
UI Development and Functionality Testing Automation in
Android Application

by

Shehjad Ali Taus
19101539

Riazul Hasan
19301168

Golam Rasul
19301126

Anila Tabassum
19101157

Khondoker Al Muttakin
22241176

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
Summer 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Shehjad Ali Taus
19101539

Riazul Hasan
19301168

Golam Rasul
19301126

Anila Tabassum
19101157

Khondoker Al Muttakin
22241176

i

Approval

The thesis/project titled “UI Development and Functionality Testing Automation
in Android Application” submitted by

1. Shehjad Ali Taus (19101539)

2. Riazul Hasan (19301168)

3. Golam Rasul (19301126)

4. Anila Tabassum (19101157)

5. Khondoker Al Muttakin (22241176)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on Fall , 2023.

Examining Committee:

Supervisor:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Muhammad Iqbal Hossain, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

ii

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

Ethics Statement

We officially declare that this thesis is supported by our study findings. This research
work is free of plagiarism at all research levels. All other information sources have
been acknowledged in the text. This thesis has not been submitted, in whole or in
part, to any other university or institution for the purpose of degree-granting.

iv

Abstract

Software Automation Process involves automating the software testing process en-
tailing machine learning models and methodologies.This may entail procedures like
test case prioritization,selection and test case generation.Machine learning can be
used to rate problems and recommend fixes upon that , As well as to identify software
faults. Additionally, Machine Learning(ML) can be used to analyze test coverage,
improve test efficiency and optimize processes. Overall, The use of machine learn-
ing in software testing automation can help to improve the speed, accuracy and
efficiency of the testing process, leading to higher-quality software and a quicker
time to market.Finding and correcting software bugs requires a lot of work on the
part of software engineers. Traditional testing requires human search and data anal-
ysis which is not time efficient . Errors are frequently ignored because people have
a tendency to make false assumptions and arrive at prejudiced conclusions. Since
machine learning enables systems to learn, adapt and use the learned knowledge in
the future, software testers profit from more accurate understanding. Numerous so-
phisticated machine learning tasks including code completion, defect prediction, bug
localization, clone recognition, code search and learning API sequences can be ac-
complished via deep learning. Over the years, Researchers have published a variety
of methods for automatically switching between programmes.Ultimately, Machine
learning for automated software testing is an intriguing field that has the possibil-
ity to entirely alter how software is tested. Before machine learning is widely used
in software testing, There are still a few issues requiring to be solved.This paper
represents,Sequence-to-sequence (Seq2Seq) modeling is a deep learning technique
used in machine learning and natural language processing (NLP) for tasks involving
sequences of data. It’s particularly powerful for tasks where the length of input
and output sequences can vary.Again,Seq2Seq models are widely used for translat-
ing text from one language to another. The encoder processes the source language,
and the decoder generates the target language.Here,We also apply encoder-decoder
techniques in machine learning. Encoder-decoder techniques are fundamental in
machine learning, particularly in tasks involving sequence-to-sequence modeling,
natural language processing (NLP), computer vision, and more. These techniques
involve two key components: an encoder and a decoder.In NLP, for example, the en-
coder may be a recurrent neural network (RNN) or a transformer model like BERT.
In computer vision, a convolutional neural network (CNN) can serve as the encoder.
These models are designed to extract relevant features from the input data.The de-
coder receives the context vector from the encoder and initializes its internal state.It
generates an output sequence step by step, often autoregressive. For each step, it
produces an element of the output sequence and updates its internal state based on
previous outputs.

Keywords: Deep Learning; Machine Learning; NLP; RNN; Seq2Seq; CNN

v

Dedication

Every difficult task requires personal effort and encouragement from our elders, es-
pecially those closest to our hearts. We dedicate our humble efforts to our loving
parents, whose love, devotion, motivation, and nightly prayers have made us deserv-
ing of this achievement and honor, as well as all of the outstanding academics we met
and learned from while pursuing our Bachelor’s degrees, and especially our beloved
supervisor, Dr. Md. Golam Rabiul Alam and Co-supervisor Dr. Muhammad Iqbal
Hossain.

vi

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to our Supervisor Dr. Md. Golam Rabiul Alam and Co-supervisor Dr.
Muhammad Iqbal Hossain sir for his kind support and advice in our work. He helped
us whenever we needed help.
And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

vii

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Dedication vi

Acknowledgment vii

Table of Contents viii

List of Figures x

List of Tables xi

Nomenclature xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem . 2
1.3 Thesis Structure . 3

2 Related Works 4
2.1 Literature Review . 4
2.2 YOLOv5 . 11
2.3 YOLOv8 . 12
2.4 Pytorch Framework . 12
2.5 Computer Vision . 13
2.6 Labellmg . 14

3 Model & Dataset 15
3.1 Dataset description . 15
3.2 Data Preprocessing . 16

3.2.1 Data Preprocessing . 16
3.2.2 Feature selection . 17

3.3 Model description . 18
3.3.1 Single Stage Object Detector 20

viii

3.3.2 Other important parts of an improved result 21

4 Implementation & Result Analysis 22
4.1 Implementation . 22

4.1.1 Hardware Specification . 22
4.1.2 Environment Setup . 23
4.1.3 Package Installation . 23
4.1.4 Custom Model Configuration 24
4.1.5 Automation System . 25

4.2 Result Analysis . 26
4.2.1 Comparative Analysis . 26
4.2.2 Selected Model Result Analysis 35
4.2.3 System Analysis & Overview 36

5 Conclusion 40
5.1 5.1 Challenges . 40
5.2 Future Prospect . 40
5.3 Conclusion . 41

Bibliography 45

ix

List of Figures

3.1 Figure: Summary of RICO dataset 15
3.2 Figure : Labeling images using LabelImg package 16
3.3 Figure: Data after Image Labeling 17
3.4 Figure:Visual Representation how labeling works 17
3.5 Figure: YOLOV5 architecture representation 19
3.6 Figure: YOLOV8 architecture . 19
3.7 Figure: Figure: YOLOV8 model architecture representation 20

4.1 YOLOV8 model architecture representation 24
4.2 YOLOv5 Confusion Matrix . 27
4.3 YOLOv8 Confusion Matrix . 27
4.4 F1 Confidence Curve of YOLOv5 . 28
4.5 F1 Confidence Curve of YOLOv8 . 29
4.6 P Curve of YOLOv5 . 30
4.7 P Curve of YOLOv5 . 31
4.8 PR Curve of YOLOv5 . 32
4.9 PR Curve of YOLOv8 . 32
4.10 R Curve of YOLOv5 . 33
4.11 R Curve of YOLOv8 . 34
4.12 Overall Results of YOLOv8 . 35
4.13 System Overview . 36
4.14 Application Screenshot and Design Screenshot Respectively 37
4.15 UI Elements Detected. 38
4.16 Application Testing Mechanism in terms of Design. 39

x

List of Tables

3.1 Figure: Features . 18

xi

Chapter 1

Introduction

User Interface (UI) development is an important part of the software development
life cycle and is crucial to user engagement and application success. A well-designed
user interface not only draws users in, but it also promotes recurring usage and top-
notch suggestions. However, An inadequately designed user interface might turn
off consumers and reduce the app’s overall efficacy. The placement and seamless
functioning of these components become critical aspects when it comes to Android
applications, which employ a number of core and composite components. This com-
plexity is increased by the requirement for functionality tests, sometimes known as
”Black-box” testing, to identify and correct non-functional components. As part
of the current practice, Quality Assurance (QA) teams conduct a complete review,
adding to a laborious process that can substantially hamper development deadlines.
Our aim is to tackle this challenge by proposing a new approach to simplify and
mechanize UI development and functionality testing. The primary goal is to give UI
developers an efficient automatic suggestion system for core and composite compo-
nent placement. By automating functionality testing, developers may ensure that
project objectives are met more quickly and that they have the ability to indepen-
dently assess the performance of UI components. Reducing the time and money
that may be lost on manual testing is the aim of the research. By empowering UI
developers to make knowledgeable choices about the location and functionality of
components, this approach aims to increase overall UI development efficiency and
facilitate the timely delivery of high-caliber Android applications.

1.1 Motivation

An organized Software Development Life Cycle (SDLC) is necessary for producing
high-quality software projects, emphasizing methodical progress. In this case, the
Software Testing Life Cycle (STLC) makes sure the software is error-free. However,
during the UI development phase, a crucial stage in the SDLC, achieving optimal
design, component placement, and functionality can be challenging. The conven-
tional process involves UI developers and Quality Assurance (QA) teams exchanging
iteratively, which dramatically extends development timelines and delays market re-
lease. We have to speed up the UI creation and testing process, which is why we
are doing this research.
By releasing self-guided recommendations for UI developers and an automated func-

1

tional testing tool, our goal is to empower developers to put components together
efficiently and test functionality with ease. This project aims to provide a system
that recommends where core and composite components should be placed in An-
droid applications in order to expedite functionality testing. Our ultimate objectives
are to reduce schedule constraints, ensure the timely deployment of products onto
the market, and optimize productivity in the UI development process. This research
attempts to offer a solution that optimizes the UI development life cycle for the ben-
efit of developers, QA teams, and the software development process overall.

1.2 Research Problem

Important UI development processes include the evaluation by QA testing teams
and the ensuing black-box (functional) testing, which are labor-intensive processes
meant to guarantee that the UI design meets requirements. Even when testing takes
up a sizable (20–30of development time, deadlines often pass before crucial applica-
tion testing is completed. The extended time periods required to do rigorous testing
and finish the application design are exacerbated by the continuous feedback loops
that take place between QA testing teams and UI developers.User interface develop-
ment lacks any procedures or tools that enable quick functional testing and feedback
on component placements, in contrast to other software development phases that
have access to automation technology. The primary question this study attempts to
answer is how automation might assist UI developers in performing UI design and
QA test jobs more quickly during the development process. The goal is to save time
in both the SDLC and STLC stages to guarantee timely application deployment.
1.3 Research Objective : The overall goal of this research is to expedite and enhance
the software development process, with a focus on user interface development. The
goal is to give UI developers the tools they need to introduce automation technolo-
gies early in the development cycle and maximize their productivity. The main
objective is to make it easy for UI developers to do auto-functional testing and to
get recommendations for the optimal positions of Android composite and core com-
ponents. Reducing the necessity for the manual testing, bug-repair, and retesting
processes that are a part of the typical iterative software testing life cycle (STLC)
is the aim of this study. The project’s ultimate objective is to revolutionize user
interface creation by reducing the requirement for post-development testing, which
will save a substantial amount of time and provide a more seamless transfer from
development to deployment.
Provide a framework that allows UI developers to work on the user interface while au-
tomatically suggesting locations for Android core and composite components. Give
UI developers the tools they need to automatically test component implementations,
saving them from having to perform manual testing iteratively. The Software Test-
ing Life Cycle (STLC) can be shortened to speed up the fixing of issues and approval
of applications for deployment. Automation approaches can help you expedite the
UI development process and free up UI developers to independently check the qual-
ity and usability of the application without having to rely too much on QA testing
teams.

2

1.3 Thesis Structure

Our study article looks at the significance of the Software Development Life Cycle
(SDLC) and Software Testing Life Cycle (STLC) in software projects and how they
impact successful deployment. We examine our study rationale in detail, outlining
the driving forces for our investigation into different aspects of software engineering.
We have outlined the study challenge as well as the objectives we hope to achieve
in this field. In the background chapter, we conducted a comprehensive literature
study and provided an overview of earlier studies that were relevant to your sub-
ject. This provides background information and highlights the knowledge gaps that
our research aims to fill, thus establishing the context for our study. Additionally,
we explained key concepts and illustrated their importance in our explanations of
object identification, computer vision, the PyTorch framework, and YOLOv5 and
YOLOv8. The collection and pre-processing of the dataset for training were cov-
ered in detail in the Model and Dataset chapter. The dataset’s component features
and quantities were provided in a thorough statistical analysis. This chapter also
discussed the features of the YOLOv5 and YOLOv8 models and how they help to
increase their accuracy. In the chapter on implementation and outcome analysis,
we gave readers a comprehensive implementation guide so they could replicate our
system step-by-step. After outlining the rationale for the selection of YOLOv5 and
YOLOv8, the chapter compared several YOLOv5 and YOLOv8 iterations that were
trained on the same dataset. The performance of the YOLOv5 and YOLOv8 models
was shown, and the measurements and results were presented in detail, providing in-
sights into their efficacy. Interestingly, we went beyond YOLOv5 in our analysis and
added YOLOv8. This contribution enhances the comprehensiveness of our study by
offering an analysis from which to contrast these two object detection models.

3

Chapter 2

Related Works

2.1 Literature Review

Starting with a research paper [6], it’s an analysis regarding image rectification soft-
ware test automation using robotic arms. Phone software features can be tested
with the use of robotic arms. For example, - Image rectification or mobile devices.
Basically, a precise test automation system for testing and validating the computer
vision algorithms used for image rectification in a mobile phone. The robotic arm
setup provides us with the flexibility to run our test cases using multiple speeds,
rotations, and tilt angles. The objective behind this project is to design and develop
the test automation for the image rectification feature and the use of a robotic arm
for automating this use case. Traditional manual testing requires so much hard work
yet is a lengthy process to accomplish , In this way , It will detect problems easily
and make the work leniently.
In this research paper [17], Revisiting Test Impact Analysis in Continuous Testing
from the Perspective of Code Dependencies,. As a continuous process, automated
test cases are executed in a limited proportion to improve the quality of existing
code. A continuous process ensures a better pattern and reduces hassles. If a code
smell occurs, we have to be consistent through the development process. Contin-
uous testing has a great impact on the quality of software. Term CI (Continuous
Integration) is widely used in modern software development systems, including its
practice of integrating developers code changes to a central code repository often.
To ensure the quality of the integrated code , developers need to run sets of test
cases for each code integration . Due to continuous change, there are possibilities
to face a fall yet a A certain degree of dependency between test cases and source
code files may remain. Within the following research paper [2] , the effectiveness of
Metamorphic Testing to solve.
The Oracle problem has been discussed . Software testing systems have their own
term, Oracle, which verifies the appropriate test case execution results. Problems
occur when they do not exist or are out of budget. From that point of view , the
metamorphic testing approach appears . It’s a testing approach that solves the
oracle problem in multiple techniques and ways . Even a small number of vari-
ous metamorphic relations identify the fault and solve the oracle problem .In this
current situation , software development systems are increasing with the massive
demand of software usage among people . In such a case , effective testing alter-
natives must have been used. Metamorphic can be an alternative to prevent oracle

4

problems within a system. The research paper [19] introduces A new automation
testing kit is announced and tested on nanosatellite flight software named CubeSAT
Space Mission to ensure flight software quality. Before in the space field , several
testing techniques were used to assess flight software . When the developers ap-
proached manual testing with classic testing strategies they found out 12 bugs were
not covered in less than three days . The fuzz testing improved the whole quality
of the software through automation. In this research paper [25], we find that they
design and implement a tool for testing service level agreement. It is a technical
document that contains the conditions that must be fulfilled during the provision
and consumption of services. Using different combinatorial testing methods, they
are designing and implementing a tool that is able to identify a set of constraints
that avoid the obtaining of non feasible tests by analyzing the information contained
in the SLA guarantee terms. By using this tool,they have gained the tests for critical
E-Health scenarios and proposes in the FP7 European project.
According to the paper [11] , artificial intelligence (AI) has the potential to revolu-
tionize the field of software testing by using smart algorithms to analyze complex
data and improve the quality of software. In the future, AI is expected to play a key
role in software testing, with testers focusing on training AI models and techniques
to become smarter. AI testing algorithms will also be able to connect to new tech-
nologies like cloud computing, the Internet of Things, and big data to generate more
accurate and effective test cases. Deep learning, natural language processing, and
other techniques will also be important in software testing and may be supported by
specialized tools and hardware.Overall,the use of AI in software testing is expected
to improve the customer experience by providing defect-free applications and solu-
tions. According to the research paper [15], we find the limitations of automation
in testing and generating test cases . Also, it shows that the importance of the user
environment is immense, and we should always pay attention to the pain-points of
tool users . An user has no user manual, and environmental faults are difficult to
debug, and this fault may lead to incorrect results or increase user complaints .
According to the research paper [11], artificial intelligence (AI) is a field of computer
science and engineering focused on the creation of intelligent machines that can per-
form tasks without explicit human instruction. AI technologies and techniques, such
as machine learning, deep learning, and natural language processing, have achieved
significant progress in recent years and are being applied in a variety of fields, in-
cluding software testing. In software testing, AI algorithms and techniques can be
used to evaluate information, analyze data, and perform tasks in order to ensure the
quality and functionality of software.
This particular review [13] is about automated online combat game testing using
evolutionary deep reinforcement learning. The complicated method of automated
game testing, which frequently includes manual testing, is covered in this paper.
The writers emphasize how tricky it is to test video games since often flaws don’t
show up until you’ve successfully completed certain demanding tasks that call for
intelligence. For automated game testing, they suggest a method known as Wuji,
which combines evolutionary algorithms, deep reinforcement learning (DRL), and
multi-objective optimisation. Wuji strikes a balance between playing the game to
the best of his ability and looking for problems. The authors tested Wuji on two
commercial games and a small game to see how good it was at finding bugs. Wuji
made three significant discoveries in the commercial games that were previously un-

5

detected flaws and were validated by developers. This study indicates a possible
path for enhancing automated game assessment with cutting-edge AI methods.
Apparently, video game testing [23] is getting more difficult as a result of user
expectations and the games’ rising complexity. Traditional approaches, such as
scripted automation and manual testing, can be expensive and ineffective in non-
deterministic settings. SUPERNOVA (Selection of Tests and Universal Defect Pre-
vention in External Repositories for Novel Objective Verification of Software Anoma-
lies) was created as a solution to these problems. It functions as an automation hub
as well as a system for test selection and fault avoidance. In order to help develop-
ers and quality assurance testers uncover flaws and reduce defects, SUPERNOVA
incorporates data analysis, machine learning, and deep learning capabilities, even-
tually enhancing production stability and cost management. For a sports game that
used these test selection optimisations, this strategy resulted in a considerable de-
crease (55% or more) in testing hours. Additionally, It can identify the risk that
a change-list would introduce problems with 71% precision and 77% recall using a
semi-supervised machine learning model, giving developers important information.
These initiatives simplify processes and cut down on testing time for games that are
still in production.
On the other hand , A deep learning software for automated kymograph analysis
[12] stands for graphical representations of spatial position over time . In biology,
kymographs are used to depict the movement of particles over time. Low signal-to-
noise ratios make it difficult to analyze them numerically, and current techniques
frequently call for personal intervention. A deep learning-based programme called
”KymoButler” automatically monitors dynamic processes in kymographs. It is of-
fered as a web-based ”one-click” tool, performs on par with manual analysis, and
promotes the use of machine learning in biological research by expediting data pro-
cessing.
Besides , evaluation of reinforcement learning [18], we got to monitor methods of an-
alyzing software quality . Software testing is essential for assuring software quality,
but it takes a lot of time and money and frequently accounts for 50% of production
costs. To lessen these responsibilities, automated methods are being sought. Auto-
matic test data generation techniques have been developed over the past ten years to
maximize fault detection with little data production. The problem is turned into a
search task in this research, and meta-heuristic techniques are used to find a solution.
The suggested method outperforms many previous evolutionary and meta-heuristic
algorithms in terms of speed and coverage, with fewer evaluations, by combining a
genetic algorithm with reinforcement learning as a local search strategy. Genetic al-
gorithms, random search, particle swarm optimisation, the bee algorithm, ant colony
optimisation, simulated annealing, hill climbing, and tabu search are examples of
comparison algorithms.

Adaptive automation [4] which denotes software application suitability using au-
tomated software tools, has become a vital element for most of the organizations
. Organizations need automated software testing, but current methods frequently
can’t adjust to unforeseen changes without manual intervention, which results in
expensive maintenance costs. In order to manage unforeseen barriers and recover
gracefully, this study suggests a solution employing machine learning techniques
such as fuzzy matching and error recovery. The framework produces reports for

6

user inspection to decide if the recovery was satisfactory, and it modifies subsequent
runs in accordance with user choices. With less frequent human participation, this
method permits automated testing, lowering the possibility of schedule delays.
The paper [24] introduces Keeper, a cutting-edge testing tool made to handle prob-
lems brought on by the incorporation of cognitive machine learning (ML) into soft-
ware applications. Robust testing approaches are required since cognitive ML so-
lutions are becoming more common in the current software landscape. The major
novelty of Keeper is the use of pseudo-inverse functions, which reverse the cogni-
tive operations carried out by ML APIs and allow for thorough testing of the ML
components of applications. The manual work necessary for creating and evaluating
test input is reduced by this empirical approach. Testing is more effective thanks to
Keeper’s incorporation of pseudo-inverse functions into a symbolic execution engine,
which automates the production of pertinent inputs and the evaluation of output
accuracy. Through its study of open-source applications, the research highlights
Keeper’s applicability and effectiveness by highlighting notable gains in branch cov-
erage and the discovery of previously undiscovered defects. This emphasizes its
practical relevance and potential to raise the caliber of software. In conclusion,
Keeper’s debut as a cutting-edge testing tool for software applications integrating
cognitive ML represents a significant advancement in the industry. In an era where
cognitive ML solutions play an increasingly important role, its automation of input
creation, output evaluation, and empirical approach to difficult ML APIs are par-
ticularly noteworthy. These features present a viable path for enhanced testing and
software quality.
This research [14] makes a substantial contribution to the field of deep learning
(DL) by introducing Audee, a cutting-edge methodology created to evaluate and
enhance the dependability and quality of the core DL frameworks. While most pre-
vious research has focused on assessing the performance of DL models, this work
acknowledges the necessity of carefully examining the frameworks that support these
models. By using a search-based methodology that includes three different mutation
mechanisms, Audee stands out from the crowd. These techniques make it possible
to create various test cases that span a range of topics, such as model structures,
parameters, weights, and inputs. System crashes, Not-a-Number (NaN) issues, and
logical inconsistencies are three crucial types of bugs that Audee is particularly adept
at spotting. Its use of cross-referencing approaches to identify behavioral differences
between various DL frameworks sheds light on this in particular. Audee also makes
use of causal-testing methods to pinpoint the particular layers and variables that
lead to errors or problems in DL frameworks. A thorough assessment of Audee using
four well-known DL frameworks shows how effective it is at spotting problems. As a
result, many previously unidentified defects were found, seven of which have already
been confirmed and fixed by developers.
In this paper [30], it clearly states the criteria for software testing tool evaluation .
Given the wide range of available test tools, both commercially and as open source
options, conducting a comprehensive evaluation to determine their suitability for a
specific organizational or project context appears to be a daunting task. To address
this challenge, we propose a systematic approach for establishing evaluation criteria
that are easily verifiable for test tools. These criteria encompass both quality and
functional aspects. By employing the TIRE methodology, we pinpoint activities
that have the potential for automation or at least benefit from support provided by

7

a test tool. Using these identified activities as a starting point, we derive evaluation
criteria for test tools. Our emphasis is on criteria that can be assessed based solely
on the instructions provided by vendors, without the need for extensive laboratory
testing. The outcome of our efforts is a practical set of criteria that enables an
efficient classification and initial screening of test tools. In an initial phase, we ap-
plied our criteria to assess three capture & replay tools. In doing so, our approach
demonstrated its value. We were able to discern fundamental distinctions between
the tools and establish additional criteria specific to this particular test automation
technique.
From this paper[10], we find The rapid advancement of artificial intelligence tech-
nology and data-driven machine learning techniques has made the development of
high-quality AI-based software a prominent research area in both academic and
industry circles. Nowadays, numerous machine learning models and artificial tech-
nologies have emerged for creating intelligent application systems based on multime-
dia inputs, enabling functionalities like recommendation systems, object detection,
classification, prediction, natural language processing, and translation. This surge
in AI-driven applications underscores the pressing need for quality assurance and
validation of AI software systems. However, existing research tends to overlook cru-
cial aspects of AI software testing, including associated questions, challenges, and
validation methodologies with well-defined quality requirements and criteria. This
paper addresses the validation of AI software quality, covering key areas of focus,
features, processes, and potential testing approaches. Additionally, it introduces a
testing process and a classification-based test model tailored for testing AI classifi-
cation functions. In conclusion, the paper delves into the existing challenges, issues,
and requirements in the realm of AI software testing.
In this paper [31], we find that , despite the presence of highly skilled quality as-
surance teams and advanced tools, software testing has consistently proven to be a
time-intensive endeavor. This is because software development is a complex process
that involves many different components and interactions. As a result, it is difficult
to test all possible combinations of inputs and outputs manually. Test automation
can help to address this challenge by automating the testing process. This can save
time and resources and can also help to improve the quality of software by identi-
fying and fixing bugs early in the development process. Test automation can have
a significant impact on the total cost, quality, and timeline of software production.
In this paper, we sought to identify key factors pertaining to test automation and
its cost-effectiveness. We analyzed the effects of test automation on the cost, time-
line, and quality of three distinct software projects. The results of our experiments
unequivocally demonstrate the favorable impact of test automation on the cost,
quality, and speed of bringing the software to market.Specifically, we found that
test automation can help reduce the cost of software development by up to 50%. It
can also help to improve the quality of software by up to 30%. Additionally, test
automation can help to speed up the development process by up to 20%.Overall,
our results suggest that test automation is a valuable tool that can help to improve
the quality, cost, and speed of software development.
In this article [7], we find that the primary objective of this paper was to examine
the functioning of artificial intelligence in the realm of software test automation.
Within the domain of software engineering, artificial intelligence (AI) has exerted
a substantial impact, and software testing is no exception. With the integration

8

of artificial intelligence (AI), achieving the goal of automating software testing ap-
pears more attainable than ever before. Over the past two decades, there has been
a shift in paradigm. The entire testing process has seen a positive evolution, moving
from manual testing to automated testing, with Selenium being recognized as one of
the premier automation tools. Consequently, in today’s fast-paced IT environment,
software testing must adopt novel approaches founded on sound research. The in-
troduction of AI-based testing has proven highly advantageous for this purpose [1].
AI algorithms and machine learning (ML) enable a computer to learn autonomously
without human intervention. While AI and ML necessitate the creation of distinct
and tailored algorithms to process and learn from data, identifying patterns to draw
conclusions, these predictive capabilities are intended to be fully leveraged in soft-
ware testing.
According to this research [21], Consumer Electronic Manufacturing (CEM) compa-
nies often struggle to maintain quality standards during frequent product launches,
risking product rrecalls. o address this challenge, a universal automated testing sys-
tem is proposed. This system features a universal hardware interface for connecting
commercial off-the-shelf (COTS) test equipment to the unit under test (UUT). Ad-
ditionally, a machine learning-based software application is developed in LabVIEW.
This application automates the selection of COTS test equipment drivers, interfaces
with the UUT, collects real-time test measurement data, performs analysis, gener-
ates reports and key performance indicators (KPIs), and provides recommendations.
According to this paper [22], software testing is a critical activity in the software
development process, with two main approaches: manual testing and automation
testing. Automation testing involves writing programming scripts to automate the
testing process. The choice between manual and automated testing depends on
various factors, including project requirements, the project team’s expertise, the
technology used, and the target audience. In this research paper, a machine learn-
ing model is developed to predict the adoption of automated testing for software
development projects. The study uses the chi-square test to identify correlations
between different factors and employs the PART classifier to build the prediction
model. The proposed model demonstrates a high accuracy rate of 93.1624%, of-
fering valuable insights for making informed decisions regarding the suitability of
automated testing in software development projects. Within the following research
paper, this paper introduces an innovative automated layer defect detection system
designed specifically for construction 3D printing. The system’s development in-
volves a structured approach, beginning with the creation of a deep convolutional
neural network (CNN) capable of receiving image inputs and performing semantic
pixel-wise segmentation to distinguish concrete layers from their surrounding envi-
ronment. To enhance CNN’s effectiveness, data augmentation techniques are em-
ployed, resulting in the generation of 1 million labeled images used for both training
and testing purposes.Subsequently, the paper presents a defect detection module
that leverages the CNN model to identify deformations within the printed con-
crete layers, as extracted from the images.The system39;s performance is rigorously
evaluated using metrics such as accuracy, F1 score, and miss rate, demonstrating
its commendable capabilities in effectively identifying layer defects. This research
presents a valuable contribution to quality control in construction. printing, offer-
ing a promising solution for detecting and addressing structural issues early in the
building process.

9

In this research paper [16], automated software testing plays a crucial role in Ag-
ile methodologies like Scrum, where the definition of done” includes completing
tests. However, As software projects progress, the number of tests can become over-
whelming, slowing down deployment. This paper introduces a novel approach that
leverages machine learning to prioritize automated testing, focusing on tests with a
higher likelihood of failure to provide early feedback to developers. The technique
involves collecting various metrics about the software under test, including cyclic val-
ues, Halstead-based values, and Chidamber-Kemerer values. Additionally, historical
commit messages from the source code control system are analyzed to identify past
defects in source code classes. Using this data, a file is generated containing metrics
and past defect information, which is then processed using Weka to create a decision
tree model. This model aids in predicting potential defects in source code files and
guides the prioritization of testing efforts, ultimately improving software quality and
efficiency in Agile development environments.
According to this research paper [8], machine learning plays a vital role in analyz-
ing and deriving insights from large biomedical datasets, contributing significantly
to biomedical research and healthcare improvement. However, before training a
machine learning model, users typically face the complex task of selecting an appro-
priate algorithm and configuring hyperparameters.This process demands expertise
and manual iterations, making it challenging for individuals with limited computing
knowledge. To democratize machine learning for non-expert users,computer science
researchers have introduced automatic methods for algorithm and hyperparameter
selection in supervised machine learning problems. This paper provides a compre-
hensive review of these methods, highlighting their significance in the context of
big biomedical data. It also acknowledges certain limitations associated with these
techniques in this specific environment and offers initial insights into potential solu-
tions.
This paper [5] gives a description of how software testing entails investigating the
behavior of software systems to detect flaws. Due to the complexity and costliness
of testing, a practical approach has been to automate it. There is a growing interest
in utilizing machine learning (ML) to automate various aspects of software engi-
neering, including testing. This study reviews the current state of applying ML to
streamline software testing and conducts a systematic mapping analysis at the inter-
section of these two fields. 48 primary studies were chosen and categorized by study
type, testing activity, and ML algorithm employed. The findings highlight prevalent
ML algorithms and suggest potential avenues for future research. ML has primarily
been utilized for generating, refining, and evaluating test cases. It has also been
employed in evaluating test oracle construction and predicting testing-related costs.
The results of this study provide insight into the frequently used ML algorithms
for automating software testing, aiding researchers in comprehending the current
research landscape. Furthermore, there is a need for more comprehensive empirical
studies on the utilization of ML algorithms in automating software testing.
This article [9] states that recent progress in evolutionary test generation has im-
proved testing for object-oriented (OO) software. This paper introduces a method
that combines evolutionary testing with reinforcement learning to generate test cases
for OO software,especially those with Inherited Class Hierarchies (ICH) and Non-
public Methods (NPM). The approach, called EvoQ, outperforms state-of-the-art
methods in branch coverage within the same time frame. This paper describes the

10

study that assesses room speech intelligibility using parameters like T30, Ts, EDT,
D50, C50, U50, and STI. It analyzes factors including background noise, ceiling ma-
terial absorption, confinement, and occupancy. Findings challenge previous research,
suggesting D50 may not be a reliable metric for speech intelligibility assessment.
This paper [3] is about using neural networks for the software testing process . The
use of artificial neural networks as automated oracles in software testing is a topic
that is introduced in this study. With test cases applied to the original software
version, the neural network is trained using the backpropagation method, utilizing
a ”black-box” strategy where only inputs and outputs are taken into account. This
well-trained network functions as an oracle to assess the accuracy of fresh, possibly
flawed software versions’ output. A two-layer neural network has shown potential in
experiments to identify various inserted fault types in credit approval applications.
This paper [27] is about an innovative tool for automated testing of GUI-driven
software . The article underlines the necessity for diverse testing methodologies and
explores the significance of GUI testing in contemporary software applications. A
new tool named GUITAR is introduced, which stands out owing to its design, which
employs plug-ins and provides flexibility and extensibility. This architecture enables
programmers and quality control specialists to design unique toolchains, processes,
and measurement tools for GUI testing. Through a number of case examples, the
paper illustrates GUITAR’s capabilities.
This paper [1] is about automated testing of classes . The reliance between an ob-
ject’s state and its behavior is discussed as a barrier in testing object-oriented pro-
grammes. For this situation, conventional testing techniques are insufficient. The
paper provides a way to generate sequences of method invocations for testing using
data flow analysis, symbolic execution, and automated deduction. Despite issues
with symbolic execution and automated deduction, these methods can nonetheless
produce important testing data.

2.2 YOLOv5

You Only Look Once Model 5, or YOLOv5 [28], is an actual-time object identifica-
tion approach that is part of the You Only Look Once (YOLO) series. Its precise
performance is derived from detecting objects in a single forward run through the
neural network, which isn’t the same as greater conventional -step strategies to-
gether with place proposal networks and categorization. YOLO splits the entered
image into grid cells and offers each grid cell the job of estimating bounding packing
containers and class probabilities for objects that can be inside its borders.
The use of anchor packing containers within the education section of YOLOv5 is a
noteworthy feature that enhances the accuracy of bounding box predictions. Pre-
hooked up at some stage in education, those anchor bins assist the set of rules to
learn to count on bounding container coordinates more as it should be. YOLOv5
additionally does fantastically properly in class prediction, giving elegance possibil-
ities for each bounding field. This shows that severe bounding bins, every related to
an exclusive class possibility, can also perceive a single object. In addition, YOLOv5
regularly consists of characteristic pyramid networks (FPN) or associated strategies
to accumulate records at numerous scales, permitting the version to perceive gad-
gets of different sizes. Typically, the network structure consists of a deep neural

11

community with a backbone network for efficient feature extraction. Deep neural
networks are frequently constructed on convolutional neural networks (CNNs).
The aim of the training method is to minimize the distinction between the predicted
and actual ground truth bounding packing containers by optimizing the community’s
parameters. Operating as an open-supply mission, YOLOv5 promotes cooperation
by permitting teachers and builders to use, alter, and upload to the coding, which is
commonly available on GitHub. It is crucial to notice that after my closing expertise
update in January 2022, YOLOv5 can also have skilled upgrades or enhancements.
For the most current data, customers are urged to reference the most up-to-date
guides or manuals.

2.3 YOLOv8

YOLOv8 version [29] does not exist promptly as it’s still under development. Ap-
parently , YOLOv4 changed into the maximum current generation of the YOLO
series. You Only Look Once, or YOLO, is widely recognized for its capacity to
recognise gadgets in real time. Notable upgrades introduced by YOLOv4 consist of
the Mish activation function, PANet for function aggregation, and CSPDarknet53 as
the spine structure. These enhancements have been intended to improve the model’s
standard efficacy and precision in object detection in pics. Since deep learning and
laptop vision are fields with speedy development, it is essential to keep up with
the modern day discoveries. Users are encouraged to seek advice from the official
repositories, documentation, or modern-day guides for the most updated records if
there were any observe-up releases, which include YOLOv8 or extra iterations in
the YOLO collection. By making use of open-source collaboration, the YOLO chal-
lenge regularly allows academics and builders to each make a contribution to and
take advantage of the most recent trends in object identification algorithms. It is
recommended to consult reliable sources for up to date statistics about YOLOv8 or
any later variations to be able to realize the functions, architecture, and upgrades
added inside the maximum cutting-edge releases.

2.4 Pytorch Framework

The AI Research Lab at Facebook (FAIR) created the open-source gadget learning
framework PyTorch [20]. Because it gives a dynamic and adaptable computational
graph, it is thoroughly-liked by lecturers and builders. It is drastically utilized for
deep learning programs. PyTorch is prominent through its outline-via-run method,
which is a dynamic computational graph. This implies that, unlike static graph
frameworks, the graph is built dynamically as the code is being completed, making
debugging easier and expressing complex designs more certainly viable.
PyTorch is based on the idea of tensors, which are multidimensional arrays with
GPU acceleration features that resemble NumPy arrays. Tensor operations rou-
tinely monitor the computational graph, permitting computerized differentiation.
Tensors are the primary construction factors of PyTorch. Because the graph can
be modified dynamically depending on the entered facts, this dynamic computation

12

graph may be very useful for building state-of-the-art and dynamic neural commu-
nity topologies.
A significant array of libraries and gear, inclusive of torch. Nn for neural community
construction, torch. Optim for optimisation techniques and torchvision for computer
vision programs are also covered inside the framework to assist with distinct areas of
deep learning. The clean integration of PyTorch with famous libraries like NumPy
allows switching among these equipment. Moreover, PyTorch has a vibrant and
increasing network that helps its increase by means of supplying fashions, tutorials,
and different resources which will increase its attraction for deep gaining knowledge
of beginners and professionals alike. Overall, PyTorch is a robust and nicely-liked
framework for gadget getting to know and deep getting to know packages because
of its adaptability, dynamic computational graph and strong network aid.

2.5 Computer Vision

Through the multidisciplinary nature of computer vision, machines can realize and
interpret visual statistics from their environment in a way similar to that of the
human visible system. Fundamentally, computer vision ambitions are to permit
robots to come across, understand, and make decisions primarily based on visi-
ble input, thereby permitting them to derive significant insights from pictures and
videos. From basic photo processing strategies to difficult responsibilities like object
identification, photo segmentation, and facial popularity, the region covers a huge
spectrum of activities.
Image processing, which entails using algorithms to alter and observe an image’s pix-
els to be able to enhance its great or extract specific capabilities, is a basic aspect of
laptop imagination and prescience. Techniques that include aspect detection, image
filtering, and color change can be used for this. The location has developed to include
increasingly complicated techniques as generations have advanced, along with deep
studying and device mastering. With the use of those strategies, computer imagi-
native and prescient systems can examine and discover styles and characteristics in
the visible center, paving the way for increasingly more state-of-the-art uses, which
include object popularity, scene interpretation, and image categorization. One vital
use of laptop imagination and prescience is item popularity, which involves recog-
nising and categorizing matters in a picture or video. Machine learning algorithms,
together with convolutional neural networks (CNNs), are often used for this process.
CNNs have proven to have amazing effects on object reputation and class across a lot
of visual datasets. In addition, laptop imaginative and prescient encompasses three-
dimensional imaginative and prescient, which lets machines look at and recognize
the 3-dimensional geometry of conditions and gadgets. This capability is critical for
applications including augmented reality, robots, and independent automobiles, in
which selection-making depends on having a unique hold close to the encompassing
surroundings.
The area of laptop imaginative and prescient has witnessed wonderful development
nowadays due to the accessibility of great datasets, strong processing abilities, and
improvements in deep learning architectures. Specifically, convolutional neural net-
works have emerged as a key factor in cutting-edge PC imaginative and prescient
systems, permitting computerized getting to know of hierarchical representations

13

of visible traits. Real-world programs were made possible by those trends in some
regions, consisting of healthcare, retail, safety, and entertainment. The field of imag-
inative and prescient laptops has the capability to transform how machines view and
engage with the visual world because it develops, leading to advances that will have
an international impact on everyday life and many sectors.

2.6 Labellmg

A graphical picture annotation device referred to as LabelImg [26] is available with-
out spending a dime and is supposed to make the procedure of manufacturing labeled
datasets for laptop imaginative and prescient model education easier. Tzutalin’s La-
belImg tool offers an easy-to-use interface for annotation of item bounding packing
containers in snapshots. This tool is very helpful in the subject of gadget studying,
in which segmentation, type, and object identity models require labeled datasets for
schooling.
By permitting customers to create bounding containers around things of hobby inte-
rior and picture, LabelImg aims to streamline the annotating technique. The tool is
compatible with principal deep learning frameworks like TensorFlow and PyTorch
since it supports many annotation formats, along with YOLO and Pascal VOC.
In order to create annotations that act as floor truth statistics for training gadget
mastering fashions, users can establish instructions and give labels to gadgets.
LabelImg may be utilized by beginners and seasoned researchers alike due to its
consumer-friendly layout and cross-platform interoperability. Among its features
are the capability to label things with bounding containers, navigate amongst pho-
tos, and store the annotations in an organized manner. LabelImg, an essential part
of the device mastering system, simplifies the process of creating annotated datasets,
saving developers and researchers a lot of time while producing training data for lap-
top imaginative and prescient applications.

14

Chapter 3

Model & Dataset

3.1 Dataset description

3.1 Dataset description A research team produced the dataset that we utilised.We
used a dataset created by the RICO data-driven design group at the University of
Illinois for our research. The RICO dataset contains 66,261 unique screenshots of
the user interfaces of 9,772 Android apps.
There were several categories that were omitted, such as media players and photo
editors. These 9,772 Android applications have an average rating of 4.1 stars from
the Google Play Store.
In order to compile this dataset, RICO downloaded 9,722 applications from the
Google Play Store. Thirteen UpWork employees were employed to take screenshots.
These workers were instructed to capture screenshots of every screen that each pro-
gramme offered and to limit their time on any given programme to no more than
10 minutes.

Figure 3.1: Figure: Summary of RICO dataset

15

We found that when we utilized a dataset greater than 2000 images, we were ob-
taining the error ”data-loader exit unexpectedly” during training. Our system could
not train this massive dataset given by RICO, so we had to reduce the quantity of
data utilized for both model verification and training. We were limited to using
2000 screenshots from the RICO dataset, which contained some composite and core
Android components, due to this hardware constraint. Furthermore, we found that,
on the hardware we had available, a dataset of 1,700–1,800 pictures yielded consis-
tent and optimal results for training and testing the model. As a result, our thesis
study employed 2000 images.

3.2 Data Preprocessing

3.2.1 Data Preprocessing

We had to first label each core and composite component using the LabelImg pro-
gramme available on GitHub before we could utilize our dataset for training. Tzu-
talin created Identifying Image, a well-known photo annotation programme, with
further help from other volunteers. The LabelImg package is no longer being main-
tained, but this flexible image labeling tool has joined the LabelStudio community.
We created a box with LabelImg for each part we need for our system’s inquiry. The
system stored a text file with the serial numbers of each component once the parts
were labelled. Including the component name that we gave and the four coordinate
values x (max, min) and y (maxx, min) that indicated the box that was placed on
the component so that our model could train. An example is given below,

Figure 3.2: Figure : Labeling images using LabelImg package

We obtain a text file once the labels are added to the image above. Below is an

16

example of the text file. In order to train and validate our model, we have labeled all
core and composite components observed on the screenshots after scanning through
all 1100 photos.Below is the data’s visual representation following image labeling.

Figure 3.3: Figure: Data after Image Labeling

Figure 3.4: Figure:Visual Representation how labeling works

3.2.2 Feature selection

As for the core and some composite components that we have taken into consider-
ation were number picker, back button, settings button, add button, share button,
info button, three dot menu button, switch button, cross button, three bar menu
button, reload button, search button and check button,Login Button,Signup button

17

and Notification button. After labeling each of the images for our training and val-
idating our model, we get the following numbers of core and composite components
shown in the table below,

Table 3.1: Figure: Features

Name of the Component Numbers of component detected
Number Picker 32
Back Button 1641

Settings Button 112
Add Button 137
Share Button 103
Info Button 142

Three Dot Menu 386
Switch Button 76
Cross Button 204

Three Bar Menu 413
Reload Button 51
Search Button 233
Check Box 516

Login Button 76
Signup Button 93

Notification Button 103

3.3 Model description

Yolov5 is a real-time, single-stage object identification model that uses a single
convolutional neural network (CNN) architecture to categorize cases and identify
objects in a single forward pass network. It entails taking a picture as input and
creating an output case that gives the bounding boxes of each component as well
as the class probabilities of each component that can be identified independently
in the image. This raises the efficiency of the model. The employment of cross-
scale feature pyramids, strong backbone networks, and anchor boxes contributes
to its accuracy, which is also rather excellent.There are three primary components
to the YOLO network. We refer to these three major components as the head,
neck, and backbone. CNN helps maintain the backbone’s functionality. A range of
pixelated pictures are crammed into the backbone of the system in order to train it.
The photos are combined and mixed up by the neck. Subsequently, the combined
photos are transmitted forward, enabling the detection of the target. While the
head functions as a head and makes predictions in the same

18

Figure 3.5: Figure: YOLOV5 architecture representation

The most recent and advanced YOLO model, YOLOv8, is applicable to tasks like
instance segmentation, object detection, and image classification. The company
Ultralytics, which also developed the well-known and industry-defining YOLOv5
model, is the creator of YOLOv8. Many architectural and developer enhancements
and modifications over YOLOv5 are included in YOLOv8. YOLOv8 has a high
rate of accuracy, as measured by Microsoft COCO and Roboflow 100. YOLOv8
comes with a lot of developer-convenience features, from an easy-to-use CLI to a
well-structured Python package. There is a large community around YOLO and a
growing community around the YOLOv8 model, meaning there are many people in
computer vision circles who may be able to assist you when you need guidance.

Figure 3.6: Figure: YOLOV8 architecture

19

Figure 3.7: Figure: Figure: YOLOV8 model architecture representation

3.3.1 Single Stage Object Detector

Yolov5 employs a single CNN Network—which consists of the Backbone, Neck, and
Head—during a single forward pass for the purposes of both object detection . Back-
bone suggests a pretrained network that extracts the salient features from an image
and decreases the spatial resolution while raising the feature resolution. Model
necks with pyramids are used to accurately generalize to varying component sizes
and scales and obtain the desired feature. Lastly, the model head is the most cru-
cial component that improves accuracy by applying bounding boxes with certainty,
indexing the component, and carrying out the last stage action. Yolov5’s head and
neck use PANet (Path Aggregation Network) and SPP (Spatial Pyramid Pooling),
while the Darknet53 Convolutional network, also known as CSPDarknet53, provides

20

the backbone utilizing the CSP (Cross Stage Partial) technique.

3.3.2 Other important parts of an improved result

YOLOv5 employs the sigmoid function as the activation function and the sigmoid
linear unit (Silu). The output layer uses the sigmoid function, whereas the hidden
layer uses Silu for convolution operations. For the loss functions for classes, objects,
and locations, respectively, BCE (Binary Cross Entropy) and CIoU (Complete Inter-
section Over Union) are utilized. Additionally, a focus layer is employed to increase
speed by swapping out the first three layers and lowering settings. This makes cer-
tain modifications to mAP (mean average precision). Because the grid sensitivity
has been removed, the model can now detect components even when they are at the
edge, something that the previous Yolo version found difficult to do.

21

Chapter 4

Implementation & Result Analysis

4.1 Implementation

The most integral part of the thesis was to make a model that is well equipped to
detect functional items from the UI of Android applications. In order to make such
a model, there is a discussion of the required hardware specification, environment
setup, required packages, custom model configuration, and more, which collectively
helped us achieve success with the model and finally give results that are free of any
errors. In order to achieve accuracy across different user interfaces, our implemen-
tation process is the one that took us a long way without any errors or bugs.

4.1.1 Hardware Specification

In terms of developing the system, the hardware specification played an important
part in training the model on the labeled dataset. It made sure that the system has
everything it needs to handle the computation, along with other functionalities, and
ensure deliverability. The central processing unit plays a vital role in efficiently han-
dling general computational duties and coordinating various operations throughout
the system. A powerful processor is critical for taking on numerous processing-
intensive tasks simultaneously and keeping the workflow moving smoothly. So, the
machine is powered by an AMD Ryzen 5 5500U processor that has 6 cores under-
neath. A dedicated GPU also ensures speeding up the training process on numerous
epochs and other complex scenarios that require speeding up the processes. There-
fore, the machine that we are using has an Nvidia Geforce 1050TI with 4GB of
ram. The operating system has Windows 11 installed and uses a 512GB M.2 SSD.
Sufficient RAM is crucial for processing substantial datasets and meeting the con-
siderable memory needs of sophisticated deep learning models. While the datasets
and models were sizable, having enough RAM enabled efficient handling of large
amounts of data and complex neural networks. This is important for training mod-
els on vast troves of information and implementing intricate architecture capable
of discerning intricate patterns. Thus, the RAM of the overall system was 32GB
of DDR4 at 2400 MHz. But, alternatively, the model can also do well enough in
Google Colab, running on a Python Google Compute Engine with a RAM of 12.67
GB and a disk space of 78.19GB.

22

4.1.2 Environment Setup

In order to configure the model and get the desired outputs, we need to set up
a proper environment with all the prerequisites to ensure deliverability across the
lifetime of the model being active. In order to do so, we used a Python environment
of 3.9 in a basic Python environment. The terminal was used often to install the re-
quired packages. Some alternative approaches that also worked were Google Colab,
which has a separate runtime with Python version 3.10.12. Python played a pivotal
role in the technical environment as it served as the foundational language for data
analysis and machine learning applications. Given its vast library of modules for
tasks like data wrangling, visualization, and predictive modeling, in addition to its
large international community of users, Python was the natural selection as the main
technology stack. Its wide range of libraries and functionality allowed for extensive
experimentation and custom solutions to be developed. Further, with Python’s pop-
ularity among professionals in adjacent fields like statistics and research, it ensured
that solutions and results would be understood by relevant stakeholders.

4.1.3 Package Installation

A critical aspect of setting up the environment for the project involved the installa-
tion of various Python packages. These packages provided the necessary tools and
functionalities required for the development and execution of our machine learning
model. Below is a detailed overview of the key packages installed and their roles in
the project:

YOLO Dependencies

The YOLOv5 and YOLOv8 dependencies are essential for utilizing the YOLOv5
framework, which is central to our object detection tasks. Installation: These de-
pendencies were installed as part of the YOLOv5 and YOLOv8 repository setups.

Roboflow

Roboflow is a tool for managing and processing machine learning datasets. It was
used for handling the dataset involved in training our model, providing functionali-
ties like annotation, normalization, and augmentation.

PyTorch

PyTorch is a fundamental library for building and training deep learning models. In
our project, PyTorch is used to construct and train the custom model for UI item
detection.

23

Requests and Python-utils

The requests library is used for making HTTP requests, which is crucial for fetching
data or interacting with web services. The python-utils package provides a range of
utility functions, enhancing the versatility of our Python scripts.

4.1.4 Custom Model Configuration

As we opt to use YOLO models, specifically the YOLOV5 and YOLOV8 models, we
are one step ahead of the traditional approach of making something from scratch.
But, yet, these models were fine tuned to our selective dataset of functional UI
screenshots of Android applications. As mentioned earlier, we have opted to select
16 distinctive features for the detection of functional ui elements in applications. In
order to get the desired outputs, we opted to make different modifications to the
model and tailor it to our specific needs.

YAML File Configuration

The custom YAML file serves as the central blueprint by defining various parameters
and metadata that are important for training the model.

Figure 4.1: YOLOV8 model architecture representation

The names section defines the class names and their corresponding identifiers. Each
class represents a specific type of UI item that our model aims to detect. The list

24

under names specifies the labels for UI elements, like ”Add Button,” ”Back Button,”
etc. The nc (number of classes) is set to 17, indicating that our model is trained
to recognize 17 distinct types of UI items. The license indicates the licensing of
the dataset (Public Domain in this case). The YAML file also specifies the project
details within Roboflow. Finally, the directory contains training images, validation
images, and test images, which are used to train, validate, and evaluate the model.

Training Custom Model

In order to make our desired model, we opted for fine tuning two versions of a preex-
isting model named YOLO. We are using YoloV5 and YoloV8 as our backbones for
the model. But while fine tuning we configured the required configuration files and
our custom dataset of Android application screenshots. Our preprocessed data, la-
beled with the help of LabelImg, has played a pivotal role in integrating the dataset
with YOLO models. YOLOv5 is comparatively easier to setup and use. It’s also
evident that YOLOv5 is easier to deploy. And moving on, YOLOv8 is faster and
more accurate than YOLOv5. The claims are based on proper research by the or-
ganizations responsible for building YOLO models. But the simplified comparative
analysis is yet to be encountered as we move forward with the model and its outputs.

Training on Custom Dataset Configuration

The custom model has been developed with 500 epochs and a batch size 16. The
batch size 16 is responsible for keeping a proper balance between the memory usage
of the GPU and the overall training speed. Moreover, to avoid any sort of overfitting
across the lifespan of training, early stopping has been implemented. The image size
of the input images are set to 640 pixels, which is well accepted as a decent image
size across all YOLO models. The cache flag is also used to speedify the process of
training epochs by caching the dataset and ensuring efficiency.

4.1.5 Automation System

In order to have a proper automated flow for such use cases, it’s mandatory to
preload the custom model that we have trained on our dataset before taking a
screenshot. A proper image cropping mechanism system has to be implemented
that gets rid of all the unnecessary parts of the screenshots. Our proposed automa-
tion system can be divided into three main components - detection mechanism that
we have developed using YOLOv5/YOLOv8. After that, the system moves on to the
component that’s responsible for having a proper real time connection between the
Android application and the detection system. And then, based on the detection,
we move on to the last part of the architecture, which is the UI elements testing
system. Here, the screenshot of the application is tested to match the screenshot
of the design file for that specific screen. And based on that, the end user gets
the status of misplaced UI elements or successful placement of UI elements. The
automation system is thus completed to its core functionalities without any hassle

25

or difficulties.

4.2 Result Analysis

The obtained results from the trained models are to be analyzed over certain met-
rics, and thus we can decide on the better performing version to take an effective
approach.

4.2.1 Comparative Analysis

Moving on, the YOLOv5 model was chosen simply because it’s one of the simplest
ones of all the YOLO models and it’s easy to set up and train comparatively. On
the contrary, the YOLOv8 model was chosen as an option because of its speed and
accuracy over real time visuals. Though app screenshots are not real time moving
visuals, we have still found these existing reasons enough to include them in our
research and thus find the one that fits perfectly with the purpose of the use case.

Confusion Matrix

As the backbone of the analysis, we are deciding on the confusion matrix for now
as an integral metric. Often, for classification models, a confusion matrix is the
one that shows the quantity of correct as well as incorrect predictions made by that
model.

26

Figure 4.2: YOLOv5 Confusion Matrix

The confusion matrix for YOLOv5 displays strong diagonal values for classes like
“Back Button”, “Number Picker,” and “Search Button,” which indicates that the
model is classifying or detecting these classes well enough. However, it’s easy to see
that there are high caliber confusions between classes like “Add Button” and “Info
Button”. Because a significant number of “Add Buttons” instances were misclassi-
fied as “Info Button,”.

Figure 4.3: YOLOv8 Confusion Matrix

In contrast, the YOLOv8 confusion matrix reveals an improvement in distinguishing
between the ”Add Button” and ”Info Button” classes. Moreover, this model also
shows a near-perfect classification for the ”Back Button” but exhibits some confu-

27

sion between ”Switch Button” and ”Three Bar Menu,” which was not as prevalent
in the YOLOv5 matrix.
Both models are able to demonstrate high accuracy for certain classes but YOLOv8
shows an overall improvement in detecting accurately across most UI elements.
YOLOv5 struggles to differentiate similar types of elements, but YOLOv8 is more
effective in understanding the nuanced differences between those classes. The in-
stances of misclassification rates are more evident in terms of YOLOv5 but YOLOv8
wins this comparison metric as well. And collectively, both models face difficulties
with classes that have lesser training examples which is obvious.

F1 Curve

The F1 curve is one of the most driving factors towards judging the performance
of a model. It’s a harmonic mean of the existing model by taking in account its
precision and recall. The term Precision is a measure of quality and recall is a
measure of quantity. So, it’s evident and easy to understand that both of these
measuring metrics really give a meaningful collective metric to judge a model well
enough. Now, we have obtained F1 curves for YOLOv5 and YOLOv8 models for
the specific dataset and selective features or classes.

Figure 4.4: F1 Confidence Curve of YOLOv5

The F1-Confidence curve for YOLOv5 displays a high F1 score for certain classes
such as the ”Back Button” and ”Search Button” across a range of confidence thresh-
olds, showcasing the model’s reliability in detecting these elements. However, the
curve for ”Info Button” and ”Number Picker” indicates a drop in F1 score as con-
fidence increases, suggesting a trade-off between confidence and accuracy for these
classes. The overall F1 score across all classes peaks at a specific threshold, beyond

28

which the score declines, indicating a sweet spot for the model’s confidence level.

Figure 4.5: F1 Confidence Curve of YOLOv8

In contrast, YOLOv8 shows an improved F1-confidence profile with a generally
higher curve across most classes. This indicates a better balance between precision
and recall, even at higher confidence levels. Notably, classes like ”Switch Button”
and ”Three Dot Menu” maintain a high F1 score over a wider range of confidence
thresholds, showing robustness in detection. The aggregate F1 score across all classes
for YOLOv8 is higher than that of YOLOv5, and the optimal confidence threshold
is also at a higher value, suggesting increased overall confidence in detections.
Now, it’s easy to comprehend that YOLOv8 surpasses YOLOv5 in the overall F1
score, indicating superior aggregate performance in detecting UI elements. More-
over, YOLOv8 demonstrates more consistent F1 scores across different UI elements,
especially at higher confidence thresholds. The analysis also shows that YOLOv8
maintains a higher F1 score at elevated confidence levels, suggesting that it can
operate with higher certainty without compromising accuracy. While both models
perform well on common UI elements, YOLOv8 shows less performance degradation
on less common or more challenging elements.

P Curve

Now, precision is a critical metric in object detection which can easily measure
the accuracy of the predictions where the model is confident enough. The Precision-
Confidence curve is an essential diagnostic tool as it illustrates the trade-off between
precision and the confidence threshold for a given model.

29

Figure 4.6: P Curve of YOLOv5

The YOLOv5 model demonstrates high precision at lower confidence thresholds
for some of the classes, which indicates a strong ability to correctly identify UI
elements with less certainty. However, as soon as the confidence threshold increases,
we see a decline in precision for several classes, such as ”CheckBox” and ”Info
Button,” suggesting that the model becomes less accurate when it is more certain
about its predictions. Moreover, the ”Add Button” and ”Back Button” maintain a
relatively high precision across a wide range of confidence levels, indicating consistent
performance for these classes.

On the contrary, the P curve maintains a higher precision across nearly all confi-
dence levels for most classes. This clearly suggests that YOLOv8 is more accurate
in its predictions and more reliable when it asserts high confidence. It’s important
to note that the classes ”Search Button” and ”Settings Button” show superior pre-
cision at high confidence levels compared to YOLOv5. The overall precision for all
classes combined is also higher for YOLOv8, indicating a better performance across
the board.
It’s a clear win for YOLOv8 because it is seen that both models start with high
precision at low confidence thresholds, but YOLOv8 maintains higher precision as
the confidence increases. Each class has a unique precision-confidence profile and
for sure YOLOv8 outperforms YOLOv5, especially in classes where there are pos-
sibilities of different variations. YOLOv8 exhibits a higher overall precision than
YOLOv5, especially at the mid-to-high confidence ranges, which are crucial for
practical applications.

30

Figure 4.7: P Curve of YOLOv5

PR Curve

We use the Precision-Recall curve to gauge how well a model works. It’s especially
important when your data isn’t balanced. It shows the balance between precision
(how accurate your model is) and recall (if your model can detect everything it needs
to). Let’s look at how the YOLOv5 and YOLOv8 models perform when tasked with
spotting UI elements in Android apps.
YOLOv5’s curve isn’t always consistent. Take the ”Add Button” category for ex-

31

Figure 4.8: PR Curve of YOLOv5

ample. It’sprecise but not so good on the recall side, meaning it misses some things.
Other categories, like ”Reload Button” and ”Three Bar Menu,” score high on both,
telling us YOLOv5 does well with those. Overall, its mean Average Precision (mAP)
at a 0.5 IoU threshold is 0.551, giving a general idea of how it performs. YOLOv8,

Figure 4.9: PR Curve of YOLOv8

32

on the other hand, tends to do better. It has high levels of precision and recall in
most categories. ”Number Picker” and ”Three Dot Menu” perform exceptionally
well. With YOLOv8, precision and recall levels are usually better balanced, leading
to superior performance. Plus, the mAP for YOLOv8 is 0.668, which shows it out-
performs YOLOv5.
YOLOv8 has a good balance between precision and recall. This means it has fewer
false positives and negatives. Again, YOLOv8 shows consistent performance across
different classes. This suggests it can handle a variety of UI elements. With a higher
mAP score, YOLOv8 proves to be a reliable model for spotting UI elements in An-
droid apps.

R Curve

Basically, recall is how well a model can spot the right instances of a class. We can
see how good this is by looking at the Recall-Confidence curve. Right now, we’re
comparing YOLOv5 and YOLOv8. We’re looking at how it picks up on UI elements.

Figure 4.10: R Curve of YOLOv5

33

With YOLOv5, the ”Back Button” and ”Reload Button” classes do well, even when
there’s not a lot of confidence. However, ”Login button” and ”Signup button” don’t
do as well when the confidence goes up. The total recall starts to go down when the
confidence gets really high.

Figure 4.11: R Curve of YOLOv8

YOLOv8 does things a bit differently. It does a good job with most of the classes even
when the confidence scores get higher. ”Three Dot Menu” and ”Number Picker”
classes stay strong at any confidence level. Overall, YOLOv8 is better at spotting
positive instances.
Both models have high recall at the beginning, showing they can detect well. As
the bar is raised, YOLOv8’s recall decreases slowly. YOLOv5, however, falls more
quickly.
YOLOv8 keeps a high reputation for all classes. This hints that it’s less likely to
overlook positive items. YOLOv8 stands out when recalling most classes, providing
a dependable model for spotting a variety of UI elements.

34

4.2.2 Selected Model Result Analysis

Figure 4.12: Overall Results of YOLOv8

Therefore, based on all of the important metrics and observations, we can surely
come to the conclusion that YOLOv8 is the clear winner in terms of performance,
efficiency, speed, and accuracy with respect to time, data size, and any other possi-
ble variable for the given use case.

35

4.2.3 System Analysis & Overview

Figure 4.13: System Overview

36

The automated tool is advanced yet easy to use. It finds and examines UI elements.
Different parts work together in this tool. Think of it like a combo of machine
learning and software testing needs. This helps validate the design and use of user
interfaces in Android apps. We took a lot of care to make the architecture of this
tool. It runs smoothly, gets results right, and provides fast feedback.
We’re bonding YOLOv5 and YOLOv8 to smooth out UI tests in Android apps.
First, we prep data—gather it, label it, and set it up for the models to learn from.
Then, we train. Models get fine-tuned, and the one doing best based on precision
and recall measurements is chosen. There’s a live link between the app and system
for instant spotting and contrasting of UI bits with design files. It wraps up with
an automated UI testing part that gives immediate feedback. It flags errors and
okays correct placements in UI elements. All of these parts work together to make a
strong system that ups the speed and correctness of checking UI consistency. This is
a valuable tool for software testers and those developing the visual front-end. First
of all the necessary UI elements are detected from two images - application screen-
shot and design screenshot with the help of the fine tuned YOLOv8 model.

Figure 4.14: Application Screenshot and Design Screenshot Respectively

The end user inputs two screenshots, and now the ai model tries its best to detect
UI elements. The classes or features detected form both are “Three Bar Menu” and
“Add Button”

37

Figure 4.15: UI Elements Detected.

Now that we have detected the elements, we can focus on testing the frontend of the
Android application with the design. And then, look for any potential misplacements
of any of the detected objects in terms of design screenshot.

We can clearly see and come to the conclusion that this system is following a con-
siderable good approach towards bringing UI development and UI functional item
detection a huge boost. First, the system checks if the detected elements of the
design screenshot are absent in the application screenshot. If even one of those el-
ements is missing in the application, then an error is given to the end user about
that specific class name. Moving on, the system checks the tensor position, and if
the position of the detected UI elements matches, then the end user gets a success
message that it’s on the right track. But if it doesn’t match, then error messages
are shown with proper mentions of the specific UI elements and suggested position
from each.

38

Figure 4.16: Application Testing Mechanism in terms of Design.

39

Chapter 5

Conclusion

5.1 5.1 Challenges

During the course of our investigation, we met a series of serious problems that
greatly affected the conclusion of our study. Firstly we did not selected the dataset
randomly . We had to categorize the screenshots which has ideal measurement of
each and every buttons so that we can have good mAP of each and every class . Then
we focused on specific screenshots which had more buttons . One noteworthy prob-
lem resulted from the hardware limits inherent in processing Android screenshots for
object recognition utilizing the YOLOv5 and YOLOv8 models. These limits created
constraints on the efficiency and speed of our image processing activities, warranting
careful study and optimization of computing resources. Another difficulty surfaced
in the process of categorizing smaller border boxes inside the Android screenshots
collection. The intricacy of precisely identifying these tiny components required
painstaking attention to detail, since faults in labeling might possibly impair the
accuracy of the object identification models. Additionally, the cleansing of datasets
offered its own set of issues. Ensuring the quality and consistency of the Android
screenshot dataset needed a rigorous data cleaning procedure to minimize noise and
extraneous information, boosting the reliability of later analysis. Tuning param-
eters for the YOLOv5 and YOLOv8 models added another degree of complexity.
Fine-tuning these parameters to enhance the performance of the object identifica-
tion models needed sophisticated knowledge of model behavior and responsiveness,
necessitating repeated modifications and assessments. In navigating through these
challenges related to hardware limitations, labeling precision, dataset cleaning, and
parameter tuning, our research not only highlights the intricacies involved in utilizing
object detection models for Android screenshots but also emphasizes the importance
of addressing such challenges for the advancement of accurate and efficient image
processing in the realm of UI development and testing.

5.2 Future Prospect

Looking toward the future, the combination of ensemble training with YOLOv5
and YOLOv8 offers good promise for improving object identification algorithms
in UI development and testing. As technological landscapes improve, the contin-
ued refinement and optimization of ensemble training methodologies are projected
to contribute considerably to the efficiency and accuracy of UI-related image pro-

40

cessing tasks. Future potential includes the exploration of updated ensemble pro-
cedures that leverage the powers of YOLOv5 and YOLOv8 even more effectively.
This includes looking into sophisticated ensemble designs, adaptive learning rate
procedures, and innovative model coordination approaches. As improvements in
hardware capabilities continue, the opportunity for overcoming hardware limita-
tions—previously a challenge—opens prospects to more optimization and speedier
ensemble training methods. Additionally, the integration of ensemble training with
YOLOv5 and YOLOv8 could grow beyond ordinary UI development. The trans-
ferability of this technology to other sectors, such as computer vision applications
and autonomous systems, presents fascinating possibilities for wider technological
applications. As the research community continues to examine ensemble training
with expanding object detection models, future efforts may focus on creating stan-
dardized approaches and frameworks for seamless integration. Collaboration and
information sharing between research groups will be key to establishing the future
landscape of ensemble training methodologies and ensuring their wide adoption and
use in different real-world scenarios.

5.3 Conclusion

Finally, This research journey has explored the sensitive areas of UI design and
functionality testing in Android applications. Understanding the critical role of the
Software Development Life Cycle (SDLC) and Software Testing Life Cycle (STLC),
We conducted a study to address challenges and expedite industry advancements.
The intricacy of creating user interfaces was brought to light, especially when con-
sidering Android apps and their abundance of core and composite components.
We identified the critical need to expedite UI design and automate functionality
testing, highlighting challenges including labor-intensive testing methodologies, ex-
tended development timelines, and a dearth of quick functional testing protocols.
By providing an automated recommendation system for component placement and
functionality testing, our proposed solution aims to transform user interface de-
velopment by reducing development time and increasing overall productivity. The
research proceeded by means of an extensive examination of extant literature and
a profound exploration of fundamental concepts, such as object identification, com-
puter vision, and the YOLOv5 and YOLOv8 models. Handling Android screenshot
datasets presented a number of difficulties, from hardware limitations to the labori-
ous task of locating smaller border boxes and dataset cleaning. The tale was further
expanded by parameter tinkering and ensemble training complexity with YOLOv5
and YOLOv8, bringing to light the complexities of utilizing cutting-edge technology
in UI design. I think there are a tonne of great opportunities for UI development in
the future. In addition to addressing current issues, the proposed paradigm, when
paired with automation techniques, offers a foundation for ongoing innovation. Our
work advances UI development methodologies by enabling UI developers to do auto-
functional testing and get recommendations for optimal component placements. In
summary, This study sheds light on the challenges and opportunities facing UI de-
velopment, emphasizing the need for automation and efficient testing techniques.
Our findings contribute to the ongoing conversation about UI development as we
navigate a rapidly evolving technology landscape and offer a path forward for fur-
ther research and development in this important area. This project aims to be a

41

catalyst for innovative advances in the dynamic field of UI creation in Android apps
by combining theoretical research with real-world problems.

42

Bibliography

[1] M. Vanmali, M. Last, and A. Kandel, “Using a neural network in the software
testing process,” Journal Name, vol. 1, Jan. 2002.

[2] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does meta-
morphic testing alleviate the oracle problem?” IEEE Transactions on Software
Engineering, vol. 40, no. 1, pp. 4–22, 2013.

[3] W. He, R. Zhao, and Q. Zhu, “Integrating evolutionary testing with rein-
forcement learning for automated test generation of object-oriented software,”
Journal Name, vol. 1, Jan. 2015.

[4] R. Mathur, S. Miles, and M. Du, “Adaptive automation: Leveraging machine
learning to support uninterrupted automated testing of software applications,”
Aug. 2015.

[5] G. Luo, “A review of automatic selection methods for machine learning algo-
rithms and hyper-parameter values,” Netw Model Anal Health Inform Bioin-
forma, vol. 5, no. 18, 2016.

[6] D. Banerjee, K. Yu, and G. Aggarwal, “Image rectification software test au-
tomation using a robotic arm,” IEEE Access, vol. 6, pp. 34 075–34 085, 2018.

[7] D. S. Battina, “Artificial intelligence in software test automation: A system-
atic literature review,” International Journal of Emerging Technologies and
Innovative Research, vol. 6, no. 12, pp. 1329–1332, Dec. 2019.

[8] L. Butgereit, “Using machine learning to prioritize automated testing in an ag-
ile environment,” in 2019 Conference on Information Communications Tech-
nology and Society (ICTAS), Durban, South Africa, 2019, pp. 1–6. doi: 10.
1109/ICTAS.2019.8703639.

[9] V. H. S. Durelli et al., “Machine learning applied to software testing: A sys-
tematic mapping study,” IEEE Transactions on Reliability, vol. 68, no. 3,
pp. 1189–1212, Sep. 2019. doi: 10.1109/TR.2019.2892517.

[10] J. Gao, C. Tao, D. Jie, and S. Lu, “Invited paper: What is ai software testing?
and why,” in 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE), San Francisco, CA, USA, 2019, pp. 27–2709. doi: 10.
1109/SOSE.2019.00015.

[11] H. Hourani, A. Hammad, and M. Lafi, “The impact of artificial intelligence
on software testing,” in 2019 IEEE Jordan International Joint Conference
on Electrical Engineering and Information Technology (JEEIT), IEEE, 2019,
pp. 565–570.

[12] M. A. Jakobs, A. Dimitracopoulos, and K. Franze, “Kym butler: A deep learn-
ing software for automated kymograph analysis,” eLife, vol. 8, e42288, 2019.

43

https://doi.org/10.1109/ICTAS.2019.8703639
https://doi.org/10.1109/ICTAS.2019.8703639
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1109/SOSE.2019.00015
https://doi.org/10.1109/SOSE.2019.00015

[13] Y. Zheng et al., “Wuji: Automatic online combat game testing using evolu-
tionary deep reinforcement learning,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), San Diego, CA, USA,
2019, pp. 772–784. doi: 10.1109/ASE.2019.00077.

[14] “Audee: Automated testing for deep learning frameworks,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE ’20), IEEE/ACM, 2020, pp. 486–498. doi: 10.1145/3324884.
3416571.

[15] D. Banerjee and K. Yu, “3d face authentication software test automation,”
IEEE Access, vol. 8, pp. 46 546–46 558, 2020.

[16] O. Davtalab, A. Kazemian, X. Yuan, and B. Khoshnevis, “Automated inspec-
tion in robotic additive manufacturing using deep learning for layer deforma-
tion detection,” Oct. 2020.

[17] Z. Peng, T.-H. Chen, and J. Yang, “Revisiting test impact analysis in contin-
uous testing from the perspective of code dependencies,” IEEE Transactions
on Software Engineering, 2020.

[18] M. Esnaashari and A. Dania, “Automation of software test data generation
using genetic algorithms and reinforcement learning,” Expert Systems with
Applications, 2021. doi: 10.1016/j.eswa.2021.115446.

[19] T. Gutierrez, A. Bergel, C. E. Gonzalez, C. J. Rojas, and M. A. Diaz, “System-
atic fuzz testing techniques on a nanosatellite flight software for agile mission
development,” IEEE Access, vol. 9, pp. 114 008–114 021, 2021.

[20] J. Hitchcock, M. Hundertmark, D. Foreman-Mackey, et al., “Pytorchdia: A
flexible, gpu-accelerated numerical approach to difference image analysis,”
Monthly Notices of the Royal Astronomical Society, vol. 504, pp. 3561–3579,
2021. doi: 10.1093/mnras/stab1114.

[21] A. Siddiqui, M. Y. I. Zia, and P. Otero, “A universal machine-learning-based
automated testing system for consumer electronic products,” Journal Name,
vol. Volume, no. Issue, 2021.

[22] M. N. Noor, T. A. Khan, F. Haneef, and M. I. Ramay, “Machine learning
model to predict automated testing adoption,” International Journal of Soft-
ware Innovation (IJSI), vol. 10, no. 1, 2022.

[23] A. Senchenko, N. Patterson, H. Samuel, and D. Ispir, “Supernova: Automat-
ing test selection and defect prevention in aaa video games using risk based
testing and machine learning,” in 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), Valencia, Spain, 2022, pp. 345–354. doi:
10.1109/ICST53961.2022.00043.

[24] C. Wan, S. Liu, S. Xie, et al., “Automated testing of software that uses machine
learning apis,” Jul. 2022.

[25] Author(s), Manual and automation testing challenges, Unpublished, 2023.

[26] H. Bandyopadhyay. “A friendly guide to labelimg [+open datasets, models,
alternative tools],” V7. (Apr. 2023), [Online]. Available: https://www.v7labs.
com/blog/labelimg-guide.

44

https://doi.org/10.1109/ASE.2019.00077
https://doi.org/10.1145/3324884.3416571
https://doi.org/10.1145/3324884.3416571
https://doi.org/10.1016/j.eswa.2021.115446
https://doi.org/10.1093/mnras/stab1114
https://doi.org/10.1109/ICST53961.2022.00043
https://www.v7labs.com/blog/labelimg-guide
https://www.v7labs.com/blog/labelimg-guide

[27] E. O. D. Nascimento and P. H. T. Zannin, “Comparison of the sensitivity
of room acoustic parameters on speech intelligibility using artificial neural
networks and multiple linear regression,” Aug. 2023, SSRN Working Paper.

[28] A. Sharma. “Training the yolov5 object detector on a custom dataset - pyim-
agesearch,” PyImageSearch. (Jun. 2023), [Online]. Available: https://pyimagesearch.
com/2022/06/20/training-the-yolov5-object-detector-on-a-custom-dataset/.

[29] P. Skalski. “Train yolov8 on a custom dataset,” Roboflow Blog. (Oct. 2023),
[Online]. Available: https://blog.roboflow.com/how-to- train-yolov8-on-a-
custom-dataset/.

[30] T. Illes, A. Herrmann, B. Paech, and J. Rückert, “Criteria for software testing
tool evaluation – a task oriented view,” Institute for Computer Science, Uni-
versity of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany,
Tech. Rep., Year.

[31] D. Kumar and K. K. Mishra, “The impacts of test automation on software’s
cost, quality, and time to market,” Year.

45

https://pyimagesearch.com/2022/06/20/training-the-yolov5-object-detector-on-a-custom-dataset/
https://pyimagesearch.com/2022/06/20/training-the-yolov5-object-detector-on-a-custom-dataset/
https://blog.roboflow.com/how-to-train-yolov8-on-a-custom-dataset/
https://blog.roboflow.com/how-to-train-yolov8-on-a-custom-dataset/

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Research Problem
	Thesis Structure

	Related Works
	Literature Review
	YOLOv5
	YOLOv8
	Pytorch Framework
	Computer Vision
	Labellmg

	Model & Dataset
	Dataset description
	Data Preprocessing
	Data Preprocessing
	Feature selection

	 Model description
	Single Stage Object Detector
	Other important parts of an improved result

	Implementation & Result Analysis
	 Implementation
	Hardware Specification
	Environment Setup
	Package Installation
	Custom Model Configuration
	Automation System

	 Result Analysis
	Comparative Analysis
	Selected Model Result Analysis
	System Analysis & Overview

	Conclusion
	5.1 Challenges
	Future Prospect
	Conclusion

	Bibliography

