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Abstract

Blockchain is a ground-breaking technology that has changed how we manage and
store protected data. It is a decentralized ledger that enables safe, open, and un-
changeable record-keeping. It relies on a distributed network of nodes rather than a
single central authority to check and verify transactions, guaranteeing that each en-
try is correct and unchangeable. Transactions in a blockchain network are grouped
into blocks, which are then linked together in a chronological and immutable chain.
Block size is a critical parameter in blockchain technology, which refers to the max-
imum size of each block in the chain. However, we cannot just change the block
size of the blockchain. It is challenging and will create security issues. The Block
size is crucial because it a↵ects the number of transactions processed per second,
the confirmation time, and overall network e�ciency. The confirmation time should
be faster to ensure stable earnings for the miners. Moreover, it needs help with
broader applications due to high transaction fees and long verification times. We
have proposed a reinforcement learning model named ROBB that can e�ciently
create a block considering the current network state and previous transactions. At
first, the problem was converted into a reinforcement learning environment to solve
using multiple reinforcement algorithms. We developed a blockchain simulator to
replicate the network environment. To transform it into a reinforcement learning
environment, we integrated it with OpenAI Gym. The simulator was trained by gen-
erating random transactions. Finally, we designed a reward function that enables
the simulator to hold transactions and create blocks with the pending transactions
when it determines that the environment is favourable. In the final results, ROBB
successfully minimized the waiting time for transactions and utilized the blocks to
their full potential, which is crucial for private blockchains used in medical records.
Additionally, it optimized the block space, building upon the findings of previous
researchers.

Keywords: Reinforcement Learning; Machine Learning; Blockchain; Recurrent
neural network; OpenAiGym; Proximal Policy Optimization,, RNN
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Chapter 1

Introduction

Blockchain is a decentralized digital ledger [8] that eliminates intermediaries to fa-
cilitate secure and transparent transactions. The block size, which determines the
maximum amount of data that can be contained in a single block, is one of the crit-
ical factors in blockchain technology. The transaction size has a significant impact
on the e�ciency and scalability of a blockchain system. The volume of transactions
and data saved on the blockchain has recently increased due to the blockchain ap-
plications’ explosive expansion [26]. As a result, there is a demand for e↵ective,
scalable blockchain systems that can manage massive amounts of data. Therefore,
the timing of block creation has emerged as a crucial problem in blockchain re-
search. Due to the explosive growth of blockchain applications [13], the quantity
of transactions and data preserved on the blockchain has increased recently. As a
result, there is a need for e�cient, scalable blockchain systems that can manage vast
quantities of data. Consequently, the timing of block creation has emerged as a sig-
nificant issue in blockchain research. Reducing transaction wait periods is necessary
for a variety of reasons. First, short confirmation intervals are essential for facilitat-
ing seamless and e�cient financial transactions[28], particularly in cryptocurrency
systems. Users anticipate that their transactions will be processed expeditiously,
enabling them to continue with their intended actions uninterrupted. In addition,
private blockchains, such as those utilized in sensitive sectors such as medical data,
place a greater emphasis on reducing transaction wait times. In healthcare settings
where rapid access to patient data is crucial for accurate diagnoses and prompt
treatment, lengthy processing delay times may result in life-threatening conditions.
Significantly increasing the e↵ectiveness and e�ciency of medical services would
enhance patient care outcomes. This can be accomplished by streamlining and ac-
celerating the process of transaction confirmation. Additionally, the scalability and
throughput of a blockchain network can be enhanced by decreasing transaction delay
times [28]. A network with faster transaction confirmations guarantees the seam-
less operation of decentralized applications, which can manage a greater volume of
transactions and encourage greater user adoption. The best block size has been
predicted using various methods, including statistical models, time-series analysis,
and machine learning methods. These methods frequently have drawbacks, too, like
poor accuracy, high processing complexity, or a lack of scalability [9]. Our research
presents a novel method for RL-based blockchain block size optimization. RL is
a method of machine learning that learns through feedback and experience. Our
method employs a deep neural network to determine the optimal ways to construct
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blocks and maintain transactions based on historical data and the current state of
the network. In addition, we have carefully calibrated our reward function to pre-
vent excessively frequent or excessively large block formation. Instead, we aim to
identify the optimal point for constructing blocks.

1.1 Research Motivation

Blockchain technology has changed several industries by providing safe and open
transactional platforms. However, as the number of blockchain apps increases, prob-
lems with block size and transaction wait times have also surfaced. These di�culties
directly impact blockchain networks’ e↵ectiveness, scalability, and user experience.
It’s critical to cut down on transaction wait times, especially for sensitive industries
like healthcare and finance. Quick confirmation times are crucial for smooth financial
transactions since they guarantee prompt settlements and let users carry out their
tasks without being held up. Similarly, lengthy transaction wait times can have
fatal results in the medical field, where quick access to patient data is essential for
precise diagnoses and rapid therapies. The e�ciency and e↵ectiveness of financial
and medical services can be significantly improved by reducing these waiting times,
which will also improve patient care outcomes and customer satisfaction.
Adjusting the block size is crucial for a blockchain network’s overall scalability and
throughput. A thoughtful block size algorithm is essential to meet the expanding
needs as the volume of transactions and data recorded on the blockchain rises. De-
centralized apps can run smoothly and promote greater user adoption when block
sizes are determined e�ciently, allowing blockchain networks to manage higher trans-
action volumes.
Numerous prediction methods have been proposed to solve these issues, but they
frequently have drawbacks like low accuracy, computational cost, or scalability. To
forecast the ideal block size, this research intends to present a novel strategy that uses
RL. This method tries to identify the ideal balance between transaction waiting time
and block size using a deep neural network, historical data, and the current network
state, improving blockchain systems’ e↵ectiveness, scalability, and user experience.
In conclusion, the necessity to address the issues with transaction waiting times
and block sizes in blockchain networks is the driving force behind this research.
This project intends to optimize the block size determination process, minimizing
transaction waiting time, and enhancing the overall e�ciency and scalability of
blockchain systems by proposing a novel reinforcement learning-based approach.
As a result of this research, blockchain technology will be more widely used and
developed across various industries, including finance, healthcare, and other areas.

1.2 Research Objective

The primary goal of this project is to construct a unique model that uses reinforce-
ment learning to figure out the best course of action for holding and creating blocks
in blockchain systems. The suggested model seeks to learn from experience and
feedback to identify the ideal timing for block formation, minimizing transaction
waiting time and enhancing the e↵ectiveness of blockchain networks. It does this
by utilizing a deep neural network and historical data. A correctly crafted reward
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function will direct the model’s behaviour, achieving a balance between producing
blocks too frequently and/or with overly big sizes. The ultimate objective is to
optimize the block production process using reinforcement learning techniques to
improve the performance, scalability, and user experience of blockchain systems.

1.3 Research Challenges

There are many issues in the current Bitcoin which makes it slow and ine�cient,
but we focused on a specific problem. In doing so, we have faced some limitations.
At first, there was no universal simulator for training blockchain using machine
learning, Some papers proposed some simulators, but those do not work in our
settings. Secondly, historical data can be used to create a simulator, but we do
not have access to every second of the data. Instead, we have daily data, which is
not optimal. Apart from these, our proposed architecture is novel, and there is not
much work to optimize the block size of a block.

1.4 Research Contributions

To improve transaction management in decentralized blockchain networks, this pa-
per will propose a novel approach that combines blockchain simulation and rein-
forcement learning approaches. We want to create a blockchain-like environment
utilizing OpenAI Gym and create a reward mechanism to direct a reinforcement
learning agent’s decision-making. We aim to improve transaction processing e↵ec-
tiveness and overall system throughput in blockchain networks by comparing the
performance of several reinforcement learning methods. The research work has the
following contributions:

• This research proposes an e↵ective blockchain architecture (ROBB) that lever-
ages reinforcement learning to enhance transaction management within a blockchain-
based system. By minimizing waiting time and reducing block wastage, the
proposed architecture aims to optimize the system’s overall e�ciency.

• By optimizing the block-creating cycle, transaction throughput has also in-
creased, assuring a higher profit for miners.

• Our proposed system tackles the scalability problem for Bitcoin during peak
hours; also, it can e�ciently generate blocks while necessary.

• We proposed a reward function that has been thought- fully created to address
the blockchain transaction management issue. Our reward function o↵ers a
comprehensive assessment metric for RL agents by considering elements like
the backlog of remaining transactions, the time it takes to create a block, and
successful transaction confirmations. The reward function directs the agent,
allowing it to learn the best transaction management techniques that increase
system throughput and e�ciency.

• To conduct the research, we have also proposed a blockchain simulator where
we can train any reinforcement learning algorithms.
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Overall, this study o↵ers a complete analysis of the application of blockchain sim-
ulation, and RL approaches to enhance transaction management. The suggested
approach can fundamentally alter the e�ciency and scalability of blockchain net-
works, leading to a boost in transaction throughput and a more durable decentralized
environment.

1.5 Thesis Orientation

This is how we organize the paper.

• Chapter 1 is an Introduction where motivation, problem statement, objectives,
and contribution is discussed.

• In Chapter 2, we discussed the related works regarding the optimization of the
blockchain.

• In chapter 3, we have discussed the background study of the system. We also
discussed di↵erent terminology and the current blockchain architecture.

• Then, in chapter 4, we discussed our proposed model and briefly discussed
how our system works.

• In Chapter 5, we have discussed our model, which is more e�cient than our cur-
rent model. We have also discussed the di↵erent environments used throughout
this paper. We also discussed the final results of the model in di↵erent settings.

• In chapter 6, we write a simple conclusion of the paper and discuss the future
plan for blockchain optimization.
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Chapter 2

Related Work

Numerous studies are currently being conducted to explore the performance aspects
of blockchain technology. Some studies show that improving the blockchain’s main
architecture may solve this performance issue. And blockchain, at its current ar-
chitecture, has scalable issues due to its block size restrictions. Many researchers
tries to implement machine learning with blockchain to improve the performance
of blockchain. But a few developers have tried to work on the scalability issue, so
we have worked on the performance and scalability issues in the blockchain. Be-
sides these issues, many researchers create a simulated environment so that other
researchers can apply their architecture and measure performance. But most of the
simulator does not focus on the scalability issue.

In this [10] paper author mentioned the scalability issue of the Bitcoin network
as Nakamoto introduced a block size limit of 1MB for every block in the public
BlockChain [1]. This was a security measure, so the P2P network would immediately
reject any block over that limit. The author also discusses possible solutions that
have been implemented or will be implemented in the future, like Segwit, Sharding,
and Proof of Stake. The author also identifies the problem of the speed of transac-
tion verification.

The paper [10] o↵ers a thorough analysis of the obstacles and opportunities for ad-
vancing blockchain technology. Recognizing the limitations of blockchain in terms of
scalability, security, privacy, and consensus mechanisms, the authors explore possible
enhancements in each of these areas. Regarding scalability, the paper examines the
concept of sharding, which entails dividing the blockchain into smaller, more man-
ageable pieces. Sharding enables parallel transaction processing, thereby increasing
the network’s throughput and capacity. The authors also discuss o↵-chain solu-
tions such as payment channels and sidechains, which can alleviate the burden on
the main blockchain by conducting transactions o↵-chain and intermittently settling
them. The authors examine cryptographic protocols that can improve blockchain
technology’s security and privacy. It examines techniques such as zero-knowledge
proofs, ring signatures, and homomorphic encryption, which can enhance the pri-
vacy of transaction details and identity protection. The research o↵ers valuable
insights into the possibilities for enhancing blockchain technology, as well as sugges-
tions for future research. By resolving the challenges of scalability, security, privacy,
and consensus, this paper contributes to the development of blockchain technology
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and paves the way for its widespread adoption across a variety of industries and
applications.

The authors of paper [17] provide a thorough analysis of the e�cacy of machine
learning techniques applied to Bitcoin mining, providing valuable insight into the
potential benefits and limitations of this approach. The study focuses on a number
of crucial aspects, including the investigation of hash rate enhancement, energy ef-
ficiency advances, and overall profitability attained by employing machine learning-
based mining algorithms. The authors investigate and contrast a variety of machine
learning algorithms, including support vector machines, random forests, and deep
learning models, in order to assess their e�cacy in enhancing mining operations. The
research methodology entails thorough data preprocessing, technique-based feature
selection, and the application of suitable evaluation metrics. The dataset used in
the experiments is described, including its size, origin, and pertinent characteristics,
with an emphasis on transparency and limitations. Using quantitative metrics, visu-
alizations, and in-depth analysis, the authors present experimental results comparing
the performance of machine learning algorithms to conventional mining techniques.
The paper o↵ers valuable insights into the implications of the results, taking into
account trade-o↵s between hash rate, energy e�ciency, and profitability, as well as
recommending future research directions and opportunities for further optimization.
Overall, this paper contributes to our comprehension of the application of machine
learning to Bitcoin mining and demonstrates its potential to enhance mining per-
formance.

In the paper, [21] a comprehensive and exhaustive analysis of the e�cacy of machine
learning techniques for predicting the price of cryptocurrencies is conducted. In or-
der to investigate the potential benefits and limitations of employing diverse machine
learning algorithms for accurate cryptocurrency price forecasting, the authors delve
into the di�culties associated with this endeavor in the introduction. Subsequently,
the methodology section provides extensive information about the dataset used, in-
cluding its source, size, and relevant characteristics, as well as a detailed description
of the various machine learning algorithms used, such as support vector machines,
random forests, and neural networks. In addition, the authors discuss the selection
of evaluation metrics and the experimental design in detail. The ensuing presenta-
tion of experimental results evaluates the precision and performance of the applied
machine learning techniques, enabling in-depth analysis. It also provides valuable
insights into the implications of the results, including the strengths and limitations
of the machine learning models employed for predicting the price of cryptocurren-
cies. The author also talks about the importance of the blockchain simulator. They
also mentioned that some simulators are easily extendable, but some are not, but
none of the simulators are working on the scalability feature; instead, they focus on
the main part of the blockchain. That’s why we need to create our own simulator,
which focuses on the scalability feature of blockchain. But some of the simula-
tors, like BlockSim, are pretty standard, and we took inspiration from them. The
authors also emphasis on the significance of future research and optimization e↵orts.

In the paper, [5] the authors address the crucial issue of scalability in blockchain
networks, concentrating on the Bitcoin protocol in particular. The paper highlights
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the transaction throughput and confirmation time limitations of the original Bit-
coin design, which become increasingly problematic as the network expands. The
authors propose the Bitcoin-NG protocol as a scalable solution to surmount these
obstacles. The Bitcoin-NG protocol incorporates a number of key components and
scaling mechanisms. It employs a leader-based strategy in which a leader is des-
ignated for a predetermined period of time to process transactions and create mi-
croblocks. The subsequent confirmation of these micro-blocks by a group of followers
ensures more e�cient and parallel processing of transactions. The paper provides a
comprehensive explanation of the protocol’s leader selection procedure, micro-block
creation mechanism, and transaction confirmation procedures. In order to evaluate
the performance of the Bitcoin-NG protocol, the authors conduct exhaustive ex-
periments and provide comprehensive performance evaluations. They compare the
throughput and latency of the new protocol to those of the original Bitcoin protocol
under di↵erent network conditions. The results demonstrate Bitcoin-NG’s superior
scalability, with substantially increased transaction throughput and decreased con-
firmation times. Overall, the paper contributes to blockchain scalability research by
introducing Bitcoin-NG as an innovative solution. It provides a thorough compre-
hension of the design and mechanisms of the protocol, supported by experimental
evaluations. The research paves the way for further investigation and implementa-
tion of scalable blockchain protocols, providing potential solutions to the scalability
challenges faced by decentralized networks.

There are no good blockchain simulators that can be used generally because of it it’s
di�cult to measure the performance of the model. In the paper, [7] author developed
two blockchain simulators which they used to simulate a network of homogeneous
miners, and they evaluate how the block size and the end-to-end data transmission
delay. They have experimented with di↵erent block sizes, and finally, they show
that the Bitcoin transaction rate can be increased by increasing the block size. The
author also says that if a block size is larger then there will be inconsistency be-
tween di↵erent copies of the blockchains. Also, if the block size is increased, then
the end-to-end transmission delay will increase. So the block size should not be very
large instead it should be in the tolerable amount so that transmission delay should
not increase. The authors investigate the implications of increasing the block size
on the Bitcoin blockchain’s dynamics. Recognizing that the Bitcoin network faces
scalability challenges, the authors investigate the potential benefits and drawbacks
of larger block sizes. Through empirical analysis and simulations, the authors eval-
uate the impact of increased block sizes on a variety of blockchain metrics. They
pay particular attention to crucial factors like block propagation time, orphaned
block rates, and blockchain latency. The study provides vital insights into the rela-
tionship between block size and network performance by measuring and analyzing
these parameters under various block size scenarios. The paper’s findings contribute
to the ongoing conversation about scalability in blockchain protocols. By evaluat-
ing the implications of larger block sizes, the authors cast light on the trade-o↵s
between improved throughput and potential challenges, such as longer block propa-
gation times and an increase in the rate of orphaned blocks. These insights provide
a nuanced comprehension of the Bitcoin blockchain’s dynamics and o↵er valuable
considerations for future decisions regarding block size adjustments.
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In the paper, [17] author discussed applying machine learning to Bitcoin miners and
also author did a performance analysis of using it for miners. They used prototype-
based experiments for measuring the performance overhead and e�ciencies of imple-
menting di↵erent Machine learning algorithms. Both supervised and unsupervised
measures of performance were utilized. The findings revealed that semi-supervised
ML performs worst than supervised algorithms. Interestingly, Logistic regression
performs the best, impacting the lowest mining rate.

In the paper, [24] The authors acknowledge the significance of mining e�cacy in
blockchain networks and propose utilizing machine learning algorithms to optimize
the mining procedure. This paper investigates the application of machine learning
techniques and methodologies to mining operations. It examines the viability of
these techniques for predicting mining outcomes and optimizing mining strategies,
taking into account variables such as block generation time, energy consumption,
and mining di�culty. The authors assess the e�cacy of various machine learn-
ing algorithms, including support vector machines, neural networks, and decision
trees, for predicting mining variables and optimizing mining decisions.The paper
demonstrates the possibility of obtaining an optimal mining strategy by combining
blockchain data with machine learning models. Machine learning enables miners
to make informed decisions based on historical data, patterns, and predictive mod-
els. This strategy seeks to increase mining productivity, maximize mining rewards,
and reduce energy consumption. The paper o↵ers insights into the application of
machine learning to mining strategies. The findings demonstrate the potential for
machine learning techniques to improve mining operations and, ultimately, the e�-
cacy and longevity of blockchain networks. The author uses reinforcement learning
and predicts the optimal Bitcoin-like blockchain mining strategy. They formulated
the problem as a Markov Decision Process (MDP). They have also designed a mul-
tidimensional RL algorithm to solve the problem. In this algorithm, we don’t need
to know all the parameters of a MDP. They designed a reward that gave the RL
agent a sample coin just like in bitcoins. And after applying their multidimensional
algorithm, they show that it can find the optimal mining strategy.

The expanding corpus of research discussed illustrates the growing concern regard-
ing the performance of blockchain-based systems. These studies emphasize the need
for optimization and e�ciency improvements, with a focus on the incorporation of
machine learning techniques into blockchain architectures. In addition, the absence
of active participation in the development of Bitcoin’s core architecture and the
lack of focus on reducing block confirmation times are identified as areas for im-
provement. In addition, researchers acknowledge the acceptability of a small cost
associated with the construction of each block. Informed by these insights, our
model is innovative in that it eliminates the concept of static block size and imple-
ments a mechanism for dynamic block size. By adopting a dynamic block size, our
research seeks to investigate the performance ramifications and potential gains in
blockchain systems. Through extensive experimentation and analysis, we demon-
strate the e�cacy and benefits of our dynamic block sizing model, which o↵ers new
opportunities for improved blockchain performance, e�ciency, and scalability.
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Chapter 3

Background Study

3.1 Blockchain components

3.1.1 Block

Figure 3.1: Structure of a block in Blockchain

A block is a fundamental blockchain component that contains a set of transactions
[6]. It is a data structure that organizes and stores information within the blockchain.
Here are the key elements and concepts associated with a block:
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Block Header

The block header is a crucial part of a block and contains metadata or information.
It typically includes the following components:

• Version: The version number of the block structure being used.

• Previous Block Hash: The cryptographic hash of the previous block’s header.
It establishes the link or reference to the previous block in the blockchain,
forming the chain.

• Merkle Root: A Merkle tree is a data structure that summarizes all the trans-
actions in a block by constructing a hash tree. The Merkle root is the crypto-
graphic hash of all the transaction hashes in the block, forming a single hash
representing the entire set of transactions.

• Timestamp: The timestamp indicates when the block was created or mined.

• Nonce: A nonce is a number used in mining. Miners repeatedly change the
nonce value to find a hash that meets specific criteria, such as a certain number
of leading zeros. It provides a proof-of-work mechanism to ensure the security
and immutability of the blockchain.

• Di�culty Target: The di�culty target is a value that determines the di�culty
level for miners to find a valid hash. It adjusts dynamically to maintain a
consistent block creation rate, typically through di�culty retargeting.

3.1.2 Hash

In blockchain technology, a hash is a fundamental concept to ensure data integrity,
security, and immutability. It is a unique digital fingerprint or fixed-length string
of characters generated by applying a cryptographic hash function to input data.
Let’s explore the details of hashes in the blockchain:

Cryptographic Hash Function

A cryptographic hash function is a mathematical algorithm that takes an input
(data) and produces a fixed-size output (hash value)[27]. The hash function is
designed to be deterministic, meaning that the same input will always produce
the same output. It should also be fast to compute the hash but computationally
infeasible to reverse-engineer the original input from the hash value.

Unique Identifier

The primary purpose of a hash in the blockchain is to provide a unique identifier for
data. A hash function often produces a lengthy string of alphanumeric characters as
its output, serving as the input data’s digital fingerprint. Any modification to the
input data, no matter how little, will result in a dramatically altered hash value.
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Data Integrity

Hashes play a crucial role in ensuring data integrity within a blockchain. When a
block is created, the hash function is applied to the block’s data, including transac-
tions and the block header. The resulting hash value is stored in the block header.
The resulting hash will be entirely di↵erent if any part of the block’s data is modified,
even a single character. This property allows for detecting tampering or manipulat-
ing data within the blockchain.

Merkle Trees

In many blockchain implementations, including Bitcoin, hashes are organized using
a Merkle tree data structure. A Merkle tree is a binary tree structure in which every
leaf node represents a transaction hash, and each non-leaf node represents the hash
of its child nodes. The topmost node, the Merkle root, represents the hash of all
the transactions in a block. Using Merkle trees, it is e�cient to verify the presence
and integrity of a specific transaction within a block without having to store all the
transaction data.

Block Linkage

Hashes are used to establish the linkage between blocks in a blockchain. Each block
contains a reference to the previous block’s hash within its header. This linkage
creates a chronological chain of blocks, with each block’s hash e↵ectively linking it
to the previous block. Changing any data within a block would alter its hash value,
breaking the link to subsequent blocks and making the tampering evident.

Security

Hashes contribute to the security of a blockchain through their cryptographic prop-
erties [14]. The irreversible nature of a hash function ensures that it is computation-
ally infeasible to derive the original input data from the hash value. This property
is crucial for securing user identities, verifying digital signatures, and protecting
sensitive information within a blockchain.

E�ciency

Hashes are computationally e�cient to compute, allowing for quick verification and
validation processes in a blockchain network. Nodes can easily verify the integrity of
a block by recomputing its hash and comparing it with the stored hash in the block
header. This e�ciency contributes to the scalability and performance of blockchain
systems.
By utilizing cryptographic hash functions and maintaining the integrity of hashes,
blockchain networks create a transparent, tamper-resistant, and auditable record of
transactions and data. Hashes ensure the immutability of previous blocks, prevent
tampering, and enable e�cient data verification and validation within the blockchain
ecosystem.
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3.1.3 Chain

A chain refers to the sequential arrangement of blocks in a blockchain. Each block
references the previous block’s hash, forming a chain-like structure. This ensures
the immutability of previous transactions since altering a block would also require
changing the subsequent blocks.

3.1.4 Transaction

In blockchain technology, a transaction represents an action or exchange of value
recorded on the blockchain[18]. It is a fundamental component of a blockchain
system, and here are the key details about transactions:

1. Data Structure: A transaction is typically structured as a data object con-
taining various fields that provide information about the transaction. The
specific structure may vary depending on the blockchain protocol or platform.
Common fields found in transactions include:

• Input(s): Inputs refer to the source of the funds or assets being trans-
ferred in the transaction. It typically includes details such as the sender’s
address or public key and the amount sent.

• Output(s): Outputs represent the recipient(s) of the funds or assets
being transferred. Like inputs, outputs contain information such as the
recipient’s address or public key and the amount received.

• Digital Signature: A transaction includes a digital signature that pro-
vides cryptographic proof of its authenticity and ensures that it has not
been tampered with. The digital signature is created using the sender’s
private key and can be verified using the sender’s public key.

• Transaction ID: Each transaction is assigned a unique identifier called
a transaction ID or hash. The transaction ID is a cryptographic hash of
the transaction data and serves as its unique identifier on the blockchain.

2. Value Transfer: Transactions in a blockchain primarily involve the transfer
of value. The value can be cryptocurrency tokens, digital assets, or other value
representations. For example, in Bitcoin, transactions involve the transfer of
Bitcoin tokens from one address to another.

3. Multiple Inputs and Outputs: A single transaction can have multiple
inputs and outputs. This means that a transaction can involve multiple sources
of funds and multiple recipients. For instance, a transaction may aggregate
funds from di↵erent addresses to be sent to multiple recipients in a single
transaction.

4. Transaction Validation: Before a transaction is considered valid and in-
cluded in a block, it needs to be validated by the blockchain network. The
validation process varies depending on the consensus mechanism employed by
the blockchain. Validators or miners verify that the transaction adheres to
specific rules, such as the availability of su�cient funds and the correct digital
signatures.
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5. Transaction Fees: Transactions in some blockchains may require the pay-
ment of transaction fees. These fees incentivise miners or validators to include
the transaction in a block and prioritize its processing. The fees help pre-
vent spam transactions and contribute to the security and sustainability of
the blockchain network.

6. Transaction Confirmation: Once a transaction is validated, it enters a con-
firmation state. Confirmation refers to including the transaction in a block,
which is then added to the blockchain. The number of confirmations a trans-
action receives indicates the number of blocks added to the block containing
the transaction. A higher number of confirmations increases the security and
finality of the transaction.

7. Transaction History and Transparency: On the blockchain, transactions
are a chronological account of all activities. All network users can see ev-
ery transaction, ensuring accountability and openness. Anyone may check
the movement of money and follow the history of transactions within the
blockchain, thanks to the public nature of transactions.

Blockchain technology relies heavily on transactions since they make it possible to
transfer money and carry out smart contracts. They guarantee data security and
immutability by providing a transparent and auditable record of all transactions
made on the blockchain.

3.1.5 Consensus Mechanism

An essential element of blockchain technology that ensures agreement and validation
of transactions across a decentralized network is the consensus mechanism[19]. In
Fig 3.2, we see that we have multiple nodes; a block will only be added to the
blockchain if 50% of the miners confirm it. It makes it possible for nodes in the
network to agree on the legitimacy and order of transactions as well as the current
state of the blockchain. The specifics of consensus processes are as follows:

1. Problem of Consensus: Achieving consensus becomes crucial in a decen-
tralized network because various nodes validate and add transactions to the
blockchain. The goal is to ensure that all trustworthy nodes agree on a single,
consistent version of the blockchain and to stop bad actors from interfering
with the system.

2. Byzantine Fault Tolerance: Consensus mechanisms aim to achieve Byzan-
tine fault tolerance, meaning that the network can tolerate faulty or mali-
cious nodes without compromising the integrity and security of the blockchain.
Byzantine faults refer to arbitrary and potentially malicious behavior by nodes,
such as sending conflicting information or attempting to tamper with transac-
tions.

3. Di↵erent Consensus Mechanisms: Several consensus mechanisms are used
in blockchain networks, each with its own rules and algorithms. Some com-
monly used consensus mechanisms include:
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Figure 3.2: Consensus Mechanism

• Proof of Work (PoW): PoW [20] is the consensus mechanism intro-
duced by Bitcoin. Miners compete to solve complex mathematical puzzles
using computational power. The first miner to find a solution broadcasts
it to the network, and other nodes verify it. Once a solution is accepted,
the miner can add a new block to the blockchain and receive a reward.

• Proof of Stake (PoS): In PoS [23], validators are chosen to create new
blocks based on the amount of cryptocurrency they hold and ”stake” in
the network. Validators are selected through a deterministic process that
takes into account their stake.

• Delegated Proof of Stake (DPoS): DPoS [22] is an extension of PoS
where token holders vote for a limited number of ”delegates” responsible
for validating transactions and producing blocks. Delegates take turns
producing blocks; token holders can vote to replace delegates if they
misbehave.

• Proof of Authority (PoA): In PoA[29], a limited number of trusted
nodes or validators are authorized to create new blocks. Validators are
typically known entities, such as reputable organizations or individuals.

• Practical Byzantine Fault Tolerance (PBFT): PBFT [11] is a con-
sensus mechanism for permissioned blockchains. It requires a predeter-
mined set of validators known as replicas. Replicas communicate to agree
on the order of transactions and the state of the blockchain.

4. Consensus Process: The consensus process involves steps that allow nodes
to agree on the validity and order of transactions. These steps typically include
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a proposal, validation, agreement, and block addition.

5. Trade-o↵s: Di↵erent consensus mechanisms o↵er various trade-o↵s regarding
security, scalability, decentralization, energy consumption, and throughput.
The choice of consensus mechanism depends on the blockchain network’s spe-
cific use case and requirements.

Consensus mechanisms play a critical role in ensuring the trustworthiness and in-
tegrity of blockchain networks. By establishing agreements among decentralized par-
ticipants, consensus mechanisms enable secure and transparent transactions without
a centralized authority.

3.1.6 Peer-to-Peer Network

Figure 3.3: P2P network diagram

In the context of blockchain, a peer-to-peer (P2P) network refers to the decentral-
ized network architecture used by blockchain systems[25]. Blockchain technology
leverages the principles of P2P networks to enable secure and transparent trans-
actions without a centralized authority. Let’s discuss peer-to-peer networks in the
context of blockchain:

1. Decentralization: Blockchain networks operate decentralised, where multi-
ple nodes validate and store transactions. Each node in the network maintains
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a copy of the entire blockchain ledger. This decentralization ensures that no
single entity controls the entire network, making it resistant to censorship and
single points of failure.

2. Peer Nodes: Every participating node in a blockchain’s P2P network func-
tions as an equal peer, able to start transactions, verify blocks, and spread
information. Each node is distinguished from other nodes by a unique cryp-
tographic identifier (such as a public key).

3. Network Communication: A particular protocol is used by nodes in a
blockchain P2P network to connect directly. They exchange transactions,
blocks, and other pertinent data through peer-to-peer connections. Data prop-
agation is e�cient and safe thanks to this direct connectivity, eliminating the
need for a central server or middleman.

4. Consensus Mechanism: In a blockchain system, attaining consensus re-
quires P2P networks. Nodes can agree on the legitimacy and chronological or-
der of transactions thanks to consensus algorithms like Proof of Work (PoW)
and Proof of Stake (PoS). Nodes collaborate to obtain consensus and pre-
serve the integrity of the blockchain using peer-to-peer communication and
consensus mechanisms.

5. Synchronization and Blockchain Validation: Nodes work together in a
P2P blockchain network to synchronize and verify the state of the blockchain.
New network nodes can get one by asking their peers for a copy of the
blockchain. Nodes guarantee the accuracy and consistency of the blockchain
across the network by validating transactions and blocks.

6. Data Distribution and Replication: P2P networks in blockchain enable
the distribution and replication of data across multiple nodes. Each node
stores a copy of the entire blockchain, ensuring redundancy and fault tolerance.
This distributed storage mechanism enhances the security and resilience of the
blockchain network.

7. Network Scalability: P2P networks in blockchain are designed to scale hor-
izontally as more nodes join the network[15]. With increasing participation,
the network can handle higher transaction volumes and maintain decentral-
ization. The collaborative nature of P2P networks allows for e�cient resource
utilization and scalability.

8. Network Security: P2P networks in blockchain provide inherent security
benefits. Due to their decentralized nature, they resist various attacks that
target central points of control. Additionally, cryptographic techniques are
used to secure transactions and ensure the authenticity and integrity of the
blockchain data.

9. Incentive Mechanisms: P2P networks in blockchain often incorporate in-
centive mechanisms to motivate node participation and cooperation. For ex-
ample, in PoW-based blockchains like Bitcoin, miners are rewarded with cryp-
tocurrency for their computational e↵orts in securing the network.
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By leveraging P2P network architecture, blockchain technology enables the creation
of decentralized, transparent, and tamper-resistant systems. The collaborative na-
ture of peer-to-peer networks enhances security, scalability, and resilience, making
them a foundational element in blockchain implementations.

3.1.7 Distributed Ledger

In the context of blockchain, a distributed ledger[12] refers to a decentralized and
immutable record of transactions or data that is shared and synchronized across mul-
tiple nodes or participants in a network. It is a fundamental concept in blockchain
technology and crucial to ensuring transparency, security, and consensus.
Distributed ledgers operate decentralised, where multiple nodes in a network main-
tain a copy of the ledger. Each participant has equal access and rights to validate
and update the ledger. This decentralized nature eliminates the need for a central
authority and enhances the trust and resilience of the system.
The data in a distributed ledger is consistent across all participants. Every trans-
action or data entry is recorded across multiple nodes, and consensus mechanisms
are used to agree on the validity and order of transactions. This consensus ensures
that all participants have the same view of the ledger and helps prevent fraud or
manipulation.
One of the key features of distributed ledgers is immutability[16] and append-only
nature. Once a transaction or data entry is added to the ledger, it becomes virtually
impossible to alter or delete it. The records in the ledger are typically stored using
cryptographic hashing, creating a unique identifier for each data block. Any block
changes would require the network consensus, making the ledger highly secure and
resistant to tampering.
Transparency and audibility are inherent in distributed ledgers. The ledger pro-
vides transparency, as all participants can access the entire transaction history.
This transparency enhances accountability and enables the auditing of transactions.
Anyone with access to the ledger can independently verify the integrity and validity
of transactions, promoting trust and reducing reliance on intermediaries.
Trust and security are ensured in distributed ledgers through cryptographic tech-
niques. Transactions are digitally signed, and consensus mechanisms validate the
authenticity of transactions. The decentralized nature of the ledger reduces the risk
of single points of failure and enhances security against malicious attacks.
Distributed ledgers can scale horizontally by adding more nodes to the network.
As the number of participants increases, the distributed network can handle higher
transaction volumes without compromising performance. This scalability is crucial
for blockchain applications that require processing many transactions.
Distributed ledgers have a wide range of applications beyond cryptocurrencies. They
can be used for supply chain management, asset tokenization, decentralized identity,
smart contracts, etc. The distributed ledger ensures transparency, security, and
e�ciency in recording and validating transactions in these applications.
Interoperability is another important aspect of distributed ledgers. They can be de-
signed to interoperate with other distributed ledgers or traditional systems. Interop-
erability allows seamless integration and data exchange between networks, enabling
more complex and interconnected blockchain ecosystems.
In summary, as implemented in blockchain technology, distributed ledgers provide
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a decentralized, transparent, and secure way to record and manage transactions
or data. They eliminate the need for intermediaries, enhance trust, and o↵er new
possibilities for innovation in various industries.

3.2 Blockchain Architecture

Figure 3.4: Current bitcoin blockchain Architecture

For example, I am ”A,” and I want to send a bitcoin to ”B” to send the bitcoin;
specific steps happen in between. It’s not instantaneous, and that’s called a waiting
time when the transaction is created and before it’s committed in the blockchain.
Wallet Setup: To send Bitcoin, the initial step is to select a Bitcoin wallet
provider[3] or software and adhere to their instructions for creating a new wallet.
Once the wallet is set up, it generates a new Bitcoin address, also known as a public
key, which serves as the destination for receiving the Bitcoin.
Creating a Transaction: To create a Bitcoin transaction, you must access your
Bitcoin wallet and follow a few steps. Firstly, locate the option to initiate a new
transaction within your wallet interface. Then, enter the recipient’s Bitcoin address
(B), ensuring that it is accurate to avoid unintended transfers. Next, specify the
amount of Bitcoin you wish to send to the recipient. Some wallets may provide
predefined options to choose from to simplify this process. Afterwards, you must
select the transaction fee you are willing to pay. It’s important to note that higher
fees can lead to faster confirmation times for your transaction on the Bitcoin network.
Take a moment to review all the transaction details diligently. Double-check the
recipient’s Bitcoin address, the specified amount, and the chosen transaction fee to
prevent errors or mishaps. Once you have verified everything, proceed to confirm
the transaction. By doing so, you initiate the transfer of Bitcoin from your wallet
to the recipient’s address. To maintain the correctness and security of your Bitcoin
transactions, it is essential to proceed with caution and attention.
Transaction Signing: Transaction signing in the context of blockchain in-
volves using cryptographic techniques to verify and authenticate transactions on
the blockchain network. Users create a digital signature using their private key
when they initiate a transaction.
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The transaction data is hashed to create a distinct digital fingerprint of the trans-
action to start the process. The information about the transaction is compressed
into this hash. This hash is then encrypted with the private key to produce a digital
signature unique to that transaction.
The encrypted hash and any additional metadata are both included in the digital
signature. It demonstrates ownership and guarantees the fairness of the exchange.
The transaction data is broadcast to the blockchain network with the signature
attached.
After receiving the transaction, network users can confirm its legitimacy by decrypt-
ing the signature with the appropriate public key. The signature can be verified using
the public key, which is obtained from the private key and prevents the private key
from being made public.
The transaction is regarded as genuine and valid once the digital signature has been
successfully encrypted and validated. Miners can then incorporate the transaction
into a block added to the network.
Only the private key owner can approve transactions linked to that key, according
to the transaction signing protocol. It o↵ers a system for security and confidence in
the blockchain network, ensuring that transactions are authentic and impervious to
manipulation.
Broadcasting the Transaction: A transaction is transmitted across the network
after a user starts one so that it reaches the nodes and miners. All participants are
informed of the transaction and are able to confirm its validity thanks to broadcast-
ing. Typically, the transaction is sent from node to node until it is received by a
miner, who adds it to a block for verification and adding to the blockchain. The
blockchain network provides transparency by broadcasting the transaction because
all users have access to the transaction data, facilitating consensus, validation, and
the general security of the blockchain ecosystem.
Transaction Verification: When a blockchain network node receives a transac-
tion, transaction verification takes place when the nodes go through several tests
to confirm the transaction’s authenticity. These checks entail comparing the digital
signature to the transaction data and the sender’s private key using the public key
connected to the transaction as evidence. To avoid overspending or double spending,
the nodes also confirm that the sender has enough money in their wallet to cover the
transaction amount. The nodes additionally check the transaction format to ensure
that it adheres to the guidelines and regulations established by the Bitcoin network.
The blockchain network maintains the integrity, security, and consensus required
to authenticate and approve legal transactions through these thorough verification
procedures.
Mining: Mining is a fundamental process in blockchain networks where special-
ized nodes called miners compete to solve a cryptographic puzzle known as Proof
of Work (PoW) to create new blocks. These miners collect a set of valid transac-
tions, including yours, from the mempool and embark on finding a solution to the
puzzle. The solution requires substantial computational power, and miners employ
specialized hardware to perform countless calculations to discover a valid solution.
The miner who successfully finds the solution first broadcasts it to the network, ver-
ifying the transactions in the block and adding it to the blockchain. By rewarding
miners for their computing labour and contribution to the consensus mechanism,
the mining process protects the blockchain network’s security, immutability, and
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decentralization.
Block Formation: A miner who has solved the cryptographic riddle successfully
creates a new block containing a series of transactions, including the one you started.
To preserve the blockchain’s chronological order and continuity, the miner creates
a chain of connected blocks by referencing the previous block within the freshly
formed block. This chain, also called the blockchain, acts as a secure and unchange-
able transactional ledger. Once the block has been created, the miner broadcasts it
to the whole network, ensuring everyone knows the most recent blockchain update.
By facilitating consensus among the nodes and enabling the confirmation and veri-
fication of transactions, the new block’s distribution further reinforces the integrity
and openness of the blockchain network.
Block Confirmation: Other nodes in the network receive the freshly mined block
once it has been published and start a series of checks to verify its legitimacy. These
checks validate the transactions in the block, confirming their accuracy and adher-
ence to the established rules of the blockchain network. Additionally, nodes verify
the Proof of Work solution provided by the miner, ensuring that the computational
puzzle was correctly solved. If the block successfully passes all these checks, it is
deemed valid, and participating nodes add it to their local copies of the blockchain,
establishing consensus across the network. At this pivotal moment, your transac-
tion is o�cially confirmed, as it is now a permanent and immutable part of the
blockchain, providing transparency, security, and trust in the transaction history of
the blockchain network.
Multiple Confirmations: For enhanced security and assurance, it is recommended
to wait for multiple confirmations before considering a transaction fully settled with
each subsequent block added to the blockchain after the block containing your trans-
action, the number of confirmations increases. The exact number of confirmations
required may vary depending on the nature and sensitivity of the transaction and
the specific policies of the recipient or service provider. Waiting for multiple confir-
mations provides a higher level of confidence that the transaction is valid and irre-
versible, as it has been verified and included in multiple blocks within the blockchain.
This practice helps mitigate the risks associated with potential blockchain reorgani-
zations or forks, ensuring a more reliable and secure confirmation of your transaction.
Balance Update: After your transaction is successfully confirmed and added to
the blockchain, the balances associated with addresses A (the sender) and B (the
recipient) are updated accordingly. The amount sent in the transaction reduces
the balance of address A, reflecting the outgoing funds. Conversely, the balance of
address B is increased by the exact amount received, indicating the arrival of the
transferred funds. These balance updates are recorded on the blockchain, accurately
representing the current holdings for each address involved in the transaction. This
process ensures transparency and accountability, allowing users to track and manage
their Bitcoin balances accurately and confidently.
OpenAI Gym[4] is a software toolkit designed to facilitate the development and
comparison of reinforcement learning algorithms. It provides access to a standard-
ized set of environments enabling interaction between an agent and it’s surrounding
environment. The agent can take specific actions within the environment, and in
return, it receives observations and rewards based on its actions.
During each step taken by the agent, the environment provides four values:
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Observation (object): This represents the agent’s perception or state of the en-
vironment. It could be a game board state, sensor readings, or any other relevant
information specific to the environment. The observation serves as the input to the
agent’s decision-making process, allowing it to assess the current state and make
informed choices for the next action.

Reward (float): The reward[4] indicates the amount of success or score obtained
as a result of the agent’s previous action. The reward scale may vary across di↵erent
environments, but maximising the total reward or score is the ultimate objective.
Positive rewards typically indicate progress or desirable outcomes, while negative
rewards represent penalties or setbacks. By receiving rewards, the agent can learn
from the consequences of its actions and adjust its behavior accordingly.

Done (boolean): This flag[4] indicates whether it is necessary to reset the environ-
ment. For example, a game scenario could signify the loss of the agent’s last life or
the completion of a task. When the done flag is True, the current episode or task
has reached its termination point. At this stage, the agent may need to reset the
environment to start a new episode and continue its learning process.

Info (dict): The info dictionary[4] contains additional diagnostic information that
can be useful for debugging purposes. It may provide insights into the internal state
of the environment, such as intermediate metrics, debug logs or statistics. However,
it is essential to note that o�cial evaluations of the agent should not utilize this
information for learning purposes to ensure fair and unbiased assessments.

In summary, OpenAI Gym provides a flexible framework where an agent interacts
with an environment, receiving observations and rewards and using them to learn
and improve decision-making capabilities. By exploring the environment, taking
action, and receiving feedback in the form of rewards, the agent aims to discover
strategies that maximize its long-term cumulative reward and achieve optimal per-
formance in the given task or environment. The standardized nature of OpenAI Gym
environments allows researchers and developers to compare di↵erent algorithms. It
approaches on a level playing field, fostering collaboration and advancement in re-
inforcement learning.
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Chapter 4

Methodologies

4.1 Proposed Scheme

Fig. 4.1 shows the full framework of the proposed scheme named ROBB. We have
used RPPO in the model and defined a blockchain environment where we are train-
ing the model. We also show the state, action and reward function of the model
and how it’s integrated with the whole model. This study consists of 2 networks
one is called the policy network and another is called the value network. The pol-
icy network is responsible for representing and learning the policy in RPPO. It is
implemented as a deep recurrent neural network that inputs the environment state
and outputs the parameters of a probability distribution over actions. The main
goal of this network is to learn a policy that maximizes the expected cumulative
reward over time. During the training process, the policy network interacts with
the environment and generates actions based on its current policy. These actions
are then executed in the environment, and the resulting states, rewards, and other
relevant information are observed. Our system optimizes the policy by iteratively
collecting data from the environment, computing advantages using value function
estimates, and then performing multiple iterations of policy optimization steps. In
each iteration, the policy-network is trained using a surrogate objective function.
Overall, the policy network in RPPO represents the policy, generates actions based
on it, and updates its parameters to improve its performance over time. Another
network defined in the system is called the value network. The value network plays
a crucial role in estimating the value or advantage function. It estimates the ex-
pected cumulative reward or advantage of being in a particular state and following
the current policy. The value network is also a deep recurrent neural network that
takes the environment state as input and outputs a value estimate or advantage
estimate. It also estimates the state-value function, which represents the expected
cumulative reward starting from a particular state and following the current policy.
It also estimates the advantage function, which represents the advantage of taking a
particular action in a given state compared to the average value of all actions in that
state. The advantage estimate helps determine which actions are more favourable
than others and guides the policy optimization process. During training, the value
network is updated by comparing its estimates with the actual observed rewards
or advantages. The di↵erence between the estimated value or advantage and the
observed reward or advantage is used to compute a loss, which is then used to up-
date the parameters of the value network via backpropagation. The value network
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is responsible for estimating the value or advantage function, providing feedback to
the policy network regarding the quality of di↵erent states and actions, and assisting
in the policy optimization process to maximize the cumulative reward or advantage.

In Algorithm 1, we have described our workflow as an algorithm where we can
individually see each step. At first, we need to initialize the parameter of our policy
and value network. Then we can Initialize our custom environment. After that, we
need to get the experience tuple to simulate the environment multiple times and get
the state, action, reward, next state, and next reward. After creating the tuple, we
can use this data to train our model. As previously mentioned, we have two neural
networks, so we need to update the weights of the neural networks using Equation
4.8 and Equation 4.9.

Algorithm 1 Algorithm for ROBB

1: Initialize policy network ⇡✓ with parameters ✓0
2: Initialize value function network V� with parameters �0

3: Initialize environment E
4: State : St = {x|x 2 {Bold, Bw, Ptc,Mg}}
5: Action: at = {0, 1}
6: Reward: rt = ((1� A)((P ⇤ pr)�W ⇤ wh)) + (A ⇤ ((T ⇤ br)�W ⇤ wc))
7: for k = 0, 1, 2, ... do
8: Collect set of trajectories Dk = {⌧i} by running policy ⇡k = ⇡(✓k) in the

environment
9: Compute rewards-to-go bRt.
10: Compute advantage estimates, bAt (using any method of advantage estimation)

based on the current value function V�k.
11: Update the policy by maximizing the RPPO-clip objective:

✓k+1 =

argmax
✓

1
|Dk|T

P
⌧2Dk

PT
t=0 min

⇣
⇡✓(at|st)
⇡✓k(at|st)

A⇡✓k(st, at), g(2 A⇡✓k)(st, at)
⌘
,

Use Adam optimizer to update the gradient.
12: Fit value function by regression on mean-squared error:

�k+1 = argmin
�

1
|Dk|T

P
⌧2Dk

PT
t=0(V�(st)� bRt)2

use gradient descent algorithm to update the weights
13: end for

4.1.1 Policy and value network as Predictive Model

As mentioned in the previous section, we have used two di↵erent neural networks.
In this section, we are going to discuss how we are going to update the policy.
Using online policy updating means updating the policy in real-time as the agent
interacts with the environment. The policy network’s policy update is performed
using a surrogate objective function. The policy update aims to improve the policy
by adjusting the parameters of the policy network. It is designed to strike a balance
between policy improvement and policy divergence. It encourages the policy to move
towards actions that have higher advantages while ensuring that the policy changes
are not too large. This helps to maintain stability during the policy update process.
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LPG(✓) = Et [log⇡✓(at|st) ⇤ At] (4.1)

The idea was that by taking a gradient ascent step on this function (equivalent to
taking gradient descent of the negative of this function), we would push our agent
to take actions that lead to higher rewards and avoid harmful actions. But there
are two problems in this function if the step size is too small, the training time will
increase. On the other hand, if it’s too high, there is too much variability in the
training. As we are using RPPO, In the original PPO paper, they have modified the
surrogate objective function, designed to avoid destructively large weights update.

LCLIP
✓k

(✓) = E
⌧⇠⇡k

"
TX

t=0

h
min

⇣
rt(✓)Â

⇡k
t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t

⌘i#
(4.2)

Another important thing we need to know is Ratio Function. The ratio function
measures the di↵erence between the new and old policies and controls the amount
of policy updates during optimization. The ratio function is denoted by rt(✓) It
compares the probability of taking an action under the new policy (⇡new) to the
probability of taking the same action under the old policy (⇡old), both given the
current state. If rt(✓) > 1, then the action at, at state st, is more likely in the
current policy than the old policy. But if rt(✓) is between 0 and 1, the action is less
likely for the current policy than for the old one. So this probability ratio is an easy
way to estimate the divergence between old and current policy.

rt =
⇡✓(at|st))
⇡✓old(at|st))

(4.3)

Finally, the value model, to update the policy of the value network, involves two
things computing advantages and surrogate loss, while the value network update
focuses on minimizing the mean squared error between the estimated values and the
actual discounted returns. One of the main things to do before updating the policy
is to calculate the loss function. To calculate the loss of a value network, we can
use mean squared error (MSE) between the predicted value from the value network
V (st) and the target value for each state in the collected trajectories. If we assume
the predicted value as (V✓(st)), then the loss function L will be.

L =
1

|T |
X

t

(V (st)� V✓(st))
2 (4.4)

We can use this 4.5 formula to calculate the V (st). Here, rt represents the reward
obtained after taking action at in state st, � (gamma) is the discount factor, and
V (st+1) represents the target value for the next state st+1.

V (st) = rt + � · V (st+1) (4.5)

4.1.2 RPPO based reinforcement learning agent design

There are existing deep reinforcement learning methods like DQN, PPO, A2C, and
DDPG, which are commy used in the fields of reinforcement learning. And the
best thing is that these models do not require mathematical modeling but require
thousands of interactions with the environment for training. In our case, RPPO
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outperforms all other models we have tried with PPO, and it did not go well as
it cannot converge and cannot create blocks in a timely manner. So to test the
models, we first have to create an environment compatible with most of the algo-
rithms available for reinforcement learning. But to create a reinforcement learning
environment, there are three important variables that we need to define those are
observation, action, and reward.

Observation: To create an observation we need to provide the model the full picture
to decide whether to create a block or not. So to provide the model the full picture
we have provided block size of the previous block, the average waiting time of the
last block, pending transactions count, mempool growth, and current transaction
block size as an observation.

• Block size of the previous block (Bold): Including the size of the previ-
ous block as an observation provides the model with insights into the recent
block’s capacity. By considering the previous block’s size, the model can make
decisions about the size and contents of the current block. For example, if the
previous block was small, the model might prioritize including more transac-
tions in the current block to maximize e�ciency.

• Average waiting time of the last block (Bw): The average waiting time of
the previous block is a valuable observation for the model. It reflects the time
taken for transactions in the mempool to be included in a block. Considering
this information, the model can learn to optimize block creation strategies to
minimize waiting times and improve transaction throughput. For instance, if
the average waiting time was relatively high in the previous block, the model
might prioritize including time-sensitive transactions in the current block.

• Pending transaction count (Ptc): Observing the number of pending trans-
actions in the mempool gives the model a sense of the current backlog. It
enables the model to balance the need for prompt inclusion of transactions
with avoiding frequent block creation. The model can learn to find an optimal
threshold for pending transaction count, ensuring e�cient block utilization
while maintaining an acceptable backlog level.

• Mempool Growth (Mg): Including the current size of the mempool as an
observation allows the model to monitor the growth rate of pending transac-
tions. This information helps the model decide based on the transaction arrival
rate and network conditions. If the mempool size rapidly increases, the model
might create a block sooner to prevent congestion and alleviate transaction
delays.

• Current Transaction block size: Observing the current transaction block
size provides the model with real-time information about the accumulated
transactions. This information allows the model to assess whether the cur-
rent block size has reached a predefined threshold or if additional transactions
should be included before creating a block. The model can learn to make de-
cisions that optimize block size and maximize resource utilization while con-
sidering transaction volume.
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So our final state St will be Equation 4.6.

St = {x|x 2 {Bold, Bw, Ptc,Mg}} (4.6)

By incorporating these observations, the model gains a holistic view of the blockchain’s
state and can adapt its decision-making based on block capacity, waiting times,
pending transactions, mempool growth, and current transaction block size. This
comprehensive understanding enables the model to learn strategies that improve e�-
ciency, transaction throughput, and overall performance in the simulated blockchain
environment.

Action: The action component plays a crucial role in designing a reinforcement learn-
ing environment. In our simulation, we have carefully crafted the actions to mimic
real-world blockchain behavior while ensuring e�cient block utilization closely.
By considering the real-world environment, we aim to create a simulation that re-
flects the dynamics of blockchain systems. Our focus is maximizing block utilization
and avoiding wastage of space within each block. This means the model learns to
optimize the selection of transactions to include in a block, ensuring that valuable
space is utilized e↵ectively.
By emphasizing e�cient block utilization in our simulation, we enable the model to
learn behaviours resembling real-world blockchain systems. This ensures the model’s
decision-making aligns to optimize transaction throughput and resource utilization
in the simulated environment. In our simulation, we have designed a discrete action
space, allowing our model to choose between two values: 0 and 1.

• Action (A) 0: The ”hold” strategy: By choosing action 0, the model decides
to hold o↵ on creating a block and waits for more transactions to accumulate
in the mempool. This action allows the model to be patient and maximize
block space utilisation. By waiting for additional transactions, the model
can potentially include a larger number of transactions in each block, thus
optimizing the overall e�ciency of block utilization.

• Action (A) 1: Selecting action 1 signifies creating a block using the trans-
actions in the mempool. Unlike a fixed block size approach, our simulation
supports dynamic block sizing. This means that the size of the block is deter-
mined by the number and size of transactions in the mempool at the time of
block creation. By dynamically sizing the block, we avoid wasting any excess
space, ensuring the block is filled to its maximum capacity.

So the action at a particular timestamp will be Equation 4.7

at = {0, 1} (4.7)

Utilizing a discrete action space with these two actions gives the model a flexible
block creation and resource management approach. The model can learn to balance
waiting for more transactions to maximize block e�ciency (action 0) and e�ciently
utilise available space by creating dynamic-sized blocks (action 1).
This design choice reflects the real-world behaviour of blockchain systems, where
block sizes can vary based on transaction volume and network conditions. By in-
corporating these actions into our simulation, we enable the model to adapt its
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decision-making process and optimize block utilization, ultimately improving the
e�ciency and e↵ectiveness of the simulated blockchain environment.

Reward: The reward function is critical in designing a reinforcement learning model,
as it heavily influences behaviour. Designing a practical reward function for blockchain
simulations can be challenging, requiring extensive experimentation with di↵erent
parameters and types of reward functions. In our approach, we have invested sig-
nificant time and e↵ort to refine the reward function. We have divided it into two
functions to maximize e�ciency: one for action 0 and another for action 1. Our re-
ward function incorporates multiple components, including the number of pending
transactions in the mempool, waiting time for the current transaction, the average
waiting time during block creation, and the length of transactions in the block.
We aim to incentivize e�cient transaction processing, minimize waiting times, opti-
mize block creation, and enhance block space utilization by carefully designing and
iterating on the reward function.
There are a few constants that we need to know before designing our reward function:

• pending transaction (P ): The size of pending transactions in the mempool
provides crucial information about the state of the network. It indicates the
number and size of transactions awaiting inclusion in a block. By considering
this constant, our model gains insights into the congestion level and workload
of the network. It can learn to prioritize transaction processing based on
transaction size. Optimizing the handling of pending transactions can lead
to a reduced backlog, faster transaction confirmations, and improved overall
network e�ciency

• waiting time (W ): The average waiting time of transactions in the mempool
is a vital metric for assessing transaction congestion and the urgency of inclu-
sion. Transactions with longer waiting times are typically more time-sensitive
and require prioritized processing to minimize delays. By incorporating the
waiting time constant into the reward function, our model can learn to pri-
oritize transactions based on their waiting time. This encourages the timely
processing of transactions and reduces transaction latency, leading to improved
user experience and increased network throughput.

• Transaction included in the block (T ): The metric of transactions in-
cluded in the block is valuable when the model decides to create a block. It
allows us to reward the model based on its chosen block size appropriately.
By utilizing this metric, we can provide positive rewards when the model cre-
ates a su�ciently large block, incentivizing the inclusion of a higher number
of transactions. Conversely, we can decrease the reward if the model decides
to go with smaller block sizes, encouraging it to aim for more optimal block
utilization and avoid unnecessary space. This aspect of the reward function
guides the model toward maximizing block capacity and transaction through-
put, promoting e�cient resource allocation within the simulated blockchain
environment.

• Pending transaction utilization rate (pr): This constant represents the
utilization rate of pending transactions when the model decides to hold a
block. It indicates the e�ciency with which the model utilizes the available
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pending transactions in the mempool during the ”hold” action. Considering
this utilization rate, we can reward the model for e↵ectively managing pending
transactions and minimizing their accumulation over time.

• Waiting time utilization rate for holding(wh): This constant denotes the
average waiting time utilization rate when the model chooses to hold a block.
It reflects how e�ciently the model should use the waiting time of transactions
in the mempool during the ”hold” action. Incorporating this utilization rate
into the reward function allows us to incentivize the model to reduce waiting
times and prioritize timely transaction processing.

• block size utilization rate (br): This constant represents the utilization
rate of block size when the model decides to create a block. It indicates
how e�ciently the model utilizes the available block space during the ”create
block” action. Considering this utilization rate, we can reward the model for
creating blocks that utilize a significant portion of the available block space,
thus optimizing the block size and improving overall resource utilization.

• Waiting time utilization rate for creating a block (wc): This constant
reflects the average waiting time utilization rate when the model chooses to
create a block. It captures how e�ciently the model incorporates waiting times
of transactions into the decision-making process during the ”create block”
action.

Reward for action 0:

rth = (P ⇤ pr)�W ⇤ wh (4.8)

Reward for action 1:

rtc = (T ⇤ br)�W ⇤ wc (4.9)

Combine reward function will be:

rt = ((1� A)((P ⇤ pr)�W ⇤ wh)) + (A ⇤ ((T ⇤ br)�W ⇤ wc)) (4.10)

Table 4.1: Constants values for reward function

Parameter Symbol Value
Pending transaction utilization rate pr 0.9
Waiting time utilization rate for holding wh 0.15
Block size utilization rate br 0.7
Waiting time utilization rate for creating block wc 0.2
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Chapter 5

Result analysis

5.1 Blockchain Simulator for ROBB

In this section, first, we will explain how we create a blockchain simulator and how it
can be generalized to measure the performance of multiple machine learning models.

Figure 5.1: Blockchain Simulator
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5.1.1 Defining Blockchain

Initially, we created a class containing the property of chain, pending transactions,
current block size, waiting times.

• chain: This property is a data structure that holds the entire blockchain. It
is an array. The chain property starts with the genesis block, the first block in
the blockchain. Subsequent blocks are added to the chain as they are created
and validated.

• pending transactions : The pending transactions property acts as a mem-
pool for the blockchain simulator. It is a collection that temporarily stores
uncommitted transactions. When a new transaction is received, it is added
to the pending transactions collection until it is processed and included in a
block.

• current block size : The current block size property keeps track of the size
of the current block being constructed. It is updated dynamically as transac-
tions are added or removed from the pending transactions collection. The size
of a block can be measured based on the total data size in the mempool.

• waiting times: The waiting times property represents the average transac-
tion waiting time for each block in the blockchain.

5.1.2 Defining Block

The Block class is a fundamental blockchain component and serves as a container for
storing information. It encapsulates various properties essential for maintaining the
integrity and security of the blockchain. This class consists of di↵erent properties,
timestamp, data, previous hash, block size, merkle root, hash.

• timestamp The timestamp property represents the exact time the block is
created. It is recorded in a Unix format to ensure consistency across di↵erent
nodes in the network.

• data The data property allows for the inclusion of additional information
or metadata associated with the block. For example, in a cryptocurrency
blockchain, the data may include details about the transactions within the
block.

• previous hash The immutability and integrity of the blockchain are estab-
lished by the previous hash property. It saves the hash value of the chain’s
preceding block. A connection between blocks is made possible by using the
previous block’s hash to establish a sequential and impenetrable chain.

• merkle root The Merkle tree, a data structure intended to e↵ectively repre-
sent and confirm the integrity of a group of transactions within a block, is the
subject of the Merkle root property. Hashing transaction pairs until a single
root hash is found creates the Merkle tree. This final hash value, which suc-
cinctly encapsulates all the transactions in the block, is stored in the Merkle
root property.
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• hash A key element that contributes to the block’s security and immutability
is its hash feature. It represents the Merkle tree’s overall hash value. Any
alteration, no matter how little, to any one of the transactions in the block will
produce an entirely new hash value. This characteristic serves as the block’s
cryptographic fingerprint, enabling other nodes in the network to confirm its
integrity.

5.1.3 Defining Transaction

Transaction class is the barebone of the blockchain. This class has many properties,
which are essential to represent a transaction, timestamp, data, size, sender and
recipient.

• Timestamp: The timestamp property captures the exact moment a trans-
action enters the system. It is recorded using a Unix time format to ensure
consistency and chronological ordering of transactions.

• Data: the data property holds the primary payload or information associated
with the transaction. It can vary depending on the specific use case of the
blockchain. For instance, in a cryptocurrency blockchain, the data may in-
clude details such as the amount of currency being transferred, any additional
message or note, or even intelligent contract instructions.

• size: The size property represents the transaction’s data size. It indicates
the amount of space occupied by the transaction within the blockchain. This
information is crucial for optimizing storage e�ciency and managing resource
utilization in the blockchain network.

• sender:The sender property identifies the entity or address that initiates the
transaction. It represents the account or party responsible for sending or
initiating the transfer of value or information. In a cryptocurrency blockchain,
the sender is the account owner authorising funds transfer.

• recipient: The entity or address that is supposed to receive the transaction
is identified by the recipient property. It symbolizes the account or party
receiving the information or value that has been transmitted. The recipient in
the context of a blockchain for a cryptocurrency is the account linked to the
recipient.

The Transaction class o↵ers a thorough representation of a transaction within the
blockchain by including these attributes. It makes saving, retrieving, and verify-
ing transaction information possible, assuring accountability, transparency, and the
precise transfer of value or information between parties. Blockchain systems are de-
centralized, unchangeable, and secure because to the qualities like date, data, size,
sender, and recipient.

5.1.4 Simulator

We can start by making an instance of the Blockchain class to simulate a blockchain.
We must use the Transaction class to define the data included in transactions. The
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transaction size and the sender and receiver addresses must also be included.

Using the add transaction method of the Blockchain class, we can add a transac-
tion to the blockchain’s mempool after it has been created. This enables us to add
transactions to the mempool continuously. The system continuously monitors the
size of the mempool as new transactions are added. The blockchain will generate a
block if the size exceeds a set limit. Unless somebody stops it, it will keep adding
transactions to the mempool.

The blockchain determines the average block waiting time before creating a block.
This is accomplished by deducting the current time from the beginning timestamps
of each transaction within the block. This computation gives information on how
long transactions typically take to add to a block.

The current simulation setup has a fixed block size of 1MB. However, it is worth
noting that this restriction may not be present in a real-world implementation or an
OpenAI Gym environment, and the block size can vary dynamically based on the
network’s requirements.

By following these steps and incorporating additional details as needed, we can
e↵ectively simulate the behaviour of a blockchain system.

5.2 Blockchain environment

To create an OpenAI Gym environment using the proposed blockchain simulator,
we need to define three key components of reinforcement learning: observation, ac-
tion, and reward. The observation space represents the information available to the
agent within the environment. The action space defines the possible actions the
agent can take. The reward system provides feedback to the agent based on its
actions, incentivizing desired behavior and penalizing undesired behavior.

Furthermore, evaluating the performance of the OpenAI Gym environment is essen-
tial. This evaluation can be done by tracking various metrics, such as cumulative
rewards, transaction waiting times, or successful block mining rates. By compar-
ing the agent’s performance against other models, we can assess the e↵ectiveness
of the agent’s decision-making and optimization capabilities within the simulated
blockchain environment.

By specifying the observation, action, and reward components and conducting thor-
ough performance evaluations, we created a robust OpenAI Gym environment for
training and assessing reinforcement learning agents in the context of blockchain
simulations.

5.2.1 Experimentation with multiple algorithms

After preparing our environment, we ran multiple algorithms and evaluated their
performance in the given environment. During the training process, we generated
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Figure 5.2: ROBB Blockchain Environment

random transactions with varying sizes. Initially, the model’s performance was sub-
par, which was expected as it began by taking random actions. Often, it would
include only one or two transactions in a block.

However, after training for approximately 25 million timesteps, we observed that the
model was still creating blocks too frequently. We hypothesized that this behaviour
might be due to the model’s inability to remember past transactions. To address
this, we modified our algorithm and introduced a recurrent feature. We opted for
Recurrent PPO (Proximal Policy Optimization) this time.

The introduction of the recurrent feature resulted in significant improvement. The
model became capable of holding onto transactions and creating blocks in the future
when more suitable. Moreover, we noticed a positive trend in the cumulative reward
over time, indicating the model’s increasing e↵ectiveness. We have also tried the
DQN(Deep Q-Network) and A2C(Advantage Actor Critic) but the models with
non-recurrent policy tend to create blocks with single transactions.
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5.2.2 Testing environment

To compare our work with existing works, we need a test environment. As work
on this topic is not so much so, we must use creative ways to measure our work
performance. At first, we saw that some papers want to predict the block size based
on the network and create it every timestep so it’s not feasible, So instead we choose
to use random block size in every timestep and create the block and measure the
performance. On the other hand in the bitcoin architecture, we are using a fixed
block size of 1MB.

Figure 5.3: Testing environment Fixed block size

The workflow depicted in Figure 5.3 outlines setting up the testing environment with
a fixed block size. Initially, we generate a dataset of 5 thousand random transactions.
Then, we iterate through each transaction individually, calculating the current size
of the mempool and the size of the new transaction. If the total size remains below
1 MB, we add the transaction to the mempool; otherwise, we proceed to create
a block. During the block creation, we also measure the waiting time and block
utilization, which will be used for later comparisons.
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Figure 5.4: Testing environment random block size

The workflow in Figure 5.4 illustrates the procedure for establishing a testing en-
vironment with a random block size generated at random intervals. A simulation
is created to facilitate comparisons between block size prediction models, wherein
a block is generated randomly at a specific time with a random size. During the
block creation, we measure both the waiting time and block utilization, enabling
subsequent comparisons between di↵erent models.
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5.3 Model training

Let’s first discuss our train metrics. As previously mentioned, we have a value
network, so let’s discuss the value loss. Fig 5.5 represents the loss of the value
network. As we know, that loss function could be noisy, and it’s hard to visualize,
and that’s why we apply a smoothing of 0.5 to smooth the noise. The light colour
denotes the original value, and the deep colour determines the smoothed value. So
here, the x-axis denotes the timestep, and the y-axis denotes the loss value.

Figure 5.5: Value loss over time

As previously mentioned, we have a policy network as well, so let’s discuss the policy
gradient loss. Fig 5.6 represents the loss of the policy network. As we know, that
loss function could be noisy, and it’s hard to visualize, and that’s why we apply a
smoothing of 0.3 to smooth the noise. The light color denotes the original value, and
the deep color determines the smoothed value. So here, the x-axis denotes timestep,
and the y-axis denotes the policy gradient loss.

Figure 5.6: Policy loss over time
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5.4 Reward tuning

We have some utilization parameters in our reward function. So we have tried out
many combinations based on intuition and found out that a set of combinations
works perfectly fine. Fig 5.1 describes our di↵erent experimentation results for
di↵erent parameters. And we can see that after using pr = 0.9 , wh = 0.15, br = 0.7
, wc = 0.2 we got the lowest waiting time.

Table 5.1: Reward function tuning result

pr wh br wc Waiting Time
0.9 0.15 0.7 0.2 1.8s
0.9 0.3 0.4 0.5 21.3s
0.3 0.4 0.5 0.1 12.5s
0.5 0.6 0.9 0.4 11.3s
0.9 0.7 0.5 0.1 2.6s
0.8 0.3 0.1 0.2 39.1
0.9 0.2 0.8 0 12.6s
1 1 1 1 35.8s
1 0.2 0.5 0.7 11.7s

5.5 Comparison

As mentioned in the previous section, we have created 3 environments to measure
the performance of the model. Basically, our goal was to decrease the waiting time
for the transactions and use e�cient use of blocks.
Let’s discuss the behaviors of di↵erent models. We have used multiple algorithms
in our environment, hoping to get the best result possible. We have used PPO,
DQN, A2C, and RPPO. After experimenting with these algorithms, we got that the
RPPO model works best in our scenario. Now let us see the model performance of
di↵erent models. From the table, we can see that RPPO (Recurrent proximal policy
optimization) based model works best in blockchain scenarios where the models
because model is not taking small transactions and creating blocks with it; instead,
it takes a reasonable mount of blocks and creating the block with it.

Table 5.2: Performance of di↵erent models (DQN, PPO, A2C, RPPO)

Model Waiting time Total block BU
RPPO 1.8 s 155 block 100%
PPO 0.3s 4602 block 100%
DQN 0.9s 4357 block 100%
A2C 1.1s 3976 block 100%

To understand the metrics of our result analysis, we have to go through the metrics
at first.

• Block size: The block means how much data a single block has. We chose
a fixed block size of 1 MB for several of the cases in our testing. For other
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Table 5.3: Model vs waiting time and block utilization

Model Block size Waiting time Total block BU
ROBB model 2.67 MB (avg) 1.8 s 155 block 100%
Fixed block size 1 MB 3.7s 237 block 90%
Fixed block size 2 MB 6.2s 124 block 88%
Fixed block size 4 MB 13.1s 63 block 86%
Random timing N/A 1.3s 1132 block 30%

studies, though, we looked at various block sizes to see how they a↵ected the
system’s performance. We can investigate how changing the block size a↵ects
transaction performance, storage needs, and overall e�ciency.

• Waiting time: The time measure sheds light on the typical time a transaction
spends in the system’s transaction pool before being included in a block. We
created a sample of 1,000 transactions and calculated their typical waiting
times for our investigation. This statistic aids in assessing how well the system
handles incoming transactions and might reveal any possible bottlenecks or
confirmation delays.

• Total block: The total blocks metric quantifies the number of blocks the
evaluated model generates. It represents the division of transactions into sep-
arate blocks based on specific criteria, such as block size or time intervals.
By examining the total number of blocks, we can understand the system’s
partitioning strategy and assess its ability to handle large transactions.

• Block utilization (BU): Block utilization refers to the used space within a
block after accommodating all the included transactions. Low block utilization
implies ine↵ective block space utilization and may cause scaling problems. A
well-designed system should ideally try to increase the block utilization rate
to improve resource usage and transaction throughput.

Firstly, utilising block space is crucial for e�cient resource allocation. When blocks
have low utilization, most available block space remains unused. This results in
ine�cient storage capacity utilisation, increasing costs and decreased scalability. By
increasing block utilization, we can optimize resource allocation, maximize transac-
tion throughput, and improve the system’s overall e�ciency.
Additionally, for a smooth user experience and to enable quicker transaction confir-
mations, there must be a minimal waiting time. Users anticipate rapid and prompt
processing of their transactions in today’s fast-paced world. Users may become ir-
ritated and dissatisfied if there is a long wait time. Transactions may be handled
quickly by reducing waiting times, resulting in a seamless and practical customer
experience.
Furthermore, it’s important to note that even if the waiting time is lower, the block
utilization is low, indicating a lack of system e�ciency. A high waiting time may
suggest that transactions are being processed quickly, but valuable block space is
wasted if the block utilization is low. This ine�ciency can lead to scalability issues
and hinder the system’s ability to handle larger transaction volumes e↵ectively.
In the context of our model, the achieved results demonstrate its e�ciency. With a
total waiting time of 1.8 seconds and 100% block utilization, our model e↵ectively
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minimizes both metrics. This indicates optimal resource utilization and timely trans-
action processing. In comparison, the random model achieved a lower waiting time
of 1.3 seconds but su↵ered from a significantly low block utilization of 70%. This
emphasizes the importance of balancing both metrics, as low block utilization can
undermine the benefits of reduced waiting time. Additionally, the Fixed block size
model resulted in a waiting time of 3.8 seconds, which is impractical for real-life
scenarios where faster transaction confirmations are crucial. We have also found
that the average block created by our system is 2.67MB.
We can design a system that optimizes resource utilization, enhances transaction
processing speed, and ensures scalability in real-life scenarios by utilising block and
waiting time. This leads to a more e�cient and reliable network that meets user
expectations and supports the demands of a rapidly evolving digital landscape.

Figure 5.7: Comparison between di↵erent models and their waiting time

In Fig 5.7, we can see that for the random timing model, the waiting time is the
lowest. It indicates that for random timing mode user needs to wait for the lowest
time. We can see from the graph that for our RL model we got a waiting time of 1.8
seconds, for the 1MB model where the blocksize is fixed by 1 MB we got a waiting
time of 3.7 seconds, for the 2MB fixed block size model we got a waiting time of
6.2 seconds, for 4MB fixed block size model we got a waiting time of 13.1 seconds
finally for random timing model we got a waiting time of 1.3 seconds. The results
show we should go with the random timing model but we cannot rely on the random
timing model it could be possible that the simulated environment was suitable for
the random timing model but in the real world, it will not work.
In fig 5.8, we can see the block utilization percentage of di↵erent models. As we can
see from the figure for the RL model block utilization is 100% because we are using
a dynamic block size so it will only create a block with the transactions present in
mempool that’s why we don’t have any wastage. But for the 1MB fixed block size
model we can see that the block utilization rate is 90%, for 2MB fixed block size we
can see the block utilization rate is 88% for the 4MB fixed block size model we got a
block utilization of 86% finally for random timing model we got a block utilization
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Figure 5.8: Comparison between di↵erent models and their block utilization

of 30%. So the final results indicate that our model wins in the criteria of block
utilization. Block utilization rate is an important parameter that cannot be ignored
even in the current implementation of the blockchain we got poor block utilization
rate.

Figure 5.9: Model vs waiting time and block utilization

In Fig 5.9, we observe the waiting time comparison among various models. It is
noteworthy that our reinforcement learning model demonstrates the second-lowest
waiting time. However, it also exhibits a block utilization of 100%. Conversely, the
random timing model displays the lowest waiting time but is associated with nearly
30% block utilization. Consequently, based on these findings, we can assert that
ROBB surpasses the other models in terms of performance. We just compute the
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waiting time only after a transaction is put into the mempool and end the waiting
time if the transaction is included in a block and we discard the processing time of
the RL model.
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Chapter 6

Conclusion

6.1 Conclusion

In conclusion, this research paper successfully explored integrating reinforcement
learning models and blockchain simulation to predict optimal block creation and
holding strategies. Multiple reinforcement learning methods were assessed through
thorough testing and analysis, with RPPO (Recurrent Proximal Policy Optimiza-
tion) producing the best outcomes.
A blockchain simulation using reinforcement learning models produced impressive
results, such as a 0% block wastage rate and an average waiting time of 1.3 seconds.
These outcomes demonstrate how the suggested approach may optimize block gen-
eration choices and boost blockchain performance.
Blockchain simulation’s realism and reinforcement learning’s capacity for intelligent
decision-making have significantly advanced the subject. This study shows how
blockchain systems can be improved and o↵ers helpful details on the broader appli-
cability of reinforcement learning strategies in various fields.
But it’s important to recognize the limitations of this study. It is necessary to per-
form additional research to examine the scalability and generalizability of the sug-
gested approach across various blockchain networks and variable settings because the
tests and evaluations were conducted under certain constraints and presumptions.
This research has improved our grasp of the connections between blockchain tech-
nology and reinforcement learning. The outcomes highlight the possibility of using
sophisticated decision-making algorithms to raise the e↵ectiveness and e�ciency of
blockchain systems. This study also lays the groundwork for future studies that
aim to develop reinforcement learning’s applicability in decentralized systems and
continuously enhance blockchain performance.
It is important to note that many reinforcement learning algorithms, including Prox-
imal Policy Optimization (PPO) and RPPO, were used to implement this research.
It was discovered through comparison analysis that RPPO produced the best out-
comes for enhancing block generation tactics. Additionally, a reinforcement learning-
based environment specifically designed for blockchain simulations was created by
the research using OpenAI Gym.
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6.2 Future Plan

Reinforcement learning is a versatile approach that extends beyond its applications
in games [2]. It holds great potential for various domains, including the field of
blockchain. We can achieve enhanced performance and explore new possibilities
by leveraging reinforcement learning in the blockchain. In the future, integrating
multi-agent reinforcement learning can further amplify these benefits.
In addition to relying on simulators to measure performance, there is a promising
opportunity to implement reinforcement learning algorithms directly in real-life pri-
vate blockchains. This approach enables fine-tuning and optimization within the
actual blockchain environment. By doing so, we can improve block utilization and
significantly reduce waiting times, ultimately facilitating seamless scalability.
As we look ahead, future research and development should focus on advancing block
utilization techniques and minimizing waiting times. By addressing these challenges,
blockchain technology can scale e↵ortlessly, ensuring e�cient and e↵ective opera-
tions in various contexts.
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