mirl8 v2 Trainable
Model 4 | InceptionResNetV2 mirl8 _v8 Trainable
Model 5 | EfficientNetV2S mirl8 Trainable
Model 6 | InceptionResNetV2 mirl8 Trainable
Model 7 | EfficientNetV2S mirl8 Frozen

Table 4.3: Overview of the trials of the study.

4.6 Proposed Prediction System

Deep learning neural networks are nonlinear methods. They offer increased flex-
ibility and can scale in proportion to the amount of training data available. An
oversight of this flexibility is that these models learn through a stochastic training
algorithm which means that they are sensitive to specific training data and may find
a different set of weights each time they are trained, which causes different predic-
tions. Basically, this functionality of the neural networks is referred to as having a
high variance and it can be frustrating to develop a final model to use for making
predictions.

Spectating table 5.1, we can see the difference in prediction of multiple models.
Some models are performing well in some classes while performing worst in other
classes. For example, Model 7 has better accuracy in predicting classes like 10, 17
and the least predictions in some other classes. For further clarification, if we see
Model 1 and Model 3, for which the same training samples were used, Model 1 has
performed better than model 3 whereas Model 6 (Same architecture as model 3 but
was trained on the raw images) performed better than Model 3 as well as giving com-
patible predictions with Model 1 for some specific classes. To overcome this issue,
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we have introduced an ensemble learning method which is basically a combination
of multiple models whereby applying different ensemble techniques like voting, bag-
ging, boosting, stacking etc., the final prediction is generated. This final prediction
not only reduces the variance but also can give far better predictions than any single
model. In our case, we have combined five models which were trained differently.
The reason behind choosing this model was mainly their class-based accuracy and
overall accuracy. We have analyzed various scopes of our problem and spectating
these models’ results on the test dataset, we have gained some insight into their
learning patterns which emphasizes combining them for ensemble prediction. We
have used three different ensemble techniques. They are ‘Majority Voting’, ‘Selec-
tive Class-wise Voting’ and ‘Customized Weighted Voting’ Figure 4.4 is a flow-chart
which describes our proposed method of getting the ensembled learning.
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Figure 4.4: Flow-chart of the Proposed Ensemble Learning Method (Customized
Weighted Voting).

4.6.1 Majority Voting

Firstly, we have tried majority voting which is a very general voting technique. In
this method, we take the predictions from each model for a particular test data.
After that, we check for the class which has the most votes by our CNN models to
make the final prediction.

4.6.2 Selective Class-wise Voting

Furthermore, we have introduced a new type of voting where according to the actual
label we select the best model for prediction. This is a completely customized ap-
proach to show the best prediction of the combined models for each label. Though
this approach will not give accurate predictions for a random sample or a new test
set. Because of this, we have tried a new way where neglecting the actual label for
selecting the model, we have used the prediction of our best model (maximum av-
erage accuracy) to select the best model for a particular class to maximize accuracy
which may work on a random sample or a new test set.
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4.6.3 Customized Weighted Voting

To introduce a better approach, we have applied a customized where predefined
weight gives priority to the best model for voting. After analyzing the results of
these models, we specify a weighted array of values for each model containing values
from 0 to 7. For every class, based on the model performance we have assigned a
weight. For every model, there is a weighted array for 18 classes. The combination
of the weight is most important here. Now, for each random sample, every model
will give its prediction. Based on the weight assigned for that predicted class the
model’s prediction and weight will be stored in a dictionary with the model name
as a key. After that, we removed the model’s prediction from the dictionary which
has a 0 weighted value. Now iterating over that dictionary, different logic is set
to get a better prediction. Firstly, there can be a set of 3 models or less with the
best weight for a particular class. Besides, before removing the models from the
dictionary we stored the best-performing model’s output in a separate dictionary. If
after removing the model with 0 weight in the specific class, the dictionary becomes
empty then we will take the best-performing model’s prediction. We have also used
a reducer function to keep the models in the dictionary limited to 3. This method is
most suitable for a random sample or a group of samples without any type of label
assigned to it.
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Chapter 5

Result Analysis

The main purpose of our approaches is to gain better accuracy on all the 18 classes.
In the beginning, we trained all the selected models on the mir_ 18 dataset. This
dataset was highly imbalanced in a sense that it was a mix of multiple datasets
from multiple sources available online. Besides, some types of images were very rare
to collect, for example: Benign Lung Cancer has only 120 samples on the whole
dataset. In this case, we only used 84 samples for training, 18 for validation and 18
for testing purposes. After training on the base image we get 3 best model including
EfficientNetV2S (keeping base layers frozen), EfficientNetV2S (keeping base layers
trainable), InceptionResnetV2 (trainable) with an test accuracy of 88.78%, 92.68%,
93.77%. But the main drawback here is that, from the beginning of the training
we’ve encountered overfitting . We have applied early stopping to lessen the overfit-
ting and improve generalization of the model during the training process. However,
due to the highly imbalanced class distribution of our dataset, the overfitting issue
still remains. The training accuracies were 92.07%, 96.75%, 99.28% whereas the
validation accuracies were 89.63%, 92.96%, 93.93% respectively. In order to over-
come overfitting for a highly imbalanced dataset like ours, we have applied the data
processing techniques in a different way.

5.1 Learning Curves for Five Approaches

A set of training and loss curves for our five approaches can be found in the fig-
ures 5.1 to 5.10. These curves provide valuable insights into the performance and
convergence of the training process. The training curves show how various metrics
evolve over time, while the loss curves indicate how the model’s loss function changes
during training. Please take a moment to review these curves, as they can provide
a deeper understanding of the model’s behavior and performance throughout the
training process.
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5.2 Analysis of the Confusion Matrices

In our study, we have trained multiple models with miri8, miri§_ v2, miri8 v3
datasets to find an optimal solution to our problem. In order to analyze their re-
sult, we carefully examined the confusion matrices generated from these models to
determine which ones were more effective at classifying maximum classes.

The confusion matrices of the model that we visualize in figures 5.11 to 5.15 are gen-
erated from the training on different datasets [explained in 4.3]. This matrix proves
the effectiveness of our data processing techniques. For example, if we spectate
the confusion matrix of model 1 and model 5, we can see the performance differ-
ence in the ‘Benign Lung Cancer’ class. By applying the proposed data processing,
the same model has correctly classified 17 samples out of 18 whereas without data
processing this model was unable to classify any sample. Besides, the overall per-
formance in classifying almost every class has increased. Moreover, we tried to find
out some models that have performed better in classifying ‘Osteoarthritis’ and ‘No
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Osteoarthritis’ which is the major problem that we face till now. Due to the close
relation between the images of these two classes, our models were unable to classify
them correctly. Though they were classifying between the domains of Osteoarthritis
they were giving false predictions. If one model predicts Osteoarthritis better, the
same model is predicting ‘No Osteoarthritis’ worst. By analyzing these problems
that we interpret from the confusion matrices, we tried to come up with some solu-
tions to solve this issue.

For solving this problem, we then used a unique logical weighted method to prior-
itize a single approach for classifying each class using the ensembling techniques.
This method involved calculating the percentages of correct predictions made by all
the approaches in our study. The records are showed in Figure 5.1.

To narrow down our choices, we selected the top five approaches with the highest
overall performances. These five approaches were given priority when building our
prediction system. This step was crucial because comparing the confusion matrices
for all the approaches played a significant role in our study. Figures 5.11 to 5.15
portrays the matrices for each approach.
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Figure 5.11: Confusion Matrix for Model 1
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Figure 5.12: Confusion Matrix for Model 3
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Figure 5.13: Confusion Matrix for Model 5
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Figure 5.14: Confusion Matrix for Model 6
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Figure 5.15: Confusion Matrix for Model 7
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5.3 Ensembled Accuracy

In order to gain a more satisfying prediction, the ensemble techniques have worked
to achieve better accuracy. In terms of majority voting, the ensemble models have
an accuracy of 93.75. By applying “Sum Rule Ensemble”, the accuracy increases
to 94.02%.In next we tried to predict using the “Mean Argmax” ensemble which
gains an accuracy of 94.02% as well. After analyzing our used models performance
in various sectors we have tried to implement a solution of our own. Firstly, we used
a “Selective Class-wise Voting” technique where the first method (Actual label-
wise selection of model) has an accuracy of 95.27% and the second method (Best
prediction-wise selection of model) has an accuracy of 93.6%. To overcome this prob-
lem and handle random samples or a set of random samples our proposed method
of ensemble “Customized Weighted Voting” is introduced which has gained a better
accuracy of 94.07%. Though the accuracy difference is very less, combining the best
weight for the models per class can increase this accuracy which can outperformed
“Selective Class-wise Voting” technique (Actual label-wise selection of model) which
gained an accuracy of 95.27%. Figure 5.16 and 5.17 shows the confusion matrices
using both the approaches.

Label Class Name Model | Model | Model | Model | Model | MAX
1 3 5 6 7

0 Benign Lung Cancer 94.44 | 7777 | 0 66.67 | 0 94.44
1 Brain Tumor 99.11 | 98.22 | 96.44 | 96 95.11 | 99.11
2 Covid 98.15 | 92.45 | 98.16 | 97.6 | 94.48 | 98.16
3 Kidney Cyst 100 100 100 100 100 100
4 Glioma Tumor 92.8 | &4 84.8 | 944 | 712 |944
5 Lung Opacity 90.36 | 85.38 | 90.36 | 90.92 | 81.95 | 90.92
6 Malignant Lung Cancer | 100 100 100 100 100 100
7 Meningioma Tumor 87.09 | 91.94 | 87.09 | 89.52 | 78.23 | 91.94
8 No Brain Tumor 98.94 | 99.65 | 97.89 | 98.95 | 98.23 | 99.65
9 No Lung Cancer 98.41 | 95.24 | 100 100 0 100
10 No Osteoarthritis 75.05 | 85.89 | 77.3 80.37 | 91.62 | 91.62
11 Normal Kidney 100 100 99.86 | 100 99.21 | 100
12 Normal Lung 96.33 | 97.19 | 96.53 | 96.01 | 93.59 | 97.19
13 Osteoarthritis 80.66 | 70.2 | 74.17 | 78.94 | 58.41 | 80.66
14 Pituitary Tumor 95.2 1920 [93.6 |[97.6 |93.6 |97.6
15 Kidney Stone 100 99.5 100 99.04 | 99.52 | 100
16 Kidney Tumor 100 100 100 100 99.71 | 100
17 Viral Pneumonia 97.04 | 97.54 | 97.54 | 98.52 | 99.01 | 99.01

Table 5.1: Record of correct predictions (%) per class for each model

34



Confusion Matrix

1400

o

benign_lung_cancer -17 0

1

]

brain_tumor - 0 223 o

covid - 0

cyst_kidney - 0
glioma_tumor - 0o

1200

0 1ns o o

o

o
o
0

1000

w

lung_opacity - 0

malignant_lung_cancer - 0

meningioma_tumor - 0

800
600

014 2 0
o o
o 62
o

o
o
1}
o

o
o
0
o

&
1
0
o

g_cancer - 0

no_osteoarthritis - 0

no_brain_tumor - ©
no_lun

|2geT anJL

o
B

o
0
o
o
o

y—D

normal_kidne
normal_lun

g-10

osteoarthritis - 0

pituitary_tumor - o

400

]

0 0122 0 0
0 0 208 0

0

-200

0

o

-0

y -0

Y
viral_pneumonia - 0

stone_kidne
tumor_kidne!

2 - euownaud el
= - faupry Jowm

=

=

=

Aaupiy auols

Jowny Aueunyd
SIUYLIe03150

Bun| jewiou
Aaupiy |ewaou
SIIYHEO31S0 OU
J33ued bunj ou
10Wny ulelq ou
Jowiny ewolbuluaw
120ued bun| ueubijew
Aoedo Bun|

Jowny ewol|b
Aaupiy 1sA

pIAGo

Jowny uieiq
13oued” bun| ubuag

Predicted Label

Figure 5.16: Confusion Matrix for Customized Weighted Voting
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Figure 5.17: Confusion Matrix for Selective Class-wise Voting Technique
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5.3.1 Validation of the Proposed Data Processing Method

Application of our custom data processing techniques has improved the training from
the beginning. The training accuracy and validation accuracy haave had less dif-
ference from the beginning because of our approach. After applying these methods,
the validation as well as testing accuracy increased for most of the models. Effi-
cientNetV2S (frozen), EfficientNetV2S (trainable), InceptionResnetV2 (trainable)
have gained an test accuracy of 91.43%, 93.66%, 92.26% and validation accuracy of
91.58%, 93.69%, 94.11% respectively. To clarify, table 5.2 indicates all the models
accuracy in percentages for each class before and after data processing. One of the
most important results which we achieved with this method is the results of Benign
Lung Cancer. Analyzing the confusion matrices of the best 3 models, in the miri§
dataset, EfficientNetV2S (frozen), EfficientNetV2S (trainable), InceptionResnetV2
(trainable) have classified only 0, 0, 12 samples respectively among 18 whereas after
applying our data processing approach, the accuracy have increased to 15, 17, 14
respectively. Besides, we tested DenseNet121 and VGG19 which have classified 7
and 4 samples in mir!§ dataset but both of them classified 14 samples after applying
the technique. This analogy indicates that the high efficiency of our data processing
method for a dataset with very less data. Besides, we can also interpret from the
analysis that, models following EfficientNet architecture cannot learn and extract
features from less data whereas models built following Inception-Resnet architec-
ture can give better performance from less data. Moreover, applying this method if
training samples are increased, EfficientNet architectured models can learn patterns
from training data as well as extract positive features more accurately than models
following Inception-Resnet architecture.

Model Before Processing (%) After Processing (%)
- Train \ Valid \ Test Train \ Valid \ Test
DenseNet121 90.9 87.67 85.79 94.14 88.05 87.37

EfficientNetV2S 92.07 89.63 88.78 96.3 91.58 91.43
EfficientNetV2S™ 96.75 92.96 92.68 98.64 93.69 93.66
InceptionResNetV2" || 99.28 93.93 93.77 98.66 94.11 92.26
VGG19 92.77 87.03 86.41 96.71 89.65 88.97

Table 5.2: Records of the performance (All accuracy) by the models were stored
in a spreadsheet for analysis. A comparison chart is made for understanding the
performances before and after applying our data processing techniques. * indicates
the base layer of the model is kept trainable.

5.3.2 Validation of Image Processing

After training and testing, we have specified the wrong predicted images for all the
models and applied intersection on all models wrong predicted samples and store
them in a different dataset. This dataset indicates the images which no models could
classify correctly. After that, we applied histogram equalization, AHE, CLAHE on
all the samples and made three different dataset for three processing techniques.
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Now, we tested the three models on this dataset and for EfficientNetV2S (train-
able) which gained a better accuracy than others, scored an accuracy of 21.52%,
28.14% and 36.1% respectively on the Histogram Equalized images , AHE images
and CLAHE images. This research indicates how efficiently the image processing
techniques have worked to give positive features to the model which helped to clas-
sify the images more correctly in the test set.

5.4 Grad-CAM Visualization

According to Lloyd-Jones (2020), osteoarthritis has the potential to impact any
synovial joint within the human body. The joints most frequently affected by this
condition include the hands, wrists, hips, knees, and feet. Omne of the hallmark
manifestations of osteoarthritis is the distinctive X-ray findings it produces. These
radiographic features encompass a narrowing of the joint space, the development
of osteophytes (commonly referred to as bone spurs), cortical irregularities, and/or
sclerosis of the articular surface, as well as the formation of sub-cortical cysts, also
known as geodes. It is noteworthy that while these features can manifest individu-
ally, it is quite common for two or more of these signs to be concurrently present in
cases of osteoarthritis. Figures 5.18 and 5.19 are can give a brief information about
how Radiologists find out the possibility of Osteoarthritis in knee from an X-ray;
notably a Consultant Radiologist has described this in a website [31]. We tested our
models and got a very convincing accuracy in classifying ‘Osteoarthritis’. Although,
we noted that our models were predicting incorrectly when classifying a X-ray image
between ‘Osteoarthritis’ or ‘No osteoarthritis’ Using different techniques of Grad-
CAM, we found our model learnt the patterns in the images very well. Figures 5.20
and 5.21 are the visualization for 2 X-ray images of knees from our testing dataset.
These images were completely unknown by our model. Firstly, the model predicted
correctly on the both images and the Grad-CAM visualizations show that the model
took the data mainly on the appropriate portion of the X-ray images. Hence, the
model found the pattern to classify the images correctly as ‘Osteoarthritis’. Figures
5.22 and 5.23 contain two other Grad-CAM visualizations for correctly classifying
‘Covid’ and ‘Brain Tumor’.
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Figure 5.20: Grad-CAM visualizations for another Osteoarthritis detection.
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Figure 5.21: Grad-CAM visualizations of an X-ray image that is also detected ‘Os-
teoarthritis’ by the proposed model.
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Figure 5.22: Grad-CAM visualizations of a chest X-ray image that is detected
‘Covid’ by the model.
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Figure 5.23: Grad-CAM visualizations of a brain MRI that is detected ‘Brain Tumor’
by the model.
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Chapter 6

Conclusion

In this study, we have tackled a crucial issue within the realm of medical diag-
nosis, namely the substantial risk of misdiagnosis and the limited mechanisms for
cross-validation within radiology. Our principal goal has been to make a valuable
contribution to the healthcare sector by constructing a robust system capable of
accurately detecting diseases through the analysis of medical images. The overar-
ching aim was to bridge the gap between radiologists’ decisions and the subsequent
treatment plans proposed by doctors, ultimately leading to improved patient care.
Our research journey encompassed a comprehensive array of methods, including
data processing, deep learning models, transfer learning, ensemble techniques, and
explainable AI. We methodically curated and processed datasets comprising medi-
cal images, enhancing their quality and expanding the pool of training samples. We
harnessed the power of convolutional neural networks (CNNs) and transfer learn-
ing to develop models proficient at analyzing a wide spectrum of medical images
and making precise predictions. The significance of ensemble learning in our re-
search cannot be overstated. By amalgamating multiple models and introducing
inventive ensemble techniques such as Selective Class-wise Voting and Customized
Weighted Voting, we managed to construct a prediction system that surpassed the
performance of individual models. This system not only mitigated variance but also
substantially elevated the accuracy of disease classification across 18 distinct classes.

In summation, our research represents a substantial stride toward improving disease
diagnosis in the medical domain. The fusion of advanced data processing, cutting-
edge deep learning models, and innovative ensemble techniques lays the groundwork
for more precise and efficient disease detection systems. As we continue to address
challenges and explore future avenues, we envisage a healthcare sector wherein Al
plays a pivotal role in augmenting patient care and saving lives.

6.1 Challenges

In our research, we have tried to introduce a process to classify multiple diseases
with different types of medical images. We have tried to come up with a unique
data processing method which might enhance the accuracy of a dataset with limited
samples. Besides, we have introduced an ensemble technique which can perform
better than many traditional ensemble techniques depending on the dataset and the
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performance of the ensemble models. While we have achieved notable milestones
in our research, we have also encountered some significant challenges. Firstly, one
of the foremost difficulties we faced was collecting a sufficient amount of data per
class. Data scarcity in some classes created a highly imbalance in the dataset. Due
to this, we faced rigorous difficulties in handling these highly imbalanced medical
image dataset. Some classes were severely challenging for our models to learn ef-
fectively. Another persistent concern was overfitting, which persisted despite the
implementation of techniques like early stopping basically because of this highly
imbalanced raw data. The skewed distribution of data played a role in exacerbating
this problem. Moreover, we were unable to classify Osteoarthritis as precisely as
other diseases because some ‘Osteoarthritis’ and ‘No Osteoarthritis’ images were
very close and very difficult to distinguish which created a dilemma for the models.
Furthermore, in the evolving landscape of Al-driven medical diagnosis, the need for
model interpretability and transparency has become increasingly crucial. Future
research should delve deeper into Explainable Al to foster trust and facilitate better
understanding between Al systems and healthcare professionals. This will be piv-
otal in ensuring the successful integration of Al in healthcare practice.

6.2 Future Scopes

In order to extract a more sustainable and effective system that can help to reduce
misdiagnosis, we hope to improve the methodologies we used. Firstly, in the fu-
ture there would be more relevant data which will reduce the data scarcity problem
that we faced and might move overfitting by reducing the imbalance nature of our
dataset. Besides, we would like to classify more diseases with a proposed approach
which will make our system more precise and accurate in multiple disease diagno-
sis. Moreover, classes like ‘Osteoarthritis and ‘No Osteoarthritis’ which were very
difficult to precisely classify can be tackled by introducing some other techniques
for processing the images or by tuning the hyperparameters. By improving and
restructuring some methods, we hope to introduce a far better system which will
help in medical science in future.

The research we’'ve conducted paves the way for exciting future avenues of explo-
ration. One such avenue is the refinement of advanced data augmentation techniques
tailored specifically for medical images. This could enrich our training data, mak-
ing it more diverse and informative. Staying abreast of the latest developments in
transfer learning and incorporating newer pre-trained models could elevate disease
detection to even greater heights in terms of performance. Additionally, the inte-
gration of information from multiple sources, such as combining X-rays with clinical
data or other medical tests, offers the promise of a more comprehensive and holis-
tic approach to diagnosis. The development of real-time prediction systems that
can aid healthcare professionals during patient examinations and decision-making
processes represents a significant leap forward in medical technology. Lastly, con-
ducting rigorous clinical trials to assess the real-world impact of Al-assisted diagnosis
in healthcare settings is imperative. This will ensure that such technology is not
only effective but also safe and reliable in practical healthcare scenarios.
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