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Abstract
Traumatic Meningeal Enhancement (TME) is a critical medical condition charac-
terized by abnormal enhancement of the meninges following trauma, often observed
in medical imaging studies. Traumatic meningeal injuries result from external forces
hitting the head or skull, damaging the brain’s protective coverings. These injuries
can come from falls, car accidents, sports injuries, attacks, or other head trauma.
Even in the absence of further trauma-related cerebral abnormalities, TME may be
visible on an acute MRI. In addition to highlighting some of the present consider-
ations and unresolved issues of using them, this research aims to address some of
the prospective applications of more sophisticated imaging in traumatic meningeal
enhancement (TME). A deep convolutional neural network (CNN) model that uses
a dataset of 7800 images is used in this study. Testing and training are the two
discrete parts of the dataset. We have used the appropriate augmentation method
to construct the dataset. Three categories have been used to categorize the data in
this study: normal, early (pre), and acute (post). We divided the 6,000 images into
three categories for training: normal, early (pre), and acute (post). 30% of the data
was used for testing, while the remaining 70% was used for training. The dataset
was evaluated against five different transfer learning models and a customized CNN
model known as the 13-layered CNN model in the research. We evaluated four
transfer learning models, namely VGG19, VGG16, InceptionV3, and MobileNet, us-
ing an identical dataset. The accuracy rates obtained were 84%, 86%, 80%, and
89% respectively. Utilizing the same dataset, we proceeded to ensemble these pre-
trained models and it obtained 88.83% accuracy. Surprisingly, even with the en-
semble, our customized CNN model exhibited superior accuracy. Additionally, we
conducted SVM and XG Boost hand-crafted feature extraction using techniques
like positional orientation (PO), histogram of oriented gradients (HOG), and mean
pixel value (MPV). SVM obtained accuray of PO,normal:67% early(pre): 65% and
acute(post):67%, for HOG, normal:81% early(pre): 75% and acute(post):77%, for
MPV, normal:71% early(pre): 70% and acute(post):70%. XGBoost obtained accu-
racy of PO,normal:63% early(pre): 60% and acute(post):57%, for HOG, normal:72%
early(pre): 69% and acute(post):70%, for MPV, normal:66% early(pre): 63% and
acute(post):62%. Subsequently, we applied Support Vector Machine (SVM) and
XGBoost algorithms for feature extraction. Despite these efforts, our CNN model
consistently outperformed the models built using these feature extraction methods.
In contrast, our newly customized CNN model demonstrated a remarkable accuracy
of 91%. These results illustrate that when it comes to image processing, our CNN
model performs better than any other model in identifying traumatic meningeal
brain enhancement.

Keywords: TME; CNN; Meningeal; Deep Learning; Pre-trained; feature extraction;
Image Processing; Transfer Learning
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Nomenclature

∗ Multiplication
/ Division
2D - two-dimensional
TBI - Traumatic Brain Injury
TMI - Traumatic Meningeal Injury
TME - Traumatic Meningeal Enhancement
FLAIR - Fluid attenuated inversion recovery
T1WI T1 - weighted image
mTBI - Mild Traumatic Brain Injury
CNN - Convolutional Neural Network
CT - Computed Tomography
MRI - Magnetic Resonance Imaging
VGG - Visual Geometry Group
Colab - Collaboratory
CONV - Convolutional
DesNet - Densely Connected Convolutional Networks
GPU - Graphics processing unit
ReLu - Rectified Linear Activation Function
RGB -Red Green Blue
HOG - Histogram of Oriented Gradients
PO - Principal Objective
MPV - Mean Pixel value
SVM - Support Vector Machines
XGBoost - Extreme Gradient Boosting
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Chapter 1

Introduction

Traumatic meningeal eenhancement is a very intricate diagnostic challenge within
the realm of biomedical imaging. Despite the notable reduction in the occurrence
and death rates of meningitis in recent decades, particularly in high-income coun-
tries, it remains a medical emergency. Early diagnosis and swift treatment are
essential to prevent fatalities or significant neurological complications. Traumatic
meningeal enhancement presents a global diagnostic challenge due to its subtle ap-
pearance in biomedical images, necessitating expertise for accurate interpretation.
There is a chance of misdiagnosis or delayed diagnosis since current imaging meth-
ods frequently lack the accuracy required to identify these subtle variations. More
flexible and effective diagnostic techniques are needed because of the complexity and
diversity of these improvements, which make precise diagnosis even more difficult.
Improving detection accuracy, speed, and speed through the use of innovative tech-
niques like the CNN deep learning approach is the aim of resolving these problems.
This might revolutionize the way traumatic meningeal enhancement is diagnosed and
treated worldwide. Meningeal enhancement may be visible on a contrast-enhanced
MRI among people who have had an acute traumatic brain injury, even in situations
where a head CT scan reveals no brain damage [13].
Meningeal enhancement can result from a variety of causes, most commonly from
severe head or spinal trauma. The brain and spinal cord are surrounded by layers
of tissues, known as the meninges, which may become inflamed or damaged as a
result of these traumas. Traumatic meningeal injuries are frequently seen in situa-
tions involving falls, accidents, sports injuries, or physical trauma, while the precise
number of victims varies. Severe headaches, stiff necks, light sensitivity, altered
mental states, and, in extreme situations, potentially fatal illnesses like bleeding
or meningitis are among the symptoms of such injuries. Meningeal injuries are
treated by treating the underlying cause, controlling the symptoms, and, in rare
circumstances, performing surgery to heal the damage. On the other hand, the
severity and rapidness of medical intervention have a major impact on the expected
outcome and recovery. To treat traumatic meningeal enhancement promptly and
effectively, detection is essential. By identifying subtle patterns in biological images,
CNN-based detection improves accuracy and enables early and accurate diagnosis
for better patient outcomes. In 2020, there were 69,473 deaths and 214,110 hospi-
talizations connected to traumatic meningeal brain injury (TMI), with roughly 586
hospitalizations and 190 deaths every day, according to the latest recent data. With
32% of hospitalizations and 28% of deaths associated with TBI, people 75 years of
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age and older had the highest rates and quantities of these events. Compared to
females, men had three times the risk of dying from a TBI and almost double the
chance of being admitted to the hospital [23]. Traumatic meningeal injury (TMI) is
the ”silent epidemic” that is more responsible than any other acute insult for deaths
and disabilities around the world. However, it is still unknown how common TMI
is and how it varies by geography and socioeconomic status.
In recent years, handcrafted feature extraction methods have faced limitations in
effectively capturing intricate and abstract features from complex images, leading
to reduced adaptability to diverse datasets and the potential loss of essential infor-
mation. Furthermore, pre-trained models frequently needed help adjusting to spe-
cific domains and scaling to new tasks, even though they were effective at learning
general features from huge datasets. But instead of requiring challenging feature
engineering, convolutional neural networks (CNNs) were developed as a solution
by automatically learning discriminative features from unprocessed data. CNNs
are particularly good at capturing abstract and hierarchical representations, which
allows them to adjust to different tasks and datasets with flexibility. CNN’s adapt-
ability and automatic feature learning have overcome the drawbacks of handcrafted
feature extraction and pre-trained models, enhancing their efficacy in image analy-
sis applications, including the diagnosis of traumatic meningeal brain injuries. For
example, in a research study, on pneumonia diagnosis from chest X-rays, custom
characteristics such as texture analysis or particular pixel intensities may not be
able to capture tiny patterns suggestive of the illness. The fine-grained informa-
tion necessary for pneumonia diagnosis in X-rays may be absent from pre-trained
models that were first trained on generic picture datasets. On the other hand, a
CNN-based method extracts important features from the images themselves, like
consolidations and opacities. Because of this, CNN can identify minor visual cues
linked to pneumonia, offering a more reliable and accurate detection method than
manually created features or generic pre-trained models[7]. There’s no doubt that
this can create heavy damage as well as controversy and chaos. Delayed or in-
accurate diagnoses of pneumonia can lead to prolonged illness, complications, and
potentially life-threatening outcomes for patients. To solve this problem, a system is
being built that uses biomedical image analysis and convolutional neural networks
to find traumatic meningeal brain injuries. This system will be able to do this
by processing images and pulling out features. Developed systems can even detect
the most finely forged images with greater accuracy than before. This paper, how-
ever, we used a deep learning-based CNN model which changes the way traumatic
meningeal brain injuries are diagnosed and gives more accurate results. In this par-
ticular scenario, the implementation of an enhanced system that exhibits a higher
level of accuracy in the spotting and classification of traumatic meningeal injury
(TMI) via the use of deep learning and the Convolutional Neural Network (CNN)
algorithm, accompanied by appropriate modifications and increasing layers, would
be very advantageous. The architectural configuration of a deep convolutional neu-
ral network is likely to be affected by well-established pre-trained models that we
later create in an ensemble model and also some handcrafted feature extraction. To
gain accurate performance in the three groups of traumatic meningeal injuries, the
model will undergo comprehensive tuning and detection using the provided data.
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1.1 Problem Statement
In the field of medical imaging, specifically in detecting traumatic meningeal en-
hancement, an accurate and efficient diagnosis remains a critical challenge. Presently,
diagnosis relies heavily on subjective assessments by physicians, leading to time-
consuming processes with the potential for human error and variability among op-
erators. Existing image segmentation methods utilizing machine learning require
extensive data to be effective. Detecting traumatic meningeal enhancement (TME)
is challenging due to its subtle presentation in imaging studies. TME is often seen
as a new biomarker on FLAIR MRI after post-contrast in people who might have a
traumatic meningeal brain injury. Roozpeykar et al. (2022) and Davis et al. (2020)
emphasized differences and different diagnostic capacities among MRI sequences in
TME detection, nevertheless. This is addressed by using CNNs designed especially
for brain imaging analysis, which automatically picks up complex patterns from
different MRI sequences, such as FLAIR and contrast-enhanced imaging. CNNs
can help doctors make better diagnoses and make MRIs more widely used by find-
ing small TME signs more accurately and sensitively, as noted by Schweitzer et al.
(2019) and Kim et al. (2014) [13] [22]. Furthermore, Asiri et al. (2023) highlighted
the need for enhanced identification of brain tumours, a problem that CNN-based
segmentation techniques can help with by enhancing the precision and dependability
of identifying complicated lesions [26]. The suggested solution uses CNNs, custom-
made feature extraction methods, and deep learning to analyze biomedical images.
It aims to improve the accuracy of diagnoses, get around current problems, and
provide a more reliable way to find traumatic meningeal enhancement in a variety
of brain disorders. Convolutional neural networks (CNNs) are better than both
manually extracting features and pre-trained models because they can find complex
patterns in raw data without any help. CNNs are very good at complex tasks like
finding traumatic meningeal enhancement (TME) because they can extract complex
features hierarchically, adapt to different data types, allow end-to-end learning, and
fine-tune parameters to fit specific datasets. Their ability to provide advantages for
transfer learning and lessen reliance on human-engineered characteristics improves
their adaptation to medical imaging datasets. CNN’s capacity to understand ab-
stract features gets better as its depth grows, but issues like overfitting and the
processing costs of deeper structures need to be carefully balanced to prevent prob-
lems. Overall, CNNs are better at correctly identifying complicated patterns within
medical imaging data because of their adaptive learning, increasing layers, hierar-
chical feature extraction, and transfer learning capabilities.
General limitations commonly encountered in traumatic meningeal enhancement
(TME) detection research based on common challenges in medical imaging analysis:
Firstly, research on TME in medical imaging faces limitations due to the scarcity of
annotated datasets, which can hinder the training of robust models and impact the
generalizability of findings. Secondly, the complexity of TME patterns, including
subtle enhancements or irregular shapes, presents challenges for accurate identi-
fication and segmentation. Thirdly, the interpretability of neural networks, such
as CNNs, can be complex, potentially hindering their adoption in clinical settings
where transparency is crucial. Classifying and managing the CNN approaches as
computer-intensive is challenging at best. A research study was conducted utilizing
a VGG16 deep neural network in an attempt to overcome the challenge of binary
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classification. An increased demand for computing power corresponds to a more
intricate architecture that aims to deliver optimal performance. Only a structure
composed of a complex deep neural network can generate enhanced results. The
precision of traumatic meningeal enhancement detection is enhanced by the new
customized CNN from multiple perspectives; however, a number of the utilized
datasets are inconsistent and of poor quality. It is critical to employ a complex
deep neural network architecture in the field of traumatic meningeal enhancement
detection to achieve better outcomes. This methodology permits the identification
of subtle features in biomedical images with greater precision.

1.2 Research Motivation
As the medical sector continues to advance at an impressive rate, the notion of
computer-based clinical decision support has emerged as a prominent issue in a
study to improve the quality of decision-making in medicine and healthcare. AI can
improve personalized treatment by assisting with diagnosis and therapy decisions.
As a result, our motivation for this research is to discover a way to understand how
AI applications accelerated the diagnosis of traumatic meningeal enhancement and
to produce a solution that relies on data accuracy for enhanced decision-making.
Our inspiration is to provide a system that will aid healthcare experts in making
an effective and enhanced diagnosis by combining image processing principles with
Convolutional Neural Network models.
Our motivations for this research are:

1 Recognise image processing and understand its functioning.

2 Analyze pre-processing methods for data, such as augmentation and reshaping.

3 Develop a model to use MRI images to identify traumatic meningeal enhance-
ment.

4 Comprehend how deep learning improves our model.

5 Assist neurologists in identifying diseases more quickly and precisely by offer-
ing advice and assistance.

1.3 Research objective
The main purpose of our research is to implement a disease detection method that
we have created to detect traumatic meningeal enhancements and classify them as
normal, early (pre), or acute (post). To identify traumatic meningeal enhancement,
our research integrates the transfer learning technique with a convolutional neu-
ral network (CNN). Our proposed CNN model is one of the key elements of the
Neural Network; it classifies normal, early (pre), and acute (post) conditions and
detects traumatic meningeal enhancements via image detection and classification.
Traumatic Meningeal Enhancement (TME) detection represents a critical challenge
in neuroimaging due to its subtle and multifaceted nature. Failure to accurately
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identify TME can hinder timely interventions and appropriate patient care, poten-
tially leading to adverse outcomes. Presently, the identification of TME heavily
relies on manual assessment by radiologists or neurologists, a process susceptible to
drawbacks such as time inefficiency, subjectivity, and variations influenced by the
expertise of the practitioner. These limitations underscore the urgent need for an
automated, objective, and precise method to detect TME, emphasizing the pivotal
role of advanced technologies in revolutionizing the diagnostic landscape. Leveraging
deep learning-based biomedical image analysis and handcrafted feature extraction,
this research aims to mitigate these limitations by introducing a novel approach to
TME detection. By automating this process and reducing reliance on subjective
human interpretation, this methodology seeks to enhance the accuracy and speed
of TME identification, thereby significantly improving clinical decision-making and
patient outcomes in cases of traumatic brain injury. In recent times, researchers
have been doing various types of surveys to identify the severity factors, epidemic
level, ages of occurrence, etc. to become aware of this disease. Images from an MRI
will be sent into this system. Deep learning will be applied to identify the current
condition of the images in terms of disease. After all of the necessary pre-processing,
the images are sent through the proposed CNN model, which classifies them into
three groups.

1.4 Thesis Organization
In our paper, the first chapter discusses the problems we have encountered while
working on our research. These have motivated us to work on the problems and
contribute to providing a better outcome. In the following chapter, we have studied
the methods and the type of data used, as well as the accuracy rate. From their
study, it’s easy for us to acknowledge different methods and various models for
working on our dataset. In the next chapter, we discussed how custom CNN models
have been made and how we tuned to get the maximum accuracy. We have also
discussed how we used many pre-trained models and ensemble models. The use of
handcrafted feature extraction has also been discussed in this chapter. The following
chapter discusses the performances of the models we have used and compares their
performances. In our final chapter, we showed our urge how to work in future
regarding the current work we have worked on.
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Chapter 2

Related Work

2.1 Literature Review
As per Davis, an individual undergoing contrast-enhanced magnetic resonance imag-
ing (MRI) who is suspected of having suffered a traumatic brain injury (TBI) may
exhibit traumatic meningeal enhancement (TME), a novel biomarker that can be
identified on post-contrast fluid-attenuated inversion recovery (FLAIR). Even in
cases when further trauma-related brain abnormalities do not exist, TME may nev-
ertheless be seen on an acute MRI. The study looked at TME’s visibility on T1
weighted imaging (T1WI) post-contrast and FLAIR post-contrast and found that
62% of positive FLAIR occurrences were also visible on T1WI at that time. How-
ever, in 38% of the instances, TME was positively tested on FLAIR in addition to
being negative on T1WI. TME features were examined during a one-year period
in 47 people who were suspected to have suffered from traumatic brain injury. In
contrast, conflicts were more common than agreement on T1WI. TME on FLAIR
revealed almost 100% agreement. In identifying the presence or absence of TME,
FLAIR post-contrast MRI performed better than the T1WI post-contrast sequence.
When FLAIR post-contrast MRI is used instead of T1WI post-contrast MRI, the
results are more consistent overall and interrater agreement. This work highlights
the value of FLAIR post-contrast MRI as a useful supplementary imaging modality
for clinical TBI imaging procedures in the detection of TME in TBI patients [13].
Roozpeykar et al. described for meningeal lesions, magnetic resonance imaging
(MRI) is a commonly utilized diagnostic modality. T1-W and FLAIR sequence
diagnostic values are compared following contrast injection in this study. 42.9%
of the 147 individuals in the research had a tumoral etiology, and 57.1% had an
infectious cause for their meningeal lesions on brain MRIs. FLAIR sequences were
able to diagnose 82 patients (97.6%) with meningitis, but T1-W pictures without
contrast were only able to diagnose 78 instances (92.8%). For the diagnosis of brain
inflammatory disorders, FLAIR sequences exhibited 92% sensitivity and 85% speci-
ficity, whereas T1 sequences had 82% sensitivity and 73% specificity. According to
the study’s findings, FLAIR sequences are superior to T1 sequences in the diagnosis
of inflammatory brain disorders. The study also looked at how well FLAIR and
weighted-T1 sequences worked in meningeal lesions. It was found that weighted-T1
worked better in lesions that were not infected, but FLAIR sequences worked better
in lesions that were. To further corroborate the findings, the paper suggests doing
multicentric studies. Infection was better, and tumoral lesions were worse with the
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FLAIR sequence. While the contrast-enhanced T1-W sequence is more enhanced in
tumoral lesions, overall, contrast-enhanced FLAIR sequences are useful in the early
identification of meningeal infections [22].
In the research paper(Schweitzer et al., 2019), The Glasgow Coma Scale (GCS) and
the American Academy of Neurology Concussion Guidelines for Traumatic Brain In-
jury (TBI) were looked at in terms of their strengths, weaknesses, clinical value, and
link to outcomes. By emphasizing the use of nonenhanced head CT scans for quick
evaluation and directing urgent neurosurgical procedures, it sought to improve TBI
therapy and prognostication. While sensitive enough for triage, MRI is particularly
good at identifying axonal injuries, brainstem injuries, and nonhemorrhagic contu-
sions. However, owing to expense, longer imaging durations, and safety concerns,
its wider usage is restricted. While promising, advanced imaging methods such as
diffusion-tensor imaging (DTI) still encounter difficulties with interpretation and
standardisation. In exploring a variety of TBIs, such as axonal injuries, develop-
ing contusions, and skull fractures, the research places a focus on monitoring and
intervention—particularly in older people after falls. It also covers subsequent brain
injuries from herniation and vascular damage after severe accidents. In severe cases
needing neurosurgical intervention, radiologists advocate for CT scans and play a
crucial role in detecting TBI consequences. It also emphasized DTI as a research
instrument for TBI evaluation [12].
Kim et al. stated that contrast-enhanced fluid-attenuated inversion recovery (FLAIR)
sequences in regular MRI may assist in identifying traumatic brain lesions and other
abnormalities not discovered on standard unenhanced MRI, according to research on
54 patients with persisting symptoms after a moderate closed head injury. (Kim et
al., 2014) According to the research, contrast-enhanced FLAIR images revealed three
more instances of brain abnormalities in addition to the 25 patients who had trau-
matic brain lesions identified. Nine instances had meningeal enhancement found,
but no traumatic brain damage was detected in other routine imaging sequences. In
37 instances, the extra-contrast-enhanced FLAIR pictures showed more widespread
abnormalities than regular imaging. It was found that meningeal enhancement on
contrast-enhanced FLAIR images could be used to find extra abnormalities and trau-
matic brain lesions that regular MRI scans don’t pick up. The results may enhance
patient care for brain injuries and enhance their quality of life. Along with the idea
of a subdural space, this study also looks at how intradural computed tomography
appearance can help predict traumatic subdural hematomas [3].
Chiara Ricciardi and his team described that in patients with suspected mild trau-
matic brain injuries, a quick MRI approach was evaluated to identify acute brain
damage. In a blinded group of mTBI patients, the methodology distinguished be-
tween acute trauma and nonspecific chronic illness, as well as trauma-related ab-
normalities not seen on CT. An increasing amount of research indicates that in
individuals with moderate traumatic brain injury (mTBI), modest structural dam-
age to the brain may go unnoticed on CT. It has been suggested that MRI is a
more sensitive modality for identifying minute changes in parenchyma after axonal
injury-related trauma. Acute MRI may be able to identify a subgroup of individ-
uals who are more likely to have chronic dysfunction, which might assist in direct
early educational intervention and better follow-up treatment. Within 48 hours
of their injuries, 24 patients with severe head trauma were prospectively included
in the research to get MRI scans. The primary end measure was the presence of
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any acute trauma-related brain injury seen on an MRI. The study discovered that
MRI findings were consistent with a final diagnosis of mTBI in 54% of patients
with suspected mTBI and 85% of the group with suspected mild stroke. The ther-
apy was well-received by all patients and helped distinguish between traumatic and
nontraumatic brain abnormalities [5].
Meningitis is becoming more widespread globally, requiring for a more rapid and
efficient diagnosis and course of treatment. For leptomeningeal disease, the delayed
contrast-enhanced FLAIR MR imaging sequence is more sensitive than contrast-
enhanced T1-weighted images. By comparing the MRI and CSF analysis data, one
may determine the diagnostic accuracy of delayed gadolinium-enhanced FLAIR MR
imaging. Post-contrast MRI can be used to reliably detect infectious meningitis,
particularly when combined with delayed post-contrast FLAIR images. In certain
instances, this diagnosis can be made even before the CSF is generated. Enough
differentiation for the MR imaging characteristics of infectious meningitis to help
identify the cause is provided by the anatomical distribution and enhancing fea-
tures of post-contrast meningeal enhancement. The 2018 strategy plan ”Defeating
Meningitis by 2030” emphasizes the need for early diagnosis and treatment, as well
as timely pathology and causative aetiology identification. Because it is more sensi-
tive to leptomeningeal disorders than contrast-enhanced T1-weighted pictures, some
believe that magnetic resonance imaging (MRI) is an effective weapon in the battle
against meningitis. To evaluate the diagnostic accuracy of MRI findings for infec-
tious meningitis, this study will compare CSF analysis with MRI data. The study
demonstrated that leptomeningeal enhancement may be more accurately detected
using post-contrast delayed FLAIR MRI in individuals with meningitis, utilizing
a 1.5 Tesla MRI. Differential patterns of enhancement amongst meningitis kinds
facilitated accurate etiological diagnosis [16].
Despite the absence of a negative head CT scan, meningeal enhancement may be
visible on contrast-enhanced MRI in patients with severe traumatic brain injury
(TBI). A gadolinium-based contrast agent brightens the dura and seeps into the
subarachnoid space within minutes after entering the blood vessels. The primary
objective of the study was to characterize the slow motion of contrast enhancement
in the subarachnoid space and the rate of contrast agent uptake in hyperacute in-
dividuals following an injury. Pathogenic features of TBI and stroke include the
disruption of the blood-brain barrier. Gadolinium is an albumin-binding drug that
can cause hyperintense acute reperfusion markers (HARM) in both ischemic and
hemorrhagic strokes. This is because it can’t get through the blood-brain barrier
when it’s intact. The first observation of this phenomenon in stroke patients sug-
gests that the process of intravascular contrast leaking from blood vessels into the
subarachnoid space is slow. According to the research, 72% of individuals who had
both a traumatic brain injury (TBI) and subarachnoid space enhancement (TME)
tested positive for TME. In one person with a moderate traumatic brain injury. This
made the subarachnoid space bigger. This shows that the blood-cerebrospinal fluid
barrier and/or the blood-brain barrier were broken. Peak enhancement that appears
six minutes after contrast suggests that TME is a unique biomarker for recent TBI
that is not seen in traditional imaging. This 3T MRI study of 102 TBI patients found
rapid meningeal enhancement correlations with neurological symptoms. This was
true even though follow-up ECSAS scans had problems that suggested the reported
prevalence may have been higher than it was. The identification of TBI subgroups
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may be improved by using imaging and blood indicators, which are important for
comprehending enduring symptoms and neurodegenerative hazards. The research
validates that TME may be identified using an MRI procedure brief enough for
an acute clinical population in patients with traumatic brain injury. The research
focused on meningeal enhancement prevalence post-TBI rather than measuring its
diagnostic precision against a gold standard or sensitivity or specificity values. It
also examined meningeal enhancement prevalence but did not give accuracy mea-
sures [17].
Asiri and his team stated that a major global health problem, brain tumors impacts
millions of people. For therapy to be effective and for patients’ quality of life to be
enhanced, early diagnosis is essential. To effectively detect brain tumors in input
data pictures, FT-ViT, a computer-aided vision transformer model, employs deep
learning approaches and sophisticated image processing. After being trained on 5712
brain tumor pictures from the CE-MRI dataset, the model’s accuracy was 98.13%.
Some studies have suggested deep CNN architectures, including FT-ViT, BraTS-
Net, and DeepSeg to increase performance. By fusing a CNN with a transformer,
the Bitr-unit model improved segmentation performance; nonetheless, real-time ap-
plication design necessitates certain constraints. Based on the Swin Transformer
design, the authors created a new architecture that achieved good segmentation
accuracy while being quicker and more memory-efficient for semantic brain tumor
segmentation tasks. To detect brain cancers, the researchers analyzed a large dataset
of MRI scans and other medical imaging of the brain. The Vision Transformer (ViT)
architecture takes MRI scans and pictures as input, breaks them up into patches,
flattens each patch into a single long vector, and then uses those patches to make
lower-dimensional linear embeddings. In terms of tumor categorization, the model
proved reliable; it was also more accurate and time- and money-efficient. The effi-
cacy of the FT-ViT model has the potential to enhance brain tumor identification in
the field of medical imaging. Nonetheless, care must be taken to prevent overfitting
and guarantee that the model can be applied to complicated or unknown pictures
[26].
Lin and his team explained that using the ImageNet dataset, focuses on large-
scale picture categorization. Using hundreds of mappers, the researchers created a
Hadoop feature extraction strategy that enabled them to extract complex charac-
teristics from 1.2 million photos daily. They also created an approach for training
one-against-all 1000-class SVM classifiers using parallel averaging stochastic gradient
descent (ASGD). The ASGD method converges quickly, usually in 5 epochs, and can
handle terabytes of training data. With 52.9% classification accuracy and a 71.8%
top-5 hit rate, the researchers’ performance on the ImageNet 1000 class classification
was state-of-the-art. The research emphasizes how crucial picture categorization is
to computer vision, emphasizing the need for effective feature extraction and clas-
sifier training without sacrificing effectiveness. With rapid convergence and parallel
computing in mind, the authors suggest a parallel ASGD technique for large-scale
ImageNet classification. In contrast to the slower SGD approach, the ASGD method
converged rapidly, obtaining a rather decent solution after 5 rounds [2].
Minaee focuses on utilizing a bag-of-word (BoW) technique to identify individuals
with mild traumatic brain injury (mTBI) using MRI data. Using the BoW approach,
researchers extract several patches from three different brain areas and depict each
individual as a histogram of typical patterns. They choose a subset of features
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that yields the best accuracy via greedy forward feature selection. According to the
research, BoW features outperform straightforward mean value features and provide
a strong method for combining local data to create a global representation. The
suggested approach is especially helpful for high-dimensional input data collections
with small sample sizes. Using a variety of imaging measurements for the Corpus
Callosum and Thalamus, the researchers employed the BoW technique, learning 20
visual words from 16x16 patches for each group independently. This method works
especially well for high-dimensional input data datasets with small sample sizes. The
research included 40 healthy and sex-matched controls, as well as 69 mTBI cases
aged 18–64. By using a 5-fold cross-validation methodology, the research assessed
the model’s performance and increased accuracy to 91%. The suggested approach’s
sensitivity and specificity were also assessed in the research; these factors are crucial
for the analysis of medical data [6].
Another study combines two powerful classifiers, eXtreme Gradient Boosting (XG-
Boost) and Convolutional Neural Network (CNN), to offer a novel method for photo
categorization. The CNN-XGBoost model is an improved version of tree boosting
for image classification that makes use of XGBoost to train a tree model additively
while increasing speed and accuracy. After normalizing the input picture data and
moving it to the CNN’s input layer, the model uses trainable features from the
CNN training. The trials were conducted on the MNIST and CIFAR-10 databases,
and the outcomes showed that the CNN-XGBoost model performed better than
other methods on the same datasets. The study suggests that increasing the number
of iterations in the CNN optimization process and the hardware operating parame-
ters may improve classification accuracy. The CNN-XGBoost model attained an ac-
curacy of 80.77% on the CIFAR-10 color picture database and 99.22% on the MNIST
handwritten digit database. These results demonstrated higher accuracy rates when
compared to other models, especially when it came to outperforming other methods
on the MNIST dataset. Probably by combining the precise classification of XGBoost
with the effective feature extraction of CNN, the CNN-XGBoost model’s accuracy
was raised. Its optimized design and parameter selections likely outperformed other
methods in picture classification on these datasets. The study suggests that further
effort be put into optimizing algorithms to speed up the convergence of the cost
function and fine-tuning the CNN structure to extract higher-quality features [8].
According to this study by Laukamp and his colleagues, utilizing conventional mul-
tiparametric MRI data and a multiparametric deep-learning model (DLM), it was
shown that the DLM successfully detected meningiomas in 55 out of 56 cases. The
correlation between automatic and manual segmentation was found to be high. In
T1CE, the average Dice coefficients were 0.81 ± 0.10 for the overall tumor vol-
ume and 0.78 ± 0.19 for the contrast-enhancing tumor volume. This suggests that
deep learning might improve the detection and classification of meningiomas, aid-
ing doctors in patient evaluation and possibly improving treatment regimens and
oversight. The study suggests that automated meningioma segmentation and iden-
tification might improve image interpretation and allow for more in-depth tumor
volume analysis. The study aimed to tackle problems such as anatomical variations,
conflicting imaging data from different scanners, and variations in scanner settings.
The automated detection and segmentation of meningiomas based on a deep learn-
ing model was demonstrated to be accurate and reliable even with variable MR data
from various scanners [11].
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This research aims to develop an automated approach for brain MR image clas-
sification, enabling radiologists and other medical professionals to automatically
diagnose brain tumours. The system uses convolutional neural networks (CNN)
and deep learning techniques to classify the brain MR images into four categories:
normal brain, pituitary tumour, meningioma tumour, glioma tumour, and tumour.
For a fair evaluation, the 5712 MR images in the dataset are split into training and
validation sets using an 80-20 ratio. After the extracted features are evaluated by
several machine-learning classifiers, the three best-performing features are merged to
create a powerful feature ensemble. Then, to separate the brain MR images into four
groups—normal brain, meningioma tumour, glioma tumour, and pituitary tumor—
the Ensemble is coupled with the Multilayer Perceptron classifier. The results of
the experiments indicate that the MLP classifier’s performance significantly changes
when features from ResNet-50, VGG-19, and EfficientNetV2B1 are combined using
the Features Ensemble approach. A remarkable accuracy of 96.67% with a 95%
confidence level was obtained as a consequence. This method shows how effectively
it can categorise brain MR pictures and how it may be used to improve diagnostic
abilities, outperforming existing state-of-the-art methodologies [29].
In 2014, there were 56,800 documented cases of traumatic brain injury (TBI) deaths.
Brain trauma is a leading cause of death and disability. Early detection has the
potential to reduce ER visits and save lives. Previous methods involve the use of
mobile health applications that need expensive and time-consuming clinical testing,
such as CT scans. More and more sensor-rich smartphones are emerging as a useful
platform for continuous health monitoring. This work explores the identification
of traumatic brain injury (TBI) early in the damage process using gait, balance,
and mobility patterns in smartphone sensors. We compared and investigated three
machine learning processes: computing hand-crafted features on raw sensor data and
encoding raw mobility patterns using an auto-encoder-based technique. The study
analyzed six location metrics, nine gaits, and four balancing statistical features
derived from accelerometer sensors and smartphone location data using different
segmentation algorithms. Machine learning techniques were used to classify and
normalize these attributes. The greatest results were obtained when gait, balance,
and mobility variables that were manually developed were classified using tree-based
classifiers. With a 24-hour window size and manually designed feature extraction,
the best outcomes were achieved with XGBoost on the third day following injury
[19].
This work proposes a computer vision-based approach for automatically identifying
brain disorders. The model consists of four stages: preprocessing, creating example
deep features, choosing features using iterative neighborhood component analysis
(INCA), and classifying the results using support vector machines (SVM). The model
is based on MobilNetV2, an exemplar-based deep feature generator. An MR imaging
dataset of 444 pictures with three distinct illness categories and control groups was
used to evaluate the model. The model’s SVM classification accuracy was 99.10%.
Preprocessing, using MobileNetV2 to generate exemplar features, selecting features
using INCA, and classification are the four primary phases of the model. Patches
128 × 128 × 3 and 256 × 256 × 3 are used in the model. This study shows how well
the suggested approach works in identifying brain disorders from MRI pictures, an
essential diagnostic and therapeutic tool in medicine. Although several techniques
for classifying brain MRI images have been studied, machine learning-based models
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are necessary for precise diagnosis. This work uses preprocessing, including deep
feature extraction, feature selection, and classification, to examine a dynamic-size
patch-based deep feature generation model’s ability to classify images. When used in
conjunction with different learning models, the parametric model may be beneficial
for medical picture categorization. The study highlights how important machine
learning-based models are in identifying brain disorders since incorrect diagnosis
may result in both morbidity and mortality [21].
Classifying brain tumours is essential for computer-assisted diagnostic (CAD) as-
sessment of medical conditions. Using an MRI for manual diagnosis might be time-
consuming and result in inaccurate identification. Convolutional Neural Networks
(CNNs), one type of Deep Learning technology, have made medical image processing
more automated. This work presents a novel CNN technique for the categorization
of pituitary, glioma, and meningioma brain tumours. The algorithm acquired a high
precision, recall, f1-score success rate of 98%, and classification accuracy of 98.04%.
Their proposed model fared better than InceptionV3, which had the lowest accuracy
rates of 85.77%, 86% for precision, 84% for recall, and 85% for f1-score. Its accuracy
rate was 98.04%, while its rates for precision, recall, and f1-score were all 98%. It is
noteworthy that their results corroborate the idea that the low performance of In-
ceptionV3 is caused by the excessive usage of concurrent convolutional and pooling
layers, which are inappropriate for tiny datasets [28].
To detect potentially lethal abnormal tissues and to provide medication that effec-
tively aids in the patient’s recovery, it is imperative to classify brain tumours. Due
to their higher image quality and non-ionizing radiation, medical imaging methods
such as magnetic resonance imaging (MRI) are widely employed. Artificial intel-
ligence’s deep learning field has greatly enhanced the process from MRI to better
prediction rates for brain tumour detection. Convolutional neural networks (CNNs)
are the most complete and widely used deep learning method for the investigation
and categorization of brain tumours. This study examines the independence of brain
tumor cell detection using CNN-pretrained models based on transfer learning, such
as VGG-16, Inception-v3, and ResNet-50. The study looks at how epoch numbers
affect sickness prediction and how well these algorithms are in classifying data over-
all. The dataset consisted of a subset of brain MRI pictures taken from the Kaggle
dataset. The transfer learning approach uses pre-trained models that are already
accessible and have been trained on a large dataset, such as ImageNet, for image
classification, as opposed to building the CNN detection model from scratch. The
focus of the work is on employing pre-trained CNN architectures for the classification
of MRI brain tumour images. The models are applied to a dataset of 253 brain MRI
images. The confusion matrix results show that although the VGG-16 model has
a poor accuracy rate, it matches the MRI dataset very well. Every design attains
training accuracy of more than 0.9000%, with the greatest validation accuracy of
0.8826%. The proposed study might be extended to classify brain tumours using
other CNN-based models that have already been trained [23].
According to the evaluation in this article, 205 individuals had a regrettable death
rate of 55.7%. Nonsurvivors had a higher Injury Severity Score (ISS) of 25 vs. 16
(P < 0.001) and a lower GCS of 5 vs. 7. Platelets, haemoglobin, and albumin
levels were significantly lower in nonsurvivors, although their levels of glucose and
prothrombin time were significantly larger in survivors (P < 0.001) and P < 0.001,
respectively. The most significant parameters in the XGBoost approach were glu-
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cose, prothrombin time, and GCS. In comparison to logistic regression, XGBoost
performed better in terms of accuracy (0.955 vs. 0.70) and area under the re-
ceiver operating characteristic curve (0.955 vs. 0.805). In terms of forecasting the
death of patients with moderate-to-severe traumatic brain injuries, their research
showed that the XGBoost algorithm outperformed conventional logistic regression.
Several machine learning methods, including as support vector machines, decision
trees, random forests, Naive Bayes, and artificial neural networks, have also been
examined in earlier research in relation to the prognostic values of the patients. In
terms of forecasting patients’ mortality from moderate-to-severe traumatic brain in-
jury (TBI), this study indicated that the XGBoost technique performs better than
logistic regression [24].
While there has been progress in the field, algorithms for recognising images of acute
traumatic brain injury (TBI) still have difficulties in detecting important anomalies
such as edema, fractures, infarcts, and mass effects. Complex image data is diffi-
cult for traditional machine learning algorithms to correctly handle. Convolutional
Neural Networks (CNNs), one of the deep learning algorithms that have revolution-
ized image analysis, are capable of learning complex patterns from large amounts
of data. The inability to generalize performance across institutions and the absence
of standardized datasets for comparison present difficulties, however. These algo-
rithms have the potential to improve TBI imaging and make it more accurate and
grounded in facts, even in the face of these obstacles. Data labeling procedures
have an impact on model performance and applicability in medical imaging tasks.
In the treatment of people who have recently had a stroke, MRI bleeding detection
algorithms like those for triage, localization, skull fracture, intracranial mass effect,
and stroke identification may help doctors make more accurate predictions about
the patient’s prognosis and more personalized treatment plans [10].
To help in the detection of traumatic brain injuries, a new collection of CT images
has been developed (TBI). It is predicated on a unique imaging diagnostic model
comprising an integrated squeeze-and-excitation module, recurrent neural networks
(RNN), and convolutional neural networks (CNN). With an accuracy of 95.9%, the
model exceeds other popular classification networks when it comes to slice-level
damage prediction. The mortality and disability rate from traumatic brain injury
(TBI) is very high. Traditional machine learning-based approaches are slower and
have technical difficulties, but deep learning-based techniques have gained favour
because of their accuracy and speed. To automatically diagnose TBI, this study
proposes a unique architecture that blends CNN and RNN with attention processes.
The approach first uses an SE module to get the fundamental image characteristics,
and then it employs an RNN network for slice-level TBI classification tasks. With
a sensitivity of 0.933, specificity of 0.989, and accuracy of 0.959, the classification
results are outstanding and beat the current dominating architecture. The study
concludes that the proposed method successfully detects traumatic brain injury
(TBI) in brain CT images and may be used for other brain injury categorization
tasks [15].
A fully convolutional neural network (CNN) model can find lesions and contusions
in brain magnetic resonance (MR). The CNN architecture segments lesions from
multi-contrast MR images using a 3-layer Inception network, which is based on
Google’s Inception design. On photos of eighteen individuals with moderate to se-
vere traumatic brain injuries, the suggested approach demonstrated better segmen-
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tation accuracy. The model outperformed two rival approaches, achieving a mean
Dice of 0.75 with the use of a leave-one-out cross-validation. Mini-batch sets of patch
triplets from several atlases were used as the training input, and each patch’s centre
voxel had a non-zero label based on hand segmentations. Due to the elimination
of completely linked layers and larger patch sizes, the suggested strategy resulted
in reduced false positives and more accurate segmentation. Upcoming research will
concentrate on maximizing patch depth and size, contrasting with whole 3D patches,
and identifying various kinds of lesions. In particular, the research investigates the
use of deep convolutional networks for brain MRI segmentation in traumatic brain
injury scenarios [9].
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Chapter 3

Methodology

In this study, our focus revolves around the utilization of deep learning techniques
and hand-crafted feature extraction methods to detect traumatic meningeal en-
hancement (TME) within biomedical images. Leveraging the dataset obtained from
the seminal work by Davis et al.[13] It used contrast-enhanced magnetic resonance
imaging (MRI) to thoroughly investigate the occurrence of TME in patients with sus-
pected traumatic brain injury (TBI), to create an advanced algorithm. By harness-
ing deep learning architectures, we intend to train models capable of identifying sub-
tle yet crucial features indicative of TME within these images. Additionally, our ap-
proach involves extracting hand-crafted features, allowing for a hybrid methodology
that combines the power of learned representations with domain-specific features.
The integration of deep learning-based biomedical image analysis and handcrafted
feature extraction is poised to significantly enhance the accuracy and efficiency of
TME detection, offering a promising avenue for advanced diagnostic applications in
TBI assessment.
The process comprises of a traditional CNN model with a 13-layered architecture
and a transfer learning technique that leverages four pre-trained CNN models (In-
ceptionV3, VGG16, VGG19, and MobileNetV2) for training the data set and refine
and ensemble it for comparison. We also used custom feature extraction methods
like Histogram of Oriented Gradients (HOG), Mean Pixel Value (MPV), and Posi-
tional Orientation (PO). These were then used to train models like Support Vector
Machine (SVM) and XGBoost and compare their performance to CNN models based
on deep learning. Standard assessment measures, including accuracy, precision, re-
call, and F1-score, were used to evaluate each model’s performance. Based on the
handcrafted features retrieved by SVM and XGBoost, the customized CNN model
performed better than the pre-trained models. The study concludes by emphasizing
the significance of deep learning-based approaches in biomedical image analysis for
TME detection. The phases which make up the procedure have been broken down
and given below in an organized way.

• Step 1: Data Collection

• Step 2: Data Augmentation

• Step 3: Custom CNN model

• Step 4: Existing pre-trained models

• Step 5: Ensemble pre-trained models
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• Step 6: Feature extraction

• Step 7: Handcrafted model

• Step 8: Performance Evaluation

Figure 3.1: Workflow

3.1 Data Collection
We have worked on data from deidentified brain MRI (T1 and FLAIR pre- and
post-contrast sequences). The images are in Dicom format [14]. We have collected
the data from the NIH Figshare database. Initially, the zip file contained a total
data of 4108 images. However, we have shortened and collected a total of data 800
MRI images. After that, we augmented our data for the better performance of our
models. We have also collected some normal MRI image data as well [27]. The data
were separated into 3 classes named pre(early), post(acute), and normal where the
images are divided into training and testing. We have set different resolutions and
pixels for working on the data on our models for the best outcomes. Every image is
then processed afterward. A visual representation of a few images is shown in the
figure.
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Figure 3.2: Normal

Figure 3.3: Pre (Early)

Figure 3.4: Post (Acute)

3.2 Dataset Description
Firstly, the data has been converted from a .dcm to a .jpg file using the Pydicom
and Pillow libraries. We split our dataset into two parts. One is the training dataset
and another is the testing dataset. In the training part, we used 6000 images and
for the testing part, we used 1800 images. We have demonstrated our sample of
dataset and the data splitting pie-chart sequentially.
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Figure 3.5: Data Splitting

3.3 Dataset Pre-Processing
One of the challenging phases is the retrieval of information from data. The aim of
data pre-processing is the minimization of inconsistent data. It also helps to reform
inadequate inputs. What we see from our final training and testing sets is the result
of data pre-processing. Pre-processing can be done through various methods. Like
filtering, normalization, modification, feature extraction, etc. Among the methods
that we know, we chose resizing, augmentation, and feature extraction for pre-
processing our dataset. As we know, we have very limited numbers of data and
there might be a chance that the accuracy that we expect from the models might
not be the one as we expected so this method is very important for us. In our
dataset, one of the major features that has to be processed for models to perform
well is the image conversion technique. The detailed descriptions are stated below:

• Image conversion: The raw data that we collected were on DICOM file. We
imported the Pydicom, os, and PIL modules to handle the operation. We then
set the folder for DICOM and JPG images. Upon the loop, it then reads the
DICOM file and extracts the pixel array. After that, it rescales and converts
the pixel values to fit within the range 0-255 and uint8 datatype. In the end,
it creates a PIL image from the pixel array and saves it in the output folder.

• Resizing Images: We have tried to keep our focus on sequential models
like CNN which is why we scaled our images as per the requirements of our
models. We have kept the resolution size of 128x128 pixels for the transfer
learning approaches. We know, CNN can take only the fixed dimensions, it’s a
necessity for us to resize it. We also resized the data for our 13-layer sequential
model.
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• Image Augmentation: The use of this method was important increasing
the amount of data for maximizing our training data. We tried to reshape,
rescale, shear, zoom, right shift, left shift, width shift, height shift, vertical flip,
and horizontal flip for all the classes. These are the different augmentation
methods that we used. These are mainly used in training the dataset but they
will be included in the evaluation.

3.4 Architecture of Proposed Model
We used the Keras neural network toolbox to build a sequential CNN model for the
given system. The correctness of the model was examined. Thirteen layers make up
the model. Additionally, there were three max max-pooling layers, three 2D convo-
lutional layers, and an equal number of batch normalization layers. Two layers of
dense paint, then one layer of flattening and a dropout layer.

• Input Layer: This is the first convolutional layer, and it uses the Rectified
Linear Unit (ReLU) activation function with 32 filters of size (3, 3). The
input shape is supplied as (img height, img width, 3), giving the input images’
height, width, and colour channels

• Pooling and Normalization Layers: The code repeats a similar pattern
twice for additional convolutional blocks. The second convolutional block uses
32 filters, and the third one uses 64 filters. Each block is followed by max
pooling and batch normalization.

• Flatten Layer: This layer flattens the output from the preceding convolu-
tional blocks, transforming it into a one-dimensional vector. It provides the
data for the completely interconnected layers.

• Fully Connected Layers: The fully linked layer features ReLU activation
function and 256 neurons. With a rate of 0.5 for dropout, half of the neurons
in this layer will be arbitrarily set to zero at each update during training. This
aids in avoiding overfitting. Three neurons in the last layer, which represents
the three classes in the classification job, are part of a densely linked output
layer. The probability distributions over the classes are obtained using the
softmax activation function.
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Figure 3.6: Architecture of 13-Layer CNN Model

Table 3.1: 13-Layer Custom CNN Model

Layers Output Shape Parameter
conv2d (Conv2D) (None, 126, 126, 32) 896
max_pooling2d (MaxPooling2D) (None, 63, 63, 32) 0
conv2d_1 (Conv2D) (None, 61, 61, 32) 9248
max_pooling2d_1 (MaxPooling2D) (None, 30, 30, 32) 0
conv2d_2 (Conv2D) (None, 28, 28, 64) 18496
max_pooling2d_2 (MaxPooling2D) (None, 14, 14, 64) 0
flatten (Flatten) (None, 12544) 0
dense (Dense) (None, 256) 3211520
dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 3) 771
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3.5 Architecture of Pre-trained Model
In models that have been trained, the neural network was previously used earlier
and has learned information that can be employed in new samples that were spe-
cially picked. Four models that have already been trained were employed in the test.
They are VGG-16, VGG-19, Inception V3, and MobileNet. Here are the specifics of
each model:

VGG-16: VGG16 is widely regarded as one of the greatest vision model architec-
tures ever developed. True to its name, it’s a 16-layer deep neural network. With
138 million parameters, VGG16 is a vast network even by today’s standards, mak-
ing it relatively enormous. Conversely, the main feature that makes the VGGNet16
design appealing is how simple it is. An RGB picture with 128x128 dimensions must
be supplied to the VGG model. For every picture in the training set, the mean RGB
value is calculated and then supplied as input to the VGG convolutional network.
The convolution step remains constant and it employs a 3x3 or 1x1 filter [25].

Figure 3.7: Architecture of VGG16 Model

VGG-19: The VGG19 model operates on the same premise as the VGG16 model,
with the exception that it supports 19 layers. In VGG19, a fixed-size (128x128)
RGB image served as the input, represented as a matrix of shape (128,128, 3). The
only preprocessing step involved removing the mean RGB value from each pixel,
a process performed across the entire training set. The network employed kernels
of size (3 * 3) with a stride size of 1 pixel, ensuring complete coverage of the im-
age. Spatial padding was incorporated to keep the spatial resolution of the input.
Max pooling was applied over 2 * 2-pixel windows with a stride of 2, adding to the
down-sampling process. After that, Rectified Linear Unit (ReLu) activation func-
tions were used to add non-linearity, which was different from earlier models that
used tanh or sigmoid functions. This led to better classification performance and
faster computing. The architecture featured three fully connected layers, with the
first two layers having 4096 nodes each. Subsequently, a layer with 1000 channels
was applied for a 1000-way ILSVRC classification, culminating in a final softmax
layer for a probability distribution [20].
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Figure 3.8: Architecture of VGG19 Model

Inception V3: Based on convolutional neural networks, Inception V3 is a deep
learning model for categorizing images. The basic model Inception V1, which was
made public as GoogLeNet in 2014, has been improved into the Inception V3. The
main goal of Inception v3 is to reduce processing power consumption by making
changes to the earlier Inception designs. Convolutional neural networks (CNNs)
must be used effectively to increase computational efficiency, as the Inception V3
model demonstrates. One important tactic is to decrease a network’s parameter
count, which boosts performance and quickens the training process. Substituting
bigger convolutions with smaller ones not only improves computational processes
but also accelerates training. For instance, replacing a 5 × 5 filter with two 3 × 3
filters lowers the parameter count from 25 to 18 (33 + 33). Additionally, innovative
convolutional strategies, such as replacing a 3 × 3 convolution with a combination
of 1 × 3 and 3 × 1 convolutions, add to network optimization. In the Inception V3
model, the introduction of auxiliary classifiers further enhances network depth and
works as a useful tool for regularization. In addition, auxiliary classifiers in Incep-
tion V3 serve as regularizers, a change from GoogLeNet where they were employed
to deepen the network. In terms of grid size reduction for feature maps, Inception
V3 takes a break from traditional practices, expanding the activation dimension of
network filters instead of depending on max pooling and average pooling. This in-
novative approach promises an efficient reduction of the grid size while maintaining
computational effectiveness in the Inception V3 model [18].

Figure 3.9: Architecture of Inception V3 Model

MobileNet: The MobileNet deep learning model was first presented by Andrew
G. Howard. MobileNets uses a simplified architecture to produce effective deep
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neural networks by using depth-wise separable convolutions. A type of factorized
convolution known as depthwise separable convolutions is used by the MobileNet
model. A standard convolution is divided into two halves by these convolutions: a
depthwise convolution and a 1×1 convolution sometimes referred to as a pointwise
convolution. Depthwise convolution, or applying one filter to every input channel,
is what MobileNets do. The outputs of the depthwise convolution are mixed by the
pointwise convolution using a 1×1 convolution. A total of 27 convolutional layers
make up the MobileNet model: 1 fully connected layer, 1 average pooling layer, 1
softmax layer, and 13 depthwise convolution layers. The standard MobileNet model
has 4.2 million parameters, whereas the more basic MobileNet models have 1.32
million parameters [30].

Figure 3.10: Architecture of MobileNet Model

3.6 Architecture of Ensemble Model
To increase performance overall, an ensemble model aggregates predictions from
several distinct models. The average of the predictions made by each individual
model in an averaging ensemble yields the final forecast for a given input. Here’s
how to use pre-trained models such as VGG16, VGG19, MobileNet, and InceptionV3
to generate an averaging ensemble. The top (classification) layers are absent from
and pre-trained weights are used in the VGG16, VGG19, MobileNet, and Incep-
tionV3 models. One obtains the output tensors derived from the basis models. The
element-wise average of the predictions made by each of the various models is de-
termined using the Average layer. The averaged output is produced by the final
ensemble model, which starts with the original input. By aggregating and averag-
ing the characteristics that each individual model learns, an ensemble model has the
potential to improve overall predictive performance. Before training or predicting,
make sure the ensemble model is assembled using the proper optimizer, loss func-
tion, and metrics.
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Figure 3.11: Architecture of Ensemble Model

3.7 Architecture of Handcrafted Model
XGBoost: We build an XGboost model by using hog, mpv and po feature extractor
algorithms. To construct our model, we take into account the following parameters:
gamma, learning rate, max delta step, max depth, min child weight, n estimators,
n thread, objective, reg alpha, reg lambda, scale pos weight, quiet, and subsample
parameters. Gamma controls the regularization on the tree. A higher value (0.5 in
this case) indicates a preference for fewer and deeper splits in the tree, which can
help prevent overfitting. The learning rate determines the step size at each iteration.
A lower value (0.01 in this case) means smaller steps, leading to a slower but poten-
tially more precise convergence during the training process. This parameter limits
the step size during the optimization process to help prevent overfitting. A value of
0.1 implies a relatively small allowed step size. Max depth sets the maximum depth
of each tree. With a value of 4, the trees in the ensemble are limited to a moderate
depth, capturing intermediate-level feature interactions. It is the minimum sum of
instance weight (hessian) needed in a child. A low value like 0.2 allows for fine-
tuning of child weights and can help prevent overfitting. This specifies the number
of boosting rounds or trees to be built. With only 10 trees, the model is relatively
simple, and increasing this value might improve performance. Sets the number of
parallel threads used for training. With 4 threads, the training process can leverage
parallel processing capabilities. The objective function defines the learning task.
’multi:softmax’ indicates a multi-class classification problem, where the model pre-
dicts one out of multiple classes. It is the L1 regularization term on weights. A
value of 0.5 adds a penalty for having non-zero coefficients, encouraging sparsity in
the model. L2 regularization term on weights. A value of 0.8 adds a penalty for
large coefficients, helping to control the overall magnitude of the weights. Controls
the balance of positive and negative weights, useful for addressing class imbalance.
A value of 1 suggests a balanced weight between classes. If False, it prints messages
during training, providing information about the training process. t is the fraction
of training data to be randomly sampled for each boosting round. A value of 0.8
implies that each tree is trained on 80% of the training data, introducing random-
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ness to improve robustness and prevent overfitting.

SVM: Using the hog, mpv, and po feature extractor algorithms, we construct a
Support Vector Classification from Support Vector Machines. We import the model
from Sklearn. To observe our model performance, we set some default parameters
like kernel, degree, gamma, coef0, shrinking and probability. These parameters al-
low users to configure the behaviour of the support vector machine based on the
characteristics of their dataset and the desired trade-off between model complexity
and generalization. The fit method is used to train the model on a given dataset,
and the trained model can then be used for making predictions using the prediction
method.

Figure 3.12: Architecture of Handcrafted Model
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Chapter 4

Performance Study

4.1 Implementation
The size, epoch, layer, group, transformer layer, plates, trees, callbacks, filter size,
and matrix are the parameters that regulate the training dataset for this model in
comparison to the proposed network. Validation accuracy, validation loss, training
accuracy, and testing accuracy were acquired by the trained and tested models.
Training is initiated when the training images have been pre-processed. The max
pooling layers in the model’s architecture come after the convolutional layers. The
pre-trained models and the custom CNN model are selected before the machine
learning process begins, and the directory from the three established groups is im-
ported by the required input first layer size. Three phases are utilized to obtain
the picture type datatype: early, acute, and normal. Two portions of the data
have been extracted: 23.1% for testing and 76.9% for training. 6,000 of the 7,800
images are for training, while the remaining images are for testing. The optimizer
used is called ”Adam” [10], and it uses a gradient-based strategy centered on cre-
ative, simpler time predictions to enhance stochastic objective functions. In cases
involving large quantities of data and/or parameter values, the optimizer ”Adam” is
used because of its simplicity of development, computational performance, minimal
memory needs, and invariance to diagonal rescaling of the gradients.[4].

While the second number is used to calculate the percentage contributions from
the previous simulation to the current one, the first value is utilised to prevent
overfitting. 35 epochs and 32 batches have been used. Before moving on to the
next epoch, training and validation data are mixed, which increases the learning
process’ complexity. Every image has its color mode set to RGB. An activation
function called ”ReLU” has been employed.The Rectified Linear Unit (ReLU), a
non-linear activation function, makes the network more non-linear by letting posi-
tive values through but blocking negative ones. This makes it easier for the model
to find complex features in biomedical images. ”Categorised cross-entropy” is what
we employed under the loss part. The categorical cross-entropy loss function makes
it easier for the model to tell the difference between different kinds of enhancement
in biological images. This is accomplished by calculating the difference between the
actual and expected class probabilities. By penalizing deviations from the actual
class distribution, this non-linear function forces the neural network to search for
the optimal parameters. As a result, multiclass categorization becomes more ac-
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curate. The class mode has been set to ”categorical” to predict the outcome. By
assigning each image to one of numerous enhancement severity groups, this situation
provides a thorough categorization of the degree or type of enhancement present in
the biological pictures. To mitigate overfitting and improve the network’s capac-
ity for generalization, we employed Dropout, a regularisation approach included in
the deep learning model. Dropout involves randomly deactivating neurons during
training. The output layer uses the softmax activation function to provide probabil-
ity distributions that help categorize biological pictures into different enhancement
classes.Lastly, the color mode section was selected with the ”RGB” color option se-
lected, meaning that the photos would be converted to three channels. A graphics
processing unit serves as the computational environment for each test (GPU). For
benchmarking and informational reasons, Google Colab randomly installed three
GPUs: the Geforce Tesla K80, Geforce Tesla T4, and Geforce Tesla P4. To view
the GPU’s specs, use ”!nvidia-smi” in the Google Colab command line..

The training process is examined with reference to the optimizer’s repetition as
a deep learning technique. In general, the ”Adam” optimizer function is described
by equation (4.1).

ωt+1 = ωt − αmt (4.1)

mt = aggregate of gradients at time t

α = learning rate at time t

ωt = weights at time t

ωt+1 = weights at time t+ 1

Positive values are retained, while negative values are converted to zero using the
Rectified Linear Unit (ReLU) activation function.

f(x) = max(0, x) (4.2)

x represents the input to the ReLU function.
f(x) denotes the output of the ReLU function.
The function f(x) returns x if x is positive or zero; otherwise, it returns zero.

L(yt, yp) =
3∑

i=1

yt,i · log(yp,i) (4.3)
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yt is the true label distribution vector in a one-hot encoded form for the three classes.
yp is the predicted probability distribution vector across all three classes.
yt,i, yp,i represent the true and predicted probabilities for each of the three classes.

Training is initiated by clicking the ”model. fit” in the code. Below the contents of
the cell is a progress indicator showing the stages and epoch of the entire procedure.
The pre-trained model with all of the parameters and matrices selected indicates
that the primary validation parameter has been completed when the designated time
is completed.

Table 4.1: Parameters Used for the Pre-trained Models and the 13-Layer CNN
Model

Parameter Pre-trained models 13-layered CNN Models
Train Data 70% 70%
Test Data 30% 30%
Target Size (128,128) (128,128)
Batch Size 32 32
Epoch 35 35
Environment of Execution GPU GPU
Optimizer Adam Adam
Loss Function Categorical CrossEntropy Categorical CrossEntropy
Activation Function Softmax Softmax
Class Mode Categorical Categorical
Colour Mode RGB RGB

4.2 Performance Matrices
Here the calculation of accuracy, precision, recall and AUC performance of each
model is stated[1]. The equations are described below:

Accuracy =
True Positive+ True Negative

Total Correct Predictions (4.4)

Precision =
True Positive× True Positive Rate

True Positive
False Positive (4.5)

Recall =
True Positive× True Positive Rate

True Positive
False Negative (4.6)
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F1 score = True Positive
True Positive+ 1

2
· (False Positive+ False Negative)

(4.7)

AUC: A measure of a classifier’s capacity to distinguish between classes is referred
to as the Area Under the Curve (AUC) [1]. It just expresses the degree of in-
dependence or the scale by which it is assessed. Given that AUC is scale and
classification-threshold-invariant, it provides an aggregated performance statistic
across all thresholds. How well the model distinguishes between positive and nega-
tive categories is shown by the AUC rate. An increased AUC rate indicates improved
performance for each specific model.

In the following graphs x - axis defines the number of epochs and y - axis defines
accuracy rate.

4.3 Performance of CNN Model
We selected 7800 images among them we used 6000 images for training and 1800
images for testing, separated into three portions for normal brain, early (pre), and
acute (post).Each class’s training data accounts for 76.9% of the total data, while
testing data accounts for 23.1%. Finally, our proposed model was found to be 91%
correct.

Figure 4.1: Custom CNN Model Accuracy
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Figure 4.2: Custom CNN Model Loss

Figure 4.3: Custom CNN Model Confusion Matrix

4.4 Performance of Pre-Trained Models
As we have stated before, the total number of images is 7800, where we have di-
vided our image. 1800 images are used for our testing„ where we have divided these
images into 3 segments of 600 for each class. The classes are normal, pre(Early) and
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post(Acute). We have run these images into different pre-trained models. We have
used MobileNet, InceptionV3, Vgg16, and Vgg19. Upon analysis, we have found
that MobileNet has performed better than other models. The training accuracy is
95% and the testing accuracy is 89%. We have shown the results in graphs in the
figures below. The graphs are about the training and testing.

VGG16: Using the VGG16 model, we have obtained the train and test accuracy
and loss graph along with the confusion matrix. From the graph, we can analyze the
data loss and acquired concerning time. The graph of training and testing accuracy
and loss of VGG16, along with confusion matrix:

Figure 4.4: VGG16 Accuracy

Figure 4.5: VGG16 Loss
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Figure 4.6: VGG16 Confusion Matrix
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VGG19: Using the VGG19 model, we have done the same task, and we have seen
that the accuracy acquired is 84%. The performance of the model is stated below
with training and testing accuracy and loss of VGG19 along with confusion matrix:

Figure 4.7: VGG19 Accuracy

Figure 4.8: VGG19 Loss
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Figure 4.9: VGG19 Confusion Matrix
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InceptionV3: In the InceptionV3 model, the accuracy we have acquired is 80%.
Along with time, we can also learn about data loss. The performance of the model
is stated below with training and testing accuracy and loss of inceptionV3, along
with a confusion matrix:

Figure 4.10: InceptionV3 Accuracy

Figure 4.11: InceptionV3 Loss
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Figure 4.12: InceptionV3 Confusion Matrix
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MobileNet: In MobileNet, the accuracy is 89%. The stated graph and matrix have
shown the loss of data as well. The performance of the model is stated below with
training and testing accuracy and loss of mobileNet along with a confusion matrix:

Figure 4.13: MobileNet Accuracy

Figure 4.14: MobileNet Loss
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Figure 4.15: MobileNet Confusion Matrix
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4.5 Performance of Ensemble Model
We have ensembled all the pre trained model and got this performance matrix table:

Table 4.2: Training and Test Metrics

Metric Value Metric Value
Train Accuracy 93.8% Test Accuracy 88.8%
Train Loss 20.5 Test Loss 33.6

Figure 4.16: Ensemble Accuracy

Figure 4.17: Ensemble Loss

39



4.6 Performance of Handcrafted Models
Here, we have used the HOG, MPV, and PO features on SVM and XGBoost.Upon
several epochs, we have gained the scores that helped us determine the accuracy
level of these models. The Performance matrices of SVM and XGBoost are given
below:

Table 4.3: Performance Metrices Of SVM

Figures Hog MPV PO
Test Accuracy 77.5% 70.4% 66.3%
Average Precision 77.3% 73.08% 63.2%
Average Sensitivity 84.5% 68.6% 71%
F1 Score 80.6% 70.7% 66.7%

Table 4.4: Performance Metrices Of XGBoost

Figures Hog MPV PO
Test Accuracy 70.3% 63.8% 60.1%
Average Precision 69.7% 63.7% 57.03%
Average Sensitivity 74.5% 69.5% 70.5%
F1 Score 71.7% 66.4% 62.8%

4.7 Comparative Study
From the preliminary work we have done, the pre-trained model we have gained
different levels of accuracy. Such as in VGG16 it is 86%, VGG19 84%, InceptionV3
80%, MobileNet 89%. From this analysis we have encountered, that these models
cannot overcome our custom 13-layer CNN model which has given 91% accuracy.
We sought another path to check whether our custom model is a better one for our
data. We have used the ensemble method. All the pre-trained models have been
ensembled, and later all of the ensembled models are merged into a single model we
can see that the score is n 88%. We have also worked on our handcrafted feature
extraction model where HOG, MPV, and PO are implemented on SVM and XG-
Boost. In SVM, the Hog feature showed 80%, MPV showed 70% and PO showed
66%. Likewise, we have also gathered the results of these 3 features in XGBoost
which are 71% in HOG, 66% in MPV, and 62% in PO. All of these techniques still fail
to outcome the accuracy we have gained from our custom CNN model which is 91%.
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Figure 4.18: Accuracy comparison of implemented models

We may conclude, that though the proposed model is a lightweight one yet shows
a better outcome for our dataset with a high accuracy rate compared to the other
models we have worked on. Therefore, the use of transfer learning models on the
same dataset shows us how effective the proposed model performs.
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Chapter 5

Conclusion and Future work

5.1 Conclusion
The brain is like a supercomputer in our heads, controlling everything we do, think,
and feel. It’s a complex network of cells that helps us learn, remember, and ex-
perience the world around us. Detecting meningeal traumatic injury is vital as it
safeguards the brain’s protective coverings, preserves brain health, and prevents po-
tential damage or complications. For the automatic classification and detection of
traumatic meningeal injuries, a tailored deep-learning model has been proposed and
created in this research paper. Pre-trained models are implemented and ensembled,
for instance, VGG16, VGG19, MobileNet, and Inception V3, as the base archi-
tectures by using the capability of transfer learning. However, feature extraction
of HOG, MPV, and PO was conducted, followed by their utilization in predictive
modeling using XGBoost and SVM algorithms for comprehensive analysis and clas-
sification purposes. With a maximum accuracy of 91%, this research presents a deep
CNN model that can detect efficiently. Our model offers a systematic, successful
method for differentiating between traumatic meningeal damage detection on 7800
pictures, which are categorized into three groups. In terms of automatically identi-
fying medical photos, the customized model’s results show great potential. Timely
diagnosis and treatment can improve patient outcomes; thus, it’s important to ac-
curately diagnose traumatic meningeal injuries. We also found that the suggested
13-layered CNN model is a superior way for traumatic meningeal image recognition
when comparing it with earlier related research and transfer learning techniques.
Compared to the other approaches, the customised model yields more accuracy.
Despite this, we still want to improve and increase the model’s efficiency.
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5.2 Future Work
We have implemented our very first model and learned a lot, setting the stage to
improve and explore more advanced techniques. We have achieved a satisfactory
result, but there is still room for improvement in many areas. We would like to
work on the following areas:

• We want to explore deeper CNN architectures or advanced neural network
structures beyond the 13-layer model, which could further enhance accuracy
in traumatic meningeal injury detection.

• We can investigate the potential of ensemble methods by combining multiple
CNN architectures or incorporating other machine learning models to create
a more robust and accurate predictive system for traumatic meningeal injury
detection.

• We may conduct rigorous validation studies on diverse datasets, including real-
world clinical data, to validate the model’s performance in practical clinical
settings. Evaluating the model’s reliability, sensitivity, and specificity against
various patient demographics and injury severity would be crucial.

• We want to explore the feasibility of deploying the model in real-time diag-
nostic tools or integrating it into existing medical imaging systems to assist
clinicians in making faster and more accurate diagnoses.

These future research directions aim to further advance the accuracy, reliability,
and applicability of the developed model for traumatic meningeal injury detection,
ultimately enhancing its clinical utility and impact. It’s important to keep in mind
that deep learning is a subject that is always developing new approaches and struc-
tures. To use cutting-edge techniques for the automated classification and detection
of traumatic meningeal injuries, we need to stay current on the most recent research
and technological developments. The mix of creativity, subject-matter expertise,
and a readiness to consider novel concepts will open the door for fascinating new
research in this field.
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