An Investigation on Implementations of Theoretical
Whitebox Cryptographic Solutions

by

Adnan Rahman Eshan
20101601
Jarin Tasnim Khan Kashfee

20101062

Md.Rabib Hasan
20101561

Mahmudul Islam
20101200

A thesis submitted to the Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2024

(©) 2024. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a third
party, except where this is appropriately cited through full and accurate referencing.

3. The thesis does not contain material which has been accepted, or submitted, for
any other degree or diploma at a university or other institution.

4. I/We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Rabib Hagan, Sy

Md.Rabib Hasan Jarin Tasnim Khan Kashfee
20101561 20101062
Ma/mwf Qﬂ\@bﬁ*
Mahmudul Islam Adnan Rahman Eshan

20101200 20101601

Approval

The thesis titled “An investigation on implementations of Theoretical Whitebox
Cryptographic Solutions” submitted by

1. Mahmudul Islam (20101200)

2. Md.Rabib Hasan (20101561)

3. Jarin Tasnim Khan Kashfee (20101062)
4. Adnan Rahman Eshan (20101601)

Of Fall, 2023 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on Jan 22, 2024.

Examining Committee:

Supervisor:
(Member)

Wethtaimmad Ve %@W&m

Muhammad Nur Yanhaona
Associate Professor
Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md.Golam Rabiul Alam, PhD
Associate Professor
Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

i

Abstract

Whitebox Cryptography techniques are those which are aimed at protecting soft-
ware implementations of cryptographic algorithms against key recovery in unpro-
tected devices. The sensitive data embedded in the code is the major concern in
any security-sensitive application. Therefore, data encryption is indispensable. But
white box cryptography aims to protect the security keys used for data encryption
from being revealed. As a whole, such a type of cryptography concerns the anal-
ysis of algorithms that are said to operate in a whitebox attack context. In this
attack context, all information and details of implementations are visible to an at-
tacker. The attacker not only sees the input and output portions, but they can
also see every intermediary implementation and operation that happened along the
way. The challenge that whitebox cryptography aims to address is implementing
a cryptographic algorithm that will keep the cryptographic assets of software se-
cure even when subject to whitebox attacks. As converting blackbox cryptographic
algorithms to whitebox has some sort of performance consequences that have not
been measured or identified properly, we will compare the performance of alternative
algorithms. In addition to that, as some of the algorithms have very few implemen-
tations and any effective open source implementation is yet to be found that will
help the researchers in this sector, we will write an open source white box imple-
mentation for our performance analysis and the future benefit of the researchers.
Moreover, companies lacking resources /skills may also be benefited because of such
implementation. In addition, we want to investigate the kinds of attacks that can
be launched against the solution in our library and try to add security features to
strengthen them to resist common forms of attacks.

111

Table of Contents

Declaration
Approval
Abstract

Table of Contents

1 Introduction

1 Problem Statement
2 Research Objectives.

2 Literature Review

2.1 Fundamentals of Cryptography
2.2 Blackbox Cryptography Overview
2.3 Whitebox Cryptography Overview
2.4 Attacks on Whitebox Cryptography
2.4.1 Cryptanalysis Attacks
2.4.2 Fault-Based Attacks and Protocols
2.4.3 Differential Fault Analysis (DFA)

2.4.4 Differential Computation Analysis (DCA)

2.4.5 Side-Channel Attacks

3 Implementation of Blackbox AES

3.1 Galois Field Algebra in Cryptography
3.2 Blackbox AES 128 Implementation (ECB)
3.3 Modified Blackbox Implementations
3.4 Extended Blackbox Implementation
3.5 Counter Mode Blackbox AES (CTR)

4 Implementation of Whitebox AES

4.1 Table-Based Whitebox Implementation
4.1.1 T-box Generation Process
4.1.2 T-box Generation for Rounds 1-9
4.1.3 T-box Generation for Final Round
4.1.4 Ty Table Generation
4.1.5 XOR Table Construction
4.1.6 Function Conversion Process

4.2 Secured Whitebox Implementation

v

ii

iii

iv

4.2.1 Internal Encoding Mechanism 21

4.2.2 External Encoding Mechanism 23

4.3 Counter Mode Whitebox AES (CTR) 24
4.4 Summary ... 25

5 Security and Performance Analysis 26
5.1 Performance Analysis of Blackbox and Whitebox Implementations . . 26
5.2 Security Analysis 26
5.3 Performance Analysis of Different Implementation Modes 35

6 Challenges 37
7 Conclusion 38
7.1 Future Works 38
7.2 Project Linkso 39
Bibliography 41

Chapter 1

Introduction

The defense mechanism of cryptographic algorithms used in untrusted contexts is an
important concern in a time when digital interactions and outsourced computations
are in common. There are four principles of modern day cryptography. They are
data integrity, data confidentiality, authentication, and non-reputation. The initial
goal of cryptography was to save the integrity and confidentiality of data from eaves-
droppers. This goal has resulted in lots of ciphers and algorithms such as AES, DES,
RSA, and ECC. In the implementation of these algorithms, the endpoint is trusted
which gives recognition to a type of cryptography known as Black Box Cryptography.
In this type of cryptography, the user has only access to the input and output of the
algorithm. The Black Box context which is the conventional one is like a real Black
Box where the attackers can only see the output. While cryptographic approaches
were first developed with this environment in mind, symmetric ciphers in particular
are frequently tested for BBC errors. But now the environment has changed and it
is leading to situations like Digital Rights Management (DRM), where users want
to gain access to protected information outside of the constraints and restrictions
set by DRM software and this software operates in environments that can be pos-
sibly harmful. Eventually, the problem worsened when cryptography was deployed
in open devices such as PCs, tablets, and smartphones without exploiting security
issues which gave recognition to a new type of attack context known as white box
attack context where the attacker has full access to the software implementation of
the algorithm. In another way, we can say that the attacker can see the binary and
alter it. When this incident happens the conventional model Black Box becomes
ineffective and then we use White Box Cryptography to protect the digital assets.

In short, it can be said that the implementation is the core line of defense here.
Software implementations that are capable of handling these sorts of attacks are
called White Box implementations. The main idea of White Box implementation
was to embed the fixed data and random data in a composition from which it’s hard
to derive the original key. As a whole, in White Box AES implementation, the tech-
nique transforms the cipher into a lookup table. The secret key is hardcoded into the
lookup table and protected by randomized techniques that are applied. In the Black
Box, the key is public but in the White Box Cryptography, the key is embedded. In
short, White Box Cryptography is a specialized field dedicated to protecting cryp-
tographic algorithms from the challenges that are presented by untrusted execution
contexts which is a domain known as the Whitebox context (WBC) and this is an
important part of the study of the subject.

The study of White Box Cryptography is related to the attacker model developed
by Chow et al. in 2002. Within the WBC, an effective set of tools is available to
attackers, and with these tools, they can closely follow the algorithm’s precise flow,
analyze memory use, and access instructions during calculations. They can perform
any kind of operation like - changing cycle counters, conditional execution (down to

a single round of a cipher), conditional statements, program memory, the real-time
execution environment, and even fault induction.

However, the White Box DES implementation was first shown as insecure due to its
vulnerability in the DES Feistel structure which can be distinguished in a lookup ta-
ble representation. In the same manner, the AES implementation was broken using
an algebraic technique. After that many constructions were proposed but the secu-
rity of these implementations remains unclear. Moreover, their implementation is
not available in an open-source format because they use it for their security purpose.

The two main attacks that rule the field of White Box Cryptography are Plaintext
Recovery under Chosen Plaintext Attack (PR-CPA), which enables decryption using
an implementation of the cipher with an embedded encryption capability. Another
one is Key Recovery, which demands the extraction of an embedded symmetric
key. This effort is connected to the White Box cryptography project, a software
obfuscation-related effort where the technique uses unique security concepts, most
importantly cipher invertibility (PR-CPA), to go beyond obfuscation. White Box
Cryptography intends to implement cryptographic algorithms in software in a way
that protects cryptographic assets even when they are exposed to White Box attacks.
These software implementations which are known as White Box implementations ex-
hibit the strength needed in the modern computer environment to survive adversary
testing. As a whole, the main idea of White Box implementation was to embed the
fixed data and random data in a composition from which it’s hard to derive the
original key.

This thesis work started with a required thorough investigation of different modes
of the Black Box AES algorithm and the implementation and performance analy-
sis of the conversion of the Black Box cryptographic algorithm to the White Box
cryptographic algorithm. Moreover, this thesis investigates the use of the Advanced
Encryption Standard (AES) cipher in the context of both Black Box Cryptography
and White Box cryptography and we believe this area of White Box cryptography is
still in its early stages. Moreover, their implementation of White Box is not available
in an open-source format because they use it for security purposes. So by getting
acquainted with various white box implementations and how they are broken us-
ing cryptanalysis techniques, side-channel attacks, and other attacks the efficiency
of the White Box implementation can be proven to the fullest level. That is why,
our journey through this thesis includes a series of analyses of different modes of
Black Box encryption and an open source implementation of the Conversion of Black
Box cryptographic algorithm to White Box cryptographic algorithm including the
challenges it encounters, the transformation techniques it uses, and the constant
search for improved defense against adversarial attacks. The research of White Box
cryptography demonstrates the cryptographic community’s ambition to adapt and
strengthen the fundamentals of secure digital communication as attackers become
more persistent and digital trust boundaries continue to shift. This thesis empha-
sizes the significance of ongoing research in addressing evolving security challenges in
today’s interconnected world. It provides insightful observations, in-depth analysis,
and potential procedures for enhancing security in the modern computer environ-
ment|[3].

1 Problem Statement

Whitebox cryptography is designed to defend against key recovery for software that
implements cryptographic algorithms. An attacker can see all information and im-
plementation details in the context of this attack. Implementing a cryptographic
algorithm that will keep a software’s cryptographic assets secure even when subject
to white box attacks is the problem that Whitebox cryptography seeks to answer.
As a whole, implementing the white box implementation is the sole line of defense
in this sector. Moreover, the implementation of an open-source library is yet to be
found which will help to measure the performance consequences of the algorithms
which are discussed as solutions to the problem.

In addition, the algorithms that are there to convert from Black Box cryptography
to Whitebox cryptography have performance consequences as there are no open
source libraries to investigate the security and performance characteristics of the
algorithms. Furthermore, commercial products are so costly that the smallest and
medium software firms in Bangladesh cannot purchase them.

On the whole, implementing solutions and constantly investigating their security
and performance characteristics using different tools and side channel attacks can
eventually help to set up an open source verified Whitebox implementation.

2 Research Objectives

Throughout the research, we seek to protect the security key from being revealed.
The objective we aim to achieve is as follows:

1. Measuring the performances of alternative algorithms of converting from Black
Box cryptography to Whitebox cryptography.

2. Writing an open source Whitebox implementation for performance analysis.

3. Investigating the kind of attacks that can be launched against the solution in
our library and if possible trying to strengthen the solution.

Chapter 2

Literature Review

2.1 Fundamentals of Cryptography

Communication is done between the sender and the receiver but in between, there
is an eavesdropper too. Eavesdropper is harmful to the system so to overcome the
problem an approach is used named public key distribution [2]. Here in this ap-
proach though the eavesdropper can hear the message passed between the sender
and receiver but he is unable to decode the key so cannot understand the conver-
sation between the sender and receiver. There is another approach to overcome the
problem called public key cryptosystem [2]. This approach allows the creation of
separate keys that can be used for enciphering and deciphering. Enciphering and
deciphering are two important functions. If they are separated then there will be
privacy as if access is given to encipher a message, without any doubt it is possible
to decipher the message too so they both are to be protected using separate keys.
Some cryptographic techniques are discussed below-

In substitution, the key is a permuted alphabet so the plain text is every time re-
placed with its following permuted alphabet. This technique is generally known to
puzzle resolvers. Next, there is a transposition, here the message is broken down
into character groups and the letters of each group are organized based on per-
mutation, and then on the specific position number they are being written. Next,
there are polyalphabetic ciphers. To encipher messages, multiple substitution al-
phabets are used from period to period. Such as — (Alphabet * n + i) where n is
the number of periods, and i is the ith alphabet to be enciphered. Next, there is the
running key cipher which is aperiodic polyalphabetic Here the key is the message
and text that are taken from a book and then the plain text is replaced with the key.

In Cryptography, the most used application is the Galois field [12]. Here bytes are
constituted as vectors and with the help of arithmetic encryption and decryption
are done smoothly. But before data encryption is done, data is to be organized in a
matrix of bytes. There is an algorithm for AES that contains SubBytes, ShiftRows,
MixColumns, and AddRoundKey [12]. With the help of the algorithm, it is possible
to encrypt data, and by decrypting data the algorithm can be applied backward.
Data Encryption Standard (DES) was developed in the early 70s by IBM where a
56-bit key is used by DES and a supercomputer could break the key in just a day or
less. So, a polished algorithm was important. Hence, the Rijndael algorithm came
on lead and from, and since then it has Advanced Encryption Standard or AES [12].

In [5] it can be seen that in Rijndael, many operations are performed in bytes. An
array or a matrix containing 4 rows and 4 columns is created and in here each entry
is a byte or 8 bits such a way that they are a total of 16 bytes. The Rijndael cipher
consists of three rounds — initial RoundKey addition round, Nr -1 rounds, and lastly
final round. Implementation of Rijndael in 8-bit and 32-bit processors is discussed

in [5]. Limitations of inverse with its cipher are taken under consideration as the
cipher is barely suitable for use on the smart card itself. In software, both the cipher
and its inverse have their tables which are different from each other.

In modern security applications, secret key cryptography and public key cryptog-
raphy are the major cryptographic systems that are used. Secret key cryptography
is also known as symmetric key cryptography and it uses a single key for both
encryption and decryption. The key needs to be shared and kept secret in the
communication process. Examples of secret key cryptography are AES, DES, etc.
Public key cryptography is also known as asymmetric key cryptography and it uses
two mathematically related keys - a private key and a public key. Examples of public
key cryptography are RSA, ECC, etc. The public key can be openly shared and it
is used to encrypt messages. The private key is kept secret which is used to decrypt
messages. The choice of cryptography depends on the specific needs of the user as
both have their weaknesses and strengths. The main focus of our thesis is on secret
key cryptography, in particular AES.

2.2 Blackbox Cryptography Overview

The Blackbox restricts access to viewing the internal actions of software. As the
main purpose of an attacker is to extract the key for implementation, Blackbox ob-
fuscation is nearly impossible to decode. So the working behavior of the blackbox
goes from observing the inputs and outputs, checking the text of the input, and re-
stricting access to the entire execution process. Among the attacks of the Blackbox,
there are 3 progressive levels. They are discussed below - Passive attacks which
are nothing but plaintext attacks that are known and can view the inputs and the
output in the system. Next active attacks are the plaintext attacks that are chosen
and they can imply interaction. Lastly, adaptive attacks which are plaintext-cipher
text attacks that are dependent on the results of the previous interchange [4].

Blackbox attacks come in progressively more sophisticated forms in the realm of
cryptography. Advanced attacks take advantage of the knowledge of an algorithm’s
internal details while appearing to be ’black boxes’ at the time of execution. Users of
cryptography are vulnerable to a variety of risks and assaults that are undetectable
in a blackbox setting [6].

Blackbox attack models are way too idealistic for software applications on unreliable
hosts. Typical smartcard defenses are ineffective because of the WBC’s assumption
that the attacker has unrestricted access to the implementation. According to the
SETUP (Secretly Embedded Trapdoor with Universal Protection) mechanism an
attacker can steal the user’s secret covertly while guarding against outside attacks
and reverse engineering. Cryptosystems can be changed to leak key information
with a greatly reduced danger of being detected [6].

2.3 Whitebox Cryptography Overview

The primary concept of Whitebox cryptography is to integrate the random data
which is initiated at compilation time and the fixed key in the form of data but also
the form of code in a composition which will create difficulties in deducing the orig-
inal key [23]. In the Whitebox, the attacker can view the process as the algorithm
is known to the attacker and after viewing the internal actions of a system, can
control the text of the inputs. This also gives the attacker memory access. After
the application of Whitebox Cryptography, the key cannot be extracted as the key
is not kept in the memory.

Code obfuscation is related to Whitebox cryptography. Their common goal is to
protect software implementation. Even though they both use the same theoretical
framework, the security of the latter needs to be validated concerning security no-
tions. Additionally, Whitebox cryptography’s theoretical study demonstrated that
it serves as a link between symmetric and asymmetric encryption [23]. Although a
new type of public scheme can be formulated where a symmetric key is used effec-
tively by a block cipher to perform a private operation, the same symmetric key can
be used for public operation in white box implementation. In the case of implement-
ing Whitebox encryption of AES, WB-AES is converted to AES into a set of look-up
tables and hiding the secret keys within the table [1]. In contrast, the Whitebox
attack context considers threats that are much more serious. Firstly, it is predicted
that the fully privileged attack software shares access to algorithm implementation
on the same host as cryptographic software. Secondly, with the help of instantiated
cryptographic keys, dynamic execution can be observed. Lastly, internal algorithm
specifications are fully observable and freely editable [4]. Whitebox Cryptography
is found to be more suitable than Blackbox Cryptography as the algorithm is pro-
tected thus it makes the whitebox more secure and suitable and restricts threats.

Implementation in the Whitebox Cryptography -

WB-DES implementations: 1t was first proposed in the year 2002 but it was bro-
ken by a fault attack in the same year. In the year 2005, the implementation was
improved but it was also broken by differential cryptanalysis in the year 2007.

WB-AES implementations: The first approach was proposed in the year 2002 but
it was broken by the BGE attack in the year 2004. The latest attack in the year
2013 was able to extract keys from an improvement with 222 complexity.

Public Whitebox Cryptography implementations -

1. Wyseur WB-DES challenge - The very first publicly available whitebox challenge
was created by Brecht Wyseur in the year 2007 [11][16] The challenge was solved
independently in the year 2012 by James Muir and “SysK” using differential crypt-
analysis[13].

2. Hack.lu 2009 WB-AES challenge - The challenge was solved by Eloi Vanderbeken,
he reverted the functionality of the white box implementations from encryption to

decryption and it was also solved by “SysK”, he managed to extract the secret key
from the implementations[13] [22]

3. SSTIC 2012 WB-DES challenge - The challenge was also solved by five partici-
pants, it was an implementation that used no encodings[20].

4. Klinec WB-AES based on dual ciphers - The attack proposed recovers the key
automatically[1].

5. The NoSuchCon 2013 WB-AES challenge - The challenge was completed by a
number of participants but without recovering the key. It used external encodings
so it was not vulnerable to the proposed attack[16][24].

2.4 Attacks on Whitebox Cryptography

2.4.1 Cryptanalysis Attacks

In [8] it states about the BGE attack, an effective attack in the case of AES imple-
mentation. In the discussion, a detailed explanation is stated to remove the secret
key of AES with minor memory requirements and worse time complexity. The main
purpose of the attack is if the lookup tables are considered then there could be
the possibility of leaking sensitive information as through three consecutive encoded
round analyses the attacker can recover the 128-bit AES secret key easily. In [1] it
states that the improvement of the BGE attack, about how time-consuming it was
before and then the work factor of the BGE attack, is reduced to 222 after the imple-
mentation. In the BGE attack, the AES key can be extracted with the work factor
of 230, Later on, Tolhuizen’s improvement was done on the BGE attack and the
work factor of the BGE attack was reduced to 222 after implementation. Later on,
a new attack was introduced which was on the implementation of the initial Chow
et al [4]. This attack was on the output bytes on the first encoded AES round. Here
in this new attack, the work factor was also found to be 2?2. The karroumi’s white
box implementation consists of two phases namely dual AES cipher and techniques
of Chow et al and this implementation was done to repel the BGE attack. Later on,
the BGE attack of Chow et al and Karroumi was found similar. So, both attacks
on [14] could be used to extract the key from Karroumi’s Whitebox implementation.

2.4.2 Fault-Based Attacks and Protocols

In [3] it discusses the attack that creates the usage of hardware faults about how
using hardware faults, cryptographic/ encryption schemes can be broken. Attacks
have been made on the implementations of the Chinese remainder theorem (i.e. e
RSA and Rabin) as they are sensitive to the attack. Then it is found that using
hardware faults to attack the protocols could also be applicable to authentication
schemes such as Fiat — Shamir and Schnoor identification protocols. The two pro-
tocols could also be broken using hardware faults. Similarly, other identification
schemes are also applicable for such.

2.4.3 Differential Fault Analysis (DFA)

Based on algebraic properties of modular arithmetic, a type of attack was intro-
duced that only applies to public key cryptosystems (i.e. — RSA) but later on a
new attack was introduced named Differential Fault Analysis (DFA) [9] which can
apply to any kind of key cryptosystem. This attack can be useful for recovering any
cryptographic hidden secrets in the tamper-resistant device. Later on, it is found
that to identify the keys of unknown ciphers in the tamper-resistant devices, tech-
niques are processed. After that, a faulty model is taken under consideration which
has permanent hardware faults, and then it is shown how it can be used to break
DES. [7] JeanGreyis a set of tools that can perform differential fault analysis (DFA).
PhoenixAES is a tool to perform differential fault analysis attacks against AES.

2.4.4 Differential Computation Analysis (DCA)

Differential Computation Analysis is a software-based attack that is performed on
Whitebox Cryptography implementations[17]. It involves tracing a program’s ex-
ecution and recording the memory addresses during execution. It generally uses
tools like Pin and Valgrind. It identifies a cryptographic algorithm that is based on
visuals and records multiple traces with different inputs. For our implementation,
we have used Valgrind to perform our Whitebox cryptography implementations.

2.4.5 Side-Channel Attacks

A survey was conducted on side-channel attacks [11] [21] about how sensitive and
private the attacker can recover information and ways to overcome the problem.
Here in side channel cryptanalysis, the information is preserved in the form of a
physical implementation of a cryptosystem. This attack doesn’t attack with the
help of an algorithm but it attacks with the physical implementation. Among the
side-channel attacks, there are — Timing attacks, Power analysis attacks, Electro-
magnetic analysis attacks, fault induction attacks, Optical side-channel attacks, and
traffic analysis [23].

Differential Power Analysis :

DPA is a side-channel attack that is applied to hardware cryptosystems[17]. It
involves analyzing power consumption traces or hardware power traces statistically
during cryptographic operations. It targets to identify the key-dependent power
consumption patterns that will reveal secret keys. The main target of an attacker
for recovering the part of the key k is they compare the real power measurements
t; of the device with an estimated power consumption under all possible hypotheses
for key k.

Chapter 3

Implementation of Blackbox AES

In every implementation of cryptographic algorithms, Galois field algebra has intrin-
sic importance. The paper entitled “Galois Field in Cryptography” by Christoforus
Juan Benvenuto [12] gives a brief description of the operations of Galois field alge-
bra. Galois field is particularly useful in the case of computer data translation as
computers only understand binary data. Essentially, the Os and 1s that make up
computer data are stored in a two-element Galois field and after that, it is feasi-
ble to carry out mathematical operations that efficiently and effectively modify and
scramble the data by treating the data as vectors in this field.

3.1 Galois Field Algebra in Cryptography

Galois Field are essential because they allow data that has to be computed to be
represented as vectors within a finite field, simplifying and streamlining mathemat-
ical procedures. Along with the application of the Galois field in different crypto-
graphic algorithms, the paper [12] also presents a historical context of cryptographic
algorithms. At the very beginning, the historical perspectives included the Data En-
cryption Standard (DES), which employed a relatively small 56-bit key and was first
introduced by IBM in the 1970s. However, as technology developed, DES became
increasingly open to attacks, necessitating the development of stronger encryption
algorithms. In response, Vincent Rijmen and John Daemon created the Rijndael
algorithm in 2001. As a result of its improved security characteristics, AES later
gained widespread adoption. The usage of the Galois field in AES algorithm is given
here-

1. While doing addition in the AES algorithm, Galois addition which is basically
XOR operation is followed.

2. The Mix Columns stage in the AES encryption technique employs finite fields.
The Advanced Encryption Standard (AES) employs the Galois Field GF (2%), wherein
every byte of the state matrix is regarded as an element within this finite field. The
substitution and permutation operations of AES heavily rely on this particular ele-
ment.

3.2 Blackbox AES 128 Implementation (ECB)

In the paper, FIPS 197 AES-128 is specified extensively [19] It is a 10-round algo-
rithm that takes a 16-byte input and gives a 16-byte output using a 16-byte key. Sub
Bytes, Shift Rows, Mix Columns, and Add Round Key are smaller, sub-algorithms
that make up the Advanced Encryption Standard (AES) algorithm. Now a descrip-
tion of different sub-parts and the state of the algorithm is given below:

SubBuytes: This function uses a substitution table named “Rijndael S Box”.The
bytes of the state are replaced with the elements of the Shox. If a code snippet is
shown:

For i in range(0-9)
State[i]=S[State[i]]

For the decryption process, there is the “inverse S box” which returns the same state
that was substituted during the encryption process

ShiftRows: One of the simplest data scrambling operations is ”ShiftRows”. It
entails shifting each row by a specific number of units, as the name suggests. Row n
is specifically moved left by (n-1) units. Accordingly, the first row is left unchanged,
the second row is left shifted one unit, the third row is shifted two units to the left,
and finally the fourth row is shifted three units to the left.

No chan ge | co 0y | ©2 | ©03 00 | on | 02 | ©a3
\(’ ~~ L | ——
Shift 1 (1,0) (1,1\Z (1,2)\[3 a1 12 w3y | wo
¢ \4 —~ ShiftRows
Shift 2 o @b @2 @3 2,2) 2,3) (2,0) 2,1
(/ 1) 2] >
]
3,0 @3, 3,2) 3,3
(M @0 A 2 (33) 3,3 (3,0) (3,0 (3,2)

S

Figure 3.2.1: Shifting Rows process

MixColumns: This method concentrates on manipulating columns rather than
rows. Every column in the state is transformed linearly by the ”MixColumns”
method. Given that each column of the matrix or array has four rows, the matrix
that has been used here also has a dimension of 4x4.

A matriz of dimension 4x4:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

The implementation of Blackbox in ECB mode is shown in Figure 3.2.2.

10

ENCRYPTYION PROCESS

STATE
CIPHER KEY
’ AddRoundKey }. ------------------------------ ¥an) I:éﬂﬁ;
’ 1-SubBytes ’
[2-ShiftRows J
‘ 3-MixColumns ‘
ROUND KEY 0
{ 4-AddRoundKey } ¥an) 9
ROUNDS
s ~
SubBytes
y,
) |
ShiftRows
A 2 ROUND KEY 10
& T I
AddRoundKey e R e O R @ R!: (!)TJI:JLD
\ J

Figure 3.2.2: Implementation of Blackbox (ECB mode)

3.3 Modified Blackbox Implementations

During the above implementation, the AddRoundKey is done first in the initial phase
and then the function is called 10 times in the next round. As a whole, a total of
11 times “AddRoundKey” is done in the algorithm. However, the loop can be reor-
ganized to bring the AddRoundKey(state,k_0) into the 10 rounds and consequently,
the 9th and 10th rounds of AddRoundKey(state,k 9), AddRoundKey(state k_10)

11

will be done in the final round.

Moreover, SubBytes preceded by shift rows give the same result as the result of shift
rows preceded by subtypes

So the whole process looks like :

Algorithm 1 AES Encryption Algorithm

: for i from 0 to 9 do
AddRoundKey(state, key_i)
ShiftRows(state)
SubBytes(state)
MixColumn(state)

end for

10th round

AddRoundKey (state, key_9)

ShiftRows(state)

SubBytes(state)

: AddRoundKey (state, key_10)

_ =
— O

3.4 Extended Blackbox Implementation

Rearranging operations, the code snippet should look like this:

Algorithm 2 Rearranging Operations of AES Encryption Algorithm

: for i in range(10) do
ShiftRows(state)
AddRoundKey (state, shifted _key_i)
SubBytes(state)
MixColumn(state)

end for

10th round

ShiftRows(state)

AddRoundKey (state, shifted _key_9)

SubBytes(state)

: AddRoundKey(state, key_10)

— =
= O

AddRoundKey preceded by ShiftRows gives the same result as the result of ShiftRows
preceded by AddRoundKey since this is a linear transformation. In this case, the
shifting of the key is not done automatically rather it has to be done in the Ad-
dRoundKey step.

However, in this modification of Blackbox, only the last AddRounKey(state key_10)
does not need any shifting of keys.

3.5 Counter Mode Blackbox AES (CTR)

This mode of encryption is very parallelizable because each block of plaintext is
separately encrypted. As a consequence, the implementation of hardware and soft-

12

ware in an effective way is possible through this mode. Moreover, when compared
to other modes like CBC, CTR mode is more effective in terms of data expan-
sion because it does not require padding of the plaintext. Not only that, random
access to data is possible only through this mode. As a consequence, a specific por-
tion of the data can be decrypted through this process. The steps of CTR mode are:

Key and IV selection: A block cipher’s secret encryption key has to be selected
such as AES-128, or AES-256. Afterward, a nonce or an initialization vector (IV).
has to be chosen which should either be a nonce that is never repeated with the
same key or a random number for each encryption session.

Counter selection: For the next part a counter has to be selected and the
counter’s initial value has to be set which is typically 0. After that,1 is added
to the counter for each block of plaintext that is presented and the resulting value
is converted into binary.

Encryption: The selected key and block cipher have to be used to encrypt the
counter value. The result is a block of pseudorandom bits known as the” keystream.”

XOR of keystream and plaintext: XOR operation between the keystream which
was got in the previous step and the block of pain text has to be done and this xor

will give the ciphertext for the respective block.

Repeatation of steps: The step “Encryption” and “XOR” has to be done repeat-
edly until the full message is encrypted.

Concatenation of the ciphertexts: At last, all the ciphertexts have to be con-
catenated to make the final encrypted message.

13

KEY

The Blackbox algorithm irrespective of CTR mode or ECB mode is only concerned
about the input and output, and in this system key is totally exposed. If an attacker
knows about the key, he can easily apply reverse engineering to find out the actual
plaintext. So, the concern is to protect the key and make the algorithm more secure.
As a consequence, a new approach of encryption came where the key was embedded
in the algorithm and this approach gave inspiration to the implementation of an
algorithm that will transform Blackbox cryptographic algorithm to the Whitebox

COUNTER

ENCRYPT

XOR

Plain Text Block 1

Cipher Text Block 1

Figure 3.5.3: Blackbox with CTR operation

cryptographic algorithm.

KEY

COUNTER + 1

ENCRYPT

XOR -

Plain Text Block 2

v

Cipher Text Block 2

14

COUNTER +N

ENCRYPT

XOR -

Plain Text Block N

Cipher Text Block N

Chapter 4

Implementation of Whitebox AES

4.1 Table-Based Whitebox Implementation

At the outset, encryption adheres to the blackbox model where the attacker can only
observe the input and the output. However, it has been observed that the key is
compromised in this model. The attacker can guess the key with a time complexity
of 239 [15]. To address this vulnerability, the Blackbox model is transferred into a
white box model so that the encryption model can fit even if the attacker can see
the initial steps. This consideration is because if the attacker can monitor the initial
steps it becomes easier to guess the key. Therefore, the key must be kept hidden to
make computation harder for the attacker.

4.1.1 T-box Generation Process

Whitebox cryptography employs various techniques to protect the encryption key,
making it resistant to various attacks, even when an attacker has complete knowledge
of the encryption algorithm and operations. The main goal is to conceal the direct
operations through the use of various lookup tables while keeping the main function
as it is.

In the final modification of the blackbox model,

Algorithm 3 Final Modification of Blackbox Model
: for ¢ in range(0-9) do
ShiftRows(state)
AddRoundKey (state, shifted key_i)
SubBytes(state)
MixColumn(state)
end for
10th round:
ShiftRows(state)
AddRoundKey (state, shifted _key_9)
SubBytes(state)
: AddRoundKey(state, key_10)

— =
= O

For every round AddRoundKey and SubBytes can be replaced with the help of 16
look-up tables which are called T-boxes. Moreover, the lookup table consists of
every possible combination of AddRoundKey and SubBytes. There needs to be two
separate lookup tables, one for rounds 1 to 9 and the other for the last round.

4.1.2 T-box Generation for Rounds 1-9

17 (x) = S(z @ b, V[i])

7

15

A 3D array is declared, where the size of the array is ‘Tboxtable [9] [16] [256]°. There
need to be 3 nested loops. The first loop runs for 9 iterations. For every 9 rounds,
the key is fixed after being generated from the KeyExpansion method. Moreover,
the second loop runs for 16 rounds, representing the 16 hexadecimal bytes of the
key. As 1 hex byte represents 8 bits of binary numbers, there are a total of 256
combinations iterating at the third loop.

In the second loop, it iterates and takes one hex byte, passing it as a parameter to
the third loop, which calculates every possible combination to add it to the hex key
and substitutes the addition value using a substitution array. Thus a lookup table

works for the AddRoundKey and Subbytes.

Note that in every iteration the key of 16 hex byte is shifted one bit.

4.1.3 T-box Generation for Final Round

In the final round, addround key operation is executed two times making the final
round an exception from other rounds.

Tio(z) = S(z & by [i]) @ kuoli]

It works the same as before, running three nested loops with the additional step of
XOR-ing the unshifted last sequence of keys.

4.1.4 Ty Table Generation

In the mentioned sequence, MixColumns is followed by AddRoundKey and Sub-
Bytes. Instead of direct operations, MixColumns computations are executed using
tables, which confuses the attackers when trying to guess the similarity between the
inputs and outputs.

For each round, the present state of 16 hexadecimal bytes is divided into Ty, T}, T5,
and T3, interpreted as a column vector. Lets the present state be,

So S1 Sz 53
Ss S5 S¢Sy
Ss S9 S Sn
Si2 S13 Si14 Sis

So | Sa [Ss [Sia] S [S5 | S9 | Siz| Sa [Ss [S| Sia| S5 [S7 | Sul Sis
1o Ty T, 15

After that, the T Tables are formed by multiplying the Ty, 17, T, and T3 with the
respective columns of the MC matrix.

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

16

T, 02 03 01 01
| .. |ot 02 02 01
ol = o {01 ® T {01 ® T2 {02 @ T3 |03
T, 03 01 01 02

This equation can be broken down into four terms of XOR relation between them.
Furthermore, Ty, T, T, T3 are the parameters to search in the lookup table for
their 256 combinations. The modified equations are:

Ty, (s)=T,.[03 02 01 01]7
Tys(s)=Ts.[01 03 02 01]7
Tys(s)=T5.[01 01 03 02|7

Finally, this all four equations ended up to creating 144 tables coming 4 copies from
9 rounds. The final equation is as follows:

Tyo(To)® Ty:(T1)&Tya(12)BTys(T3)

4.1.5 XOR Table Construction

The XOR lookup table serves the purpose to find every possible xor combination of
two 8-bit binary numbers. It takes two 8 bit binary numbers as input and gives a
8 bit binary number of their xor results. Furthermore, when implementing this xor
lookup table in code there will be simply two nested loops running 256 times. (256
possible combinations for a 8-bit binary number.

XOR Table[i][j] = (BinaryNumberl ¢ BinaryNumber2);

4.1.6 Function Conversion Process

17

The traditional sequence of AES in Blackbox model -

Algorithm 4 AES Encryption Algorithm

1: for ¢ in range(0-9) do

2 AddRoundKey (state, key_i)
3 ShiftRows

4 SubBytes

5: MixColumn

6: end for

7: 10th round:

8: AddRoundKey(state, shifted key_9)
9: ShiftRows

10: SubBytes

11: AddRoundKey(state, key_10)

To combine the operations and integrate them into lookup tables the sequences
needed to be changed so that the output remains unchanged. This can be achieved
by reordering the linear operations since the permutation of these operations does
not alter the output. The final sequence for transforming it into a whitebox model
is as follows:

Algorithm 5 Modified AES Encryption Algorithm for Whitebox Model
1: for i in range(0-9) do

2 ShiftRows

3 AddRoundKey (state, shifted_key_i)
4 SubBytes

5: MixColumn
6
7
8
9

: end for

: 10th round:

: ShiftRows

: AddRoundKey (state, shifted _key_9)
10: SubBytes
11: AddRoundKey(state, key_10)

Working with this sequence, the ShiftRows operation remains in its position. On the
other hand, the AddRoundKey and SubBytes operations combine to obtain output
from Thox lookup tables. Furthermore, the MixColumns operation is replaced by
Ty lookup tables. Lastly, these two combine to create a function called T-Box-Ty
Tables. XOR is followed by TBox Ty Tables.

18

Algorithm 6 Whitebox Transformation Algorithm

1
2
3
4
5:
6
7
8
9

ShiftRows

XORTables
end for
: 10th round:
: ShiftRows
. TBoxes
: Ciphertext

: for i in range(0-9) do

TBoxesTyTables

Blackbox Model

AddRoundKey

Converting to Whitebox Cryptography

Whitebox Model

TBox

SubBytes

TBoxTyTables

TyTable

MixColoumns

Figure 4.1.1: Converting Blackbox to Whitebox Implementation

19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 8 8 8
To' T TS! IES
TJ_C T'l'_1 Tl_- T'J'_-

32 1 32] 32 32 J

32 32

8 XORs \

S\ S\
/

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Figure 4.1.2: Data flow of Whitebox implementation

From the implementation illustrated in Figure 4.1.2, the exposure of the key was
reduced and the code was obfuscated to a certain extent. Now if an attacker wants to
extract the key, he has to go through a long range of permutations and combinations
from the lookup tables. Apart from the lookups, another security dilemma arrived
where the knowledge about the entries of the composed Thox Ty tables made way
to certain side-channel attacks and reverse engineering processes which gave birth
to extra security layer implementation known as implementation with encoding

4.2 Secured Whitebox Implementation

If a TBox or Ty Table entry is known to an attacker, they can easily apply reverse
engineering to acquire the key. Something must be done to protect the composed
TBox Ty Tables so that applying reverse engineering or any other tracing does not
extract the key. That is why, Chow et al proposed a technique that involves applying
encodings to the implementation. [10] The encoding is applied in the two following
ways -

1. Internal Encoding

2. External Encoding

o 1 2 3 4 5 =3 7 8 9 10 11 12 13 14 15

L L2 L2 [
T2, T2, T2, T2
T,0 Ty T2 T
mMB mMB mMB mMB

o 1 2 3 4 5 (=3 7 8 9 10 11 12 13 14 15

Figure 4.2.3: Workflow of Whitebox AES implementation with added layer of en-
coding in Chapter

4.2.1 Internal Encoding Mechanism

The whole process of internal encoding is applied to the composed TBox Ty Tables.
The bytes of round keys are incorporated into the composed TBox Ty Tables. These
lookup tables can be considered miniature block ciphers. An internal encoding is
applying bijection to these block ciphers.

The bijection is simply a function that has one-to-one and onto property. It can be

said that bijections are invertible, they are cardinal and preserve order. Let, MB
is a bijection function that will be applied to the composed TBox Ty Tables. The

21

whole process of internal encoding is done in the following two ways-

1. From rounds 1 to 9 this MB will be applied to the output of the tables. As a
result, in every round, the output will be different than the previous table-based
implementation to ensure obfuscation.

2. Now, let L2, L% L2 L2 be the 8 bit to 8-bit bijection functions applied in round
2. From round 2 to round 10, the inverse of these four functions will be applied to
the input of the tables so that in every round the actual state that has to be XORed
with the key goes into action for lookup.

The action can be represented as the following in round 1:

Before applying encoding;:

Ty, o TO1
T, o T}
Ty, o T,
Ty, o T31

After applying encoding:

MB oT,, o Ty
MB oT,, o T}
MB oT,, o Ty
MB oT,, o T}

In Round 2 the action can be presented in the following way:

Before applying encoding;:

Ty 0 To2
Ty, o Tf
T,, o T22
Ty, o Tf

After applying encoding:

MB oT,, o T2 o Lz
MB oT, o T? o LT
MB oT,, o T22 o L%fl
MB oT,, oT?o L3

Also in round 10, there is only input bijection.

The flow of round 9 and 10 is -

22

MB oT,, 0Ty o Ly
MB oT,, oTY o LI~
MB oT,, o T9 o Ly
MB oT,, oT9 o L3

Round 10 after applying encoding;:

10 101
Ty, © TO10 o L(l)o 1
Lol o L%o 1

10 -
Ty, o T210 o L%O X
Ty, 013" 0 Lg

4.2.2 External Encoding Mechanism

The concept of extracting the cipher key to break the security of block cipher be-
came less vulnerable when there came software that could decrypt the ciphertext.
As a consequence, there came an answer from Chow et al made implementations
that would map encoded ciphertext to encoded plaintext instead of raw ciphertext
and plaintext. As a whole, the implementations that affect the input and output
encoding of the ciphertext are referred to as external encodings.

Here, the concept and the implementation are the same as internal encoding. The
only difference is that in internal encodings the encoding scheme is applied to the
block ciphers on the other hand, in external encoding the scheme is applied to the
ciphertexts. The process of external encoding in roundl is given below:

Here

RT = Raw text and
CT = Cipher text.

Before applying encoding;:

RT — CT;

After applying encoding:

RT — CT;
CTy — CTy (Encoded)

In round 2 the action can be presented in a similar way:

Before applying encoding;:

CcTy — CT;

After applying encoding:

23

CTi(Encoded) — CTy
CT, — CT,
CTy, — CTy(Encoded)

Finally, during round 10 the process is similar to internal encoding.
Before applying encoding:

CTy — CTo

After applying encoding:

CTy(Encoded) — CTy
CTy — CTyg

When the composed lookup tables are protected with encoding, there are too many
constructions for an attacker. By the list of table constructions, an attacker may
apply reverse engineering to study the list of table constructions. As the entries
of the tables are manipulated, it will not be possible to apply these techniques to
deduce the key byte.

4.3 Counter Mode Whitebox AES (CTR)

The main adverse effect of whitebox implementation is that generally, it requires
a lot of table lookups, and also after the secured implementation of internal and
external encoding, the runtime complexity of code increases to a significant extent.
As a whole, software obfuscation techniques aimed at protecting the security of the
implementation make the encryption process much slower. As a consequence, the
concept of counter mode implies that the whitebox algorithm is used to encrypt
only part of the message and the rest of the message is encrypted using any classical
algorithm. Moreover, almost all data protecting mechanisms such as SSL, TLS, and
SSH are based on a shared secret which is known as a session key. Designers who are
after the solution management of software want to apply this session key in whitebox
encryption. However, the direct usage of this key is not possible in the whitebox
scheme as whitebox is slow and is separated from an environment that is running.
Hence, the main objective is to apply the session key directly in the components of
the scheme except for the implementation of the whitebox algorithm. Therefore, in
the counter mode, the nonce will be encrypted by a whitebox algorithm, and use
the nonce as a replacement for the one-time key.

The implementation is done by using two separate keys - one for the whitebox prim-
itive and the other for the encryption algorithm. Here the whitebox encryption
algorithm is used for the encryption of nonce and the encryption algorithm is used
for the encryption of the plaintext. Again the keys £y and ko used in this algorithm
are fixed but the nonce is changeable in every encryption session. [18§]

Again, the scheme limits limited encryption of messages of length at most 254 blocks
in a single session. For any practical purpose, this amount is sufficient. Moreover,

24

unlike other nonce based algorithms, the reuse of nonce is not allowed. As far as
security is concerned, data complexity of 264 and time complexity of 25°.As a result,
if anyone wants to extract the key or recover part of the plain text, would require
either 254 messages or 2% memory. [18]

Workflow of counter mode whitebox implementation:

ENCODING
CTR » CTR CTR+1 CTR+N
WBC(K,) : AES(K;) AES(K;) AES(K;)
INPUT 1 INPUT 2 INPUTN
—— —O —O
Qutput 0 l l l

Qutput 1 Qutput 2 Qutput N

..

Figure 4.3.4: CTR-WBC: A hybrid Whitebox scheme with CTR operation in Chap-
ter

4.4 Summary

Once all the lookup tables were implemented, the meomory usage can be figured
out. This involves looking at how well the tables fit in and how they affect the
overall memory.

Array Dimensions | Size of Each Element (bytes) Total Size (bytes)
xorTable 256 x 256 1 256 x 256 x 1
Thox_round 9 x 16 x 256 1 9 x 16 x 256 x 1
Ty_Table 4 x 256 x 4 1 4 %256 x4x1
Tbox_final 1 x 16 x 256 1 1 x 16 x 256 x 1
Total Memory Size - - Sum of the above sizes

Total Memory Size = 65536 + 36864 + 4096 + 4096 = 110592 bytes

110592 bytes

Total Memory Size (MB) = e

~ 0.105 MB

25

Chapter 5

Security and Performance Analysis

5.1 Performance Analysis of Blackbox and White-
box Implementations

During the implementation, a runtime analysis was done of the ECB mode, CTR
mode, and also the runtime of Whitebox implementation. CTR mode allows for
parallel encryption and decryption of blocks, as each block is independently XOR
with the output of the counter mode encryption. On the other hand, ECB mode of
encryption uses a uniform key to individually encrypt each block. As a consequence,
in some cases, CTR mode is faster than ECB mode. In addition, the CTR mode is
highly suitable for facilitating random access to encryption. But in the case of ECB
mode random access of data is not possible. Moreover, ECB mode adds padding to
data if the data is not an exact multiple of the block size. In the case of CTR mode
padding is not done.

Now as far as the scenario of Whitebox Implementation is concerned, the conversion
algorithm needs, 160 Thoxes, 144 Ty tables, and 864 XOR tables which increases
the space complexity and also the memory complexity. As a whole, the computation
of the lookup tables increases the runtime to an extent. That is why, the runtime
of Whitebox implementation is a bit higher than the Blackbox implementation.

5.2 Security Analysis
Security analysis will have a series of observations.

The data flow of the security analysis -

Symbol Table Generation
l

Behaviour Integration

{
Symbol Table Stripping

{
Again Behaviour Integration of the graph

!

Behaviour Randomization of the graph

26

Symbol Table Generation: A symbol table is a data structure to store informa-
tion about variables, functions, and other essentials of a code. It aids in managing
and organizing the identifiers and variables and thus is a crucial part of a program.
As a whole, the purpose of the symbol table is to ensure the variable and function
management and the scope management. The information stored in the symbol
table is identifier name, data type, memory location, scope information, additional
attributes, etc. Moreover, the symbol table also helps in lifetime management by
integrating the concept of local variables and global variables, symbol resolution
during the compilation process, and error detection by detecting undeclared vari-
ables.

For the generation of a symbol table, a command-line utility in Linux is used which
is known as the ‘nm’ tool. Here, the ‘nm’ refers to the ‘name list."This standard
Unix command is used mainly for examining the behaviors of the symbol table of
binary executable files. Moreover, this tool can help in symbol exploration, debug-
ging information, and library analysis.

A visualization of the symbol table which was generated for the implementation of
AES-128 whitebox implementation is shown in Figure 5.2.2.

000000000000038C
0000000000006948
0000000000006cdO

0000000000006000
0000000000006000
0000000000001310
0000000000001380
0000000000005cf0
0000000000006008
0000000000006940
0000000000005cf8
0000000000006948
0000000000006d08
0000000000006cd8
000000000000365¢C
00000000000013cO
0000000000005ce®
0000000000004a4C
0000000000005708
0000000000003385

00000000000042c8
0000000000001000
0000000000006440
0000000000004000
0000000000006020
0000000000002ccO

0000000000006640

__abi_tag

__bss_start

completed.o
__cxa_atexit@GLIBC_2.2.5
__cxa_finalize@GLIBC_2.2.5
__data_start

data_start
deregister_tm_clones
__do_global_dtors_aux
__do_global_dtors_aux_fini_array_entry
__dso_handle
DW.ref.__gxx_personality_ve
_DYNAMIC

_edata

_end

expandedKey

_fini

frame_dummy
__frame_dummy_1init_array_entry
__FRAME_END__
_GLOBAL_OFFSET_TABLE_
_GLOBAL__sub_I_key
__gmon_start__
__GNU_EH_FRAME_HDR
__gxx_personality_ vO@CXXABI_1.3
_init

inv_s

_I0_stdin_used
_ITM_deregisterTMCloneTable
_ITM_registerTMCloneTable
key
__libc_start_main@GLIBC_2.34
main

malloc@GLIBC_2.2.5

mulill

0000000000006240
0000000000006540
0000000000006340
0000000000001340
0000000000006040

00000000000012€0

0000000000006Cf8
0000000000006Cce0
0000000000006948
0000000000006 O

0000000000006ce8
0000000000002999
000000000000290F
000000000000205¢
00000000000014d5
0000000000001eb8
0000000000001149
000000000000224d
0000000000001720
0000000000002010
00000000000013c9
0000000000002983
0000000000001 fd5
0000000000001ed3
0000000000001cc3
0000000000001eee
00000000000032c7
0000000000002850
000000000000198b
000000000000160F
000000000000213¢C
00000000000027C5
00000000000017c2

0000000000004008

mul3
mul9

rcon
register_tm_clones

__stack_chk_fail@GLIBC_2.4

start

Strlen@GLIBC_2.2.5

Tbox_final
Tbox_round
TMC_END__

?;_Table

Unwind_Resume@GCC_3.0

xorTable

Z10AESEncryptPhS_S_
Z10FinalRoundPhPPS_
Z10printStatePh
Z12KeyExpansionPh
Z14gf2_8_additionhh
Z14gf2_8_divisionhh
Z15TBoxestyiTablesPhPPS_1S1_S0_
Z16generateXorTablev
Z16inverse_functionh
Z16KeyExpansionCorePhh
Z17bijectiveFunctionh
Z17evaluate_functionh
Z17gf2_8_subtractionhh
Z18TboxFinalGeneratorPh
z20gf2_8_multiplicationhh
Z41__static_initialization_and_destructio
Z5RoundPhS_PPS_1S1_S0_
Z7Tytablev

Z9ShiftKeysPh
Z9shiftRowsPh
Z9TboxFinalPhPPS_
Z9TboxRoundPh
ZdaPv@GLIBCXX_3.4
ZL7MODULUS

_Znam@GLIBCXX_3.4

0000000000003540 W _ZNKSt12 Base bitsetILm1EE14 M_do_to_ulongEv

00000000000035e8 _ZNKSt6bitsetILm8EE8to_ulongEv
_ZNSi7getlineEPcl@GLIBCXX 3.4
ZNSolSE1@GLIBCXX 3.4
_ZNSolSEPFRS0S_E@GLIBCXX 3.4
_ZNSolsEPFRSt81ios_baseS®_E@GLIBCXX_3.4

0000000000003514 W _ZNSt12_Base bitsetILm1EE9 M_do_XxorERKSO_

00000000000034f6 W _ZNSt12_Base_bitsetILm1EEC1Ey

00000000000034f6 _ZNSt12_Base_bitsetILm1EEC2Ey

0000000000003619 W _ZNSt13_Sanitize valILm8ELb1EE18_S_do_sanitize_valEy
_ZNSt14basic_ofstreamIcStiichar_traitsIcEE4openEPKcSt13_Ios_Openmode@GLIBCXX_3.4
_ZNSt14basic_ofstreamIcStilichar_traitsIcEEScloseEV@GLIBCXX 3.4
_ZNSt14basic_ofstreamIcStiichar_traitsIcEE7is_openEv@GLIBCXX_ 3.4
_ZNSt14basic_ofstreamIcStiichar_traitsIcEECIEV@GLIBCXX_ 3.4
_ZNSt14basic_ofstreamIcStiichar_traitsIcEED1EV@GLIBCXX_ 3.4

0000000000003556 _ZNSt6bitsetILm8EEC1EY

0000000000003556 W _ZNSt6bitsetILm8EEC2Ey

000000000000362e W _ZNSt6bitsetILm8EEEOERKSO
_ZNSt8ios_base4InitC1EVQGLIBCXX_3.4
_ZNSt8ios_base4InitD1EV@GLIBCXX_ 3.4

0000000000003454 W _ZNSt8ios_base4setfESt13_Ios_FmtflagsSO_

0000000000006aa0 _ZSt3cin@GLIBCXX_3.4

00000000000034ba W _ZSt3hexRSt8ios_base

0000000000006bc® B _ZSt4cerr@GLIBCXX_ 3.4

0000000000006980 B _ZSt4cout@GLIBCXX_3.4
_ZSt4endlIcStilichar_traitsIcEERSt13basic_ostreamIT_TO_ES6_@GLIBCXX_3.4

00000000000034e6 W _ZSt4setwi

0000000000003606 W _ZSt7setfillIcESt8_SetfillIT_ES1_

000000000000340d W _ZStaNRSt13 Ios FmtflagsS_

000000000000339e W _ZStanSt13_Ios_FmtflagsS_

00000000000033ca W _ZStcoSt13_Ios_Fmtflags

000000000000358d W _ZSteoILmBEESt6bitsetIXT EERKS1_S3_

0000000000006d00 _ZstL8__ioinit
_ZStlsIcStilichar_traitsIcEERSt13basic_ostreamIT_TO_ES6_St5_Setw@GLIBCXX_ 3.4
_ZStlsIcStiichar_traitsIcEERSt13basic_ostreamIT_TO_ES6_St8_ SetfillIS3_E@GLIBCXX_3.4
_ZStlsIStlichar_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@GLIBCXX_3.4
_ZStlsIStiichar_traitsIcEERSt13basic_ostreamIcT_ES5_PKh@GLIBCXX_3.4

Figure 5.2.1: Visualization of the symbol table in Chapter
Where

U = Undefined symbols.

T or t = Text symbols.

D or d = Data symbols.

B or b = BSS section.

W or w = Weak symbols.
A or a = Absolute symbols.
C or ¢ = Common symbols.

Behavior integration of the programme using Tracegraph: The binary
executable of an implementation of a cryptographic algorithm helps in assess the
security of the implementation. By executing the binary on a CPU of the corre-
sponding architecture and observing its power consumption, a differential power
analysis (DPA) can be done. But in this analysis, there is a matter of noise as the
implementation is observed with a hardware architecture. However, in the whitebox
attack model, one can do the analysis without any measurement noise. For such
a level of observation, one can instrument the binary or instrument an emulator
being in charge of the binary. While integrating the behavior of our program the
first option was followed in the paper and while doing so some of the available dy-
namic binary instrumentation (DBI) frameworks were used. If the mechanism of
DBI is considered, it uses the binary executable to analyze the bytecode of a virtual
machine using a technique known as just-in-time compilation. This recompilation
allows a transformation to be applied to the code while keeping the original com-

28

putational effect the same. Some of the DBI frameworks such as pin and Valgrind
allow adding callbacks in between the instructions of machine code by writing plu-
gins or tools that integrate the process of recompilation. As a result, these specific
callbacks help generate the traces and monitor the execution of the program. Here,
Valgrind differs from Pin in the sense that Valgrind uses an architecture independent
Intermediate Representation(IR) called ‘Vex’ which allows to write tools compatible
with architectures that are supported by IR.

The way to extract software traces: A single trace of the whitebox binary with
an arbitrary plaintext and a record of all accessed addresses and data is extracted.
Here, the scope of the main executable is reduced to a library where cryptographic
operations are happening. After that, a common computer security technique known
as Address Space Layout Randomization(ASLR) is used which which arranges the
address space position of the executables randomly, its data, heap, stack, and other
elements such as libraries. After that, the trace is visualized to understand which
block cipher is being used. This identification is done by understanding the repet-
itive patterns. For instance, if there are 10 patterns then the block cipher is for
AES-128, 16 Round DES, 14 round AES-256, etc. Here, for visualization purposes,
the trace was given a graphical representation. In the graph in Figure 10, the x-axis
denotes the virtual address space such as stack address, heap, data segment, unini-
tialized data segment, etc. Also, the y-axis is nothing but a temporal axis here. In
Figure 10, there are some significant colors. At the very beginning, black represents
the instructions that are being executed. After that, green represents the memory
location address that is being read. Finally, red represents the memory address lo-
cations that are being written. Once the algorithm is recognized, the trace is limited
to a scope because usually in a large file the other portions might do some other
type of instructions which may not be useful. Usually, the first or last round of the
programme is considered to mount an attack on the input and output of the cipher.
After the software traces of actual data or addresses from input or output are ob-
tained, the bytes are serialized into vectors of 1s and 0s to observe them using DPA.
However, the software setting used to integrate the programme is being worked with
no measurement noise. Finally, using regular DPA tools the key is extracted.

Figure 5.2.2 shows a full software trace of AES-128 whitebox implementation. As
stated above, the black, red, and green lines have their significance. On the very
left, the loaded instructions are shown. As black lines have a density at the very
beginning of the graph, it indicates some loops are used to execute a sequence of
instructions repeatedly. However, if the graph is zoomed to an extent, ten repetitive
patterns can be observed which indicates the programme is for (highly possible)
AES-128 implementation. Moreover, from the graph, another observation can be
made that, since the last round is shorter it omitted some instructions during the
execution of the programme, and it is also similar to AES-128 implementation in
the sense that MixColumn is omitted in the last round of the implementation.

As the whole programme is executing some loop of instructions, keeping the tracer
limited to some specific memory range was not possible. However, after taking the
full execution trace using DCA, bytes written to the stack(green lines) were taken
and computed using DPA. As the programme was internally and externally encoded,

29

R

& bae AU I R Behahadi i SR 14
L B ". = L (L
€« ' W (. e
e ¢ m @ L (N L
an " @ [(R L]
CIORIRRC B L cem
. LI L] (R
, «r 1 e (e tem
| J— 4 6 1 m ‘.
2 20008 e0 B RSMBSTRRIN ¥t 8 SR e R A
Address: OXFFFFFFFFFFFFFFFF Time: 0 Address: | 0x0000000000108000 Time: 0

Figure 5.2.2: Graphical representation of AES whitebox implementation (ECB
mode)

the intermediate states were not possible to observe directly. As a whole, the key
extraction was not possible using DCA but the encryption algorithm was exposed.
The whole process of tracing took less than an hour with some software and config-
uration management.

Symbol table stripping: The process where the symbol table information such
as variables, functions, and other symbols used in a programme is removed or mini-
mized from the final executable is known as symbol table stripping. Initially, this is
one of the protective measures because after the symbol table is stripped the reverse
engineering process becomes more difficult.

Reasons behind this difficulty are: The symbol table of a programme gener-
ally contains useful information such as functions’ and variables’ names which help
reverse engineers to deeply understand the programme’s logic. When this stripping
is done, it becomes difficult for the attackers to extract information from the code.
Moreover, Symbol table stripping is a part of code obfuscation. Without meaning-
ful names, the attackers must rely on the usage of decompiled code which has no
identifiers. Furthermore, debugging tools become ineffective after the stripping of
symbol tables because debuggers use the information from symbol tables to convert
machine code to high-level programming language.

For the process of symbol table stripping, a Linux-based tool known as ‘strip’ is
used. The ‘strip’ command itself is a part of the GNU Binutils Package. After the

30

usage of certain commands using the tool, the symbol table of the program will be
deleted. As a whole, after the deletion of the symbol table, if another Linux-based
tool ‘nm’ is run on the program, the following message will show:

nm: encrypt.exe: no symbols

Again behavior Integration of the graph: After the symbol table stripping,
again the Tracegraph of the programme is generated. After the generation of the
tracegraph, again the trace data investigation and behavior integration of the code
is done. Consequently, the symbol table stripping made the reverse engineering of
the code a bit difficult but the exposure of the programme remains like the previous
one. Differential Computational analysis mainly focuses on the execution patterns of
the programme rather than examining their debugging information or source code.
As a result, symbol table stripping did not affect the observation that was obtained
during the first analysis.

Behaviour Randomization of the graph(Implementation protected from
DCA): Debugging tools can generate a memory allocation that provides a primary
idea about the algorithm executing. To confuse the pattern, a random number of
rounds can be executed in AES. For example, a random number of rounds, ranging
from 11 to 20, can be selected for an AES algorithm implementation. Assuming the
maximum number of rounds is set to 20, if the randomly generated number is 'r’,
the total number of rounds becomes 'r’, with ’Garbage rounds’ defined as 'r-10".

The most important thing to be kept in mind is that the goal is to confuse the
memory allocation graph without changing the output cipher. To achieve this, the
number of active rounds will remain unchanged from the original configuration. Ad-
ditionally, it will store the latest state in a temporary array and restore the state
just before the final round. As a result, the ultimate cipher remains unaffected by
the additional garbage rounds.

Algorithm 7 Implement

if round is equal to 9 then

for i from 0 to a random round do
temp|i] = stateli]

end for

end if

. for ¢ from 0 to a random round do
state[i] = templi]

end for

After the extra randomization was added, again the behaviour of the programme
was observed. The graph once showed 15 repetitive patterns and in another graph,
it showed 13 rounds. As a whole, the programme achieved a certain bit of ran-
domization. Consequently, an attacker who wants to apply different side-channel
attacks or reverse engineering processes, or any other hacks will not have the clue to

31

follow the trace of which algorithm, and altogether the algorithm of whitebox imple-
mentation will achieve a certain security perspective. Figure 5.2.3 shows the graph
after randomizing 15 rounds and Figure 5.2.4 shows the graph after randomizing 13
rounds.

-

t33ssssssasasasd
”
e e e e
sssssssssssssssa
7

Address: 0x0000000000108000 Time: 11359431 Address: 0x0000000000108000 | Time: |0

Figure 5.2.3: 15 rounds implementation

32

e LIRS R L

T
L R R)

Figure 5.2.4: 13 rounds implementation

A comparison of our implementation with the open source implementation of Choe
et al in terms of different protective measures is given in the table below

33

Possible attacks

Choe et al. Imple-
mentation

Our Implementation

Reverse Engineering

The attacker has full
access to the imple-
mentation system of
that implementation.
As a result, he/she
can easily analyze the
code, understand the
binaries of the exe-
cutable, and alter it.
Moreover, the key ex-
traction becomes pos-
sible with the help of
the reverse engineer-
ing process.

As the symbol table of the
executable is stripped, it
is not possible to generate
the symbol table and under-
stand the internal architec-
ture. That is why reverse
engineering is not possible.

Code Lifting Protec-
tion

Code lifting protec-
tion, also known as
code obfuscation, is
described theoreti-
cally in the Choe et
al. implementation.
But the practical ex-
ecution is not present
in that.

The implementation has
gone through three steps of
code lifting protection. At
first, the whole implementa-
tion was internally encoded.
After that, the ciphertexts
were externally encoded.
Finally, randomization was
added to the implementa-
tion to fortify the exposure
of the algorithm.

Side Channel Attacks

The design of Choe
et al’s implementation
was limited to the em-
bedding of the key
in the lookup tables.
They were not pro-
tected by encoding.
With the help of diffu-
sion, the key could be
extracted with a 2%
time complexity [dca

paper].

Side channel attack depends
on various factors such as
the design of the imple-
mentation, the algorithm
used for encryption, and the
countermeasures applied to
mitigate the vulnerabilities.
In our implementation, the
design is made consider-
ing the code obfuscation
scenario, keeping in mind.
Moreover, after adding ran-
domization, the implemen-
tation surpassed Differen-
tial Computational Analy-
sis. In the future, the vul-
nerability of the implemen-
tation will be checked with
Differential Fault Analysis.

34

Comparison of previously Whitebox AES variants

Implementation Size Best Attack
Chow et al 773 KB 222
Karroumi 752 KB 2%2
Xiao - Lai 20 KB 232

5.3 Performance Analysis of Different Implemen-
tation Modes

The security of the Whitebox implementation was increased after adding random-
ization. However, the extra round or randomization will have an impact on the
performance of the algorithm. As a consequence, the whole implementation was
once again done in counter mode. After that, the implementation of both the ECB
mode and CTR mode was analyzed. It was seen that Blackbox AES implementa-
tion of ECB mode takes the smallest runtime but it is insecure due to the exposure
of the key. On the other hand, the Whitebox implementation of ECB mode after
adding randomization takes much more time than the whitebox implementation of
ECB without randomization. Comparing all the modes of whitebox implementa-
tion, Whitebox Counter mode (CTR) takes less time and also the performance of
it does not get degraded after adding randomization. After randomizing, Figure
5.3.5 shows the performance analysis of different modes of Blackbox and Whitebox
implementation.

35

Comparative Analysis of Execution Times Across
Different Implementations

7ms

8 f

5ms /

4ms
3ms
2ms
1ms
0ms
1 Block message 2 Blocks message 3 Blocks message
ECB(Blackbox) @ CTR(Whitebox)) ECB(Whitebox)
@ ECB(Randomizing rounds) @ CTR(Randomizing rounds)

Figure 5.3.5: Performance analysis of different modes of Blackbox and Whitebox
implementation after randomization

36

Chapter 6

Challenges

The challenge faced so far that we have encountered is that -

1. Whitebox related papers focus more on the theoretical discussion, no open source
implementation of the algorithms is available.

2. The components that we have created are based on reading the papers and cre-
ating everything from scratch.

3. For the case of memory handling, it was not possible to do it in a language like
Python that we all are used to but it was possible in CPP language, so we focused
on Cpp language for its creation.

4. Other challenges were the implementation of the Whitebox, the conversion of the
Blackbox to white box generation where the main issue was in the Whitebox after
generating the table, loading it to the memory, and checking for performance. The
performance of the Whitebox was slower compared to the Blackbox so here come
the modes, ECB is the simplest mode but less secure whereas CTR has superior
security with some performance trade-offs. We investigated different modes of the
AES algorithm to make our algorithm more memory-efficient and CPU friendly.

5. Doing the Differential computational analysis (DCA), making trace from the
execution and observing the behaviour of the code was quite challenging altogether.

37

Chapter 7

Conclusion

The field of Whitebox Cryptography is both a stimulating research problem and an
essential component of the larger field of safe computing in untrusted contexts. The
goal of this thesis was to explain the complex world of Whitebox cryptography while
focusing on important ideas and adding to the continuing discussion in this area.

We began the journey by outlining the foundations of Blackbox cryptography, and
its history, and then we began the implementation of Whitebox cryptography. While
investigating the performance of different modes of the AES algorithm, we got that
ECB is the simplest but least secure and memory consuming while CTR mode is a
well-liked option when random access is required since it offers good security and
high performance.

Afterward, the transformation technique started from the Blackbox cryptographic
algorithm to the Whitebox algorithm by embedding the key into a series of lookup
tables. In addition, this new lookup table-based implementation will also need pro-
tection which was done by applying internal and external encoding to the tables.
At the last part of the paper, a comprehensive security and performance analysis
was done to make the implementation more secure and memory efficient. However,
designing effective countermeasures requires an understanding of the distinct risk
model of White Box attackers who have unrestricted access to the algorithm’s ex-
ecution. Our investigation took us into the complex world of White Box schemes
concentrating in particular on AES-based solutions.

It is clear from looking ahead that innovation is the key to achieving safe White-
box cryptography. We must keep investigating fresh ideas, utilizing cutting edge
primitives, and tackling the changing difficulties presented by algebraic attacks.
Examining the S-box design and its resistance to cryptographic attacks suggests a
viable direction for future study. Whitebox cryptography continues to be a difficult
area in the constantly changing field of cybersecurity. We can defend our digital
world against malicious attacks in untrusted contexts but only by thorough inquiry,
innovation, and the constant search for safe solutions. Our adventure in Whitebox
cryptography has just begun, and there is much potential to pioneer new solutions
for a more secure digital future. This thesis concludes with a strong call to action
[17].

7.1 Future Works

For advanced safety measurement, Differential fault analysis (DFA) will be applied
to the implementation of the code and its efficiency against such sort of attacks will
be checked. DFA is a kind of side-channel attack where an attacker makes introduc-

38

tion of faults such as voltage or clock glitches into the cryptographic system during
its execution and analyzes the difference in the output. From the observation, the
attacker gains information about the secret key.

Additionally, the implementation will be done using multithreaded concept. As of
now, the implementation is based on single-thread system. Multiple threading will
lower the computational power as the whole process will be divided into different
cores. As a consequence, the performance measurement of the algorithm will be
better. Moreover, the algorithm will be allowed to scale with the available hardware
resources such as multicore processors and the responsiveness of the algorithm in
real-time scenarios will be increased. As a whole, the resource utilization will be
much better.

7.2 Project Links

For the code implementation, you can find the source code on GitHub:
https://github.com/rabib0/Implementation-of-WhiteBox-Cryptogtaphy.
For the Colab notebook, you can access it online:

https://colab.research.google.com /drive/1qiuyJjeQdWKH{IfoGGEQM4_D_MI4l4nm.

39

https://github.com/rabib0/Implementation-of-WhiteBox-Cryptogtaphy
https://colab.research.google.com/drive/1qiuyJjeQdWKHfIfoGGEQM4_D_MI4l4nm

Bibliography

M. Karroumi, “Protecting white-box aes with dual ciphers,” Jan. 1970.

W. Diffie and M. E. Hellman, “Privacy and authentication: An introduction
to cryptography,” vol. 67, no. 3, Mar. 1979.

D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking
cryptographic protocols for faults,” vol. 4, Aug. 1997. por: 10.1007 /3-540-
69053-0_4.

S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot, “White-box cryp-
tography and an aes implementation,” Aug. 2002. DO1: 10.1007/3-540-36492-
717.

J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, Jan. 2002, p. 238, 1SBN: 3-540-42580-2. DOT:
10.1007/978-3-662-04722-4.

A. Young and M. Yung, “The dark side of “black-box” cryptography or: Should
we trust capstone?,” 2002.

P. Dusart, G. Letourneux, and O. Vivolo, “Differential fault analysis on a.e.s,”

LNCS, vol. 2846, Oct. 2003.

O. Billet, H. Gilbert, and C. Ech-Chatbi, “Cryptanalysis of a white box aes
implementation,” Jan. 2005. pot: 10.1007/978-3-540-30564-4_16.

E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosys-
tems,” vol. 1294, Jan. 2006.

X. Lai, “A secure implementation of white-box aes,” Dec. 2009.

J. Persial, P. M, and D. R, “Side channel attack-survey,” 2011.

C. J. Benvenuto, “Galois field in cryptography,” May 2012.

sysk, “Practical cracking of white-box implementations,” Apr. 2012.

T. Lepoint, M. Rivain, Y. D. Mulder, and P. Roelse, “Two attacks on a white-
box aes implementation?,” Aug. 2013. DoI: 10.1007/978-3-662-43414-7_14.

J. A. Muir, “A tutorial on white-box aes,” 2013. DoI: 10.1007 /978-3-642-
30904-59.

A. 7 Souchet, “Aes whitebox unboxing: No such problem,” 15 2013.

J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential computation
analysis: Hiding your white-box designs is not enough,” Aug. 2016. poI: 10.
1007/978-3-662-53140-2_11.

J. Cho, K. Y. Choi, O. Dunkelman, and N. Keller, “Hybrid whc: Secure and
efficient white-box encryption schemes,” Oct. 2016.

J. Bhatia, “Comparison of white box, black box and gray box cryptography,”
2017. [Online|. Available: http://dx.doi.org/10.21172/ijiet.82.031.

E. Alpirez Bock, J. W. Bos, C. Brzuska, et al., “White-box cryptography:
Don’t forget about grey-box attacks,” J. Cryptol., vol. 32, no. 4, pp. 1095—
1143, Oct. 2019, 18sN: 0933-2790. DOT: 10.1007/s00145-019-09315-1. [Online].
Available: https://doi.org/10.1007/s00145-019-09315-1.

40

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-642-30904-5_9
https://doi.org/10.1007/978-3-642-30904-5_9
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-662-53140-2_11
http://dx.doi.org/10.21172/ijiet.82.031
https://doi.org/10.1007/s00145-019-09315-1
https://doi.org/10.1007/s00145-019-09315-1

[21] X. LOU, T. Zhang, J. Jiang, and Y. Zhang, “A survey of microarchitectural
side-channel vulnerabilities, attacks and defenses in cryptography,” Mar. 2021.

[22] Baboon, HackLu Reverse Challenge - Baboon’s Blog, http://baboon.rce.free.
fr/index.php?post,/2009/11/20/HackLu-Reverse-Challenge, [Accessed 07-01-
2024].

[23] W. Brecht, “White-box cryptography: Hiding keys in software,”

[24] NoSuchCon 2013 challenge - Write up and Methodology, https:/ /kutioo.
blogspot.com /2013 /05 /nosuchcon-2013- challenge- write- up-and.html, [Ac-
cessed 07-01-2024].

41

http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge
https://kutioo.blogspot.com/2013/05/nosuchcon-2013-challenge-write-up-and.html
https://kutioo.blogspot.com/2013/05/nosuchcon-2013-challenge-write-up-and.html

	Declaration
	Approval
	Abstract
	Table of Contents
	Introduction
	Problem Statement
	Research Objectives

	 Literature Review
	Fundamentals of Cryptography
	Blackbox Cryptography Overview
	Whitebox Cryptography Overview
	Attacks on Whitebox Cryptography
	Cryptanalysis Attacks
	Fault-Based Attacks and Protocols
	Differential Fault Analysis (DFA)
	Differential Computation Analysis (DCA)
	Side-Channel Attacks

	 Implementation of Blackbox AES
	Galois Field Algebra in Cryptography
	Blackbox AES 128 Implementation (ECB)
	Modified Blackbox Implementations
	Extended Blackbox Implementation
	Counter Mode Blackbox AES (CTR)

	Implementation of Whitebox AES
	Table-Based Whitebox Implementation
	T-box Generation Process
	T-box Generation for Rounds 1-9
	T-box Generation for Final Round
	Ty Table Generation
	XOR Table Construction
	Function Conversion Process

	Secured Whitebox Implementation
	Internal Encoding Mechanism
	External Encoding Mechanism

	Counter Mode Whitebox AES (CTR)
	Summary

	Security and Performance Analysis
	Performance Analysis of Blackbox and Whitebox Implementations
	Security Analysis
	Performance Analysis of Different Implementation Modes

	Challenges
	Conclusion
	Future Works
	Project Links

	Bibliography

