
Document Template Identification and Data Extraction using
Machine Learning and Deep Learning Approach

by

Kaushik Roy
20101185

Md Fuad Islam
20101060

Md Minhazul Islam Rimon
20101078

Tasnim Mobarak
20101296

Mysha Samiha Priota
20301205

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
January 2024

© 2024. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Kaushik Roy
20101185

Md Fuad Islam
20101060

Md Minhazul Islam Rimon
20101078

Tasnim Mobarak
20101296

Mysha Samiha Priota
20301205

i

Approval
The thesis/project titled “Document Template Identification and Data Extraction
using Machine Learning and Deep Learning Approach” submitted by

1. Kaushik Roy(20101185)

2. Md Fuad Islam(20101060)

3. Md Minhazul Islam Rimon(20101078)

4. Tasnim Mobarak(20101296)

5. Mysha Samiha Priota(20301205)

Of Fall, 2023 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 9, 2024.

Examining Committee:

Supervisor:

(Member)

Dr. Md. Khalilur Rhaman
Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD

Professor
Department of Computer Science and Engineering

Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Ethics Statement
We maintain utmost confidentiality regarding the information we have gathered
from Brac University exam transcripts, and it is not subject to future publication
risk.

iii

Abstract
As the world keeps progressing and we continue on our path to a technologically
advanced tomorrow, the demand for quick data processing and organization is be-
coming more and more necessary. People now have access to technology more than
ever before. Nowadays, technology allows for the processing and storing of nearly
every kind of data. However, procedures requiring paper are still in place and the
time-consuming process of moving these data from paper to computers is laborious
which reduces work efficiency. Our goal is to make this tedious and time-consuming
process fast and efficient, by directly converting the information of the manually
checked scripts into digital data. Our research strategy involved gathering informa-
tion from Brac University examination scripts, digitizing the verified scripts’ data,
and then uploading it to a spreadsheet file. The goal of the process is to make Brac
University’s grade-processing system quicker, more effective, and less tiresome for
the teachers. Three machine learning models and three deep learning models as well
as one transfer learning model were utilized for this study. Three common mea-
sures were used to evaluate the results which are precision, recall and F1-score. The
KNN model showed up to 85% accuracy, whilst SVM showed 87% and SGDClassi-
fier showed 81% accuracy. Meanwhile CNN and YOLOv8 showed 98.6% and 98.8%
accuracy respectively. Since YOLOv8 is providing the best accuracy, we will be us-
ing this to create an interface that will carry out the complete data transformation
process from beginning to end. Starting with capturing the image, processing it to
identify the areas from which the data will be collected, and finally extracting the
data, in the entire process YOLOv8 is going to be used. In the end, we will obtain
precisely extracted data from handwritten exam scripts, which will be arranged in
a spreadsheet, digitizing the laborious task of manually inputting each and every
grade in a spreadsheet.

Keywords: CNN, KNN, YOLOv8, SVM, SGD classifier, Deep learning model,
Machine learning model.

iv

Dedication
Our effort is focused on the precise detection and identification of information from
exam scripts in order to alleviate the burden that Brac University teachers endure
each semester. We hope that our little contribution can have a big impact on future
research efforts by other academics who want to use deep learning techniques to
make test script verification easier for teachers.

v

Acknowledgement
We never could have completed our thesis without facing significant challenges with-
out the grace of the almighty Allah. We express our gratitude to Dr. Md. Khalilur
Rahman, our Supervisor, for his invaluable counsel and unwavering support. Ad-
ditionally, we thank Mr. Sayantan Roy Arko, who served as our research mentor.
Our research methods were greatly influenced by their knowledge and advice. Their
perceptive criticism elevated our study to a new level and led us to think differ-
ently. In conclusion, we would like to express our gratitude to our parents for their
thoughtful support and direction throughout our study.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem . 2
1.3 Research Objective . 3

2 Related Work 4

3 Methodology 7
3.1 Dataset . 7
3.2 Model . 7

3.2.1 CNN . 7
3.2.2 KNN . 8
3.2.3 SVM . 9
3.2.4 YOLOv8 . 12
3.2.5 SGDClassifier . 13

3.3 Proposed Methodology . 15
3.4 Workplan . 18

vii

4 Dataset Creation 19
4.1 Image Collection . 19
4.2 Image Processing . 20

5 Implementation 22
5.1 Library List . 22
5.2 Data Pre-processing . 22
5.3 Model Selection . 23
5.4 Training Model . 23
5.5 Creating Model Interface . 23

5.5.1 Data Insertion . 23
5.5.2 Fix Orientation and Extract Data Region 23
5.5.3 Segmentation of Extracted Data Region 29
5.5.4 Pre-process of Segmentated Image 31
5.5.5 Prediction . 33
5.5.6 Second Step Verification and Creation of Improvement Dataset 33
5.5.7 Output . 33

6 Result Analysis 34
6.1 Compare Accuracy of Chosen Models 34

7 Conclusion and Future work 40
7.1 Conclusion . 40
7.2 Limitation . 40
7.3 Future Work . 41

Bibliography 43

viii

List of Figures

1.1 General Process of the Application. 1
1.2 Steps of working process of the Application. 2

3.1 CNN. 8
3.2 KNN[11]. 10
3.3 YOLO [19]. 12
3.4 SGDC. 14
3.5 Research Methodology. 17

5.1 Profound Box. 24
5.2 Unprofound Box. 24
5.3 Test Script. 25
5.4 Original Image VS Denoised Image. 26
5.5 Original Image VS Processed Image. 26
5.6 After Morphological Transformation Closed Operation. 27
5.7 i. Hough Lines; ii. Hough Lines with Intersection; iii. Hough Lines

with Grouped Intersection . 28
5.8 Problems while Drawing Hough Lines. 28
5.9 Comparison Between Original Image and Correctly Oriented Image. . 29
5.10 Extracted Images Preview. 30
5.11 Highlighted Digits for Segmentation via Contour. 31
5.12 Segmentation First Phase. 31
5.13 Representation of our custom data. 32
5.14 Resized Segmented Image Without Pre-processing. 32
5.15 Result of different pre-processing. 32

6.1 Confusion Matrix of Different Models. 37
6.2 Confusion Matrix of CNN. 38

ix

List of Tables

6.1 KNN . 34
6.2 SGDClassifier . 35
6.3 SVM . 35
6.4 YOLOv8 . 36
6.5 CNN . 36
6.6 Accuracy Comparison . 39

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convention Neural Network

CTC Connectionist Temporal Classification

ESPCN Efficient Sub-Pixel Convolutional Neural Network

LSTM Long Short- Term Memory

MNIST Modified National Institute of Standards and Technology

MT Morphological Transformation

RCNN Region-based Convolutional Neural Networks

ResNet Residual Network

RNN Recurrent Neural Network

V GG Visual Graphics Group

xi

Chapter 1

Introduction

1.1 Motivation
In our daily life, we go through and process an impressive amount of documents.
Documents like birth certificates, income tax, different types of government forms,
passports, exam papers etc. Almost in all cases, we are required to extract data
from these documents and copy them to a different virtual storage. These processes
are tedious and time consuming. And in more than enough cases, there are bound to
be some mistakes made which makes them even more obscure. That’s why we need
a system that will automate these processes and make these tasks more efficient.
And For recognizing information which needs to be extracted from documents, we

Figure 1.1: General Process of the Application.

1

have chosen to go with both Machine Learning and Deep Learning models. The
data these models are going to extract will be reexamined a second time , if it is
available. And upon re examining taken data, the secondary keys will be placed
following primary keys. With that, the human error will significantly increase plus
huge decrease in labor time compared to data extraction via humans. This technique
will remove the monotonous working of every teacher who went through collecting
data of every student’s mark in a datasheet. And hopefully, we will be able to
expand such a process to every form of document/analog form available.

Figure 1.2: Steps of working process of the Application.

1.2 Research Problem
As days go by, the use of the digital environment has been exponentially increasing
and inputting data in those digital environments manually is a monotonous labor .
Such As, manually updating a datasheet with the information stored in a students
exams answer scripts such as student id, section and marks obtained in questions.
We are trying to automate such laborious processes by using either machine learn-
ing or deep learning. We choose machine learning techniques to implement such
automation in a cpu based machine and deep learning for better performance and
accuracy. Besides that, we hope to achieve that our models can easily detect the
unique English handwriting of Bangladeshi people. We also hope to improve seg-
mentation techniques, ultimately achieving better efficiency.

2

1.3 Research Objective
As previously mentioned, our research will be focused on finding an efficient approach
for extracting data from form-like documents and storing the data in spreadsheets
for further analysis. Thus, our research objectives are:

• Identify appropriate pre-processing techniques for captured images and imple-
ment.

• Compare different OCR models to find a suitable one for the task.

• Fix orientation of the documents for efficient data extraction.

• Identify appropriate segmentation techniques for extracted regions and fine-
tune all segmentation faults for accurate recognition.

• Implement trained OCR model on said segmentations and accurately predict
and store data.

3

Chapter 2

Related Work

Zhengchao et al.[3] combined CNN and RNN to recognize scene text. CNN was
used to extract features from an input image. Different descriptors like VGG16,
VGG19, ResNet34, ResNet50 were used for feature extraction. Now extracted data
was sequential feature map and CNN has a disadvantage in such cases. This is where
RNN which can extract sequential objects of arbitrary lengths comes in. After ex-
perimenting with different neural networks they managed to combine advantages of
both CNN and RNN and claimed that a deeper CNN with deep descriptor will be
more effective in predicting scene texts.

Shubham et al.[5] used CNN (convolutional neural network) model for recogniz-
ing handwritten texts. They used the MNIST dataset for both training and testing
purposes. In their approach, they first pre-processed the data via normalization,
rotating and reversing, input image filtering. With data processed and fit for train-
ing, they used the SEQUENTIAL model which consisted of 8 linear stacks of layers.
Lastly, they used various optimizers available for keras to train their model. After
experimenting with all the models,they found out Adamax, a first order gradient-
based optimization method provided the most accurate results.Also they used 2
convolutional layers for maximizing accuracy. With Adamax, the trained model
had an accuracy of 87,1 percent. Though other optimizers like Adadelta, Adam,
SGD provided close enough accuracy, Adamax reduced the training time signifi-
cantly. With better data pre-processing methodology the accuracy, efficiency of this
model can be improved and for our work using a 2 convolutional layers model with
Adamax optimizer provided by keras is a viable option.

Again, Himank et al.[7] proposed faster and efficient pre-processing methodology.
Here geometric rectification, pre- processing, image detection, text extractions are
key elements that are used for recognizing text data. Findings of their experiments
suggest that though their approach reduces the time complexity and simplifies the
issue at hand for untrained text fonts the approach seems to be lacking. However,
with trained text fonts the accuracy rate of successfully digitizing texts is around 80
percent. We can improve the OCR model to make it adaptable to untrained fonts
and use the proposed methodology in our endeavor.

Jyothi et al. (2020) [9], used OCR model to detect text and separate them into
different graphical portions. Their proposed OCR model can classify different iden-

4

tity documents such as, passport, license into different categories. First of all, their
model categorized the photos and derived information from the text extraction mod-
ule and then the identification details were stored in the database. A new neural
network based OCR engine LSTM(Long Short- Term Memory) is used to detect
character patterns in this research. The research is mainly focused on the main
project’s purpose, technologies employed, used databases and the functional pro-
cedures. But they couldn’t define a best solution for making the algorithm more
efficient.

Anarghya et al. (2020) [10], worked on stroke detection and Hog transformation
method. Their strategy presents a method towards character identification and
recognition that combines the advantages of feature extraction methods associated
with components distribution. The algorithm focuses on the clarity of text back-
ground segmentation. After reviewing some research papers and algorithms, they
proposed integration of the Hog transformation and stroke detection method to
achieve higher accuracy in localization and recognition in OCR technology. This
approach highlights its efficiency in dealing with different text patterns, light and
shadow conditions, and linguistic issues. Standard datasets have been demonstrated
and improvement on previous OCR technology has played a significant role in pro-
viding a solution for real-time scene text recognition. This paper used MODI which
can create difficulty in getting contents from books.

Yi Jiang et al.[13] proposed a text recognition algorithm to solve text segmenta-
tion difficulties, dictionary dependence using Attention mechanism and connection
time classification.Here, low resolution images are upgraded using ESPCN into high
resolution images. Afterward via multi-scale CNN, features are extracted. Later
using Attention - CTC said encoded feature sequences are decoded. Traditional
RCNN has great success in recognizing text but the training takes a significant
amount of time and the calculations are large. Via the algorithm identifying the
target is simpler and takes less time and calculation. In their work, they came to
the conclusion that training models based on Attention CTC avoids the gradient
disappearance problem of RNN. Proposed algorithm here can be advantageous if
it can be implemented on android devices as effectively reducing time needed to
operate would lessen the burden on the hardware.

Shruti et al.[15] used semantic segmentation and other pre-processing methodol-
ogy to recognize mixed data (handwritten, printed texts) faster. In their work,
they prioritize pre-processing data over improving conventional OCR models. Their
approach focused on using any OCR engine readily available and getting optimal
results by inputting fit data for training which they would get from their elabo-
rate pre-processing techniques. First the input image will be pre-processed where
binarization, noise reduction, slant removal, text alignment issues were performed.
The resultant image was then processed using Liner removal, Gray Scale Conver-
sion, Gaussian Blurring, Thresholding, 3 Channel Re-Conversion. Afterward, using
U-net image segmentation was performed and on the output using OCR engines
digital text was generated from handwritten/printed text. In their image processing
module, there was a label isolation model that allowed them to segregate handwrit-
ten texts from printed text. This module can be used in our research for using

5

segregated printed text for recognizing and categorizing different labels. Also, their
pre-processing approach is also very viable for our approach as we want to recognize
texts into different segments based on labels. Their work focused on forms which are
an example of mixed data while our work focuses on exam transcripts information
page where student information and grading is provided in mixed data as well.

For scene text recognition, Xia et al. (2022) [16] suggested a Transformer-based
encoder-decoder structure with a two-stage attention mechanism. A first-stage at-
tention module that combines spatial attention and channel attention captures the
overall placement of the text in the image at the encoder, and a second-stage at-
tention module at the decoder precisely determines the position of each letter in
the text image.This study suggests that this two-stage based strategy can improve
recognition precision and more precisely determine the position of the text. In order
to provide more robust features for the encoder, they also developed a multi-branch
feature fusion module. This module can merge features from several receptive fields.
According to this study, this framework is better for learning than the RNN-based
STR approach and can speed up training. The encoder of this framework uses con-
volutional layers instead of linear ones because the input is an image, but it also
adds that the original Transformer encoder’s structure is kept.

6

Chapter 3

Methodology

3.1 Dataset
The dataset used for this OCR implementation project is entirely composed of hand-
written digits of anonymous students ranging from 0 to 9 . The handwritten digits
were carefully obtained from BRAC university exam papers, lending the dataset
credibility and practical value. It consists of a total of approximately 10,000 hand-
written digits. And all of those digits have been mixed up with MNIST data for bet-
ter predicting performance of the models . The following MNIST dataset has about
60,000 variations of each digit. Image of every digit including ours was grayscale
and binarized .

3.2 Model

3.2.1 CNN
A type of CNN, machine learning, is called either a convolutional neural network
or a convnet. This special type of artificial neural network is used for different jobs
and data types. CNNs have demonstrated impressive progress in a number of areas,
the efficiency issue still has to be resolved immediately. Model storage and model
prediction speed issues are two subsets of the efficiency problem[8].

Typically intended for image recognition and pixel data processing tasks. A CNN
model uses matrix multiplication and other linear algebra concepts to find patterns
in an image. Extensive Training Convolution, pooling and fully connected (FC)
layers make up the three layers of CNN. The convolutional layer comes before the
FC layer and ends before it.CNN becomes more complex when moving from convo-
lutional layer to FC layer. With increasing complexity, CNN can recognize the most
important regions of the image and more complex details, until it finally recognizes
the object as a whole. Most of the calculations are done in the central component
of the CNN, the convolution layer. The first layer of twist can be followed by an-
other.in this layer, an examination of the image and its receptive fields occurs during
the convolution process by a kernel or filter to identify any features present. The
entire image is covered multiple times while calculating the dot product between
input pixels and filters at each iteration. Spiral features are produced as extreme
products from sets of points which ultimately convert images into numerical values

7

for appropriate analysis using CNNs. Pooling layers lose information but enhance
efficiency within CNNs based on previously obtained feature maps before classifying
them in FC (fully connected) layers where every activation unit connects with previ-
ous layer inputs. Each layer uses filtering/kernelling techniques analyzing different
levels/details starting low-level basic functions then advancing towards sophisticated
representations aligned with specific detected recognitions.The output generated af-
ter processing through all inverted/partially-detected images gets recognized finally
by identifying individual objects or their description via FC Layers in completion.

Figure 3.1: CNN.

During convolution, the input image is passed through several such filters. Each
filter performs its task and passes its results to the filter of the next layer when it
activates certain functions in the image. As tens, hundreds, or even thousands of
layers are added, the processes are repeated because each layer can recognize differ-
ent features. Finally, it can detect the whole object with image data processed by
CNN’s all layers.

3.2.2 KNN
The K-nearest neighbors algorithm, denoted as KNN or k-NN, is a supervised learn-
ing classifier that operates with nonparametric principles and utilizes data point
proximity for prediction and classification purposes. The primary goal of the KNN
method is to identify the K neighbors whose distance or similarity to the sample
to be categorized is closest after first calculating the distance or similarity between
the sample to be classed and the training sample of a given category[14]. It has di-
verse applications including regression tasks but mainly focuses on accurate results
in the field of classification by taking into account the tendency of similar points
to assemble together. Furthermore, discovering neighboring datapoints requires dis-
tance computations between surveying points and other relevant data sets assisting

8

it to recognize nearest ones effectively.This approach involves the creation of deci-
sion boundaries using distance measurements to divide survey points into distinct
regions. The accuracy of classification for a given query point in the implementation
of K-NN Algorithm depends on how many neighbors are analyzed. Neighbors with
closely situated data belong to similar class groupings, leading to precise classifica-
tions by taking each other’s similarities into account.To ensure accurate results while
maintaining evenness in grouping per classes and selecting suitable radius param-
eters is crucial.As a result, reliable and understandable outcomes can be obtained
when k=1. Because different values may result in over- or under-correction, the de-
termination of k may require careful consideration. Larger values of k can result in a
larger deviation and smaller variance, while smaller values can have a small variance
and a large variance. The input data plays an important role in determining the
value of k, as data with more noise or outliers will likely improve at larger values
 of k. The ability of KNN to handle complex decision constraints and non-linear
relationships in data is a significant advantage in image classification. This is es-
pecially useful when working with complex image variations and patterns. Because
KNN makes no assumptions about the distribution of the underlying data, it can
be applied to a variety of image datasets where feature relationships may not follow
a given mathematical model. KNN is also very efficient in handling multimodal
and multiclass classification tasks, which allows it to be flexible in situations where
images may belong to multiple classes or classes. Because it is non-parametric, it
can dynamically adapt to changes in the dataset and is therefore robust to new and
previously undiscovered image patterns.It is important to remember that despite
the advantages of KNN, in some image classification scenarios, scalability and com-
putational efficiency can arise, especially when the dataset size increases. For large
data sets, calculating the distances between data points can be computationally ex-
pensive. Thus, the compromises between simplicity and scalability, as well as the
unique characteristics of the image dataset, determine which algorithm is best.

3.2.3 SVM
Support vector machines (SVMs) are a supervised learning algorithm utilized in
machine learning to tackle classification and regression tasks. In particular, SVMs
excel at solving binary classification problems involving the separation of dataset
elements into two groups. The most efficient classifier is determined via SVM, and
support vectors play a significant role in this computation[6].

The objective of an SVM program is to identify the optimal decision boundary
between data points belonging to different classes within high dimensional spaces
called hyperplanes. To ensure effective differentiation, these programs strive for
maximal margin distances- that quantify gaps separating related hyperplane points
with their nearest opposing class counterparts accurately. In cases where complex
or curved lines demarcate various feature space divisions rather than straight ones,
nonlinear support vector machines use mathematical techniques such as transfor-
mation functions using kernel tricks on higher-dimensional datascapes suitable for
determining borders more successfully—demonstrating critical usefulness across do-
mains heavily reliant upon intricate datasets’ analyses when attempting accurate

9

Figure 3.2: KNN[11].

10

modeling processes efficiently. The Support Vector Machine (SVM) paradigm has
emerged as a highly effective tool for categorization. The most robust mathematical
model for regression and classification is SVM[1].

SVMs work by transforming the input data into a higher dimensional feature space.
This transformation can be used to classify a data set more successfully or to more
easily find a linear separation. SVMs use a kernel function to achieve this. The
basis function allows the SVM to implicitly compute the dot products between the
transformed feature vectors and avoids expensive, pointless computations in ex-
treme cases, instead of computing the coordinates of the transformed space.SVMs
can handle both linearly and nonlinearly separable data. They achieve this by using
different types of kernel functions, including a radial basis function (RBF) kernel,
a polynomial kernel, and a linear kernel. SVMs can efficiently extract complex re-
lationships and patterns from data thanks to these kernels. In the training phase,
SVMs determine the ideal hyperplane in a higher-dimensional space, also called
the kernel space, using a mathematical formulation. Because it minimizes classi-
fication errors and maximizes the margin between data points of different classes,
this hyperplane is very important.Because it allows merging data from the original
feature space into the kernel space, the kernel feature is essential for SVMs. The
choice of kernel function can significantly affect the performance of the SVM al-
gorithm. The characteristics of the data determine the best kernel function for a
given problem.The following are some of the most commonly used kernel functions
in SVMs:Linear kernel, data is mapped into a higher dimensional space where it is
linearly separable using the simplest kernel function.Polynomial kernel, this kernel
function can be used to transform data into a higher dimensional space if it is non-
linearly differentiable. It is more efficient than a linear core.RBF kernel, in SVMs
this is the most commonly used kernel function because it works well for many
classification problems.Choosing a kernel function for an SVM algorithm involves a
trade-off between accuracy and complexity. Better accuracy can be achieved with
more efficient kernel functions, such as the RBF kernel, than with simpler kernel
functions, but training the SVM algorithm with them requires more computation
time and data. But as technology advances, this is becoming less and less of a prob-
lem. After training, SVMs can identify which side of the decision boundary the new
unseen data points belong to and classify them. The title of the class associated with
the decision boundary and side is a result of SVM. Image classification tasks with a
large number of features are suitable for SVM. High dimensional images are those
where every pixel and feature adds to the overall image. SVM’s ability to process
high-dimensional data is essential for capturing nuances and variations in images
and for finely distinguishing between classes.SVM is also known for its robustness
against overfitting because it searches for a decision boundary that maximizes the
margin between classes. This feature makes SVM able to generalize to new data,
which is important for image classification because the model must perform accu-
rately on different recent images. But it is important to consider the computational
complexity of SVMand, especially when datasets grow. Training an SVM model
can be computationally demanding, and choosing the right kernel function requires
careful analysis of image data. However, SVM is a powerful tool for image classifi-
cation tasks due to its ability to handle high-dimensional nonlinear data, especially
when accurate discrimination of complex visual patterns is crucial.

11

3.2.4 YOLOv8
The latest model in the YOLO series is called YOLOv8. YOLOv8, an upgrade
from YOLOv6, substantially enhances performance and renders the model quick,
precise, and user-friendly[17]. With its five components—structural design, loss
computation, training data improvement, training strategy, and model inference
process—YOLOv8 builds upon YOLOv5, and it may be used to produce nearly any
kind of visual direction[18].

Figure 3.3: YOLO [19].

12

You Only Look Once, or YOLO, this model series got its name from - they can
accurately predict every object in the image with just one forward motion.The main
difference they introduced was how the YOLO models handled the problem. Rather
than framing the object recognition task as a classification question, the study au-
thors reframed it as a regression challenge (predicting bounding box coordinates).
YOLO models are pre-trained using huge datasets like ImageNet and COCO. Thanks
to this, they can now be both a student and a master at the same time. In addi-
tion to being faster to train, YOLO models can also achieve good accuracy with
smaller model sizes. They are more accessible to developers like us because they
can be trained on a single GPU.The latest version of these YOLO models is called
YOLOv8 (early 2023). Some notable changes with its predecessors include the ad-
dition of C3 convolutions, anchorless detection, and mosaics. The YOLO (You Only
Look Once) series has evolved into YoloV8, which focuses on real-time object detec-
tion in images and videos. It creates a grid of the image that predicts the bounding
boxes and class probabilities for each object in the grid cell. YOLO models’ strength
lies in object location and detection, although these include classification to some
level (giving class labels to detected objects).

3.2.5 SGDClassifier
SGDClassifier is an iterative model for large datasets[2].For machine learning tasks
involving linear classification, SGDClassifier (Stochastic Gradient Descent Classi-
fier) is a powerful optimization algorithm. An integral part of scikit-learn, this
classifier efficiently trains models on large datasets using a stochastic gradient de-
scent optimization technique. It works particularly well in situations where more
computationally demanding gradient descent techniques are not possible. Because
SGDClassifier supports a variety of loss functions, it is adaptable to a variety of
tasks, including logistic regression and linear support vector machines (SVM). By
iteratively updating the model parameters using a randomly selected subset of the
training data, SGDClassifier achieves a balance between accuracy and computational
efficiency. Due to its efficiency, scalability and versatility, the stochastic gradient
descent classifier (SGDClassifier) is a very attractive choice for image classification
applications. SGDClassifier’s stochastic optimization technique works well for image
classification, where datasets are often huge and high-dimensional. The technique
is computationally efficient and well-suited to handling the complexity associated
with image collections because it processes the training data in small, random sets.
Support vector machines (SVMs), logistic regression, and linear classifiers are ex-
amples of linear models that SGDClassifier can handle, which is one of its main
advantages in the image classification space. Its adaptability allows practitioners to
use multiple linear models according to the characteristics of the image data and the
requirements of the classification task. In addition, the stochastic properties of the
algorithm facilitate its traversal over large feature spaces, which makes it suitable
for scenarios where the number of pixels or features in an image is important. The
adaptive learning and continuous learning of SGDClassifier makes it particularly
useful in online learning environments where models need to be updated frequently
as new information emerges. In addition, the SGDC classifier can converge quickly
due to its efficient optimization procedure, making it a desirable choice when com-
putational resources are limited. SGDClassifier is a practical and efficient choice for

13

professionals dealing with diverse and large-scale image data sections because it can
process large-scale datasets and provide relatively accurate results, especially when
used with linear image classification models.

Figure 3.4: SGDC.

14

3.3 Proposed Methodology
For the purpose of training and testing our dataset, we have tuned some of our
models. Like for KNN we have set the nearest neighbor to 3 and weights set to dis-
tance. In particular, this setup can be useful for handwritten digit categorization.
When it comes to digit identification, the image’s patterns and characteristics are
essential in identifying the digit. The model becomes sensitive to local patterns and
subtleties unique to each digit by taking into account the three nearest neighbors
and assigning greater weight to those that are closer in feature space. This is par-
ticularly useful for handwritten numbers, since different writing styles may be used
and little details may contain a lot of information. The ’distance’ weighting proce-
dure further makes sure that the contributions of nearby data points are weighted
in accordance with their closeness, highlighting the significance of more pertinent
and comparable instances in producing precise forecasts. This can work especially
well for handling slight variances in handwritten digit presentation or writing style
variations. By utilizing the local correlations and patterns found in the dataset, the
KNeighborsClassifier setup with k=3 and distance-based weighting can, all things
considered, provide a reliable and adaptable method for handwritten digit recogni-
tion.

Then for SVM we used Gaussian kernel along with regularization parameter set
to 10 and Gaussian width set to 10. By efficiently converting the input space into
a higher-dimensional space, the kernel enables the SVM to identify intricate, non-
linear correlations in the data. Since the innate patterns and differences in writing
styles could not be linearly separable in the original feature space, this is important
for the classification of handwritten digits. The classifier can fit the training data
more freely with a greater value of C, perhaps catching complex patterns. A larger
C value would enable the model to more effectively accommodate the intricacies of
various digit representations, which is important for handwritten digit classification
when identifying minute differences in writing styles is essential. The Gaussian ker-
nel’s width is set by the gamma=0.01 parameter. The decision border is smoother
when the gamma value is less since it indicates that each training sample has a
greater effect. This helps guarantee that the model generalizes effectively to new
data and helps reduce overfitting, which can be advantageous for handwritten digit
categorization. To sum up, the SVM configuration with an RBF kernel, C=10, and
gamma=0.01 works well for classifying handwritten numbers. It is a strong option
for identifying various writing styles in digit pictures because the RBF kernel allows
the model to capture non-linear correlations, the larger C value allows for greater
adaptability to complicated patterns, and the smaller gamma value helps minimize
overfitting.

Using specified parameter values, the SGDClassifier initializes a Stochastic Gradient
Descent (SGD) classifier (loss=’hinge’, max_iter=1, random_state=42, tol=None,
warm_start=True). Let’s dissect this arrangement and talk about why it could
work well for classifying handwritten digits. The hinge loss function, which is fre-
quently used in conjunction with support vector machines (SVMs), is specified via
the loss=’hinge’ option. The hinge loss works particularly well when trying to op-
timize the margin between various classes and is a good fit for binary classification

15

applications. The hinge loss can aid in the creation of a decision boundary that best
divides the classes when it comes to handwritten digit classification, where the ob-
jective is to differentiate between various digits. The maximum number of iterations
(epochs) that can be used in the training process is set to one by the max_iter=1
option. This suggests that the training data will only be shown to the model once.
This could be helpful in situations requiring a little amount of CPU power or in
online learning scenarios where the model needs to be updated gradually with fresh
data. It’s crucial to remember that a model may need more iterations to get an
ideal solution if this low value is insufficient, and more iterations may be required
for improved performance. Reproducibility is guaranteed by setting the random
seed to 42 using the random_state=42 argument. This implies that the classifier
will provide consistent results when run with identical data and parameters, which
is crucial for reliable testing and assessment. The tolerance for convergence is spec-
ified by the tol=None option. If you set it to None, then regardless of whether the
model has converged, the training process will go on until the maximum number
of iterations (max_iter) is achieved. In situations when exact convergence is not
a crucial factor, this is an acceptable option. Building on the prior technique, the
model may be trained progressively with the warm_start=True option. This makes
it an appropriate option for handwritten digit classification tasks that can require
ongoing updates and additions to the training dataset. It is especially helpful in
situations when the model has to be updated with new data in a dynamic or online
learning context. In conclusion, handwritten digit classification tasks may bene-
fit from the configuration of the SGD classifier with hinge loss, one iteration, and
warm start. This is particularly true in situations where computing resources are
constrained or when the model must be updated gradually over time with fresh data.

After that, the CNN model may be built sequentially thanks to the Sequential()
method, which initializes a linear stack of layers. First, we have a convolutional layer
represented by Conv2D(32, kernel_size=(3, 3), activation=’relu’, input_shape=(28,
28, 1)), which has 32 filters (sometimes called kernels) of size 3x3. This layer’s pur-
pose is to find certain patterns and characteristics in the handwritten digit pictures,
which have 28 by 28 pixels. The model gains non-linearity via the ‘relu’ activation
function, which helps it learn intricate representations. Max pooling is carried out
by the next layer, MaxPooling2D(pool_size=(2, 2)), which reduces the spatial di-
mensions of the representation while keeping the most crucial data. By doing this
step, the model becomes more resilient to changes in finger location and compu-
tationally efficient. To prepare the output of the preceding layer for input into a
highly linked layer, the Flatten() layer flattens it into a one-dimensional vector.

The following fully connected layer has 128 neurons and a rectified linear unit
(ReLU) activation function. It is called Dense(128, activation=’relu’). High-level
abstractions and intricate linkages in the data are further captured by this layer.
Dense(10, activation=’softmax’), the last layer, is a densely linked layer made up
of 10 neurons, which represent the 10 digit classes (0 through 9). The network’s
output is transformed into probability distributions using the ’softmax’ activation
function, which yields a likelihood for each digit class. Convolutional and densely
linked layers of the CNN architecture, together with the right activation functions,
pooling, and flattening, are, in short, ideal for collecting hierarchical characteris-

16

tics in handwritten digit pictures. ’categorical_crossentropy’ loss function and the
’adam’ optimizer are good options for effective training and precise classification.
The best model is retained for later use thanks to the model checkpoint.

For YOLOv8, we have used Adam optimizer along with the basic model.

Figure 3.5: Research Methodology.

17

3.4 Workplan
This research aims to train its own custom model after gathering appropriate amounts
of data and applying appropriate processing methods so the model will run efficiently
and accurately.And then a real world deployment will be done as a contribution. So,
the work plan for this research will be :

• Template format: For the time being, we aim to apply this model on BRAC
university exam script as real world deployment. So, we will gather this tem-
plate and its variations.

• Text data gather: We aim to gather our own dataset. In this case, we will
gather marked answer scripts and gather the data from that. We will maintain
confidentiality as it contains sensitive data.

• Template pre-processing: Before using it into a Machine learning model, we
want to process it to cut out unnecessary areas such as logos, images etc.

• Data pre-processing: Same as template, we want to improve the quality of the
characters from our data set. So, we will add a few processing methods.

• Model implementation: With the dataset created and processed, we will apply
it on models found based on our literature review.

• Testing and Evaluation: In order to measure the performance of the model
we will use different real world documents for testing. Effectiveness will be
measured with appropriate metrics to ensure user satisfaction in real world
scenarios.

• Cross-check method: If the model can not identify a particular scenario, we
will save that event and try to label that from an existing cross checking
database if it exists or save the edit being done. Then add that case back into
the database so the same mistake won’t be made two times.

• Deployment: With appropriate model design and evaluation with real world
tests, we will deploy it as an appropriate form with security so that teachers
can use it as a tool to upload student data seamlessly.

• Maintenance: The human handwriting is different from one another and it
continues to differ as time progresses. To ensure the performance of the system
and handle future gimmicks, a scheduled maintenance will be done to make
appropriate tweaks.

18

Chapter 4

Dataset Creation

4.1 Image Collection
In order to create a representative and diverse dataset, a thorough and systematic
procedure was used to gather samples from various sources found in the academic
archives of the institution. We were able to obtain access to an extensive and di-
verse set of previous exam papers with the express consent and collaboration of the
university administration. These papers covered a wide range of courses, subjects,
and examination types, including final and midterm papers across different faculties.
This systematic strategy performed a critical role in guaranteeing that our dataset
included a wide range of handwriting styles, which is essential for the reliability
of OCR systems. We ensured that the handwriting samples had a wide range of
variability by including papers from several academic subjects. This diversity goes
beyond only the sorts of writing pupils produce; it also includes variances in the
writing implements that they use, such as different kinds of pencils and pens, which
can have an impact on the clarity and thickness of their strokes. Moreover, the
addition of different ink colours enriches the dataset. Although the most prevalent
colours are black and red, there are also additional colour like blue, which gives
OCR systems a more difficult and realistic scenario to understand. This variance
is significant because it replicates real-world scenarios in which OCR systems could
run into issues with various ink colours. In a study[12], upon inspecting language
practice of three different origin, researcher have concluded that there are significant
diversity on their writing of English letters. And thus we have come to a conclusion
that people of Bangladesh has unique English handwriting and our collected data
will help the model recognize said handwriting well.

Furthermore, several types of paper are utilised for these exam sheets, such as
recycled or slightly tinted papers, in addition to typical white sheets, which may
affect the handwritten numbers’ backdrop contrast. A further degree of difficulty
in digit recognition arises from this diversity of paper types, which replicates the
various scanning settings and paper characteristics that OCR systems may face in
real-world applications. The students that took these tests across multiple semesters
represented a wide demography that contributed to this dataset. This feature of the
dataset makes the handwriting samples more representative and guarantees that
they aren’t biassed towards any one course or student group. Exam papers from
several courses and semesters are included in the dataset, which makes it a more

19

comprehensive resource for training and assessing OCR algorithms since it covers
changes and trends in handwriting styles over time.

To summarise up, the handwritten digits in our dataset were primarily sourced
from this large collection of documents from the academic archives of the university.
This approach to data collecting guarantees that the dataset is both diverse and
sizable, closely reflecting the real-world situations where OCR systems are used.
As a powerful and demanding resource for creating and testing sophisticated OCR
systems, the dataset captures a broad diversity of handwriting styles, utensils, ink
colours, and paper kinds.

4.2 Image Processing
The dataset was divided into training and validation subsets, allowing for model
evaluation and development. The MNIST dataset structure served as inspiration
for the dataset’s construction, but a special method suited to the context of hand-
written numbers taken from university test papers was also used. Using custom
scripts, the procedure started with the difficult extraction and snipping of indi-
vidual digit images from the exam papers. The rigorous manual cropping process
guaranteed the separation of every handwritten digit while preserving the uniform
size and orientation consistent with the standard format of the MNIST dataset.
These images may have varied in size due to variances in writing size and paper
alignment. A robust set of preparation procedures was carefully designed to ensure
the consistency and interpretability of the dataset. The standardization of the data
across different samples was made possible in large part by normalization proce-
dures. In order to reduce any biases caused by differences in writing styles and ink
intensity, this involved scaling the pixel values of the handwritten digits to a com-
mon range. Additionally, contrast enhancement techniques were used to maximize
the readability of the numbers, guaranteeing consistency in their appearance and
supporting the extraction of features.

Additionally, to maintain uniformity across the dataset, each cropped image was
meticulously resized to align its proportions to a predetermined standard, such as
the MNIST collection’s convention of 28x28 pixels. Initially the cropped photos were
uniformly enlarged utilizing interpolation methods to establish a consistent format.
Then image processing libraries and methods used to maintain the aspect ratio and
content integrity of the handwritten numbers. Moreover, The coloured images were
converted to grayscale and a binary format to reduce complexity. Binary images
only have two values: 0 denotes the absence of information or background, and 1
denotes the presence of information or foreground (for the handwritten numeral).
This simplicity improves processing efficiency by streamlining subsequent compu-
tational procedures. The emphasis changes from grayscale or color gradients to a
distinct delineation of the digits’ shape and edges. This makes feature extraction
easier, allowing models to focus on important structural aspects for classification
or identification tasks. Running consistency tests are conducted on the dataset to
detect any anomalies or discrepancies in the recognized digits’ alignments. This may
include manual visual inspections, statistical analysis of digit distribution, checking
for missing or duplicate entries, and assuring digit size and orientation consistency.

20

By methodically carrying out these verification and alignment stages, the dataset’s
consistency is ensured, proving the accuracy of digit identification and alignment
throughout the dataset. This thorough technique ensures a high-quality dataset,
laying the foundation for strong model training and precise OCR implementation.

21

Chapter 5

Implementation

5.1 Library List
The libraries that were used for our implementation are: matplotlib, skimage,
sklearn, numpy, pickle, Seaborn, os, csv, tensorflow, keras, PIL, OpenCV. Other
than the libraries some additional packages and modules were also used for our
implementation which are: attrs, backcall, bleach, cycler, decorator, defusedxml,
entrypoints, imageio, importlib-metadata, ipykernel, ipython, ipython-genutils, ipy-
widgets, jedi, Jinja2, joblib, jsonschema, jupyter, jupyter-client, jupyter-console,
jupyter-core, kiwisolver, MarkupSafe, mistune, nbconvert, nbformat, networkx, note-
book, packaging, pandocfilters, parso, pexpect, pickleshare, Pillow, prometheus-
client, prompt-toolkit, ptyprocess, Pygments, pyparsing, pyrsistent, python-dateutil,
PyWavelets, pyzmq, qtconsole, QtPy, scipy, Send2Trash, six, terminado, testpath,
threadpoolctl, tifffile, tornado, traitlets, wcwidth, webencodings, widgetsnbexten-
sion, zipp.

5.2 Data Pre-processing
For our dataset we used a combination of MNIST dataset and our primarily col-
lected dataset. As our primary dataset was lacking in volume, we combined it with
MNIST dataset and divided it into training, testing and validation sets. For train-
ing, testing and validation we divided it into respectively 80%, 10% and 10%.

For data preprocessing, we first resized our images to lower computational cost.
Then, we converted the images into grayscale and later converted them into binary
images. Afterwards, we did some model specific pre-processing steps. For example,
in the case of CNN model after all the previous steps, we additionally set the data
type to ‘float32’ and also normalized the pixel value to range between 0 and 1 in-
stead of 0 and 255. For YOLOv8 model, instead of resizing the image to 28*28, we
resized it to 32*32.

22

5.3 Model Selection
We had shortlisted five machine learning and deep learning models from our lit-
erature review for our task. However, we would only use one of these models for
designing our interface. Thus, we trained all five models with our combined dataset
and compared their results. Out of all the models, we chose the one with highest
accuracy for our implementation.

5.4 Training Model
We trained all five models individually with our combined dataset. Firstly, for train-
ing CNN models, we added a few custom layers in addition to base layers as discussed
in chapter 3. With our combined dataset we trained the modified version of CNN
model. We set the batch size to 256 and epoch to 20 for this model. For CNN, we
used Adam optimizer and set the loss function to ’categorical_crossentropy’. Then,
for the YOLOv8 model we loaded a pre-trained model as it is a transfer learning
model and set the epoch to 8 and batch size to 16. Same as CNN we used Adam
optimizer for YOLOv8 as well. For KNN, we set the weight to ‘distant’ and n_neigh-
bour to 3. For SVM, we set the kernel function to Radial Basis Function, set the
regularization parameter to 10 and gamma value to 0.1. Lastly, for SGDC we set
the loss function to ‘hinge’, random state to 42, tol to None, number of iterations
to 1 and enabled warm start capability.

After training all the models in a given manner and comparing their accuracy, we
found that YOLOv8 had the best outcome of all. The result of our findings will be
explained in detail in chapter 6.

5.5 Creating Model Interface

5.5.1 Data Insertion
The model interface is designed in a manner that would allow users to scan and
extract data from multiple documents at a time. For our purpose, we choose google
drive to store our input images. Users can upload from one image to any number of
images they want in said google drive. Our interface will then connect and import
all the input images to our environment.

5.5.2 Fix Orientation and Extract Data Region
We know in form-like documents there are boxes that users use to fill out their
information. In some documents, these boxes are profound and in some cases they
are not just like in Fig 5.1 and Fig 5.2. No matter what type of documents it is,
one thing is very evident that a certain type of documents will always have a fixed
dimension. To elaborate, if there is an information table in the document that asks
for users name, id, course name, section, course code every copy of the said kind of
documents will have the same height and width in the exactly same position. Our
goal was to fix the orientation of all input images so that we can extract regions
containing necessary data.

23

Figure 5.1: Profound Box.

Figure 5.2: Unprofound Box.

24

There are mainly two known ways to fix document orientation. One is using machine
learning and another is using image processing. In our experiment, we used the latter
one. There are few steps to getting a perfectly oriented document image which are
pre-processing, finding quadrilaterals, extracting images using said quadrilaterals
points. We will be using Fig 5.3 for our demonstration.

Figure 5.3: Test Script.

Starting with pre-processing, it is necessary for achieving a clear, noise-free image
that will be less resource intensive and accelerate computational capability. Firstly,
we started with resizing the image. By resizing the image, we reduce computation
required for each image. However this also reduces details as well. Secondly, we
implemented denoising methods. Denoising will reduce noise from images, making
its features more prominent. Images taken with poor camera quality or captured
in a low light environment tend to have more noise which impairs the judgment of
models used to process said images. For denoising we used opencv library function
“fastN1MeansDenosing”. In said function, non-local means denoising algorithm is
used to detect similar patches of pixel, as similar patches tend to have similar noises.
The function ensures noises are removed while preserving the details of the image. In
Fig 5.4, we have given a side by side comparison between the real image and denoised
image. Lastly, we implemented Otsu’s thresholding function. For thresholding, we
first converted the three channel image to one channel image. Then we used the
new gray scaled image for thresholding which provided us with a binary image. This
marks the end for pre-processing the images, in Fig 5.5 we have shown a comparison
of real world image vs processed image.

25

Figure 5.4: Original Image VS Denoised Image.

Figure 5.5: Original Image VS Processed Image.

26

The second step in our task is to find quadrilaterals. We had used hough lines for
doing so. Again, we had to start with pre-processing the image. However, this time
the pre-process was different than the first time. Our goal was to find four lines,
now the text written in the document would be interfering with the task. We re-
moved the text/details the document had so that we can find the lines. We could
not include this in the first pre-processing method as we need the text/details for
future steps. Thus, we will be doing it in this step. To remove the details within
the document we used morphological transformations. In Fig 5.6, we have shown
an example of how the image will look after processing. Now, to detect the page
parameters we used another algorithm called canny edge detection. Finally, using
the output from the last algorithm we can find hough lines[4]. We used opencv
functions called HoughLines and HoughLinesP for getting hough lines. In Fig 5.7,
an example of hough lines created from a test image is shown. As you can see in
the image the lines form a quadrilateral. However, there are certain cases where the
images will fail to form a quadrilateral mainly due to light source issue, overlapping
documents. In Fig 5.8, two images have been doctored to visualize the problems
that cause the failure. In our demonstration the image used does not have any said
implication and hence was successfully processed. Lastly, to calculate the extraction
points we need to find intersection points. But the task is not as easy as it seems,
as there is more than one line for our perfect image as well. So, we checked the
intersection angle. If the angle is 90 degrees or closer we count them as correct and
so on. By doing so we get a few intersection points for all four corners. We used
KMeans algorithm to find the quadrilateral in the end.

Figure 5.6: After Morphological Transformation Closed Operation.

27

Figure 5.7: i. Hough Lines; ii. Hough Lines with Intersection; iii. Hough Lines with
Grouped Intersection

Figure 5.8: Problems while Drawing Hough Lines.

28

For the third step, with the quadrilateral found, the only thing left is to extract the
image. We used opensCV’s warp perspective function.
With the image correctly orientated, we can now extract the necessary information.
As previously mentioned, all form-like documents of the same structure have the
same dimensions. So, for our next task, we just need to specify the regions where
data can be found. In Fig 5.9, we see the final image after fixing orientation. With
the regions selected we can loop the algorithm to be able to extract regions from as
many as scripts we want. In Fig 5.10, we can see examples of extracted regions.

Figure 5.9: Comparison Between Original Image and Correctly Oriented Image.

5.5.3 Segmentation of Extracted Data Region
From the previous stage, we got cropped images each containing either student id,
section or question marks. In this stage, we targeted these cropped images to seg-
ment them into individual digits. So, for student id there would be 8 segmented
images, for section there will be either 1 or 2 segmented images and same goes for
question marks.

We used contours to segment each image but before using contours we needed to
prep the image. At this point all the cropped images are already processed once
as a whole, however this time pre-process was done for individual crops and their
end result was also varying. We also set up a function that would remove unwanted
segmented images as well for improved performance.

29

Figure 5.10: Extracted Images Preview.

We started our cropped image pre-processing by removing underlines or unwanted
dots. In all form-like documents to specify each data block for the humans, there
are guiding boxes or underlines which suggest that one should either write certain
information in said boxes or over the underline. While extracting said certain infor-
mation, our algorithm may as well parts of this underline/boxes or whole of it. So,
our first step was to get rid of said lines. Firstly, we took the cropped image and
did grayscale conversion, binarization. Afterward, we initiated a kernel matrix. The
purpose of this kernel matrix was to extract features, in our case horizontal lines.
We then performed a morphological transformation (MT) operation to find the lines.
The kernel matrix was used to operate the MT operations for line detection. Upon
detecting lines, we computed its contours. By having contours we could successfully
create a border around the lines. We then run an algorithm which would replace the
lines pixel value to be black which basically removed our lines. With the unneces-
sary lines gone, we further processed the cropped images by grayscale conversion and
binarization. And again, we computed contours of the images. However, this time
the contours were computed so that all individual digits borders would be detected
like it is showcased in Fig 5.11. Now, we used an opencv function “boundingrect”
to get the top left x,y coordinates and also height (h), width (w). Using each of
these x,y,w,h for each of the digits, we were able to segmentize the digits. Then,
we further cropped the images to get individual digit images and also store them in
the google drive for further progress. Also, we stored the height and width of these
individual digit images and the reason behind will be explained later.

As you can see in Fig 5.12, though the digits were segmented there still existed some
anomaly. Our further progress could not have been possible until these anomalies
were executed. Thus, we designed a secondary function that would flush these poor
segmentation out. In our second function, we first calculated the pixel count in all
the images. Now, all the cropped images will vary in height and width and hence-
forth in the pixel count as well. Also, a normal number ranging from 0 to 9 will

30

Figure 5.11: Highlighted Digits for Segmentation via Contour.

Figure 5.12: Segmentation First Phase.

always take a minimum amount of pixels which will be greater than the dots. Thus,
we introduced a threshold. The threshold was designed so that any digit image pixel
would be greater than the threshold value and all dots images threshold would be
less than the threshold value. The second function would essentially compare the
pixel count and store the outputs in a secondary location. For our other kind of
anomaly removal, remember the height and width we stored on our initial function,
we used them. We calculated the average height and width of the segmented im-
ages from these stored values and found the ones that are greater than the average
value. We then segmented them in half and stored the new segmentation. Thus, we
removed the segmentation anomaly and got clean, computable segmented images.

5.5.4 Pre-process of Segmentated Image
At this stage, we have segmented our image and from one single answer script we get
around 25-30 segmented images each containing a single digit. In our demonstration
image, we got 23 segmented images. However, these images vary in dimension and
are still not similar to the data type the model was trained with. Fig 5.13 is a rep-
resentation of the dataset that was used to train our model. In this preprocessing
step, we tried to mimic our segmented images to be like the previously mentioned
dataset.

First, we converted the image to grayscale. Fig 5.14 is a representation of how our
segmented image looked after resizing. As we can see there were still discrepan-
cies between the images. We tried various image processing techniques to mimic
the dataset. In fig 5.15, we showcased different outcomes for different processing

31

Figure 5.13: Representation of our custom data.

techniques. We used histogram equalization method for our image, but for our pur-
pose the processed image was not suitable. Then, we decided to increase the image
contrast. Initially, we set the contrast control factor to 1.5 and got a satisfactory
output. However, upon increasing the control factor to 1.9 we observed the details of
the digits which became more profound. Thus, we choose to set the control factor to
1.9 and increase the segmented image contrast. Furthermore, we resize the images
to 28*28 and set the interpolation method to bilinear interpolation. Later we did a
bitwise NOT operation for the resized image, which essentially converts light pixel
to dark pixel and vice versa. Lastly, we reshaped the image, changed its data type
to ‘float32’ and normalized the pixel values to range from 0 to 1.

Figure 5.14: Resized Segmented Image Without Pre-processing.

Figure 5.15: Result of different pre-processing.

32

5.5.5 Prediction
For our model interface, we designed four prediction functions. Two of these func-
tions were for digit recognition and the other two were for alphabet recognition. For
digit recognition, one of the two functions was to make a string while the other func-
tion would only recognize specific images. For example, the first function would take
a relevant array of segmented images like 8 segmented images of student id. The
first function would then cycle through the array of segmented images and call the
second function who would recognize each individual image. The second function
would initialize the model, predict the image’s digit, turn the data type to string
and return the result to the first function. The first function that was going through
all relevant segmented images would take the output from the second function and
concatenate it to a string.Ultimately, the first function would return the predicted id
in such a manner. The same thing happens for the two alphabet recognition model,
only the model initialized in the second function there is different.

5.5.6 Second Step Verification and Creation of Improvement
Dataset

In the previous section, we talked about how due to lighting problems or overlapping
documents, the fix orientation algorithm can falter. Thus, we choose to have a second
step verification algorithm integrated to our model interface as well.
Here the algorithm will cross check predicted id with a user provided excel sheet
data, to confirm whether or not the student exists. If the student id exists in the
database, the algorithm will go on, otherwise the algorithm will do a cross check with
the predicted name and id with the database to find the closest matching student.
The algorithm will notify the user to recheck said closest student while also storing
said extracted region data for future training purposes. By doing so, the algorithm
is creating a new improvement dataset for our model. The model can learn from its
mistake as a dataset is being automatically updated with contents that the existing
model cannot handle.

5.5.7 Output
The ultimate goal of our model interface is to take multiple answer scripts as input
and as output create csv files that will contain student id, section, question marks
and total marks.
From our previous segments of our model interface, we got the predicted value of
the extracted region data. We created arrays to store these individual entries and
we used the data of these arrays to fill in the csv file. The csv file was then also
stored in the google drive for the user to access.

33

Chapter 6

Result Analysis

6.1 Compare Accuracy of Chosen Models
This research aims to find the best lightweight model so that we can implement it on
different platforms easily while retaining excellent accuracy. So first, let us observe
individuals models precision, recall and f1-score for each digit:

Table 6.1: KNN

Digit Precision Recall F1-score
0 0.8 0.92 0.86
1 0.97 0.94 0.95
2 0.82 0.86 0.84
3 0.79 0.81 0.8
4 0.9 0.8 0.84
5 0.94 0.82 0.87
6 0.85 0.89 0.87
7 0.93 0.83 0.88
8 0.77 0.86 0.81
9 0.77 0.76 0.77

From the Fig 6.1 we can observe that, KNN model performed fairly well with the
pre-process that we did and maintained a precision above 90% except for digits:
3,8,9. As these digits closely resemble each other so when a person is writing them,
it is harder to predict it accurately. But as we managed to fix different segmentation
related errors, the result is far better than other papers that used KNN as well.

Then we have SGDClassifier, from the Fig 6.2, we can see, this model overall per-
formed worse then KNN but the results were all uniform and there wasn’t much
scatter of precision. Where KNN managed to detect a few digits really well and
for some the result plummeted, SGDClassifier managed to maintain a fairly closely
knitted result when detecting digits from hand written numbers.

34

Table 6.2: SGDClassifier

Digit Precision Recall F1-score
0 0.84 0.89 0.87
1 0.93 0.95 0.94
2 0.79 0.87 0.83
3 0.85 0.76 0.8
4 0.81 0.83 0.82
5 0.89 0.85 0.87
6 0.86 0.89 0.87
7 0.86 0.87 0.87
8 0.8 0.81 0.8
9 0.77 0.69 0.73

Table 6.3: SVM

Digit Precision Recall F1-score
0 0.87 0.91 0.89
1 0.96 0.95 0.96
2 0.83 0.89 0.86
3 0.83 0.83 0.83
4 0.85 0.85 0.85
5 0.91 0.88 0.89
6 0.87 0.91 0.89
7 0.91 0.87 0.89
8 0.85 0.81 0.83
9 0.78 0.75 0.77

35

From this Fig 6.3, the SVC model performed overall better than the previous two
models. We can see that the precision scatter is similar to that of KNN. For a few
digits, the model is performing extremely well but for some digits, the precision hits
rock bottom. However, the precision has increased compared to KNN. Similarly,
SGDClassifier may have better uniform result but the overall precision is higher in
SVC.

Table 6.4: YOLOv8

Digit Precision Recall F1-score
0 .99 1 1
1 .99 1 1
2 .99 .97 .98
3 .99 .99 .99
4 .99 1 .99
5 .97 .98 .98
6 .99 .99 .99
7 .99 .99 .99
8 .99 .99 .99
9 1 .98 .99

YOLOv8 is a really advanced model and can apply past learnings in the new dataset
or model. So, it is no surprise that YOLOv8 performed really well in this case. From
the Fig 6.4 we can see that the lowest precision value is 98% which is more than
the highest value of the last three models. And in one case we are getting 100%
precision of the digits. So, this is a really optimized and high performing model that
we can consider to apply for the final product.

Table 6.5: CNN

Digit Precision Recall F1-score
0 0.98 0.99 0.99
1 0.99 1 0.99
2 0.98 0.98 0.98
3 0.99 0.99 0.99
4 0.99 0.98 0.99
5 0.99 0.98 0.98
6 0.99 0.98 0.98
7 0.98 0.99 0.98
8 0.98 0.99 0.98
9 0.98 0.98 0.98

Finally we have CNN. From the Fig 6.5, we can observe that the model has similar
performance to the YOLOv8 model. The precision is really high and the lowest
value is similar to that of YOLOv8 : 98%. Although it did not reach any perfect
precision anywhere but nevertheless, it retained a really high value in all the digits.
This is a neural network model, so due to the convolution and pooling layers with

36

the fine tuned image pre-processing, it is performing exceptionally well in our cus-
tom dataset.

Now, let us observe the confusion matrix of these models:

Figure 6.1: Confusion Matrix of Different Models.

From the Fig 6.6 , we can see that CNN and YOLOv8 have the best prediction from
the rest and they have some no false predictions in some cases. Although they were
excellent models to begin with, in addition to the pre-processing that we did and
removed many errors that we would have depended on the model to perform, the
selected models demonstrated really high accuracy in our custom dataset containing
handwritten dataset.

37

Figure 6.2: Confusion Matrix of CNN.

38

For further clarification and to choose a better model out of these, lets observe their
accuracy:

Table 6.6: Accuracy Comparison

Model Accuracy
KNN 85%

SGDClassifier 84%
SVC 87%
CNN 98.6%

YOLOv8 98.8%

From the Fig 6.7 , it becomes evident that CNN and YOLOv8 outperforms all other
models in terms of accuracy, precision, recall and f1-score. Also, the gap between
these two and the other models are really high. Here, CNN is a neural network
model whereas YOLOv8 is a transfer learning based model. As our objective is
to apply the best model in a real life scenario where we will encounter complex
connected strings. So, having a pre-trained model which can apply that knowledge
while training in our current dataset, it will be better in the long term. The reason
is because we want to add the wrong predictions back to our dataset when we are
using the model on real world data. So, if the model can retain its previous training
and continuously update itself from the new data, it will be the perfect model in our
case. So, we aim to apply this model in a real world scenario and deploy a medium
which will be incorporated on this idea.

39

Chapter 7

Conclusion and Future work

7.1 Conclusion
To conclude, integration of ML and OCR in an android environment has great
potential as it directly enhances user experience by removing the human labor and
makes it more time efficient. In addition, the cross checking feature will rapidly
ensure data validity and speed up the process of error handling even more. Then by
enabling the processing to occur in the local environment, people can now store data
with ease when visiting rural areas with no reception. Furthermore, the model uses
user reference to calibrate itself for better results. So, the model can ensure each
user gets their own preference in extracting data. And by the fact that everyone in
the modern world currently has access to a smartphone, we can obsolete the idea of
a different device needed for this type of work in terms of scanning and extracting.
So, this research will directly impact the common people in empowering them and
help them integrate with the processes of the modern world.

7.2 Limitation
In our research, we have managed to take an image data as input and extract it
with different pre-process and put it in a computer editable format. Although, we
managed to solve and improve many problems like cropping the image correctly,
fixing different segmentation related errors. But, there were some problems along
the way: when the background of the intended document was in a brighter contrast
than expected, the cropped image contained that background. Also, images from
different types of camera have different properties, we did not incorporate that when
doing our case and instead went for a general format which the majority of the people
had.

40

7.3 Future Work
While collecting our dataset, we only collected those of the students of our institu-
tion. So there is a bias of both age group and education level in the dataset. So
in future, we aim to further extend our research, starting with student handwritten
data from different age groups. This will allow us access to data of the effect of age
and level of education in handwriting. In addition to that, we want to study the
pattern of different formats simultaneously and find a connection so that we can
predict the occurrence of a specific type of data in a place and its reason.

41

Bibliography

[1] M. A. Chandra and S. S. Bedi, “Survey on svm and their application in image
classification,” International Journal of Information Technology, Jan. 2018.
doi: https://doi.org/10.1007/s41870-017-0080-1.

[2] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and L. E. Barnes,
“Rmdl: Random multimodel deep learning for classification,” Proceedings of
the 2nd International Conference on Information System and Data Mining -
ICISDM ’18, pp. 19–28, 2018. doi: https://doi.org/10.1145/3206098.3206111.
[Online]. Available: https://arxiv.org/abs/1805.01890.

[3] Z. Lei, S. Zhao, H. Song, and J. Shen, “Scene text recognition using residual
convolutional recurrent neural network,” Machine Vision and Applications,
vol. 29, no. 5, pp. 861–871, 2018. doi: 10.1007/s00138-018-0942-y.

[4] A. Sere, F. T. Ouedraogo, and B. Zerbo, “An improvement of the standard
hough transform method based on geometric shapes,” Advances in Intelligent
Systems and Computing, pp. 369–384, 2018. doi: 10.1007/978-3-030-03405-
4_25.

[5] S. S. Mor, S. Solanki, S. Gupta, S. Dhingra, M. Jain, and R. Saxena, “Hand-
written text recognition: With deep learning and android,” International Jour-
nal of Engineering and Advanced Technology, vol. 8, no. 3S, pp. 819–825,
Feb. 2019, ISSN: 2249-8958. [Online]. Available: https://www.ijeat.org/wp-
content/uploads/papers/v8i3S/C11730283S19.pdf.

[6] S. Y. Chaganti, I. Nanda, K. R. Pandi, T. G. Prudhvith, and N. Kumar,
“Image classification using svm and cnn,” in 2020 International Conference
on Computer Science, Engineering and Applications (ICCSEA), 2020, pp. 1–5.
doi: 10.1109/ICCSEA49143.2020.9132851.

[7] H. Dave, “Ocr text detector and audio convertor,” International Journal for
Research in Applied Science and Engineering Technology, vol. 8, no. 5, pp. 991–
999, 2020. doi: 10.22214/ijraset.2020.5157.

[8] J. Qin, W. Pan, X. Xiang, Y. Tan, and G. Hou, “A biological image classifica-
tion method based on improved cnn,” Ecological Informatics, vol. 58, no. 58,
p. 101 093, Jul. 2020. doi: https://doi.org/10.1016/j.ecoinf.2020.101093.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/
S1574954120300431.

[9] J. E. Tejaswini, “Text extraction from images using ocr,” International Journal
for Research in Applied Science and Engineering Technology, vol. 8, no. 5,
pp. 1805–1810, 2020. doi: 10.22214/ijraset.2020.5291.

42

https://doi.org/https://doi.org/10.1007/s41870-017-0080-1
https://doi.org/https://doi.org/10.1145/3206098.3206111
https://arxiv.org/abs/1805.01890
https://doi.org/10.1007/s00138-018-0942-y
https://doi.org/10.1007/978-3-030-03405-4_25
https://doi.org/10.1007/978-3-030-03405-4_25
https://www.ijeat.org/wp-content/uploads/papers/v8i3S/C11730283S19.pdf
https://www.ijeat.org/wp-content/uploads/papers/v8i3S/C11730283S19.pdf
https://doi.org/10.1109/ICCSEA49143.2020.9132851
https://doi.org/10.22214/ijraset.2020.5157
https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101093
https://www.sciencedirect.com/science/article/abs/pii/S1574954120300431
https://www.sciencedirect.com/science/article/abs/pii/S1574954120300431
https://doi.org/10.22214/ijraset.2020.5291

[10] A. U, “Text localization and recognition,” International Journal for Research
in Applied Science and Engineering Technology, vol. 8, no. 5, pp. 981–985,
2020. doi: 10.22214/ijraset.2020.5155.

[11] Z. Fan, J.-k. Xie, Z.-y. Wang, P.-C. Liu, S.-j. Qu, and L. Huo, “Image classi-
fication method based on improved knn algorithm,” Journal of Physics: Con-
ference Series, vol. 1930, p. 012 009, May 2021. doi: 10.1088/1742-6596/1930/
1/012009.

[12] L. Gannetion, K. Y. Wong, P. Y. Lim, K. H. Chang, and A. F. L. Ab-
dullah, “An exploratory study on the handwritten allographic features of
multi-ethnic population with different educational backgrounds,” PLoS ONE,
vol. 17, no. 10, e0268756, Oct. 2022. doi: https://doi.org/10.1371/journal.
pone.0268756%7D. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC9544031/%7D.

[13] Y. Jiang, Z. Jiang, L. He, and S. Chen, “Text recognition in natural scenes
based on deep learning,” Multimedia Tools and Applications, vol. 81, no. 8,
pp. 10 545–10 559, 2022. doi: 10.1007/s11042-022-12024-w.

[14] R. Li and S. Li, “Multimedia image data analysis based on knn algorithm,”
Computational Intelligence and Neuroscience, vol. 2022, Q. Li, Ed., pp. 1–8,
Apr. 2022. doi: https://doi.org/10.1155/2022/7963603.

[15] S. Patil, V. Varadarajan, S. Mahadevkar, R. Athawade, L. Maheshwari, S.
Kumbhare, Y. Garg, D. Dharrao, P. Kamat, and K. Kotecha, “Enhancing
optical character recognition on images with mixed text using semantic seg-
mentation,” Journal of Sensor and Actuator Networks, vol. 11, no. 4, p. 63,
2022. doi: 10.3390/jsan11040063.

[16] S. Xia, J. Kou, N. Liu, and T. Yin, “Scene text recognition based on two-
stage attention and multi-branch feature fusion module,” Applied Intelligence,
vol. 53, no. 11, pp. 14 219–14 232, 2022. doi: 10.1007/s10489-022-04241-5.

[17] B. Xiao, M. Nguyen, and W. Q. Yan, “Fruit ripeness identification using yolov8
model,” Multimedia Tools and Applications, Aug. 2023. doi: https://doi.org/
10.1007/s11042-023-16570-9.

[18] S. Chen, Y. Li, Y. Zhang, Y. Yang, and X. Zhang, “Soft x-ray image recogni-
tion and classification of maize seed cracks based on image enhancement and
optimized yolov8 model,” Computers and Electronics in Agriculture, vol. 216,
pp. 108 475–108 475, Jan. 2024. doi: https://doi.org/10.1016/j.compag.2023.
108475.

[19] Ultralytics, Brief summary of yolov8 model structure. [Online]. Available:
https://github.com/ultralytics/ultralytics/issues/189.

43

https://doi.org/10.22214/ijraset.2020.5155
https://doi.org/10.1088/1742-6596/1930/1/012009
https://doi.org/10.1088/1742-6596/1930/1/012009
https://doi.org/https://doi.org/10.1371/journal.pone.0268756%7D
https://doi.org/https://doi.org/10.1371/journal.pone.0268756%7D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544031/%7D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544031/%7D
https://doi.org/10.1007/s11042-022-12024-w
https://doi.org/https://doi.org/10.1155/2022/7963603
https://doi.org/10.3390/jsan11040063
https://doi.org/10.1007/s10489-022-04241-5
https://doi.org/https://doi.org/10.1007/s11042-023-16570-9
https://doi.org/https://doi.org/10.1007/s11042-023-16570-9
https://doi.org/https://doi.org/10.1016/j.compag.2023.108475
https://doi.org/https://doi.org/10.1016/j.compag.2023.108475
https://github.com/ultralytics/ultralytics/issues/189

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Research Problem
	Research Objective

	Related Work
	Methodology
	Dataset
	Model
	CNN
	KNN
	SVM
	YOLOv8
	SGDClassifier

	Proposed Methodology
	Workplan

	Dataset Creation
	Image Collection
	Image Processing

	Implementation
	Library List
	Data Pre-processing
	Model Selection
	Training Model
	Creating Model Interface
	Data Insertion
	Fix Orientation and Extract Data Region
	Segmentation of Extracted Data Region
	Pre-process of Segmentated Image
	Prediction
	Second Step Verification and Creation of Improvement Dataset
	Output

	Result Analysis
	Compare Accuracy of Chosen Models

	Conclusion and Future work
	Conclusion
	Limitation
	Future Work

	Bibliography

