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Abstract

In recent years, road safety has emerged as a critical concern due to the increas-
ing number of accidents attributed to driver negligence and fatigue. This thesis
addresses this pressing issue by proposing a Real-Time Driving Monitoring System
designed for deployment on a single-board computer. The system employs a com-
bination of cutting-edge technologies to comprehensively assess driver safety during
operation.
The system’s core objective is to discern whether the driver is operating the vehicle
in a safe manner. To achieve this, three distinct input streams from specialized
cameras are utilized. The first input stream leverages YOLOPv2, a state-of-the-art
object detection model, to accurately detect road lanes and determine if the vehicle
remains within the designated lane. This real-time feedback is crucial for preempting
potential lane departure incidents.
The second input stream employs Monocular Depth Estimation with MiDAS, a
robust and efficient technique for gauging the distance of objects in close proximity
to the vehicle. By aggregating depth measurements and calculating a mean depth
value, the system establishes an empirical threshold. Instances where the mean
depth falls below this threshold are indicative of potential collision risks, prompting
the system to identify the driver as unsafe.
Furthermore, the third input stream utilizes the front-facing camera to monitor
driver behavior and detect signs of drowsiness. Through a combination of facial
feature analysis and eye tracking, the system can accurately determine if the driver
exhibits signs of fatigue or inattentiveness. Should the driver display drowsiness for a
duration surpassing the specified threshold, an alert is triggered, thereby mitigating
the risks associated with driver fatigue.
In the event that any of the aforementioned conditions persist for a predetermined
duration, the system activates an alert protocol. This protocol includes the illumina-
tion of LED indicators and the sounding of a buzzer, providing immediate feedback
to the driver and drawing attention to the potential safety hazard.
By combining these advanced technologies in a single-board computer-based system,
this thesis presents a comprehensive approach to real-time driving monitoring. The
integration of YOLOPv2 and MiDAS with deep neural networks ensures accurate
and timely detection of potential safety risks, thereby contributing significantly to
the enhancement of road safety standards. .

Keywords: Machine Learning; Domain Generalization; Lane Detection; Decision
tree ; MIDAS ; YOLOPv2 ;
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Chapter 1

Introduction

1.1 Motivation

In recent years, the escalating concern over road safety has prompted a paradigm
shift in automotive technology. The surge in vehicular accidents attributed to driver
negligence, distraction, and fatigue has necessitated the development of innovative
monitoring systems capable of providing real-time feedback to drivers. This shift
towards proactive safety measures is particularly pertinent given the rapid advance-
ment of autonomous driving technology, which demands a seamless transition from
manual to automated control.

Figure 1.1: Driver Monitor System research nowadays

The World Health Organization (WHO) estimates that over 1.3 million lives are
lost annually due to road traffic accidents, making it one of the leading causes
of mortality worldwide [3]. Furthermore, countless individuals suffer life-altering
injuries, exerting an immense economic burden on healthcare systems and societies
at large. These grim statistics underscore the critical need for comprehensive driver
monitoring systems that can significantly reduce the incidence of accidents.
Traditionally, driver safety has been addressed through legislation, education, and
the incorporation of passive safety features within vehicles. While these measures
have undoubtedly contributed to mitigating risks, they do not sufficiently address
the issue of active, real-time monitoring of driver behavior. Consequently, there
exists a substantial gap in the existing safety paradigm.
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1.2 Research problem

Conventional driver monitoring systems primarily rely on rudimentary sensors and
heuristic-based algorithms. These systems are often incapable of discerning nuanced
indicators of driver fatigue or distraction, leading to false positives or, worse, over-
looking genuine instances of unsafe driving behavior. Moreover, the efficacy of these
systems is contingent on ideal lighting conditions, making them less reliable during
adverse weather or nighttime driving [6].

To bridge this gap, this research endeavors to integrate state-of-the-art technologies
into a unified Real-Time Driving Monitoring System. By harnessing the power of
Deep Neural Networks (DNNs) in conjunction with MiDAS (Monocular Depth Es-
timation), this system aims to revolutionize the landscape of driver safety.

Deep Neural Networks (DNNs) have demonstrated unprecedented capabilities in
various computer vision tasks, including object detection, facial recognition, and
image segmentation [4]. Their ability to discern intricate patterns in visual data
makes them an ideal candidate for driver monitoring applications. By leveraging
DNNs, the system can perform real-time analysis of visual input from multiple
cameras, enabling rapid and accurate identification of potential safety risks.
Monocular Depth Estimation with MiDAS augments the system’s perceptual ca-
pabilities by providing a reliable means of gauging distances to objects in close
proximity to the vehicle [7]. This spatial awareness is pivotal in assessing potential
collision risks, especially in scenarios where conventional sensors may fall short. By
calculating the mean depth from multiple measurements, the system establishes an
empirical threshold, offering a quantifiable metric for identifying unsafe driving con-
ditions.

The genesis of this research lies in the urgent need for a sophisticated, real-time driv-
ing monitoring system that can transcend the limitations of existing approaches. By
amalgamating cutting-edge technologies, we seek to create a comprehensive solution
that not only addresses the challenges posed by driver negligence and fatigue but
also paves the way for a safer and more secure future of transportation.

Through this amalgamation of DNNs, MiDAS, and a single-board computer, we
aim to harness the full potential of modern computational capabilities to proactively
enhance driver safety. This research aspires to contribute significantly to the ongoing
discourse on road safety, with the ultimate goal of saving lives and reducing the
societal impact of road traffic accidents.

1.3 Research Objectives

In this research endeavor, our primary aim is to construct, implement, and appraise
a Real-Time Driving Monitoring System, seamlessly integrated into a single-board
computer. This system will harness the power of Deep Neural Networks (DNNs)
and Monocular Depth Estimation with MiDAS, representing a holistic approach to
driver safety. Our research objectives can be elucidated as follows:

2



1. Development of a Comprehensive Driver Safety Assessment System:
a. We will incorporate YOLOPv2, a state-of-the-art object detection algorithm, for
real-time road lane detection. This will ensure that the vehicle remains within the
designated lanes, even under varying environmental conditions.
b.Additionally, we’ll integrate Monocular Depth Estimation with MiDAS to ascer-
tain distances of objects proximate to the vehicle. By calculating mean depth values,
we aim to establish a threshold for identifying potential collision risks.

2.Integration of Deep Neural Networks for Real-Time Analysis: a.Deep Neural Net-
works will be deployed to process input from multiple cameras concurrently. This
will enable real-time analysis of visual data streams, encompassing lane deviation
detection, depth assessment, and driver behavior monitoring.
b.Object detection capabilities will be leveraged to identify road lanes from the
YOLOPv2 camera feed, facilitating immediate corrective feedback to ensure the
vehicle remains on course.
c.The utilization of DNNs for facial feature analysis and eye tracking will allow for
real-time detection of driver drowsiness, promptly triggering alerts when necessary.

3. Real-Time Alerting Mechanism:
a.An alerting system, comprising LED indicators and a buzzer, will be integrated to
provide immediate feedback to the driver. This system will be designed to activate
alerts in response to identified instances of unsafe driving behavior.
b.We will develop a threshold-based logic to determine the duration and severity
of unsafe driving behavior, thereby fine-tuning the alerting mechanism to respond
appropriately.

3



Chapter 2

Related Work

The pursuit of driver safety has spurred extensive research in the development of
advanced monitoring systems. Among the pivotal advancements in this domain are
the application of Convolutional Neural Networks (CNNs) for real-time object detec-
tion and classification. Redmon et al. (2018) introduced the groundbreaking You
Only Look Once (YOLO) models, revolutionizing object recognition by enabling
rapid, one-pass processing. YOLO’s efficiency in resource utilization and speed has
made it instrumental in real-time applications, including the detection of road lanes.
YOLOPv2, an incremental improvement introduced by the same authors, refines the
balance between accuracy and speed, rendering it a pivotal tool for detecting road
lanes promptly and accurately [10] [12].

Monocular Depth Estimation, a critical facet of our system, has emerged as a cen-
tral theme in recent research endeavors. Zhou et al. (2017) introduced Monocular
Depth Estimation with Pre-trained Scene-specific Networks (MiDAS), a state-of-
the-art method for inferring depth from monocular images. The approach leverages
pre-trained networks on scene-specific data, resulting in impressive accuracy in esti-
mating distances to objects in proximity to the vehicle. MiDAS plays a fundamental
role in our system by providing essential spatial awareness, which is crucial for eval-
uating potential collision risks.[5] The depth estimation equation utilized in MiDAS
can be represented as follows:

D = f.
B

D
(2.1)

where: D = Estimated Depth,
f = Focal Length of the Camera,
B = Baseline (distance between the two cameras),
d = Disparity.

Driver drowsiness detection has been an enduring area of interest, with a particular
emphasis on facial cues and eye movement patterns as indicative markers. Xu et
al. (2016) proposed a comprehensive framework employing a combination of facial
landmark detection, eye state analysis, and head pose estimation. Their approach,
akin to ours, endeavors to swiftly discern drowsiness indicators, ensuring timely
alerts to the driver. By utilizing multiple facial features, their system demonstrates
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commendable accuracy in detecting signs of driver fatigue, a pivotal aspect of our
integrated monitoring system [9].

While the individual components of our system have been explored in isolation,
the amalgamation of YOLOPv2, MiDAS, and Deep Neural Networks (DNNs) on
a single-board computer signifies a novel advancement in this domain. This inte-
gration harnesses the complementary strengths of each technology, resulting in a
comprehensive real-time monitoring system capable of accurately evaluating driver
safety across multiple dimensions.

2.1 Comparative Analysis of Approaches

In a comparative analysis, it becomes evident that our integrated system represents
a convergence of cutting-edge technologies, leveraging the strengths of YOLOPv2,
MiDAS, and DNNs. This comprehensive approach stands as a notable departure
from previous systems that have predominantly relied on conventional sensors and
heuristic algorithms. Previous efforts, while commendable, often face limitations
in accuracy, real-time processing capabilities, and adaptability to diverse environ-
mental conditions. For instance, traditional driver monitoring systems relying on
rudimentary sensors can struggle with nuanced indicators of driver distraction or
drowsiness, leading to either false positives or overlooking genuine instances of un-
safe driving behavior. In contrast, the incorporation of YOLOPv2 ensures real-time
and precise lane detection, providing immediate feedback to the driver in scenarios
of potential lane deviation. Moreover, the integration of MiDAS offers a significant
advancement in spatial awareness, enabling the system to gauge distances to objects
near the vehicle with remarkable accuracy. This capability is crucial in assessing po-
tential collision risks, particularly in situations where conventional sensors may fall
short. The utilization of DNNs for real-time analysis of multi-camera inputs repre-
sents a paradigm shift in driver monitoring. This approach empowers the system
to perform intricate pattern recognition and analysis, facilitating the detection of
road lanes and assessment of driver behavior. By leveraging the strengths of DNNs,
our system is adept at processing complex visual data streams from various angles,
resulting in a more comprehensive evaluation of driver safety.

2.2 Future Implications

The integration of YOLOPv2, MiDAS, and DNNs in our real-time driving monitor-
ing system holds profound implications for the future of road safety. This integrated
approach not only addresses the limitations of existing systems but also sets a new
standard for the industry. By combining the capabilities of advanced neural net-
works and depth estimation techniques, we open the door to a new era of driver
safety. Furthermore, the adaptability and scalability of our system position it as a
potential cornerstone in the development of autonomous vehicles. The technology
and methodologies employed in our research can serve as a foundation for future
innovations in automated driving, ensuring that safety remains a paramount con-
sideration. In conclusion, our research represents a significant step forward in the
pursuit of enhanced driver safety. By integrating state-of-the-art technologies, we
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aim to contribute to a future where road accidents and their associated human and
economic costs are drastically reduced. The successful implementation of our inte-
grated monitoring system showcases the potential for advanced technologies to make
a tangible difference in road safety.

2.3 Literature Review

As we know that the world population is currently increasing, so are motorized
vehicles. If we think only about countries where owning a private car isn’t much
affordable, there are more than 4.4 million motorized registered vehicles up to 2021.
In between these, more than 370k are private passenger cars. If we look back in
2003, there were only 303k motorized vehicles. Up to 2022 there are about 5403590
vehicles registered in Bangladesh Road Transport Authority (BRTA) [9]. Here is a
chart that shows how alarming the situation is-

Figure 2.1: NUMBER OF REGISTEREDMOTOR VEHICLES IN BANGLADESH
(YEARWISE)[8]

When in a lower middle economic country where GDP per capita $2503 facing an
increment of car in this rate, then how alarming the situation is in countries like the
USA where GDP per capita is $69287.54 10. As vehicles are increasing, the accidents
are also increasing. To reduce accidents there are many researches and proposals
that are working on driving monitoring. So mostly there are two categories - i)
Drivers behavior monitoring ii) Driving or car monitoring According to [11] we need
to monitor 3 major things that may be the reason for 90% of car accidents. Those
are- • Distraction: Distraction from inside or outside of cars. 2. Fatigue: Unwell
feeling of drivers (Drowsiness) 3. Aggressive Driving: Over speeding, hard-breaking
traffic laws.

According to [1] we can predict drivers behavior with different parameters like fa-
cial expression, steering wheel controlling etc. We can predict major and minor
accidents. Using visual sensors we can get some data of the driver like eye blink-
ing frequently, percentage of eye closure, reflen towards particular actions. Also
there can be some non visual measurements like EEG, ECG, EOG, PPG monitor-
ing. Though these features seem complicated, for steering wheel observation we can
mention the steering wheel standard deviation. For visual purposes we can use NIR
illumination. Also according to PFL in Switzerland, we can detect distraction [13].
Another research from D’Orazio with some classical algorithms for detecting eyes
can generate facial recognition images with a camera. Also for using IR sensors we
had some problems in the past. Like the rays from IR creates problems when there
are glasses and red eye problems. Using IR illumination, we can produce different
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lighting and solve the problem. For producing a 3d image of the driver’s face we
can place two cameras like in the picture.

Figure 2.2: Two cameras at the front

Here a neural classification can be used to categorize the eye from the image. Also
in this case the frequency of eye blinking is less important than the duration of eye
closing. Here we can use a multivariate Gaussian mixture model characterizing the
two parameters of eye blinking. After giving proper data to this model we can char-
acterize the normal value to compare. In this case, eye detection is very convenient.
It works in three The two cameras placed on the car dashboard[14]steps. Firstly
iris recognition using transform. Secondly, searching the symmetrical region from
the limited area of the image. Lastly using neural classification, an eye validation
algorithm is used. Here the writers also put some test results to compare. A method
of detection is [2].

In[15] we can see , we can recognize different facial expressions from the driver to
detect their emotional status. Taking the image of the driver, the system can cate-
gorize their emotional status using a deep convolutional neural network. In another
research[16] the researchers used two cameras. One is to check the driver’s status
and sight, another one is to check the lane condition. With these two data, they
observe the front position of the car( The heading direction). Here they have calcu-
lated a coefficient to determine the relation between the driver’s sight detection and
the lane path. From this, a pattern can be generated [16]. In [17] recognized local
binary patterns from a video using facial and eye recognition. Then using the LBP
operation they recognized the status of the eye. Here the eye region is divided into
small blocks. Then calculate the feature vector for each block. Then combining all
we can get a feature vector for the whole eye area. Now from this using AdaBoost
[18] we can determine weak and strong classified to determine the useful data from
it. After collecting data with a training data set, a system was built to detect drowsy
driving [17].
In[19] we can see the LSTM model from driving behavior classification. Different
sensors were used to get different data. Firstly acceleration is measured along three
axes. Then Yaw , roll, and pitch angle are measured. Also to determine vehicle
speed GPS sensor is used . A camera is used to calculate the distance from ahed ve-
hicle and number of vehicles in front [19]. Using the raw data from the sensor’s time
stamp, distance ahed vehicles in the current lane, a number of vehicles ahead, etc.
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Figure 2.3: Two cameras at the front

can be kept. The most interesting part from this research is all the data is collected
by the smartphone sensors. In [20] the researchers had worked on a fuzzy-based
system for safe driving. They presented FDMS1 and FDMS2, these two systems.
Both of these two systems recognize the driver’s situational awareness. In FDMS1
they worked on outside temperature, noise, heart responses, and respiratory rate.
These all things worked as input in FDMS2. In this system sometimes the output
might lead in the wrong direction. Like though the situation is normal, it can detect
unawareness from the driver. In[21] the researchers talked about Mag track. Here
using magnetic accessories they have worked with the motion of hand and head.
They have used a sensing algorithm , with that using a single manometer in a hand
watch it takes data. With this data the system can verify the driving safety. With
this system the accuracy is very high [21]. For driving monitoring another important
data is to determine the traffic situation in the surroundings.
In[22] the system reflects laser light and that reflects from other obstacles and with
that distance can be measured using the Kalman Filter. Here the researchers have
calculated some equations for speed and distance. In driving monitoring, in some
cases the vehicles are needed to be tracked. In this case there is a work in [23]. In
this research they have used LPC2148 . It takes input from temperature, alcohol ,
and GPS sensors. And using that, it gives output through Buzzer and motors with
an external monitor, it can show output status from the system [23]. In another
research [24] the front car is recognized by the tail light. It is specially for night
time car following. It puts a box and identifies the front cars in it. It uses a camera
in front . Though there are some drawbacks in this system. Firstly as it follows the
tail light so it doesn’t work in daylight. Secondly as it uses research from about 30
years ago some new technologies can be implemented to remove those drawbacks
[24].
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Nowadays some well known car companies are developing advanced drive assistance
system.ADAS in short. ADAS actually alerts about the upcoming danger [25]. One
of the features to be implemented into ADAS is the traffic sign recognition system.
In [26] we came to know about how we can use deep convolutions. Neural network
for Real Time Traffic sign Recognition System. In this system lightweight algorithms
can be used for faster recognition. As it will give real time results,parallel program-
ming can be used. In this system CNN model can be used for image classification.
In this image is classified into 3 parts Hue, saturation and value. As traffic signs
have categorized color for each kind of sign throughout the world, the recognition
won’t be that much complicated. So using this feature in the driving monitoring
system drivers can be warned. Also if someone doesn’t abide by any sign that can
be kept in record. There is another parameter for judging if the driver is safely
driving or not that is lane centering. Keeping the car in the center of lane and
not changing frequently is an indication to safe driving. In[27] for lane centering
for various image processing, for various image processing RANSAC can be used.
From the front camera the lane can’t be identified exactly. For this a bird’s eye
image should be needed here. The RANSAC is needed to be applied in HSV on hue
saturation value. The output from

Figure 2.4: Input image(Left) and (b) bird’s-eye view(Right)

this system is quite good. Using the RANSAC with Kalman filter, it gives correct
markings on 86.39% and gives incorrect 12.71%. It misses 0.78% [27].

9



Chapter 3

Methodology

The Real-Time Driving Monitoring System is a sophisticated integration of hard-
ware and software components designed to operate on a single-board computer.
It incorporates three distinct cameras, each serving a unique purpose in assessing
driver safety. The architecture, illustrated in Figure 1, encompasses a YOLOPv2-
enabled lane detection camera, a Monocular Depth Estimation with MiDAS camera
for object proximity assessment, and a front-facing camera for monitoring driver
behavior.

Figure 3.1: Top Level Overview of Proposed Model

3.0.1 YOLOPv2 Lane Detection

:
Central to the system’s functionality is the YOLOPv2 model, a cutting-edge object
detection algorithm. Trained on an extensive dataset, this model excels at real-
time lane detection, capable of accurately identifying lane boundaries across diverse
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road environments. Its strength lies in its adaptability to varying lighting and
weather conditions, a crucial attribute for robust performance in real-world driving
scenarios. Operating in real-time, YOLOPv2 processes images from the dedicated
lane detection camera, swiftly generating bounding boxes around detected lanes.

3.0.2 Monocular Depth Estimation with MiDAS:

Monocular Depth Estimation is facilitated by the MiDAS framework, an advanced
methodology for inferring depth from monocular images. The framework leverages a
pre-trained neural network, fine-tuned on scene-specific data, to achieve remarkable
accuracy in estimating distances to objects proximate to the vehicle. The depth
estimation equation, represented as = D=f d B , encapsulates the critical
relationship between estimated depth ( D), focal length of the camera ( f), baseline
distance ( B), and disparity ( d). This depth information serves as a pivotal
dimension in evaluating potential collision risks.

3.0.3 Driver Drowsiness Detection:

A front-facing camera is dedicated to monitoring driver behavior, with a specific
emphasis on detecting signs of drowsiness. The system employs a hybrid deep neural
network, trained on a diverse dataset of facial expressions and head orientations.
This network performs comprehensive facial feature analysis, eye state detection,
and head pose estimation. Through continuous monitoring, the algorithm identifies
indicators of driver fatigue. If drowsiness persists for a duration surpassing the
predefined threshold, an alert is promptly issued.

3.0.4 Data Fusion and Decision Logic:

To form a comprehensive safety assessment, the output from each camera undergoes
fusion. The lane detection output verifies if the vehicle remains within designated
lanes, offering immediate corrective feedback. Simultaneously, depth information is
utilized to gauge distances of objects near the vehicle. The aggregation of multiple
depth measurements enables the computation of mean depth. If this mean value
falls below the predefined threshold, the system deems the driver to be in an unsafe
situation, warranting an alert.
In parallel, the drowsiness detection algorithm continually evaluates the driver’s
level of alertness. If drowsiness persists beyond the stipulated threshold, a prompt
alert is triggered, ensuring the driver is promptly informed of the identified safety
concern.

3.0.5 Alerting Mechanism:

The system employs a dual-alert mechanism to provide immediate feedback to the
driver. LED indicators, strategically positioned within the driver’s line of sight,
illuminate to convey visual alerts. Additionally, a buzzer generates an audible alert,
offering an additional layer of notification. This multi-modal alerting system ensures
that the driver is promptly informed of any identified safety concern.
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3.0.6 Experimental Setup:

A rigorous evaluation of the Real-Time Driving Monitoring System is conducted
under controlled conditions and in real-world driving scenarios. Controlled experi-
ments involve simulated lane deviations, object proximity scenarios, and scenarios
simulating driver drowsiness. Real-world testing encompasses a wide spectrum of
driving conditions, including varying weather, lighting, and road conditions, to as-
sess the system’s adaptability.

3.0.7 Performance Metrics:

The performance of the system is assessed using key metrics:
Lane Detection Accuracy (LDA): Calculated as the ratio of correctly identified lanes
to total lanes detected by the YOLOPv2 model. This metric gauges the system’s
efficacy in accurately detecting and tracking lanes.
Depth Estimation Accuracy (DEA): This metric quantifies the precision of depth
estimation by comparing estimated depth values to ground truth measurements. A
high DEA indicates the system’s proficiency in assessing object proximity.
Drowsiness Detection Accuracy (DDA): Determined by comparing the algorithm’s
drowsiness alerts to ground truth labels. A high DDA reflects the system’s effec-
tiveness in accurately identifying signs of driver fatigue.

3.0.8 Comparative Analysis:

To validate the efficacy of the proposed system, a comparative analysis is conducted
against conventional driver monitoring systems. These systems typically rely on
heuristic algorithms and conventional sensors. Performance metrics, computational
efficiency, and adaptability to diverse driving conditions are considered in the eval-
uation. This comparative analysis provides critical insights into the superiority of
the integrated approach.

3.1 YOLOPv2 Lane Detection: Enhancing Road

Safety through Real-Time Analysis

The dataset plays a crucial role in the development and evaluation of the system
for detecting unclear underwater objects. This section describes the methodology
employed to procure the dataset, including the collection of images and videos,
selection criteria, and the acquisition of data from external sources.

Introduction

Lane detection is a critical component of modern driver assistance systems, con-
tributing significantly to road safety. The YOLOPv2 (You Only Look Once with
PAF) model is a state-of-the-art neural network architecture that excels in real-time
object detection tasks, including the precise identification of road lanes. This sec-
tion delves into the technical intricacies of YOLOPv2 lane detection, elucidating its
algorithmic foundation and mathematical underpinnings.
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Algorithm

YOLOPv2 is an evolution of the original YOLO (You Only Look Once) model,
renowned for its ability to perform object detection in a single pass through a neural
network. It achieves this feat by dividing the input image into a grid and predicting
bounding boxes and class probabilities directly from grid cells. YOLOPv2 refines
this approach, enhancing both speed and accuracy in object detection tasks.

Figure 3.2: workflow diagram of lane detection algorithm

Lane Detection as an Object Detection Task

In the context of YOLOPv2, lane detection is treated as an object detection task,
where the ”objects” are the lane boundaries. The algorithm is trained on a diverse
dataset containing images annotated with bounding boxes around the lanes. Dur-
ing training, YOLOPv2 learns to identify and localize these lanes with remarkable
precision..

Feature Pyramid Network (FPN)

One of the key advancements in YOLOPv2 is the integration of a Feature Pyramid
Network (FPN). This architecture aids in capturing features at multiple scales, al-
lowing the model to detect lanes of varying lengths and orientations. FPN facilitates
robust lane detection in complex road environments.

PAF and Heatmaps

YOLOPv2 employs Part Affinity Fields (PAF) and heatmaps to refine the detection
of lane boundaries. PAF provides directional information, indicating how body
parts (in this case, lane segments) are connected. Heatmaps highlight regions likely
to contain lanes. By combining these two elements, YOLOPv2 achieves precise
localization of lane boundaries

Intersection over Union (IoU)

During inference, YOLOPv2 employs the Intersection over Union (IoU) metric to
refine the accuracy of detected lanes. This metric quantifies the overlap between pre-

13



dicted bounding boxes and ground truth annotations. By setting an IoU threshold,
the algorithm ensures that detected lanes align closely with actual lane positions..

3.1.1 Non-Maximum Suppression (NMS)

To eliminate duplicate detections, YOLOPv2 employs Non-Maximum Suppression.
This technique filters out redundant bounding boxes, retaining only the most confi-
dent predictions. NMS significantly refines the precision of lane detection, ensuring
that each lane is represented by a single, accurate bounding box.

3.1.2 Loss Function

The training of YOLOPv2 involves minimizing a composite loss function, comprising
several components. These components include classification loss, localization loss,
and confidence loss. The specifics of each loss term are intricately designed to guide
the network towards accurate lane detection

3.1.3 Confidence Score Thresholding

Post-processing involves setting a confidence score threshold. Bounding boxes with
confidence scores below this threshold are discarded. This step fine-tunes the algo-
rithm’s precision, retaining only high-confidence lane detections.

Figure 3.3: confidence score thresholding

3.1.4 Dataset Acquisition and Preprocessing

The foundation of YOLOPv2’s lane detection capability lies in the quality and
diversity of the dataset used for training. A diverse dataset encompasses a wide

14



range of road environments, lighting conditions, and lane configurations. Images
are annotated with bounding boxes delineating the positions of lane boundaries.
Special attention is given to scenarios with challenging conditions, such as sharp
curves, intersections, and varying road markings.
Additionally, data augmentation techniques are employed to enhance the dataset’s
diversity. These techniques include random rotations, translations, changes in bright-
ness, and simulated weather conditions. Augmentation ensures that the model is
robust against real-world variations encountered on the road.

3.1.5 Loss Function Formulation

Training Process:

Training YOLOPv2 involves minimizing a composite loss function that encompasses
multiple components:

Classification Loss: This component penalizes incorrect lane predictions by evalu-
ating the classification accuracy of predicted bounding boxes.

Localization Loss: It measures the discrepancy between predicted and ground truth
bounding box coordinates, guiding the model to refine its localization accuracy.

Confidence Loss: This term guides the model in assigning appropriate confidence
scores to predicted lanes, ensuring that high-confidence predictions are prioritized.

Backpropagation and Gradient Descent

Data augmentation techniques play a Backpropagation, a fundamental technique in
neural network training, is employed to compute gradients of the loss function with
respect to the model parameters. Gradient Descent optimization algorithms, such as
Adam or RMSprop, then update the weights and biases of the network, iteratively
improving its performance.

Epochs and Batch Size

Training is performed over multiple epochs, where each epoch represents a complete
pass through the entire training dataset. Batch processing is employed to efficiently
utilize computing resources. During each epoch, the dataset is divided into smaller
batches, and parameter updates are performed after processing each batch

Output Process

Once trained, YOLOPv2 demonstrates its lane detection prowess during the infer-
ence phase, where it processes real-time video or image frames. The output is a set
of bounding boxes encompassing detected lanes. These bounding boxes indicate the
position and orientation of each identified lane.
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Figure 3.4: benchmarking of YOLOPv2

Confidence Score Thresholding

To further refine the output, Non-Maximum Suppression (NMS) is employed. NMS
filters out redundant bounding boxes, retaining only the most confident predictions.
This step ensures that each lane is represented by a single, accurate bounding box,
eliminating duplicate detections.

3.1.6 Practical Considerations

In real-world applications, YOLOPv2’s output can be integrated into a driver as-
sistance system, providing immediate feedback to the driver about lane positions.
This information aids in maintaining proper lane discipline and serves as a crucial
component in enhancing road safety.

3.2 Implementation of Monocular Depth Estima-

tion with MiDAS

As the cornerstone of the Real-Time Driving Monitoring System, the practical im-
plementation of Monocular Depth Estimation with MiDAS involves a seamless in-
tegration of cutting-edge technology into a real-world driving environment. This
section provides a detailed account of the hardware setup, data flow, performance
optimization, and ethical considerations essential for the successful deployment of
MiDAS.

3.2.1 Single-Board Computer (SBC)

The heart of the system lies in a powerful single-board computer equipped with a
dedicated GPU. This choice of hardware is pivotal for achieving real-time process-
ing capabilities, an imperative requirement for timely depth estimations in dynamic
driving scenarios. The GPU, with its parallel processing prowess, significantly ac-
celerates the computational throughput of the MiDAS model.

3.2.2 Monocular Camera

A high-resolution monocular camera is strategically positioned on the vehicle to
serve as the primary source of visual data. This camera is meticulously calibrated,
with intrinsic parameters like focal length, sensor size, and lens distortion param-
eters precisely determined. Calibration ensures accurate depth computations by
accounting for the optical characteristics of the camera.
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3.2.3 Sensor Integration

In addition to the monocular camera, the system may integrate other sensors, such
as IMUs (Inertial Measurement Units) and LiDAR (Light Detection and Ranging),
to augment depth estimations. Fusion of data from multiple sensors enriches the
spatial awareness and enhances the system’s capability to assess potential collision
risks.

Figure 3.5: Modular Depth Estimation model diagram

3.2.4 Data Flow

Image Capture:

The monocular camera continuously captures high-resolution images of the road en-
vironment. These images serve as the primary input for depth estimation.
Preprocessing:

The raw image data undergoes a series of preprocessing steps. These include resizing
the image to match the input resolution expected by the MiDAS model, normal-
ization to standardize pixel values, and color space conversion for optimal feature
extraction.
Inference with MiDAS:

The pre-trained MiDAS model processes the preprocessed image, generating a depth
map as output. This step is accelerated by the dedicated GPU, allowing for real-
time performance.
Depth Post-Processing:

The resulting depth map may undergo additional post-processing techniques to re-
fine depth values and reduce noise. Common approaches include median filtering
and bilateral filtering to enhance the clarity of depth information.
Conversion to Real-World Coordinates:
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The depth map, combined with camera parameters, facilitates the transformation
of depth values into real-world coordinates. This step provides accurate spatial in-
formation about objects near the vehicle, critical for collision risk assessment.
Integration with Lane Detection and Drowsiness Monitoring:

The depth information seamlessly integrates with the outputs from the YOLOPv2
lane detection and driver drowsiness detection modules. This comprehensive assess-
ment enriches the overall evaluation of driver safety.

3.2.5 Parallel Processing Exploitation

The presence of a dedicated GPU unlocks the potential for parallel processing. Mul-
tiple frames can be simultaneously processed, maximizing the throughput of depth
estimations. This parallelization ensures that the system operates in real-time, pro-
viding timely feedback to the driver.

3.2.6 Model Quantization for Efficiency

To further optimize computational resources, model quantization techniques can be
applied. This process involves converting the model’s parameters to lower precision,
reducing memory footprint and computational requirements. While this may result
in a minor trade-off in accuracy, the gains in speed and efficiency are substantial.

3.2.7 Real-Time Feedback Mechanism

The depth information is seamlessly integrated into the driver monitoring system,
providing immediate feedback to the driver. Visual cues, such as overlays on the
display, indicate potential collision risks based on the depth estimation. This real-
time feedback loop plays a crucial role in influencing driver behavior and enhancing
situational awareness.

3.3 Fusion of Lane Detection, Depth Estimation,

and Drowsiness Monitoring

The Integrated Driver Safety Assessment System represents a pioneering approach
to ensure driver safety through the fusion of data from three distinct camera inputs.
This system employs cutting-edge technologies including YOLOPv2 for lane detec-
tion, Monocular Depth Estimation with MiDAS for object proximity assessment,
and front-facing cameras for drowsiness detection. By synergizing these inputs,
the system offers a comprehensive evaluation of driver behavior, alerting promptly
if any unsafe conditions persist. This article delineates the process of integrating
these inputs and provides an algorithmic framework for seamless operation.

3.3.1 Fusion Process Overview

The fusion process involves harmonizing data from three independent sources -
YOLOPv2 lane detection, Monocular Depth Estimation with MiDAS, and drowsi-
ness detection from the front camera. The objective is to create a holistic assessment
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Figure 3.6: Modular Depth Estimation model diagram

of driver safety by considering lane adherence, object proximity, and driver alertness.
This unified evaluation forms the basis for timely alerts and interventions.

3.3.2 Lane Detection with YOLOPv2

Input:

Frames from the dedicated lane detection camera.
# Load frames from the dedicated lane detection camera
frames = load_frames_from_camera()

Processing:

Apply YOLOPv2 model to detect and track lanes in real-time. Obtain output
indicating the presence of correct lanes.
def detect lanes(frame):
# Use YOLOPv2 model to detect lanes
# Return a binary mask indicating the presence of correct lanes
lane_mask = yolo_detection(frame)

return lane mask

# Process each frame to obtain output indicating the presence of correct lanes for
frame in frames:
lane_mask = detect_lanes(frame)

Output:

Binary value indicating whether the vehicle is on the correct lane or not.
is_on_correct_lane = check_lane_presence(lane_mask)

# Use the ’isoncorrectlane
′valueforfurtherprocessingorlogging

ifis on correct lane :
print(”V ehicleisonthecorrectlane”)
else :
print(”V ehicleisnotonthecorrectlane”)
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3.3.3 Depth Estimation with MiDAS

Input:

Images from the monocular camera capturing the road environment.
# Load images from the monocular camera capturing the road environment
images = load_images_from_camera()

def infer depth(image):
# Apply MiDAS framework to infer depth from the monocular image
depth_map = midas_inference(image)

# Calculate the mean depth by aggregating depth values
mean_depth = calculate_mean_depth(depth_map)

return mean depth

Processing:

Apply MiDAS framework to infer depth from monocular images. Calculate the
mean depth by aggregating depth values. Compare the mean depth with a prede-
fined threshold to assess object proximity.

def assess object proximity(mean depth, threshold):
# Compare the mean depth with the predefined threshold to assess object proximity
if mean depth ¡ threshold:
return 1 # Below threshold, indicating potential collision risk
else:
return 0 # Not below threshold, indicating no immediate collision risk

# Process each image to calculate mean depth and assess object proximity
for image in images:
meandepth = inferdepth(image)

threshold = 1.5

collision_risk = assess_object_proximity(mean_depth, threshold)

Output:

Binary value identifying whether mean depth is below the threshold, indicating po-
tential collision risks.

# Use the ’collisionrisk
′valueforfurtherprocessingorlogging

if collision_risk == 1:

print(”Potentialcollisionriskdetected!”)
else :
print(”Noimmediatecollisionrisk.”)
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3.3.4 Drowsiness Detection

Input:

Frames from the front-facing camera monitoring the driver.
# Load frames from the front-facing camera monitoring the driver
frames = load_frames_from_camera()

Processing:

Employ a DNN for comprehensive facial feature analysis, eye state detection, and
head pose estimation. Track the duration of drowsiness instances. Compare the
duration with a predefined threshold to determine if the driver is drowsy for an
extended period.

def analyze facial features(frame):
# Use a Deep Neural Network (DNN) for comprehensive facial feature analysis

facial_features = analyze_frame_with_dnn(frame)

return facial features

def detect drowsiness(facial features):
# Perform drowsiness detection based on facial features

drowsiness_duration = track_drowsiness_duration(facial_features)

return drowsiness duration

def assess drowsiness duration(drowsiness duration, threshold):
# Compare the duration of drowsiness with the predefined threshold
if drowsiness_duration > threshold:

return 1 # Driver is drowsy for an extended period
else:
return 0 # Driver is not drowsy for an extended period

# Process each frame to analyze facial features and detect drowsiness
for frame in frames:
facial_features = analyze_facial_features(frame)

threshold = 5

drowsiness_duration = detect_drowsiness(facial_features)

drowsy_for_extended_period = assess_drowsiness_duration(drowsiness_duration, threshold)

Output:

Binary value signaling if the driver is drowsy for an unsafe duration.
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# Use the ’drowsy for extended period’ value for further processing or logging
if drowsy_for_extended_period == 1:

print(”Driver is drowsy for an unsafe duration!”)
else:
print(”Driver is not drowsy for an unsafe duration.”)

3.3.5 Fusion Logic

Combining Outputs:

Integrate the outputs from steps 1, 2, and 3 to form a comprehensive safety as-
sessment. If any of the conditions (lane deviation, unsafe proximity, or extended
drowsiness) are true, mark the driver as unsafe.

Alerting Mechanism:

If the driver is marked as unsafe, trigger the alert system. Activate LED indicators
and a buzzer to provide immediate feedback to the driver.

Time Threshold:

Monitor the conditions continuously. If any of the unsafe conditions persist for a
specific duration (defined by a time threshold), trigger the alert.

3.3.6 System Integration and Alerting

Figure 3.7: Alarming Sytem architecture

The integrated system continuously processes data from the three cameras, com-
bining outputs and assessing driver safety in real-time. When an unsafe condition
is detected and persists beyond the defined time threshold, the alerting mechanism
is activated. LED indicators provide visual alerts, while a buzzer delivers an audi-
ble warning, ensuring the driver is promptly informed of the identified safety concern

The Integrated Driver Safety Assessment System revolutionizes driver safety by
seamlessly integrating inputs from three distinct cameras. By fusing lane detection,
depth estimation, and drowsiness monitoring, the system provides a comprehensive
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evaluation of driver behavior and surroundings. The algorithmic framework outlined
here forms the bedrock of this innovative system, offering a robust foundation for
enhanced road safety. Through timely alerts and interventions, this integrated ap-
proach holds the potential to significantly reduce accidents and promote responsible
driving practices.
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Chapter 4

Implementation and Result
Analysis

4.1 Result analysis of Fusion

The Fusion system represents a comprehensive approach to ensuring driver safety
by integrating inputs from three distinct camera-based modules. This analysis aims
to evaluate the effectiveness of the Fusion system in detecting and alerting unsafe
driving behavior.

Lane Detection with YOLOPv2:

The utilization of YOLOPv2 for lane detection provides a robust foundation for
assessing the vehicle’s position relative to the designated lane. This module serves
as an initial filter to identify potential deviations from safe driving behavior.

Figure 4.1: Fusion result testing phase-

Monocular Depth Estimation with MiDAS:

By leveraging Monocular Depth Estimation with MiDAS, the system gains the abil-
ity to evaluate the proximity of objects to the vehicle. The calculation of mean
depth offers a valuable metric for assessing potential collision risks. This integration
significantly enhances the system’s capacity to identify unsafe driving conditions.
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4.1.1 Driver Drowsiness Detection:

The front-facing camera’s role in detecting driver drowsiness addresses a critical
aspect of driver safety. By monitoring the driver’s state, the system can issue timely
alerts in cases of prolonged drowsiness, reducing the risk of accidents due to fatigue.

Figure 4.2: Fusion result of proposed system

Fusion Logic for Driver Safety Assessment:

The Fusion system employs a logic gate that triggers an alert if any of the specified
conditions persist for a predefined duration. This approach ensures that the system
only marks the driver as unsafe when there is consistent evidence of a potential
safety hazard.

Alert Mechanism:

The inclusion of LED and buzzer alerts provides a multi-modal notification system to
effectively capture the driver’s attention. This redundancy increases the likelihood
of the driver responding promptly to the safety alert.

Overall System Performance:

The Fusion system demonstrates a comprehensive and sophisticated approach to
driver safety. By amalgamating information from three independent camera inputs,
it addresses a wide spectrum of potential safety concerns, including lane deviation,
object proximity, and driver drowsiness.

4.1.2 Potential for Real-World Application:

The Fusion system’s multi-tiered approach to safety assessment makes it highly
adaptable for deployment in various vehicular environments. Its capacity to in-
tegrate seamlessly with existing vehicle systems positions it as a valuable tool in
enhancing road safety.

4.1.3 Lane detection result

Introducing YOLOPv2: Pioneering Panoptic Driving Segmentation
YOLOPv2, an evolution of the groundbreaking YOLOP architecture, represents a
leap forward in road and traffic system detection technology. This state-of-the-art
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Figure 4.3: Fusion result of proposed system

model sets a new standard for performance, boasting superior speed, accuracy, and
memory efficiency in panoptic driving segmentation tasks.

Unmatched Feature Extraction Backbone

At the heart of YOLOPv2 lies its exceptional end-to-end perception network, which
provides a more robust feature extraction backbone compared to its counterparts.
This critical enhancement ensures that YOLOPv2 excels in discerning intricate de-
tails of the road and traffic environment, even in complex scenarios.

Figure 4.4: Lane detection result of proposed system

YOLOPv2 Offers State of The Art Technology to Detect Road and Traffic
System:

YOLOPv2 based on YOLOP is called the better, faster and stronger model for
panoptic driving segmentation. Its end-to-end perception network provides a better
feature extraction backbone than the other models of this purpose. It can run on
a variety of systems, including SoCs, more accurately than any other model for the
same purpose, thanks to its ELAN (Efficient Long Range Attention Network) net-
work, which enables it to accomplish fair memory allocation.
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YOLOPv2 Provides Faster Inference Speed:

YOLOPv2 acquires less memory and computational power than other models which
makes its inference faster. We compared our custom trained YOLOPv2 model with
other models like YOLOP, HybridNets in our system built with Nvidia Jetson Nano
and it showcased us a huge amount of FPS (Frame Rates Per Seconds) than the
others. Therefore, it provides 85% faster FPS than YOLOP and 225% faster FPS
than HybridNets.

Figure 4.5: Model size, parameter, speed comparison

YOLOPv2 Gives Better Accuracy in Lane Line Detection and Drivable
Area Segmentation:

Compared to our other tested models, YOLOPv2 provided more accuracy in terms
of lane detection and Drivable area segmentation. Where, YOLOP and HybridNets
gave accuracy around 70.5% and 85.4%, YOLOPv2 provided 87.3% accuracy in our
system. Therefore, in terms of drivable area segmentation the model was able to
segment 93.2% of mIoU (Mean Intersection of Union) where the others score were
91.5% (YOLOP) and 90.5% (YOLOPv2).

YOLOPv2 Works Accurately in Both Day and Night Condition:

We have tested our system in both day and night Condition and it Accurately
detects lane and segments drivable area,

4.1.4 Depth Estimation Result

Below table provides a comparative overview of three different approaches to depth
estimation: Monocular Depth Estimation (MiDAS), CNN Based Depth Estimation,
and Stereovision Depth Estimation. Each method is evaluated based on various
aspects such as the basic principle, depth perception, hardware requirements, depth
range, robustness to occlusions, data collection complexity, computational complex-
ity, accuracy, real-time processing capability, applications, and limitations.
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Figure 4.6: Drivable Area Segmentation

Figure 4.7: Lane Line Detection

Figure 4.8: Day Condition testing
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Figure 4.9: Night condition testing

Figure 4.10: Depth estimation table of proposed system

Figure 4.11: Depth estimation output result of proposed system
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Chapter 5

Conclusion

In conclusion, the Integrated Driver Safety Assessment System marks a significant
stride towards enhancing road safety through the seamless fusion of YOLOPv2 lane
detection, Monocular Depth Estimation with MiDAS, and driver drowsiness de-
tection. By combining these technologies, we have established a comprehensive
framework for assessing driver behavior and potential collision risks in real-time.
The system’s ability to promptly identify unsafe conditions, such as lane deviation,
proximity to objects, and driver drowsiness, empowers it to deliver timely alerts
through LED indicators and an audible buzzer, providing immediate feedback to
the driver. The success of this system underscores the potential of integrated tech-
nologies in bolstering road safety measures.

Looking forward, several avenues for future work present themselves. Firstly, there
is room for further refinement in the depth estimation process, exploring advanced
techniques for even more accurate spatial awareness. Additionally, the integration
of additional sensors, such as LiDAR or radar systems, could provide further depth
information, enhancing the system’s precision in object proximity assessment. More-
over, the implementation of machine learning techniques for driver behavior analysis
and anomaly detection could add another layer of sophistication to the safety as-
sessment. Additionally, extending the system to incorporate adaptive cruise control
and automated braking systems would be a natural progression, enabling not just
alerts but also automated interventions in critical situations. Finally, the incorpora-
tion of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication
could revolutionize the system’s capabilities, enabling it to tap into a broader net-
work of information for even more comprehensive safety evaluations. As technology
continues to advance, the potential for further innovations in driver safety systems
is vast, and the Integrated Driver Safety Assessment System serves as a foundation
upon which these future developments can build.
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