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Abstract

Glaucoma is a severe eye condition that can lead to progressive vision impairment
if left untreated. Diagnosis and monitoring of glaucoma at an initial stage is critical
for effective treatment of the disease. However, the diagnosis is complex with bare
eyes which requires multiple checkups and tests. Image processing is important for
diagnosing glaucoma by providing valuable information about the intricate struc-
ture of the eye which helps improve the accuracy of diagnosis and allows for earlier
detection of the disease. This portrays the requirement for further research in this
field. We aim to explore various image-processing models used for image classifica-
tion and develop an efficient model that can be used in the detection of glaucoma.
In this paper, we have proposed a Custom CNN model with 22 layers based on deep
learning for glaucoma diagnosis where it detects from the fundus images whether the
person has glaucoma or not. The model has been trained using datasets containing
4000 fundus images each with 2 categories which are Glaucoma and Non-Glaucoma.
The datasets have been used on the Custom CNN model and six other pre-trained
models. Our proposed model has been able to successfully classify the images with
an accuracy of 98.71% which was the highest among all the models despite having
a lower number of parameters compared to the other models.

Keywords: Fundus Image, Glaucoma diagnosis, Deep Learning, Convolutional
Neural Network (CNN).
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AGIS Advanced Glaucoma Intervention Study
Al  Artificial Intelligence

AP Average Precision

AUC' Area Under Curve

BMI Body Mass Index

CAD Computer Aided Diagnosis

CDR Cup-to-Disk Ratio

CNN Convolutional Neural Network

CPF Color Fundus Photography

DCNN DenseNet-201 Deep Convolution Neural Network
DL  Deep Learning

FV ' Forced Vital Capacity

GCIPL Ganglion Cell Inner Plexiform Layer
G SS2 Glaucoma Staging System 2

HCDR Horizontal Cup-to-Disc Ratio

KNN k-Nearest Neighbour

MD Mean Deviation

ML Machine Learning

NN Neural Network

OCT Optical Coherence Tomography

ONH Optic Nerve Head

PEF Peak Expiratory Flow

x1



RF  Random Forest

RNFL Retinal Nerve Fiber Layer
SLV Standardized Loss Variance
SV M Support Vector Machine
VCDR Vertical Cup-to-Disc Ratio
VF  Visual Field

VGG Visual Geometry Group

x1i



Chapter 1

Introduction

Glaucoma is severe, potentially blinding and an irreversible eye disease. It is esti-
mated that more than 50 million people are affected to this date and predicted to
affect more than 100 million by 2040. Glaucoma is a major eye condition in which
fluid is built up in the eye and is pressed against the retina and the optic nerves. As
the disease progresses towards the next stage, defects start to develop in the visual
field and if not controlled can result in complete blindness.

Timely detection and predicting the progression of rapid treatment is still one of
the major challenges in medical history. The early investigation of the optical disc
changes is one of the foremost and necessary steps for later diagnosis. Firstly, the
clinical exams and tests are crucial to be performed with a substantial amount of
proficiency, for example, optic nerve imaging and visual field testing [14]. But, ac-
cording to the statistics, the required amount of expertise in performing the tests is
inadequate. As a result, the number of patients is increasing at an alarming rate.
Secondly, the symptoms of glaucoma are imperceptible until the later stages of the
disease. Early intervention necessitates the utilization of novel diagnostic instru-
ments to promptly identify the disease.

As the disease is progressive and irreversible, early detection and diagnosis are of
immense importance. Although the disease is asymptomatic in the very early stages,
there are some specific functionalities in the eye that can be taken into consideration
and tested. The part of our eye that processes the vision we are seeing directly in
the front is the macula. The initial signs of vision impairment can potentially be
identified by observing the preceding alterations in the macula and the Retinal nerve
fiber layer (RNFL). [14]. Most of the studies have been inclined towards color fundus
photography (CPF) as it is widely available. On the other hand, many reports have
utilized optical coherence tomography (OCT), a procedure where infrared lights are
used to generate a 3D image of the retina and visual tests. The advantage of OCT is
the ultrasound imaging in processing speed because light travels faster than sound.
Furthermore, research has employed the technique of segmenting the optic cup and
optic disk from the previously mentioned color fundus photographs. This approach
allows for the determination of the cup-to-disk ratio (CDR) as a means to identify
indications of glaucoma.



Deep learning is a major research topic in terms of understanding discriminatory
representations of the data. The motive of the architecture is to yield more abstract
and useful representations by combining various linear and nonlinear operations ap-
plied to the dataset. One of the architectures of Deep learning is Convolutional
Neural Networks (CNN) which has been proven to have done successful image seg-
mentation and classification. Here, in this paper, we have developed a Custom CNN
model that identifies images with or without Glaucoma using binary classification.
This model has achieved an accuracy of 98.71% and has high precision, recall, f1
score and accuracy.

(a) Basic explanation (b) Fundus Image explanation

Figure 1.1: Glaucoma Visualization

1.1 Problem Statement

1. Laborious and Time-Consuming Process:

Glaucoma is one severe disease that results in permanent blindness if goes
unchecked in the early stages. But the manual procedure takes too long.
The minimum number of check-ups needed is five times for the eye specialist
[15]. They have to go through step-by-step diagnosis such as Tonometry,
Optical Coherence Tomography, Ophthalmoscopy, Perimetry, and Gonioscopy
to analyze a glaucoma-infected eye. These various tests check for eye pressure,
any damage to retinal nerve fiber layers, the optic nerve, vision loss, and the
cause of high eye pressure one by one. All these are works of lengthy processes
that are bothersome for both the doctor and the patient. Here comes the need
to construct a system where Glaucoma can be detected in one single attempt
instead of these lengthy 5 consecutive check-up reports.

2. Hardly Identifiable Patterns:
Compared to any diagnosis, searching for Glaucoma indications in retinal im-
ages is inconspicuous. Through hierarchical feature learning, CNN can capture
anything from simple elements to increasingly complex patterns. This is es-
sential to detect the delicate patterns from the fundus images for Glaucoma
because these structures can be too intricate to identify by traditional ap-
proaches.



3. Imprecise Localized Feature Extraction:
To detect Glaucoma, cup-disk features are examined, and the cup-disk ratio is
measured from optic nerve head (ONH) images. With the help of convolutional
and pooling layers, CNN can extract those features from the local region pretty
accurately which gives us ample opportunities to work with any detail we might
require.

4. Unavailability of Authentic Dataset:
The lack of comprehensive and publicly accessible retinal fundus image datasets
has posed a significant obstacle to the widespread application of Al in practi-
cal Computer-Aided Diagnosis(CAD) to detect glaucoma. The few available
datasets, primarily intended for research purposes, often face strict inclusion
criteria along with unrealistic image-capturing conditions. [3]

In this research, we are striving to apply deep learning algorithms, focusing mostly on
Convolutional Neural Networks to examine the three datasets; REFUGE, ORIGA
and G1020. Our primary objective is to predict the early onset of glaucoma by
focusing on the optic disc and cup region in fundus images.

1.2 Research Objective

The goals we want to achieve through our research:

e To develop a clinically feasible deep learning based approach to detect glau-
coma at the early stage to avoid further vision loss.

e To make glaucoma diagnosis time-efficient and cost-effective by avoiding sev-
eral attempts and clinical tests.

There have been promising attempts similar to the standards we have set in the
Machine Learning sector and Deep Learning. Esteemed researchers have directed
their attention toward utilizing fundus images for the early detection of glaucoma.
Despite the disease being asymptomatic, its detection is challenging but not insur-
mountable. As a result, we are focusing on using CNN for its noteworthy ability to
analyze the intricate details and structures of the pictures and provide high accuracy.



Chapter 2

Literature Review

Since Glaucoma is a severe eye condition leading to major vision loss many eye
specialists and researchers have been working on it, trying to find a way to detect
Glaucoma in the early stages otherwise it can get worse to the extent of losing com-
plete vision. Many image processing techniques have been developed. An automatic
image processing system was used in this paper [2], calculating the vertical and hori-
zontal cup-to-disc ratios which are VCDR and HCDR. Two algorithms were applied
to carry out the experiment where level set and inpainting methods were made to
carry out the disc segmentation and on the other hand, segmentation of the cup was
carried out using a Type-II fuzzy approach. The images on which the algorithms
were used were manually marked initially and the results were later verified com-
pared with the manual results. Still, The combined accuracy of HCDR and VCDR
algorithms was 74.2%.

However, in comparison to ophthalmologists and conventional methods, CNN had
achieved higher accuracy in detecting Glaucoma [13]. The authors used a valid set
of visual fields numbering 300 where CNN achieved an accuracy of 0.876 which was
the highest. They even got an accuracy result for ophthalmologists, where resident
ophthalmologists had 0.607, attending ophthalmologists showed 0.585 and glaucoma
experts got 0.626 of the accuracy. GSS2 and AGIS accomplished a precision of 0.523
and 0.459. Even the standard machine learning algorithms like k-nearest Neighbour
(kNN), Support Vector Machine (SVM) and Random Forest (RF) could not keep
up in this experiment achieving an average of 0.6 accuracy.

The study [10] using Optical Coherence Tomography (OCT) also had a high ac-
curacy in detecting Glaucoma with deep learning models. They used a training
set of 7288 OCT images and applied the (VGG-19) CNN model which is known
as the Visual Geometry Group. Distinctive OCT maps were assessed and finally
compared with the results from two Glaucoma specialists. The thickness maps and
deviation of Retinal Nerve Fiber Layer (RNFL) and Ganglion Cell Inner Plexiform
Layer (GCIPL) analyses were mainly focused on in the research. In all, their deep
learning model scored a high accuracy rate in detecting Glaucoma showing similar
detection patterns as Glaucoma specialists.

In an early paper of 2015 [4], ALADDIN, an automated feature learning model was
proposed for glaucoma detection that involved the application of deep learning and



convolutional neural networks (CNN) for feature learning. Instead of using a regular
linear layer for convolutional layers, they tried to implement a multilayer percep-
tron using micro neural networks with a higher complexity structure. Additionally,
their paper suggested a deep learning architecture for analyzing fundus images and
recognizing glaucoma patterns by employing a hierarchical representation approach.
They did achieve an accuracy score of 0.838 and 0.898 on the datasets of ORIGA
and SCES according to the result of Area Under Curve (AUC).

To overcome the limitations of current machine learning (ML) approaches with fea-
tures like the high segmentation errors in retinal thickness maps, a paper has been
proposed [14] where they have been able to take a more accurate Machine learn-
ing based approach for glaucoma visualization. They have effectively compiled vast
datasets comprising information on population characteristics, systemic factors, and
eye-related parameters, in addition to color fundus photos (CFPs) and macular Op-
tical Coherence Tomography (OCT) scans. They have built two Deep Learning
models with the imaging modality of both retinal OCT and CPFs and respectively
named the Retinal OCT model and CPF model which input an image and output
the probability of the presence of glaucoma in the input image. Furthermore, they
built three models using gradient-boosted decision trees based on ocular features,
demographic features: age, gender, and ethnicity; systemic features: Forced Vital
Capacity (FVC), Body Mass Index (BMI), Peak Expiratory Flow (PEF), heart rate,
diastolic and systolic blood pressure, presence of diabetes, recent caffeine and nico-
tine intake. Significantly, they have validated the model’s accuracy by comparing its
results with the clinical interpretation of color fundus photos (CFPs) by healthcare
professionals.

The paper [12] suggested a clinically practical deep-learning system to predict glau-
coma with the help of solar fundus photographs (CPF). They have developed three
models. The first model has been developed as a diagnostic algorithm for possible
glaucoma, DiagnoseNet. The second model has been developed to predict the future
depending on the 3 longitudinal CFP images or visual field cohorts data named Pre-
dictNet. Lastly, the third was developed to predict the progress of glaucoma from
cohorts with existing glaucoma. The accuracy of predicting glaucoma incidence is
90% and glaucoma progression is 91%.

A futuristic method to differentiate between healthy and early-glaucomatous VFs
using CNNs has been presented in the paper [11]. They have introduced the con-
cept of Voronoi images, which is a technique to convert visual fields (VFs) into 2D
images, overcoming the spatial distribution challenges posed by the test locations
within the 30-degree visual field. VFs can be classified with the help of Voronoi im-
ages by custom-designing CNN. T'wo additional maps have been provided here which
highlight the VF regions contributing to the CNN decision. In the later step, the
effectiveness and verification of the method have been tested. Then, a comparison
of the method with a Neural Network (NN) containing no spatial information and
those based on MD, SLV and both were investigated. The first dataset gave the best
AP score in CNN (0.874+0.095) across all test folds and the third best for the other.



This paper [1] builds a deep-learning model that uses fundus photography to diag-
nose glaucoma. A total of 1,542 fundus photos (467 advanced glaucoma, 786 normal
controls, and 289 early glaucoma patients). In the dataset of 1,542 images, there
were 464 from the test, 754 from the training and 324 validation datasets. Using
the collected datasets, researchers have developed a straightforward logistic classi-
fication and Convolutional Neural Network (CNN) using TensorFlow. They have
also applied fine-tuning techniques to pre-trained GoogleNet Inception v3 models
for enhanced performance. The model showed an 82.9% training accuracy, 79.9%
validation accuracy and 77.2% test accuracy. Whereas the convolutional neural net-
works achieved and accuracy of 92.2%.

A more innovative and safe approach for predicting glaucoma before any symptoms
appear is proposed in the paper [9]. The glaucoma images have been analyzed
using deep learning where they segment the optic cup that has been pre-trained
and model integrated with the U-Net architecture. The DCNN (DenseNet-201 deep
convolutional neural network) methodology is employed to ascertain the presence of
glaucoma in individuals. During the training and testing process, the model achieves
an overall accuracy of 90%.

In this paper [17] detecting glaucoma which is feature-based in the retinal fundus,
many types of features have been used to form an enhanced deep image analy-
sis model. The features used have parameters which are nasal, inferior, superior,
cup-to-disc ratio, and temporal region area and these are combined to form the
overall model. This model is composed of four different types of ML algorithms
which include individual algorithms like Naive Bayes, SVM, and KNN. There are
two classes for the images that are healthy and have glaucoma and the model has
been partitioned into three parts which are classification, pre-processing, and deep
image feature extraction. The dataset used for this research is public and popular
as real-time scenarios are required for the research. The name of the dataset is
DRIONS-DB and has 140 images where almost 50% of the images have glaucoma
and the rest of the images do not have glaucoma.

In this paper [7], Early Glaucoma Detection is an essential part of diagnosing glau-
coma so to efficiently diagnose and treat glaucoma the use of image processing has
been prioritized in a wider range. For this research, a unique ensemble-based deep
learning model has been used where three pre-trained CNN models were used for
detecting glaucoma. The three networks used have different accuracy levels and five
different data sets were used to analyze the algorithm. The three networks used were
(VGGNet) which is the visual geometry group network, GoogLeNet and (ResNet)
which is a residual network. Among the five datasets, the dataset PSGIMSR had
an accuracy of 91.11%, a specificity of 95.20% and a sensitivity of 85.55%. More-
over, other datasets including DRIONS-DB, DRISHTI-GS and HRF had different
accuracies. Lastly, the combined data sets had an accuracy of 88.96%. As image
processing is capable of handling mass data of patients and analyzing, images pro-
duced by OCT have been used as it is easier to produce 3D images of the retina by
joining several OCT images together.

The paper [5] states that glaucoma is irreversible and can deteriorate the quality



of life. Thus, a deep learning architecture is developed to automatically diagnose
glaucoma based on the convolutional neural network. This model can capture and
characterize the hidden patterns that develop due to glaucoma. The paper works
with two datasets and a total of six layers with weights. These can boost the per-
formance and reduce the overfitting problem. Moreover, there is a preprocessing
step that removes the bright fringe and the inputs for the proposed model take less
time to process as the images are smaller. The paper [5] also claims the potential of
working with multiple ocular diseases in the future.

Another paper [16] creates a generalized DL model that focuses on three different
learning architectures namely ResNetb0, GoogleNet and ResNet-152. This model
works with 5 different datasets rather than focusing on one or two and thus, is
fine-tuned so that it works well for any dataset. For the images, there is also a
preprocessing step to standardize the fundus images. It may show variability but
80% of the time it shows better performance overall than previous works. Consid-
ering accuracy, it is better 53% of the time. Furthermore, for AUC and specificity
performance, the model is better 87% and 100% of the time respectively.

This paper [18] presents an automatic two-stage glaucoma detection system which
will be more efficient and further lessen the workload of ophthalmologists. In this
structure, DeepLabv3+ segments the region of the optic disc and then many deep
CNNs substitute the module. Pretrained deep CNN has been used for learning
transfer as well as using a support vector machine for feature descriptors and then
creating the whole methods for the previous two proposals. Five datasets have
been used to try the methods containing a total of 2787 images. After testing it
showed that MobileNet and DeepLabv3+ combined worked best. This method has
accuracies above 85% with each of the datasets than the methods normally used
would have where it had the best performance with CUHKMED using the Refuge
dataset.



Chapter 3

Methodology

We have successfully acquired the Glaucoma Fundus Imaging Datasets and are now
prepared to initiate the preprocessing phase. Within this preprocessing stage, we
have segregated our glaucoma dataset into three distinct categories, namely, train-
ing, testing, and validation. We have allocated them in a proportionate ratio of
70:20:10. During the training phase, 70% of our glaucoma dataset is meticulously
utilized to instruct and fine-tune our deep learning models. 20% is employed for
the testing phase and in the validation phase, we employ the final 10% which will
play a crucial role in fine-tuning model hyper-parameters and ensuring that it can
make reliable predictions on unseen data. Our prime motive is to build a custom
CNN model that would obtain the highest accuracy in the detection of Early-stage
Glaucoma. We are also focusing on using various deep learning models like Incep-
tionNetV3, DenseNet169, EfficientnetB4, VGG16, Alexnet and Squeezenet in our
research for transfer learning and to compare the better performance of prediction
with our Custom CNN model. We will be thoroughly implementing each model to
identify the top models with the best prediction accuracy.



3.1 Workflow of the Methodology

Figure 3.1: Workflow of the Methodology



3.2 Dataset Description

3.2.1 Dataset collection

The presence of an optical disk cup image is crucial for identifying glaucoma because
it enables the assessment of the cup-to-disk ratio (CDR). The CDR is a crucial factor
in diagnosing glaucoma since it tends to be higher in individuals with the condition.
20

Our dataset contains 4000 images of the human eye which have been altered into a
special type of medical image called fundus image and have been cropped to focus
only on the area containing the optic disc and cup within the eye.

We have categorized them into Glaucoma and Non-Glaucoma classes according to
the diagnosis. We have further arranged the labels into groups of 1 and 0 respec-
tively. Among these images, 2000 have been diagnosed with Glaucoma and 2000
images are normal.

For this study, we have collected the Glaucoma Fundus Imaging Datasets [8] con-
taining the Fundus images and OD/OC masks from ORIGA, REFUGE, and G1020
datasets. From that, we have created two distinct datasets-

1. Main Dataset (REFUGE): Our primary dataset originates from the REFUGE
dataset which has been later preprocessed and tailored for this paper.

2. Secondary Experimental Dataset: We have also worked on a secondary
dataset for further comparison. All three sources (ORIGA, REFUGE, G1020)
have been merged and preprocessed for this dataset.

3.2.2 Fundus Image Sample

Fundus images of a Glaucoma-infected eye and an uninfected eye are shown in the
figures below, which we used to train our models.

(a) Glaucoma (b) Non-Glaucoma

Figure 3.2: Data Sample

In a healthy eye, the optic cup is a minor central dip in the optic disk where the
optic nerve exits. In glaucoma’s advance, the optic cup enlarges, encroaching on
nearby nerve tissue, potentially leading to vision loss.

10



3.2.3 Data Labelling

We have collected our datasets from [8] and through information from corresponding
JSON files, labeled the images in their respective classes. We have labeled our data
in two classes implementing binary classifier. The classification has been done into
a class of images diagnosed with Glaucoma and another class of images that are
healthy.

Figure 3.3: Bar-Chart distribution of data

According to the figure, we have categorized Glaucoma images as 1 and Non-
Glaucoma images as 0 with the respective histogram. As we can see, the blue
bar denotes the train set, the orange bar denotes the test set and lastly, the green
bar denotes the validation set.

11



3.2.4 Dataset Classification

By our research methodology, we have allocated 70% of the glaucoma dataset for the
training phase, while reserving 20% for rigorous testing and dedicating the remain-
ing 10% for the crucial validation process. This partitioning strategy is employed
to ensure the robustness and reliability of our experimental results.

Categories Train Test Validation Total
Glaucoma 1400 400 200 2000
Non- 1400 400 200 2000
Glaucoma

Train Set: The training dataset is usually a large chunk of the dataset that is
used to train the model to recognize subtle patterns and features. In this case, the
dataset is used on fundus images linked to both healthy and glaucoma-labeled im-
ages. It allows the training data promote generalization, enabling the machine to
predict new, unidentified fundus images improving the model’s capacity to recognize
glaucoma accurately,

Test Set: The test dataset is used to determine whether the built model works
correctly or not. The model’s capacity to generalize the information it has learned
is assessed by testing if it can successfully diagnose glaucoma in actual situations on
a different dataset. It ensures a trustworthy indication of the model’s performance.

Validation Set: During the process of training the dataset, this helps in identifying
the effectiveness of the model in learning new information independent of the training
data. The performance on the validation set helps us decide the hyperparameter
tuning, changing model architecture and also detecting over-fitting in the early stage.

12



3.3 Data Pre-processing

3.3.1 Data Augmentation

To expand our existing dataset, we have augmented images from the smaller datasets
we had and created a combined balanced dataset. Furthermore, to expand our
dataset, we used contrast modification, flipping, left and right rotation,
skewing, and zooming in and out. This helped to train the models efficiently
for better predictions and thus give better results. The images in the dataset have
been cropped to focus on the core glaucoma part which is the area of interest.

Figure 3.4: Before and After Data Augmentation

3.3.2 Resizing Image

To keep the dimensions of the images consistent the pixel sizes were mainly 224*224
but it was also suggested for the models we used. However, for the Custom CNN
model, we kept the pixel sizes to 256*256 to ensure that the features of the images
are reserved. Due to resizing, only the dimensions have changed but the aspect ratio
remains the same. Changing the number of pixels enabled the model to train better
as the new images had different size characteristics.

3.3.3 Normalization

The pixel values were normalized to a certain standardized range mainly between
[0,1]. This ensured that the images were consistent throughout. Normalization helps
the models to converge faster so that training is done efficiently as the data is scaled
to a certain range. We have used min-max scaling for some models and standard-
ization for a few other models to ensure better accuracy.
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Chapter 4

Proposed Custom CNN Model

Our custom model defines a Convolutional Neural Network (CNN) for image classi-
fication using the TensorFlow and Keras library. The model is designed to classify
fundus images to detect Glaucoma.

1. Data Generators: Data generators are employed to load and preprocess data
in batches, which is especially useful for working with large image datasets.
These generators use strategies for data augmentation to broaden the variety
of data.

2. Encoder-Decoder Architecture: At the core of our model, we have an
encoder-decoder architecture:

e Encoder: The encoder consists of multiple convolutional layers, followed
by max-pooling and batch normalization. It reduces spatial dimensions
while increasing the depth (number of channels) to encode critical infor-

mation.

e Decoder: Mirroring the encoder, the decoder gradually upsamples the
spatial dimensions while reducing the number of channels. Batch nor-
malization is incorporated in each decoder block for enhanced stability.

3. Convolutional Layers:

Block 1:
Block 2:
Block 3:
Block 4:
Block 5:
Block 6:
Block 7:
Block 8:

1024 filters, 3x 3 kernel
512 filters, 3x3 kernel
256 filters, 3x3 kernel
128 filters, 3x3 kernel
128 filters, 2x2 kernel
64 filters, 2x2 kernel
32 filters, 2x2 kernel
32 filters, 2x2 kernel

ReLU (Rectified Linear Unit) Activation is utilized after each Convolutional
layer. ReLLU Activation Ensures non-linearity in the model, enabling it to learn
complex patterns. Batch Normalization and Max Pooling are applied
after each Conv2D layer for improved training stability and spatial dimension
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reduction. Batch Normalization Improves training efficiency and stability by
normalizing the inputs of each layer. Max Pooling Reduces spatial dimensions,
aiding in reducing overfitting and computational load. Finally, Dense Layers
have been implied which helps capture high-level features and patterns from
the extracted spatial information.

Figure 4.1: Structure of Custom CNN model

4. Final Layers and Output: The model concludes with a flatten layer to
transition from convolutional to dense layers, followed by a dense layer of 64
neurons with ReLLU activation and another dense layer with a dropout set at
0.3. The final output layer uses a single neuron with sigmoid activation for
binary classification. The formula of sigmoid is

1/(1+e™)

5. Compilation and Optimization: The model concludes with a flattened
layer to transition from convolutional to dense layers, followed by a dense
layer of 64 neurons with ReLLU activation.

e Loss Function: Binary Cross entropy is chosen for its suitability in bi-
nary classification tasks, particularly in medical diagnostics where prob-
ability scores are crucial.

e Optimizer: The Adam optimizer, with a learning rate of 0.001, is se-
lected for its efficiency in handling sparse gradients and adaptive learning
rate capabilities, essential in medical image analysis.

6. Training Configuration: Training is performed using the fit function with
data generators, allowing for efficient training on large datasets. It also uti-
lizes callbacks, such as model check-pointing, early stopping and learning rate
reduction.

7. Monitoring Training: During training, the model’s performance is moni-
tored for both training and validation datasets. Key metrics like accuracy and
loss are tracked over multiple epochs.
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Figure 4.2: Simplified Architecture of Proposed CNN Model

4.1 Model Summary of Custom CNN

This model is specially designed to utilize the advantages of deep learning
in image processing and make it suitable for tasks that require intricate fea-
ture extractions and analysis from elaborate and complicated images. The
combination of encoder and decoder blocks enables a complete and thorough
analysis of the data, which ensures an elaborate contextual understanding and
a detailed local feature extraction of the input data.
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Layer (type) Output Shape Parameter #

input._2 (InputLayer) [ {(None, 256, 256, 3)] O
conv_1 (ConvaD) (None, 254, 254, 1024) 28672
norm 1 (BatchNormalization) (None, 254, 254, 1024) 4096
max pooling2d 3 (MaxPoolingZ2D) (None, 127, 127, 1024) 0
c:onv_2 (Conv2D) (None, 125, 125, 512) 4719104
norm 2 (BatchNormalization) (None, 125, 125, 512) 2048
ma.x_poo].ingEd._4 (MaxPooling2D) (None, 62, 62, 512) 0
conv_3 (Conv2D) (None, 60, 60, 256) 1179904
norm 3 (BatchNormalization) (None, 60, 60, 256) 1024
max pooling2d 5 (MaxPooling2D) (None, 30, 30, 256) a
conv_4 (Conv2D) (None, 28, 28, 128) 255040
norm 4 (BatchNormalization) (None, 28, 28, 128) 512
ma.x_poolingEd._G (MaxPooling2D) (None, 14, 14, 128) Q
GDDV_ED (Conv2D) (None, 13, 13, 128) 65664
nom_5 (BatchNormalization) (None, 13, 13, 128) 512
ma.x_poolingEd_T (MaxPooling2D) (None, 6, 6, 128) 0
conv_6 (ConvaD) (None, 6, 6, 64) 32832
norm 6 (BatchNormalization) (None, 6, &, 64) 256
max pooling2d 8 (MaxPoolingZ2D) (None, 3, 3, 64) a

dense (Dense) (None, 3, 3, 64) 4160
conv_'i' (Conv2D) (None, 3, 3, 32) 8224
norm 7 (BatchNormalization) (None, 3, 3, 32) 128
max_poclinde_Q (MaxPooling2D) (None, 1, 1, 32) a
dense 1 (Dense) (None, 1, 1, 32) 1056
conv_8 (Conv2D) (None, 1, 1, 32) 4128
norm_ﬁ (BatchNormalization) (None, 1, 1, 32) 128
flatten (Flatten) (None, 32) Q
dense_Q (Dense) (None, 64) 2112
dense_3 (Dense) (None, 1) 65

Total params: 6,349,665
Trainable params: 6,345,313
Nen-trainable params: 4,352

Figure 4.3: Custom CNN Model Summary
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Chapter 5

Pre-Trained CNN Models

5.1 InceptionV3

InceptionV3 is a 42-layer CNN model that is trained on the ImageNet dataset
for a variety of computer vision implementations. As a residual network,
InceptionV3 employs residual blocks to learn intricate features. Factorized
convolutions is another approach used in InceptionV3. Convolutions that are
factorized divide a larger convolution into two smaller convolutions that can
be computed more quickly.[19]

Figure 5.1: Architecture of InceptionV3

After the initial steps of the input layer and max pooling layer:

e The output is passed through a series of inception modules.

e Each inception module consists of a series of convolutional layers with
kernel sizes such as 5x5, 3x3, or 1x1 convolutions. This allows the incep-
tion module to learn features at different scales.

After passing through the global max pooling layer, the procedure is similar
to the CNN models. Through its parallel branches, InceptionV3 is renowned
for its ability to capture fine-grained information and has attained top perfor-
mance in several computer vision tests.
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Model: "Inceptionvi™

Layer (type) Output Shape Param #
input_; (InputLayer) [ ({(Non=e, 75, 75, 3)]1 0
convZzd (Conv2D) {None, 37, 37, 32) 864
batch_pormalization (Batch...) (None, 37, 37, 32) %6
activation (RActivation) {None, 37, 37, 32) Q

(multiple layers with conwvelutions, activations, peooling)

mixed?9 (Concatenate) (None, 1, 1, 2048) 1]

global_average_Pcoling2d (Glo (None, 2048) Q
dropout (Dropout) (None, 2048) Q
dense (Dense) (None, 1) 2049

Total params: 21,804,833
Trainable params: 21,770,401
Non-trainable params: 34,432

Figure 5.2: InceptionV3 Model Summary

5.2 Densenet169

All the layers of DenseNet169’s (CNN) architecture are linked to every other
layer. The feature maps of the layers act as input for the above layers and
vice versa. The ImageNet dataset has over 1 million images and 1,000 classi-
fications, and was used to train this 169-layer CNN. In this architecture [6]:

e Input image is passed through a 7x7 convolution layer with 64 filters.

e Afterwards, the output is passed through a stride 2 max pooling layer.
The image’s dimensions are cut in half during this max pooling opera-
tion, which also selects the highest value found in each 2x2 pixel block.
This procedure lowers the model’s parameter count and improves the
effectiveness of its training.

e The max pooling layer output is passed through a series of dense blocks.
In every dense block, there is a sequence of convolutional layers, and each
of these layers is linked to every other layer within the block.

e The last dense block output is passed through a global average pooling
layer. This layer calculates the average of all pixel values in the image,
contributing to a reduction in the model’s parameter count and enhancing
its resilience to noise.

e The global average pooling layer is passed through a completely connected
layer with their outputs.
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Figure 5.3: Architecture of DenseNet169

Model: "DenseNetled"

Layer (type) Output Shape Parameter #
inpup_; (InputLayer) [ (None, 64, 64, 3)] Q

convZd (Conwv2D) (None, 32, 32, b64) G472
batch_pormalization {(Batch...) (None, 32, 32, 64) 2586

re_lu (RelLlU) (None, 32, 32, 64) Q

max pooling2d (MaxPooling2D) (None, 16, 16, 64) Q

(multiple layers with convolutions, batch normalizations, ReLlU

activations, concatenations)

conv2d_85 (Conv2D) (None, 2, 2, 32) 18464

concatenate 81 (Concatenate) (None, 2, 2, 64) Q
max pooling2d 4 (MaxPooling2D) (None, 1, 1, 64) Q
flatten (Flatten) {None, ©64) Q
dense (Dense) (None, 128) 8320
dense 1 (Dense) (None, 1) 129

Total params: 1,532,193
Trainable params: 1,521,377
Nen-trainable params: 10,816

Figure 5.4: DenseNet169 Model Summary
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5.3 EfficientNetB4

This is an EfficientNetB4 architecture-based, 380x380 convolutional neural
network (CNN) model that is pre-trained on ImageNet (a large dataset). It
starts with the EfficientNetB4 base model, which has already learned valuable
image features from a diverse set of images.

EfficientNetB4 is a type of neural network that scales all of its dimensions
(depth, width, and resolution) equally. This makes it more accurate and effi-
cient than other neural networks that are scaled more traditionally.

e After each convolutional layer, batch normalization and activation tech-
niques like ReLU are frequently used to speed up training and improve
the execution of the network.

o Efficient Channel Attention (ECA) is a method that EfficientNetB4 uses
to focus on important channels inside feature maps while minimizing
computational complexity.

e It has a deeper and wider (more channels) design than its smaller coun-
terparts. The larger breadth improves feature representation, and the
deeper the model can go, the more complicated and hierarchical features
it can capture.

e Operates more frequently on high-resolution photos than on tiny varia-
tions. For activities needing fine-grained details, this may be advanta-
geous.

e Over the basic model, a Global Average Pooling 2D layer is added. This
layer reduces the spatial size of the feature maps while maintaining critical
information. A dense layer with a single neuron and a sigmoid activation
algorithm is added to produce the final result.
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Figure 5.5: Architecture of EfficientNetB4

Layer (type) Output Shape Param # Connected to

input_2 (InputLayer) [(None, 112, 112, 3)] @ [1

rescaling 2 (Rescaling) (None, 112, 112, 3) @ ["input_2[@][0]"]
normalization_1 (Normalization)(None, 112, 112, 3) 7 ['rescaling 2[8][8]"]
rescaling_3 (Rescaling) (None, 112, 112, 3} @ ["normalization_1[6][8]"']
stem_conv_pad (ZeroPadding2D) (None, 113, 113, 3) @ ['rescaling_3[0][@]"]
stem_conv (Conv2D) (None, 56, 56, 48) 1296 ["stem_conv_pad[@][@]"]
stem_bn (BatchNormalization)  (None, 56, 56, 48) 192 ["stem_conv[B][0]"]
stem_activation (Activation)  (None, 56, 56, 48) 8 ["stem_bn[@][8]"]

[Layers continue in similar pattern] ...

block7b_project_conv (Conv2D) (None, 4, 4, 448) 1204224 ['block7b_se excite[@][@]']
block7b_project_bn (BatchMorm) (None, 4, 4, 448) 1792 [ 'block7b_project conv[B][8]"]
block7b_drop (Dropout) (None, 4, 4, 448) 8 [ 'block7b_project bn[B8][8]"]
block7b_add (Add) (None, 4, 4, 448) 8 ["block7b_drop[@][@]"]
top_conv (Conv2D) (None, 4, 4, 1792) 802816 ['block7b_add[@][e]"]

top_bn (BatchMormalization) (None, 4, 4, 1792) 7168 ["top_conv[B][8]"]
top_activation (Activation) (None, 4, 4, 1792) 8 ["top_bn[B][B8]"']

global_avg pooling2d (GlobalAv (None, 1792) 8 [*top_activation[@][©] "]
dropout (Dropout) (None, 1792) 8 ['global avg pooling2d[@][e]']
dense (Dense) (None, 1) 1793 ["dropout[@][8]"]

Total params: 17,675,616
Trainable params: 17,558,489
Non-trainable params: 125,287

Figure 5.6: EfficientNetB4 Model Summary
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54 VGGI16

Despite being a relatively straightforward CNN architecture, VGG16 is quite
successful. The input image is processed using a series of convolution layers
and max pooling layers to extract its features. To categorize the image, the
characteristics are subsequently transferred to a fully linked layer.

e The depth of VGG16 is 16 layers, as per the name.

e To extract the features, VGG16 uses 3x3 convolution layers with stride
1 where the filter moves one pixel at a time.

e After many convolution and max-pooling layers, VGG16 usually contains

one or more fully connected layers. Usually, these layers are used for
categorization at the end.

00 3 000 ok x

AN Sa 8N 3§ yYydso

> > o > > > ﬂ-ﬂc:z

5535658 T

OuU=00OL s L o0 ;3
VGG16 Architecture

Figure 5.7: Architecture of VGG16
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Model: "VGGle"

Laysr (type) Cutput Shape Param #
convZd (ConwvZD) (None, 224, 224, 64) 1752
conv2d 1 (Conw2D) (None, 224, 224, 64) 36528
max_Poolinde (MaxPooling2D) (None, 112, 112, 64) 0O
conv2d_2 {Conv2D) (None, 112, 112, 128) 73856
convZd 3 (Conv2D) (None, 112, 112, 128) 147584
max_Poolinde;} (MaxPooling2D) (None, 56, 56, 128) [i]
convZd 4 (ConvZD) (None, 56, 56, 256) 295168
conv2d:5 (ConvZD) (None, 56, 56, 256) 590080
conv2d 6 (Conv2D) (None, 56, 56, 256) 5930080
max_Poolinde;Z (MaxPooling2D) (None, 28, 28, 256) ]
conv2d_? {Conv2D) (None, 28, 28, 512) 1180160
conv2d 8 (Conv2D) (None, 28, 28, 512) 2359808
conv2d 9 (Conv2D) (None, 28, 28, 512) 2359808
max_Poolinde;S (MaxPooling2D) (None, 14, 14, 512) [i]
conv2d_10 (Conwv2D) (None, 14, 14, 512) 2359808
convZd 11 (ConvZD) (None, 14, 14, 512) 2359808
conv2d_12 (Conv2D) (None, 14, 14, 512) 2359808
max_Poolinde;é (MaxPoocling2D) (None, 7, 7, 512) (1]
flatten (Flatten) (None, 25088) (1]

dense (Dense) (None, 40986) 102764544
dense 1 (Dense) (None, 40956) 16781312
dense_? (Dense) (None, 2) 8194

Total params: 134,268,738
Trainable params: 134,268,738

Nen-trainable params: 0

Figure 5.8: VGG16 Model Summary
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5.5 Squeezenet

SqueezeNet is intended to be a compact and effective CNN architecture for
usage in embedded and mobile systems. Useful features have been learned
using a pre-trained SqueezeNet model from torchvision that has been pre-
trained on a sizable dataset (like ImageNet). Two output neurons (one for
each class in binary classification) are added to the model’s last layer.

e [ire Modules are the architecture’s building elements that make up the
majority of SqueezeNet. Two basic parts make up a fire module, an
expand layer and a squeeze layer.

e A 1x1 convolution layer (squeeze layer) with a small number of filters.

e SqueezeNet is distinguished by its small model size, which was attained
by using 1x1 convolutions and channel-wise compression.

Due to the architecture’s efficiency, it can be installed on hardware with con-
strained computing capabilities.

Figure 5.9: Architecture of Squeezenet
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Layer (type) Cutput Shape Parameter #
ConvZd-1 [-1, 64, 111, 111] 1,792
RelU-2 [-1, &4, 111, 111] 0
MaxPool2d-3 [-1, 64, 55, 55] 0
ConvZd-4 [-1, 16, b5, 55] 1,040
RelLU-5 [-1, 16, 55, 55] 0
ConvZd-6 [-1, 64, b5, 55] 1,088
RelLU-7 [-1, 64, 55, 55] 0
ConvZd-g8 [-1, 64, b5, 55] 9,280
ReLU-9 [-1, 64, 55, 55] 0
Fire-10 [-1, 128, 55, 55] 0
(Similar patterns with Conwv2d, RelVU, Fire modules)
ConvZ2d-59 [-1, 2856, 13, 13] 147,712
ReLU-60 [-1, 256, 13, 13] 0
Fire-61 [-1, 51z, 13, 13] 0
Dropout—-62 [-1, 512, 13, 13] 0
ConvZd-63 [-1, 2, 13, 13] 1,026
RelU-64 [-1, 2, 13, 13] 0
AdaptiveAvgPool2d-65 [-1, 2, 1, 1] 0

Total params: 723,522
Trainable params: 723,522
Non-trainable params: 0

Figure 5.10: Squeezenet Model Summary
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5.6 AlexNet

AlexNet is a prominent CNN model architecture that did great in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. This
model is pre-trained on ImageNet with a vast dataset.

e Layer Design: The architecture starts with convolution layers, followed

by batch normalization and Rectified Linear Unit (ReLU).

Local Response Normalization (LRIN): AlexNet implements LRN

which increases the model’s ability to capture intricate patterns and de-
tails.

Multiple GPUs: AlexNet uses two GPUs during training.

Dropout: Dropout is implemented in the fully connected layers to pre-
vent over-fitting, enhancing the model’s generalization capabilities.

Deeper Architecture: AlexNet’s architecture is relatively deep for its

time, comprising eight weight layers. The increased depth allows for the
capture of hierarchical features in image data.

Global Average Pooling (GAP): A Global Average Pooling 2D layer
is employed to reduce the spatial dimensions of the feature maps while
retaining essential information. A final dense layer with a single neuron
and sigmoid activation generates the ultimate prediction.

The AlexNet model has had a profound impact on the field of computer vision,
setting the stage for subsequent advancements in deep learning architectures.

Input Image

Conv 1
Ma-Foal 1
Cony 2
Ma-Paol 2
Cony 3
Cony 4
Cony &
Meax-Fool 3
Fully Connected 1
Fully Connected 2
Saftmax

Figure 5.11: Architecture of AlexNet
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Layer (type) Cutput Shape Parameter#

Conv2d-1 [-1, &4, 55, 55] 23,296
RelLu-2 [-1, &4, 55, 55] 0
MaxPool2d-3 [-1, &4, 27, 27] 0
Conv2d-4 [-1, 182, 27, 27] 307,392
ReLU-5 [-1, 182, 27, 27] 0
MaxPool2d-6 [-1, 182, 13, 13] 0
Conv2d-7 [-1, 384, 13, 13] 663,936
RelU-8 [-1, 384, 13, 13] 0
Conv2d-9 [-1, 256, 13, 13] 884,002
ReLU-10 [-1, 256, 13, 13] 0
Conv2d-11 [-1, 256, 13, 13] 590,080
ReLlU-12 [-1, 256, 13, 13] 0
MaxPool2d-13 [-1, 256, &, 6] 0
AdaptiveAvgPool2d-14 [-1, 256, &6, &] 0
Dropout-15 [-1, 9216] 0
Linear-16 [-1, 4098] 37,752,832
ReLuU-17 [-1, 4096] 0
Dropout-18 [-1, 4096] 0
Linear-19 [-1, 40%6] 16,781,312
ReLU-20 [-1, 4096] 0
Linear-21 [-1, 2] 8,194

Total params: 57,012,034
Trainable params: 57,012,034

Non-trainable params: 0

Figure 5.12: AlexNet Model Summary

28



Chapter 6

Result and Analysis

In our research, we have presented the accuracy and loss graph for each epoch
in the training and validation phases. The graphical representation helps us to
identify the performance and generalization of each model to detect Glaucoma
on unseen data.

We have used two groups of datasets and have presented the graphical charts
for each. We have analyzed each model on the Main Dataset (REFUGE) and
the Secondary Dataset (Combined) after data pre-processing.

6.1 Model Comparison with Pre-trained CNN
Models

Model Name | Accuracy | Loss | Validation Accuracy | Validation Loss | Parameters(Million)
Custom 98.71% 0.0682 97.75% 0.0531 6.35
AlexNet 50.13% 0.6931 50.00% 0.6934 62.3
DenseNet169 72.31% 0.5671 68.01% 0.8391 14.14
EfficientNetB4 95.05% 0.0142 50.00% 0.7730 17.55
InceptionV3 90.02% 0.3811 91.16% 0.2011 25.12
SqueezeNet 50.56% 0.6931 50.00% 0.6931 0.732
VGG16 53.02% 0.6930 52.89% 0.6931 167.83

Table 6.1: Table for Model Performance Comparison (Main Dataset-REFUGE)

Model Name | Accuracy | Loss | Validation Accuracy | Validation Loss | Parameters(Million)
Custom 65.01% | 0.6152 72.17% 0.4891 6.35
AlexNet 51.96% | 0.6930 50.16% 0.6940 62.3
DenseNet169 53.33% | 0.0982 52.10% 0.7341 14.14
EfficientNetB4 |  94.38% | 0.1214 63.46% 1.4322 17.55
InceptionV3 91.29% | 0.1985 80.88% 0.3433 25.12
SqueezeNet 52.09% 0.6931 51.44% 0.6931 0.732
VGG16 67.49% | 0.6003 61.08% 0.6420 167.83

Table 6.2: Table for Model Performance Comparison (Secondary Dataset)
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Figure 6.1: Bar-Chart of Model Comparison (Main Dataset-REFUGE)

Figure 6.2: Bar-Chart of Model Comparison (Secondary Dataset)
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6.2 Performance Analysis

6.2.1 Custom CNN Model

Our custom model was able to achieve a successful peak of 98.71% in the train-
ing accuracy which is the highest in comparison with the pre-trained models
on the main dataset. From the very beginning, the accuracy escalated to
60% and throughout the 60 epochs, it continuously showed impressive fluc-
tuations. The validation accuracy showed similar performance and reached
97.75%. Even though it dropped to 70% at 20 epochs, but it could reach back
to 90% fast. Whereas, the training loss gradually declined from 0.73 to 0.0682.
The validation loss on the other hand had more fluctuations throughout but
ended down at 0.0531.
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Figure 6.3: Custom CNN Training and Validation (Main Dataset)

For the secondary dataset, our custom model obtained 65.01% in training
accuracy. For the validation accuracy, we can observe different shifts in the
graph in almost every 3 epochs. The value peaked at 72.17%. The training and
validation loss, on the other hand, had a similar pattern resulting in 0.6152
and 0.4891 respectively.
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Figure 6.4: Custom CNN Training and Validation (Secondary Dataset)

6.2.2 InceptionV3

The InceptionV3 model has thrivingly achieved 90.02% training accuracy as we
trained with our main dataset which is amongst one of the highest we were able
to achieve. Even though there was a rough start in the beginning within the
range of the first 5 epochs between 70%-80% after that, the accuracy gradually
increased to 90%. Towards the 22nd epoch, even though we observed a drop
from 90% to 80%, the model was able to achieve the height of 91% and ended
with 90.02%. But, in terms of the Validation accuracy, the fluctuations have
been more and frequent. Starting from massive heights to about 78% to huge
drops to less than 50% within the first 5 epochs. With the shifts, the validation
accuracy reached its peak after the 35 epochs and ended at 91.16%. On the
other hand, the training loss was smoother, the validation loss, being similar
to the validation accuracy, went through variations of shifts throughout.
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Figure 6.5: InceptionV3 Training and Validation (Main Dataset)
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The InceptionV3 model achieved a training accuracy of 92.29% with balanced
performance when trained with the secondary dataset. Throughout 60 epochs,
training and validation losses gradually decrease from over 0.7 where the vali-
dation loss decreases from 0.7 to 0.35 and the training loss decreases from over
0.7 to below 0.2. Alongside, the validation and training accuracy increases over
time from the first epoch to the last epoch. The training accuracy increases
from over 50% and goes above 90% and the validation accuracy increases from
over 50% to approximately 80%.

Figure 6.6: InceptionV3 Training and Validation (Secondary Dataset)

6.2.3 DenseNet169

Up until the first 10 epochs, the training accuracy remained quite unsatisfac-
tory for our main dataset, which is less than 60%. But, it rapidly escalated
after the next 5-7 epochs, where we can observe the value to be about 64%.
By the end of 40 epochs, we were able to achieve 72.13%. The validation
accuracy remained nearly constant in the first 6 epochs but peaked suddenly
at 18 epochs which was above 60%. With frequent alterations, it ended with
68.01%. For our main dataset, the performance of DenseNet169 is observed
to be substandard. The training loss peaked at the very end with comparably
fewer shifts in the middle and the validation loss gradually decreased to less

than 60%.

35



Figure 6.7: DenseNet169 Training and Validation (Main Dataset)

This information provides a snapshot of the validation and training perfor-
mance of the DenseNet169 model on the secondary dataset. Throughout 40
epochs, the training loss gradually decreases from approximately 0.7025 to
0.6926, indicating that the model is learning to fit the training data better.
The training accuracy has different alterations but could only achieve 53.33%,
demonstrating that the model becomes moderately accurate in predicting the
training data. Conversely, the validation loss fluctuates but generally decreases
from approximately 0.6927 to 0.6924, showing that the model generalizes well
to the validation data. The validation accuracy also improves from 50.56% to
52.10%, indicating that the model’s performance on unseen data is not very
satisfying.
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Figure 6.8: DenseNet169 Training and Validation (Secondary Dataset)
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6.2.4 EfficientNetB4

The EfficientNetB4 model was able to give a rather constant set of accuracy
throughout the 40 epochs for our main dataset. It peaked at the very start of
model training straight to 90% and by the end, had achieved 95.05% which is
the second highest in our training accuracy collection. Observing the perfor-
mance overall, we are identifying it to be over-fitting. The validation accuracy
on the other hand had some shifts but ended up with 50% accuracy. Similar
to the accuracy plotting, the training loss plotting has the same patterns of
constant values ending at 0.0142, but the validation loss graph had the most
frequent fluctuations this time ending at above 0.5.

Figure 6.9: EfficientNetB4 Training and Validation (Main Dataset)
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The training loss steadily decreased from epoch 1 to epoch 60. This indicates
that the model is learning to reduce the differences between the predictions and
the actual target values in the training dataset. The loss reduction signifies
that the model is converging during training. The training accuracy steadily
increases from around 51.62% in the first epoch to approximately 94.38% in the
last epoch. This indicates that the model is improving its ability to correctly
classify training samples over time. The validation accuracy, which measures
the model’s performance on data it has never seen before, also shows fluctua-
tions but generally is constant. It starts at 50% in the first epoch and reaches
49.84% in the last epoch.

Figure 6.10: EfficientNetB4 Training and Validation (Secondary Dataset)
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6.2.5 VGG16

In terms of deep learning, VGG16 is observed to limit itself in terms of working
with deep networks, and as a result, even though we observed fluctuations in
almost every 3 epochs, the model could not achieve training accuracy of more
than 55%. The same goes for the validation accuracy. In terms of the training
and validation loss, the model has performed nearly in a similar pattern and
peaked at 0.69.

Figure 6.11: VGG16 Training and Validation (Main Dataset)

The VGG16 model exhibits fluctuations in training and validation accuracy
throughout training. Starting with a validation accuracy of 51.62% and a
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training accuracy of 51.42% in the first epoch, the model’s performance un-
dergoes variations but generally shows improvement. Training accuracy grad-
ually increased to approximately 67.49%, while validation accuracy fluctuates
around 50%-65%. These fluctuations suggest that the model is learning from
the training data but may struggle to generalize well to the validation dataset.
Overall, the VGG16 model achieves moderate performance, with the potential
for further refinement to reduce over-fitting and improve validation accuracy.
Further analysis and fine-tuning may be needed to enhance its generalization
capabilities.

Figure 6.12: VGG16 Training and Validation (Secondary Dataset)
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6.2.6 SqueezeNet

The Squeezenet was not able to present a variation of alterations throughout
the 40 epochs in both the cases of training and validation accuracy. In the
very beginning, the training accuracy peaked at 50.56% and by the end, it
had dropped to less than 49% and remained constant in most of the epochs.
Whereas, the validation accuracy seemed to be adamantly stable at the value
of 50%. Change of picture in terms of the training loss where we observed
some shifts in the plot but still not impressive. It peaked at 0.69 only in the
3rd epoch, where the validation loss here also remained constant throughout.

Figure 6.13: Squeezenet Training and Validation (Main Dataset)
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The training process for the SqueezeNet model over 60 epochs resulted in
limited progress, maintaining a training accuracy of around 52.09% and a
stagnant validation accuracy of 51.44% throughout most of the training. This
suggests that the model may not have been effectively learning from the data
or that the model architecture and the hyperparameters need adjustment to
improve performance. Further analysis and fine-tuning are recommended to
enhance the model’s learning capability and achieve better validation accuracy.

Figure 6.14: Squeezenet Training and Validation (Secondary Dataset)
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6.2.7 AlexNet

When trained on the main dataset, Alexnet gave the constant value of 50%
throughout the 40 epochs for validation accuracy but continuous variations
were seen for the training accuracy but could only reach the height of 50.13%.
The training and validation loss remained similar to the training and validation
loss that we obtained in terms of the secondary dataset also, that is 0.693 and
0.694 respectively.

Figure 6.15: AlexNet Training and Validation (Main Dataset)

The training accuracy was able to show recurrent variations according to the
graph including some portions where it gave constant values for straight 10
epochs. The accuracy could only reach 51.96% when trained on the secondary
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dataset. Furthermore, the validation accuracy seemed to be constant most
of the time at 50.16% with close to no fluctuations. On the contrary, The
training and validation loss graphs obtained more fluctuations throughout the
40 epochs reaching 0.693 and 0.694 respectively.

Figure 6.16: AlexNet Training and Validation (Secondary Dataset)
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6.3 Model Comparison with Related Works

As a crucial part of our research methodology and performance analysis of our
proposed custom CNN model, we have compared our result with the related
works we have presented in the section Literature Review. One of our main
motives is obtaining a better result in the scale of accuracy in comparison to
the relevant work that has been done until now on detecting early Glaucoma.
The combined accuracy of the algorithms HCDR and VCDR is obtained to be
74.2% in the paper [2]. In the paper [4], with the concept of automated feather
learning, a model has been proposed called ALADDIN. The accuracy using
two different datasets by this model is 83.8%. The accuracy in predicting
the incidence of Glaucoma by the diagnostic algorithm model DiagnoseNet
afterward improved to 90% [12]. The CNN model in [1] has been built in a
more traditional manner and with the least amount of layers which rather was
a simpler approach with a very low amount of images. This paper achieved
an accuracy of 92.2%.. Lastly, the paper [7] has only displayed the combined
accuracy of the pre-trained models VGGNet, GoogleNet and ResNet which
is 88.96%.

Approach Method Accuracy
This Paper Custom CNN 98.71%
Almazroa et al., 2018 [2] HCDR and VCDR 74.2%
Chen et al., 2015 [4] ALADDIN 83.8%
Li et al., 2022 [12] DignoseNet 90%
Ahn et al., 2018 [1] Traditional Simplified CNN 92.2%
Joshi et al., 2022 [7] VGGNet, GoogLeNet and ResNet |  88.96%

Table 6.3: Table for Comparison with Related Works

Figure 6.17: Bar Graph for Accuracy of Related Works
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Chapter 7

Performance Evaluation

In this chapter, we have tried to analyze the performance of our custom CNN
Model by evaluating the classification report, confusion matrix and ROC curve
respectively.

7.1 Performance Metrics

The equations of the performance metrics used are specified as follows:

e Accuracy Formula :

Accuracy = TP+TN _ P+ TN (7.1)
P+ N TP+TN+ FP+ FN

e Precision Formula :

PPV = TPZ—PFP —1_FDR (7.2)
¢ Recall Formula :

PPV = TP};L—PFN =1-FDR (7.3)

e F1-Score Formula :
Fl-Score =2 Ppgi JffPR T ox TPer< ;1€+ N 7Y
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Here, the respective abbreviations are: T'P = True Positive, T'N = True Neg-
ative, P = Positive Case, N = Negative Case, I'P = False Positive, FN =
False Negative, PPV = Positive Predictive Value, T'PR = True Positive Rate,
FDR = False Discovery Rate.

Data Result Type | Class 0 | Class 1 | Accuracy
Test Precision 0.9870 0.9541
Recall 0.9525 0.9875 0.97

F1-Score 0.9695 0.9705

Validation Precision 0.9894 0.9384
Recall 0.9350 0.9900 0.9625

F1-Score 0.9614 0.9635

Table 7.1: Classification Report of the Custom CNN Model
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7.2 Confusion Matrix

The confusion matrix provides a comprehensive summary of the performance
of the custom CNN model. We have constructed the confusion matrix heat
map for the test and validation data.

Figure 7.1: Confusion Matrix for Test data

Figure 7.2: Confusion Matrix for Validation Data
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7.3 AUC-ROC

AUC-ROC uses a single value to analyze how accurately a binary classification
model separates the classes. If the score is closer to 1, it means that the model
can identify the classes accurately.

In our custom model, the AUC-ROC score for the test data is 0.9857 and the
score for the validation data is 0.9940.

Figure 7.3: ROC for Test data

Figure 7.4: ROC for Validation Data
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Chapter 8

Limitation and Future Work

In this research, we have proposed a custom model for glaucoma detection
using Deep Learning. While the results demonstrate promising advancements
in the detection of the disease, there are several areas for further improvement
and exploration.

Through the course of our data collection and the development of our model,
we faced some constraints we want to look into in the future.

e Insufficient Dataset: The availability of a limited amount of data can
be a hindrance to the effective performance of the model. Due to privacy
and ethical concerns, patient records are highly sensitive. In addition to
that, there are institutional barriers that limit the collection of sufficient
datasets.

e Resource Limitations: The lack of access to high-performance com-
puting resources limits the complexity of the model and impacts its per-
formance.

e Model Complexity: The inability to add more parameters and layers
may have limited the capacity of the model to capture intricate patterns
present in the data.

To address these limitations and pave the way for future enhancements, we
need:

e Collect Larger Datasets from Medical Centers: For the insuffi-
ciency of data, we will be collecting larger and more diverse datasets
from different medical centers. Through establishing ethical approval
and collaboration with medical professionals for responsible acquisition
of dataset.

e Vision Transformers (ViT): ViT models have demonstrated effec-
tiveness, particularly with large datasets. ViT is capable of enhancing
scalability and overcoming the challenges associated with using merged
datasets.

e Website Implementation for Medical Centers: We are planning
on developing a website that will help medical professionals leverage the
capabilities of our model for diagnostic purposes.
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Chapter 9

Conclusion

Glaucoma is a chronic eye condition that can lead to complete vision loss if
left untreated. To prevent this, our study was directed towards the automated
detection of this defect in the early stages through the development and im-
plementation of deep learning models. We tried to come up with an efficient
framework to differentiate between images with and without glaucoma and
detect them. Furthermore, we tried to come up with a Custom CNN model
which would be more feasible and accurate. To that extent, we compared dif-
ferent research papers, pre-trained models and datasets. However, the model
must be tested on a larger dataset with more diversity, and evaluated in a clin-
ical setting. The model may further combine with other techniques to achieve
even better results. Our study aims to showcase the potential of our approach
and it will progressively improve the chances of diagnosis and treatment. Our
work focuses on decreasing labor and time consumption while also increasing
accuracy as the patterns may be too complex for manual detection. In con-
clusion, we aim to reduce the development of glaucoma by early detection and
treatment.
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