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Abstract
Hate speech on social media can escalate into ”cyber conflict,” detrimentally impact-
ing social life. With the exponential growth of Internet users and media content,
identifying abusive language in audio and video content has become increasingly
challenging. The nuances of human communication mean that individuals might
employ seemingly non-hateful language in derogatory ways, often accompanied by
specific voice tones and gestures that aren’t captured when converting multimedia
into text. This research delves deep into the realm of hate speech detection, aim-
ing to automatically identify harmful content across various social media platforms.
Initially focused on text, our study utilized remote supervision for automatically la-
beled dataset creation and employed word embeddings with a bias toward hate. We
analyzed datasets from Twitter, testing various machine-learning models to gauge
the representation of hate speech and abusive language. Any tweet or online post
exhibiting racist or sexist sentiments was categorized as ”hate speech.” Our objective
was to classify such messages for better content moderation systematically. With
advancements in our research, we have extended our detection capabilities to audio
content. By leveraging Simple Feed-forward Neural Networks, RNNs, and CNNs, we
can now discern hate speech patterns in audio with enhanced accuracy. However, the
vastness of content on social media platforms means not every piece can be manually
moderated. This underscores the importance of our automated hate speech detec-
tion, especially when dealing with content in linguistically challenging languages.
However, social media networks cannot control every piece of user content. Because
of this, it is necessary to identify hate speech automatically. This desire is height-
ened when the content is written in challenging languages. Our study provides a
unique transformer-based methodology for detecting hate speech in social media.
The proposed model uses Natural Language Processing (NLP) approaches to assess
text and audio input. To increase the accuracy of hate speech identification, we use
sophisticated deep learning architectures such as attention methods and transform-
ers. Our model is trained on a huge dataset of tweets and audio recordings, and
its performance is measured using a variety of criteria. Our transformer-based ap-
proach beats existing state-of-the-art hate speech identification methods, according
to the results. Our study makes an essential addition to the field of computer science
and engineering by addressing the critical issue of hate speech on social media and
proposing an effective solution based on modern machine learning techniques.

Keywords: Hate Speech; Offensive Language; Machine Learning; Neural Network;
Social Media, Recurrent, Convolutional;

iii



Acknowledgement
Firstly, we would like to express our gratitude to Almighty Allah for keeping us
physically and mentally healthy enough to complete our thesis work, titled ”En-
hanced Hate Speech Detection in Social Media using Transformer-based Models.”
flawlessly and on time, as well as for providing us with the knowledge, skill, and
resolve to complete our work.

We are thankful to our supervisor, Md. Golam Rabiul Alam, PhD, Professor, Com-
puter Science and Engineering, for his valuable guidance, encouragement, super-
vision, motivation, and suggestions throughout our thesis procedure. His endless
support helped us to go through our work and ideas properly.

The successful outcome of this study is not only the result of individual hard work
but also the accumulation of many other people’s efforts. Without the general help
of our Department of Computer Science, this study would not be complete. We
would like to thank our parents, who have given hope to us and kept supporting us
to pursue our careers, without which maybe we would not be able to complete our
thesis work.

iv



Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Generation of Adversarial Samples . . . . . . . . . . . . . . . 5
1.4.2 Evaluation under Adversarial Conditions . . . . . . . . . . . . 5
1.4.3 Model Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.4 Robustness Enhancements . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 6

3 Methodology 13
3.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Text Data Collection . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Audio-to-Text Conversion for Hate Speech Detection: . . . . . 15
3.1.3 Data Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Text-Based Hate Speech Detection . . . . . . . . . . . . . . . 16
3.2.2 Audio-Based Hate Speech Detection . . . . . . . . . . . . . . 17
3.2.3 Data Processing for Transformer based model . . . . . . . . . 17

v



4 Model Specification 19
4.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Text-based Detection Experiment . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . 20
4.2.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.7 K-Nearest Neighbors (KNN) . . . . . . . . . . . . . . . . . . 24
4.2.8 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Audio-based Deep Learning Experiment . . . . . . . . . . . . . . . . 26
4.3.1 Simple Feed-forward Neural Network . . . . . . . . . . . . . 26
4.3.2 Convolutional Neural Network (CNN) . . . . . . . . . . . . . 27
4.3.3 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . 28

4.4 Transformer Based Proposed Model Architecture . . . . . . . . . . . 28

5 Performance Analysis 32
5.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Text-Based Hate Speech Detection: Leveraging Machine Learn-
ing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2 Speech-Based Hate Speech Detection: Harnessing the Power
of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.3 Evaluation of Transformer-Based Hate Speech Detection Model 49

6 Discussion 53
6.1 Preliminary Analysis: Text-Based Hate Speech Detection . . . . . . . 53
6.2 Preliminary Analysis: Speech-Based Hate Speech Detection . . . . . 55
6.3 Preliminary Analysis: Transformer-Based Hate Speech Detection . . 55

6.3.1 Accuracy and Comparative Metrics: . . . . . . . . . . . . . . 55
6.3.2 Strengths and Considerations: . . . . . . . . . . . . . . . . . . 56
6.3.3 Comparative Performance: . . . . . . . . . . . . . . . . . . . . 56

7 Conclusion 57
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3.1 Various Experimental Findings . . . . . . . . . . . . . . . . . 59
7.3.2 Transformer Based Approach . . . . . . . . . . . . . . . . . . 60

References 61

vi



List of Figures

3.1 Workflow for Text-based Hate Speech Detection . . . . . . . . . . . . 13
3.2 Workflow for Audio-based Hate Speech Detection . . . . . . . . . . . 17
3.3 Data Processing for Transformer based model. . . . . . . . . . . . . . 18

4.1 Presented a detailed overview of our proposed model . . . . . . . . . 29
4.2 Casual Graph for Hate Speech Detection . . . . . . . . . . . . . . . . 30

5.1 Feature Extraction: Mel-Frequency Cepstral Coefficients (MFCC) . . 39
5.2 Training Accuracy vs Epochs . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Training Loss vs Epochs . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Comparison of Accuracy, Precision, Recall, and F1 Score . . . . . . . 42
5.5 Comparison of Accuracy, Precision, Recall, and F1 Score . . . . . . . 43
5.6 Training Accuracy vs Epochs . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Training Loss vs Epochs . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Comparison of Accuracy, Precision, Recall, and F1 Score . . . . . . . 45
5.9 Comparison of Accuracy, Precision, Recall, and F1 Score . . . . . . . 46
5.10 Training Accuracy vs Epochs . . . . . . . . . . . . . . . . . . . . . . 47
5.11 Training Loss vs Epochs . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.12 Comparison of Accuracy, Precision, Recall, and F1 Score . . . . . . . 48
5.13 Comparison of Accuracy, Precision, Recall, and F1 Score . . . . . . . 49
5.14 Confusion Matrix for Test Set . . . . . . . . . . . . . . . . . . . . . . 50
5.15 Confusion Matrix for Original Replaced Dataset . . . . . . . . . . . . 51
5.16 Confusion Matrix for Original Misspelled Dataset . . . . . . . . . . . 52

vii



List of Tables

1.1 HS in WoS published paper between 1975-2019 [1] . . . . . . . . . . . 1

viii



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AUC Area Under the Curve

BLR Bayesian Logistic Regression

BoWV Bag of Words Vectors

CNN Convolutional Neural Network (CNN)

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network automates

DNNs Deep Neural Networks

DRLN Deep Recurrent Learning Network

ELMo Embeddings from Language Models

GBDTs Gradient Boosted Decision Trees

HS Hate speech

LSTM SVM and Long Short Term Memory

ML Machine Learning

RFDT Random Forest Decision Tree

RNN Recurrent Neural Network

RNN Recurrent Neural Networks (RNNs)

ROC Receiver Operating Characteristic

SMNs Social Media Networks

SVM Support Vector Machine

TFIDF Term Frequency-Inverse Document Frequency

WoS Web of Science

ix



Chapter 1

Introduction

”Hate speech” refers to any public discourse that displays hatred for or incites vi-
olence against a person or group based on their race, religion, sexual orientation,
gender, or any other arbitrary category. The number of Web of Science (WoS)-
indexed publications on hate speech (HS) increased from 42 to 162 between 2013
and 2018 due to the academic community’s growing interest in the topic. The au-
thor, Mara Antonia Paz, analyzed the amount of HS-related articles published in
all domains between 1975 and 2019 [1].

Table 1.1: HS in WoS published paper between 1975-2019 [1]

Country Documents
USA 431
England 169
Australia 51
Canada 39
Spain 35
Germany 34
South Africa 29
Netherlands 22
Brazil 21
Italy 18

Hate speech exploits stereotypes to instill hatred. The term ”hate speech” refers to
”any statement that criticizes a person or another group on the basis of a particular
attribute that includes race, color, ethnicity, sexual orientation, gender, ethnicity,
faith, or other characteristics.” Internet commenters utilize blog posts, discussion
boards, Twitter, and Facebook to make use of their First Amendment entitlement
to free expression, which protects the majority of hate speech in the United States.
However, such hosted services usually restrict hate speech [2]. Yahoo! Terms of Ser-
vice. 1 restricts the posting of ”information deemed unconstitutional, detrimental,
dangerous, abusive, threatening, painful, defamatory, offensive, obscene, malicious,
invasive of another individual’s privacy, diabolical, or racially, ethnically, or oth-
erwise objectionable.” Facebook, on the other hand, forbids ”information that: is
violent, threatening, or inappropriate; or incites violence.” No publicly accessible ma-
chine classifier can recognize hate speech; however, user inputs are usually checked
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for a list of harmful words [3][2].

1.1 Motivation
Social Network Sites promote damaging campaigns against specific groups and in-
dividuals. Massive online offensives cause cyberbullying, self-harm, and sexual pre-
dation. Group attacks can get violent. Using morpho-syntactical characteristics,
sentiment polarity, and word embedding lexicons, the author designs and imple-
ments two Italian language classifiers using different learning algorithms: SVM and
Long Short Term Memory (LSTM) from Recurrent Neural Network (RNN). They
test these two learning algorithms for hate speech classification. Two categorization
methods performed well on the first manually annotated Italian Hate Speech Corpus
of social media text [4]. Online and offline hate speech has increased in recent years
[7]. Several things cause this. According to [5], the anonymity provided by social
media and the internet might lead to violent behavior. However, internet expression
promotes hate speech [6]. Authorities and online communication platforms may
profit from early identification and avoidance strategies, as biased speech is harmful
to society. The author contributes to the solution of this challenge by evaluating
field studies. They define, structure, and discover solutions. They critically evaluate
theoretical and practical resources like datasets and other projects [7].

1.2 Problem Statement
Hate speech as a social issue is a well-established study topic in the fields of arts
and the liberal arts, but it is new in the computing industry. To keep scientists
informed, it is vital to keep them up to speed with the latest and most recent
advances or advancements ([13]). Given the rapid growth of Internet users and
media content, it is particularly difficult to identify the abusive language in audio
and video. As humans may humorously utilize non-hateful language as hate speech
and use different voice tones and display other gestures in the video than in writing,
it is challenging to detect hate speech when converting audio, video, or motion
into text. This study focuses on hate speech and seeks to automatically identify
malicious content using data collected from multiple social media platforms. The
remote supervision method will automatically generate tagged datasets and hate-
polarized word embeddings.
hate speech recognition using audio and text is essential because it enables a more
complete understanding of hate speech in social media. A deeper analysis may be un-
dertaken to properly detect instances of hate speech by considering both the acoustic
and textual features. The use of transformer models, like BERT, has yielded en-
couraging results in the identification of hate speech. These models can capture the
context of the text, which is essential for recognizing the intricacies of hate speech.
Furthermore, transformer-based models outperformed classical machine learning and
deep learning models in terms of accuracy, precision, recall, and F-measure. They
also outperform cross-domain datasets in terms of generalization. As a result, com-
bining techniques with transformer models can dramatically improve hate speech
detection capabilities. [53] [54]

2



1.3 Research Objective
Messages are delivered and received practically instantaneously on social media net-
works (SMNs), making them the quickest means of communication. Many people
use social media networks for positive purposes, while others use them for negative
connotations such as hate speech and trading. The focus is to look at machine
learning (ML) techniques and algorithms for finding hate speech on social media
(SM). Most of the time, hate speech is modeled as a text classification task [8]. ML
systems have significantly contributed to hate speech identification and social media
content analysis, in general, [9]. Over the past two decades, Hate Speech (HS) and
cyberbullying have been the most explored topics in NLP [10]. Regarding SM data
analysis for the discovery and classification of offensive comments, ML algorithms
have been of significant use [11] in this respect. The advancements in ML algorithm
research have had substantial effects in many domains of endeavor, leading to the
development of crucial tools and models for analyzing massive quantities of data in
real-world issues, such as SMNs content analysis [12].

Deep Learning (DL) is a branch of machine mastering that makes a specialty of
coaching sellers how to make choices by interacting with their surroundings. It is
not like conventional supervised mastering, in which agents are given categorized
examples, DL agents learn through trial and mistake, receiving comments in the
form of rewards or penalties for their movements [42].

• The agent’s aim is to analyze top-of-the-line coverage that maximizes cumu-
lative rewards over time. Inside the context of hate speech detection on social
media, DL can be implemented to construct shrewd models able to classify
content material as hate speech or non-hate speech. The agent perceives tex-
tual information, consisting of posts and remarks, as states, and takes move-
ments by way of classifying them hence. The surroundings evaluate the agent’s
choices and give rewards or consequences based totally on the correctness of
its classifications.

• Repeated interactions, the agent learns from its stories and adjusts its choice-
making coverage to enhance detection accuracy [43]. DL’s adaptability allows
the model to correctly cope with dynamic and evolving patterns of hate speech,
making it extra strong in figuring out harmful content. To utilize DL for hate
speech detection, advanced natural language processing strategies and deep
neural networks are hired to technique and constitute the textual records.
The version is skilled on a huge dataset of categorized hate speech instances,
getting to know how to distinguish between offensive and non-offensive con-
tent. While the dataset is trained, the DL-based hate speech detection model
can be incorporated into social media structures to automatically experiment
and filter out incoming content [44]. It identifies the ability of hate speech
times and flags them for similar evaluation or removal via human moderators,
contributing to safer and more inclusive online surroundings.

• Leveraging the interaction between the agent and the surroundings, DL allows
the improvement of sophisticated hate speech detection systems that adapt
and learn from real-world interactions. This proactive approach can play an
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essential function in curbing the unfolding of hate speech and fostering a more
high-quality online network. However, making sure equity and addressing ca-
pacity biases within the education data are important aspects to keep in mind
in deploying DL-primarily based hate speech detection structures. Continuous
studies and refinement will be critical to harness the overall capability of DL
in combatting hate speech efficiently [45].

1.4 Research Gaps
Throughout our research, we have gone into a variety of research issues that inti-
mately connect to the fabric of our study, making it more complex, fruitful, and
significant. Our investigations are methodically planned to uncover the nuances of
hate speech on social media, inquiring into its impact, platform prevention tactics,
and the incorporation of machine learning mitigation solutions.
The widespread use of the Internet and social media platforms, particularly among
youth, has resulted in unparalleled connection as well as unexpected obstacles. Be-
cause 93 percent of youth use these platforms on a regular basis, exposure to hate
speech and disinformation is a serious concern[14]. This section examines the con-
sequences of hate speech in the digital age, investigating its origins in the period of
free speech and its amplification under present social and political conditions[15].
In response to an onslaught of online vitriol, many social media sites have im-
plemented anti-hate speech regulations. The varied nature and intricacy of these
policies, however, provide a significant challenge[16][17]. This section of our research
focuses on the regulatory environment of hate speech on social media, diving into
content moderation teams’ removal processes and providing ideas for a more uniform
and successful approach[17][18].
As hate speech pervades the internet domain, technical solutions become increas-
ingly necessary. Our research investigates a method to hate speech identification
using Natural Language Processing (NLP) and Computer Vision[19]. We investi-
gate the usefulness of machine learning in recognizing hate speech across multiple
modalities [20] by applying sophisticated models such as Bidirectional Encoder Rep-
resentations from Transformers (BERT) and A Lite BERT (ALBERT). This section
delves into the specifics of our experiment, emphasizing the use of speech features
and visual clues for a holistic approach to hate speech reduction.

This in-depth examination of the multiple features of hate speech on social media
seeks to provide significant insights and ideas for a better-educated discussion of this
vital societal problem. While hate speech detection has been a focal point in numer-
ous research endeavors, a distinctive facet of our study lies in the incorporation of
adversarial attacks. Adversarial attacks involve deliberately introducing subtle mod-
ifications to input data with the aim of deceiving machine learning models without
significantly altering the human-perceivable content. The decision to employ adver-
sarial attacks stems from the recognition of potential vulnerabilities in hate speech
detection models. Many existing studies may not have explored this avenue, but our
approach acknowledges the importance of assessing model robustness in the face of
adversarial manipulations. Adversarial attacks simulate real-world scenarios where
malicious actors may attempt to subvert hate speech detection systems for their
benefit.

4



1.4.1 Generation of Adversarial Samples
• Adversarial samples were crafted by applying carefully designed perturbations

to the input data, aiming to mislead the hate speech detection model.

• Modifications were constrained to be imperceptible to the human eye, ensuring
that the adversarial nature of the samples was subtle.

1.4.2 Evaluation under Adversarial Conditions
• The hate speech detection model was rigorously evaluated using both original

and adversarial samples.

• Performance metrics, including accuracy, precision, recall, and F1 score, were
analyzed under normal and adversarial conditions.

1.4.3 Model Vulnerabilities
• Adversarial attacks revealed certain vulnerabilities in the hate speech detection

model that were not apparent in conventional evaluations.

• Subtle manipulations in input data led to misclassifications, highlighting po-
tential weak points in the model’s discriminatory capabilities.

1.4.4 Robustness Enhancements
• Insights gained from adversarial attacks were used to enhance the model’s

robustness.

• Countermeasures, such as adversarial training and input preprocessing, were
explored to mitigate the impact of adversarial manipulations.

1.5 Thesis Organization
The remainder of this work is arranged as follows. The relevant literature on the
usage of the hate speech detection model is examined in Chapter 2. The approaches
for the models used in this work are described in Chapter 3. The specifications
are provided in Chapter 4. Chapter 5 illustrates the performance analysis and
assessment process. Chapter 6 provides an explanation of the models. The report
concludes in Chapter 7 with a discussion of limits and future research.
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Chapter 2

Literature Review

Hate speech recognition on Twitter is critical for purposes that include disputed
event extraction, AI chatterbot building, and sentiment research. This study inves-
tigated deep neural network architectures for detecting hate speech. They also ex-
periment with other classifiers, such as Logistic Regression, Random Forest, SVMs,
Gradient Boosted Decision Trees (GBDTs), and Deep Neural Networks (DNNs).
Our paper’s main contributions are: (1) Investigate deep learning approaches for
identifying hate speech. (2) Investigate several twitter semantic embeddings, includ-
ing character n-grams, speech TF-IDF standards, Bag of Words Vectors (BoWV)
spanning Global Vectors for Word Representation (GloVe), and specific to the job
embeddings trained with FastText, CNNs, and LSTMs. (3) The approaches vastly
surpass current methods. Experiments on a standard dataset consisting of 16,000
annotated tweets show that these deep learning approaches beat state-of-the-art
char/word n-gram algorithms by 18 F1 points [21].

The expanding usage of social media and knowledge sharing has significantly pos-
itive effects on mankind. This research aims to analyze the performance of three
feature engineering approaches and eight machine learning algorithms using a pub-
licly accessible dataset containing three separate classes. Three feature engineering
techniques were Bigram, Word2vec, and Doc2vec. The eight machine learning al-
gorithms were Machine Learning Classifiers, Naïve Bayes, Random Forest, Support
Vector Machines, K Nearest Neighbor, Decision Tree, Adaptive Boosting, Multi-
layer Perceptron, and Logistic Regression. Hateful tweets are publicly available,
and CrowdFlower created this dataset. Hate speech and offensive and non-offensive
tweets are categorized in this dataset. It has 14509 tweets. The result shows that
bigram features using the support vector machine method fared best with 79 percent
accuracy. This baseline study on automated hate speech detection has practical ap-
plications. Different comparisons will also be employed as state-of-the-art method-
ologies to compare future research against present automated text categorization
algorithms [22].

Another blogger claims that hate speech has grown into a severe issue which is now
prevalent on social media. As a result, this author is dedicated to developing more
effective strategies to protect free expression on online platforms and in online com-
munities, while simultaneously reducing illegal discrimination. As neural network
approaches grow more advanced for text classification tasks, a strategy for improv-
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ing hate speech categorization using neural networks is outlined. The approach
makes use of a publicly available embedding model, which is tested against a hate
speech dataset from Twitter. To ensure dependability, they compare the results to
a well-known sentiment dataset. The authors are satisfied with the approximately
5-point improvement in F-measure (mean of sub-models, the standard deviation
of sub-models, mean of ensembles, the standard deviation of ensembles, and best
results from original author) between the suggested method and the previous in-
vestigation using a dataset that is freely accessible for evaluating hate speech [23].
This research demonstrated how the three types of text classification approaches,
Embedded systems from a Language Model (ELMo), Bidirectional Encoder Repre-
sentation from Transformers (BERT), and Convolutional Neural Network (CNN),
function and then applied them to identify hate speech. The performance was then
enhanced by combining the findings of ELMo, BERT, CNN, and three CNN-based
classifiers with varying learning rates. The fifth assignment of SemEval 2019 requires
you to apply these approaches to the data. Then, using fusion procedures, merge
the classifiers to increase overall classification performance. The findings indicate
that the categorization is significantly more precise and has a higher F1 score [24].

The terms unigram and bigram, the number of hostile words and terrible words, and
the quantity of words having an adverse disposition were used in the research on
identifying hate speech aimed toward religions in the Indonesian language. NB and
SVM were selected as the two approaches to be compared. This program also created
a hate speech lexicon to determine the quantity of hate speech-related terminology
and phrases. The resultant vocabulary was of poor quality due to an uneven quantity
of tweets on religion that were not classified as non-hate speech against religion. This
made the dictionary more appropriate as a dictionary of terms and phrases linked
to religion than as a vocabulary of words associated with hate speech [25][26].

This research aims to locate instances of hate speech in Indonesian and to compile a
new dataset that contains all forms of hate speech, including speech that is hostile
toward religion, racial or ethnic groups, gender, or sexual orientation. In addition,
we carried out some exploratory research utilizing a technique known as ”machine
learning.” They examined the effectiveness of a variety of characteristics and machine
learning techniques when it came to locating hate speech. Some of the qualities that
were eliminated are word n-grams with n=1 and n=2, character n-grams with n=3
and n=4, and negative emotion. The data was sorted using many different algo-
rithms, including Naive Bayes, (SVM), Bayesian, Random Forest Decision Tree, and
Logistic Regression. An F-measure of 91.75 percent was attained using the Random
Forest Decision Tree method in conjunction with the word n-gram feature. In addi-
tion, the results demonstrate that the character n-gram feature did not perform as
well as the word n-gram feature. In addition, their findings differed from the find-
ings of two other research that investigated the detection of hate speech in English.
It was stated that character n-grams were superior to word n-grams, however, our
research showed that the contrary is really the case. It was claimed that Random
Forest Decision Tree(RFDT), Bayesian Logistic Regression(BLR), and SVM were
all similarly effective in identifying hate speech; however, our research revealed that
SVM was much less effective than RFDT and BLR [26].
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Hate speech is typically defined as poking fun of an individual or group because of
their ethnic background, color, ethnic background, sexual orientation, gender, na-
tionality, faith, or another characteristic. This report presents a survey on how to
detect hate speech automatically. Simple Surface characteristics, Word Generalizing,
sentiment evaluation, Lexical Assets, Morphological Features, Based on knowledge
Features, Meta-Information, and Information are all distinct sets of characteristics
examined in diverse publications. The classification methods mainly focus on su-
pervised learning. Different kinds of surveys show that their data comes from social
media, different types of comments, and many different kinds of videos. Hate speech
is found through supervised learning, which looks at all these data to find text or
speech. It’s hard to say how effective many of the complex features are as a whole
because they are usually only judged on individual data sets, most of which are
not available to the public and often only deal with one type of hate speech, like
bullying of certain ethnic minorities. They say there should be a benchmark data
set for detecting hate speech so that different features and methods can be better
compared [27].

The majority of attempts to discover messages of hatred these days have centered
on English text, with little attention paid to Arabic. In this study, the author
created an ordinary Arabic dataset that may be used to identify hate speech and
abuse. This work provided an OSN sample for Arabic expressions of hatred detec-
tion. Three Arabic annotators painstakingly classified twenty thousand Instagram,
YouTube, Facebook, and Twitter posts, comments, and tweets into two distinct bal-
anced categories: hate and non-hate. This could be the first collection of Arabic
hate speech from many platforms. Twelve machine learning algorithms and two neu-
ral networks (CNN and RNN) were employed to assess the dataset’s performance.
Twelve machine learning algorithms and two deep learning designs (CNN and RNN)
were employed to assess the dataset’s performance. Complement NB outperformed
other machine learning algorithms, achieving 97.59 percent accuracy. RNN outper-
formed other neural network architectures, getting 98.70. In the future, we want to
expand the dataset to include user actions, likes, sentiments, and answers. Collect
data from many Arabic places to encompass languages and cultures, and identify
disability hate speech [28].

There was another author, and together they gave a detailed survey of a wide range
of problems that arise when detecting hate speech. The research has been done
by putting these problems into three main groups: the level of data, the level of
models, and the level of people. These categories are broken down into more specific
subcategories, which are then looked at by giving examples. The study shows that
the problem of how hate speech spreads and how to find it is still difficult and needs
to be dealt with in the right way to get good results [29].

Cyberbullying, hate speech, and other issues arose as Internet use increased. This
article discusses Twitter’s hate speech issues. Hate speech appears to anger indi-
viduals and promote hate ideology through misconceptions. Hate speech targets
protected categories like race, religion, handicap, and gender. Hate speech may de-
press people and lead to bad behavior. So, monitor user posts and eliminate hate
speech before it spreads. Twitter receives almost 600 tweets each second and 500
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million per day. Hand-filtering such a massive volume of incoming traffic is rela-
tively easy. Here, the (DCNN). The proposed DCNN model leverages the Twitter
text and GloVe embedding vector to determine tweet content via convolution. The
best accuracy, recall, and F1-score values were 0.93, 0.81, and 0.90, better than the
previous models[30].

Hate speech on social media is a grave and urgent challenge, encompassing con-
versation that incites violence, discrimination, or hostility toward individuals based
on race, ethnicity, faith, gender, sexual orientation, incapacity, or different traits.
Different factors make contributions to its prevalence, such as anonymity, the fast
dissemination of content material, inadequate moderation, algorithmic polarization,
and ingrained societal biases. The repercussions of hate speech are well-sized, main
to actual-international harm, cyberbullying, and even radicalization. Addressing
this issue requires a multifaceted approach. Robust content material moderation
and network hints are crucial to filtering hateful content and fostering more secure
online surroundings. Person reporting mechanisms empower the network to flag and
report offensive material, ensuring a collective effort in fighting hate speech. Further-
more, leveraging superior technology like Deep Reinforcement gaining knowledge of
(DRL), and system mastering is essential in proactively identifying and disposing of
hateful content material [31] [32]. The ultimate purpose is to create a digital area
that is both safe and inclusive. Preventing hate speech isn’t always about stifling
loose speech or silencing various views, however instead it is about protecting indi-
viduals from dangerous and offensive content. By way of striking a balance between
freedom of expression and accountable content moderation, we are able to foster an
environment where all and sundry can freely specify their reviews without selling
hatred or causing harm to others. The collaborative efforts of platform directors,
content material moderators, customers, and advanced technology can collectively
paint toward accomplishing this intention.
A set of rules and device learning strategies offer precious solutions to deal with
the problem of hate speech on social media. The ones era allowed the development
of automated detection structures that could hastily discover and flag likely dan-
gerous content material. Natural language processing algorithms study text data,
even as devices getting to know models, like deep learning networks, can be trained
on full-size datasets to apprehend patterns and characteristics of hate speech. Key-
word filtering enables block offensive phrases and terms, stopping the without delay
spread of dangerous content material fabric. Sentiment evaluation algorithms decide
the emotional tone of posts, pinpointing people with competitive or terrible senti-
ments that could propose hate speech. Real-time monitoring allows non-prevent
scanning of social media, permitting quick responses to growing hate speech tenden-
cies. Additionally, network reporting mechanisms empower customers to report hate
speech, prompting in addition human evaluation. By combining algorithmic strate-
gies with human moderation, structures can paintings closer to growing more secure
and extra-inclusive online areas, putting a balance among freedom of expression and
curtailing the dissemination of hate speech.

Deep Reinforcement studying (DRL) has emerged as an effective and promising
technique for addressing complicated and dynamic problems in numerous domains
[33]. In recent years, it has received interest for its potential to detect hate speech on
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social media systems, where harmful and offensive content can unfold swiftly, main
to tremendous actual-world results. DRL, a subfield of gadget-gaining knowledge,
includes an agent interacting with an environment to learn optimum choice-making
policies. Inside the context of hate speech detection, the environment consists of
textual data, inclusive of posts, remarks, and messages on social media structures
[34] [35]. The agent’s objective is to categorize these textual inputs into classes:
hate speech and non-hate speech. The agent perceives the textual information as
states, in which every nation corresponds to a bit of textual content. It takes action
by means of classifying the text as either hate speech or non-hate speech. Primarily
based on its classifications, the agent receives rewards or penalties from the envi-
ronment. Those rewards function remarks to guide the agent in getting to know a
policy that maximizes its cumulative praise through the years. Gaining knowledge
of procedures in DRL entails an iterative technique. Through non-stop interactions
with the surroundings, the agent refines its choice-making coverage to enhance its
hate speech detection accuracy. This pliability permits the version to be examined
from its studies, making it sturdy in addressing new and evolving patterns of dan-
gerous content material. To allow DRL for hate speech detection, advanced herbal
language processing techniques are used to preprocess and constitute the textual
information [36]. Neural networks, especially deep getting-to-know architectures,
are employed as function approximators to seize complex patterns and relationships
inside the statistics. One common DRL technique for hate speech detection is the
Deep Q community (DQN). In a DQN, a deep neural network is used to approximate
the Q-feature, which predicts the predicted cumulative praise for each viable motion
in a given state [38]. The agent selects movements with the very best Q-values, bal-
ancing exploration and exploitation to gain higher detection performance. Policy
Gradient methods are another popular choice in DRL for hate speech detection.
These techniques at once parameterize the coverage and optimize it with the usage
of gradient-based total techniques, looking to maximize the anticipated cumulative
reward. Policy Gradient methods can manage continuous action areas and provide
good pattern performance. The implementation of DRL for hate speech detection
involves schooling the agent on a huge dataset of classified textual information,
wherein human moderators have already identified hate speech times. The version
is fine-tuned through reinforcement gaining knowledge of, where it interacts with
the environment and learns from the rewards received.

As soon as educated, the DRL-based totally hate speech detection model can be de-
ployed on social media platforms to experiment and filter incoming content material
in actual time. It identifies potentially dangerous content and flags it for similarly
human evaluation or elimination, ensuring a more secure and extra inclusive online
environment [37].

Text-to-audio generation, commonly known as Text-to-Speech (TTS), is a trans-
formative technology that converts written text into spoken words. At its core,
TTS systems model the intricate processes of human speech production, aiming to
generate natural and intelligible voice outputs. Early TTS systems relied on con-
catenative synthesis, where pre-recorded speech fragments were stitched together to
produce the final audio [51]. However, the advent of deep learning has revolution-
ized TTS, leading to the development of models like WaveNet and Tacotron that
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generate speech directly from text using neural networks [52]. These models have
significantly improved the naturalness and fluency of synthesized speech, making
it nearly indistinguishable from human voices in some cases. As TTS technology
continues to evolve, its applications span diverse domains, from assistive technolo-
gies for visually impaired individuals to voice assistants and multimedia content
generation.

Feature extraction from audio is a pivotal process in audio signal processing, aim-
ing to distill the raw, complex waveform into a more concise representation that
captures its essential characteristics. One of the most prominent features extracted
from audio is the Mel-Frequency Cepstral Coefficients (MFCCs), which represent the
short-term power spectrum of sound and are particularly influential in speech and
audio recognition tasks [48]. Another significant feature is the Spectral Contrast,
which gauges the amplitude difference between peaks and valleys in a sound spec-
trum, proving useful for tasks like music genre classification [49]. Chroma features,
which pertain to the twelve distinct pitch classes, have found applications in chord
recognition and music analysis. Other features like the Zero-Crossing Rate, which
measures signal polarity changes, and Spectral Roll-off, indicating the frequency
below which most spectral energy is contained, further enrich the feature set used
in distinguishing between different audio content types and detecting events within
audio streams [50]. In essence, feature extraction transforms the intricate audio sig-
nals into a format that’s more amenable to analysis, with the chosen features often
tailored to the specific application and nature of the audio data.

In the initial phase, it’s crucial to preprocess the audio. This preprocessing can
involve converting the audio to a standard format, such as WAV, removing any
background noise, and normalizing the volume. This ensures that the audio is in
the best possible state before being fed into the ASR system [46].

When it comes to ASR systems, there are several options available. Commercial
solutions like Google Cloud Speech-to-Text and IBM Watson Speech to Text offer
cloud-based recognition with support for multiple languages. On the other hand,
open-source solutions like Mozilla’s DeepSpeech, which is based on deep learning,
have gained popularity due to their flexibility and adaptability. DeepSpeech, in
particular, leverages neural networks to improve its accuracy, a technique that has
been discussed extensively in recent literature[47]. Once the audio is transcribed
using the chosen ASR system, the resulting text can be searched for the desired
word or phrase. It’s worth noting that the accuracy of the transcription can vary
based on the quality of the audio and the ASR system’s proficiency. Therefore,
post-processing might be required to correct potential transcription errors or refine
the search results.

Despite its capacity, DRL for hate speech detection faces challenges consisting of
biased education facts and antagonistic assaults. Making sure equity and robustness
inside the version’s decision-making is crucial to keep away from unintended biases
and malicious manipulations. DRL offers a promising method to detecting hate
speech on social media systems. By way of leveraging the interplay among an agent
and the environment, DRL models can learn to differentiate among hate speech
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and non-hate speech efficiently [39]. Their adaptive nature and potential to seize
complicated patterns cause them to nicely-perfect for addressing the dynamic and
evolving nature of dangerous content material on social media. Integrating DRL-
based totally hate speech detection systems into social media structures can play a
crucial position in proactively figuring out and removing offensive content, growing
a more secure and more inclusive online area for users. But, cautious attention to
biases and opposed robustness is important to make certain fair and reliable hate
speech detection. Persisted studies and improvement on this discipline might be es-
sential to harness the entire capability of DRL in fighting hate speech and fostering
a more fit online environment. Deep Reinforcement Learning (DRL) is a framework
that combines Markov Decision Processes (MDPs) with deep neural networks. In
this framework, an agent interacts with an environment modeled as an MDP, which
consists of states, actions, transition probabilities, and immediate rewards [40] [32].
The agent observes the current state, selects an action based on its policy, and re-
ceives a reward from the environment. The aim of the agent is to learn a policy
that maximizes the expected cumulative reward over time. DRL utilizes deep neu-
ral networks, such as Deep Q Networks (DQNs) or Policy Gradient networks, to
approximate the action-value function or policy function. The parameters of these
neural networks are updated using algorithms like Q-learning or Policy Gradient
algorithms, enabling the agent to learn and adapt its decision-making policy based
on observed rewards and state transitions [41]. By continuously interacting with the
environment and using deep neural networks, DRL can effectively handle complex
and high-dimensional problems, making it a powerful approach for applications like
hate speech detection on social media platforms.

Several research studies have looked at hate speech detection using audio and text in-
put. Deep learning algorithms have been proposed by researchers to integrate audio
and textual components for identifying hate speech in languages such as Amharic
[55] [56]. They collected audio data from YouTube videos and used the Google
Speech-to-Text API to convert it to text. Word2vec was used to extract textual fea-
tures, while Mel-Frequency Cepstral Coefficient (MFCC) was used to extract acous-
tic data. A multi-modal model was created using four deep learning algorithms:
LSTM, BILSTM, GRU, and BIGRU. The results revealed that the multi-modal
model with BILSTM outperformed other tests, detecting Amharic hate speech with
an accuracy of 88.15% [57]. Efforts have also been made to discover hostile memes
using analysis, which combines visual and linguistic clues utilizing lightweight ar-
chitectures and classification models [58] [59].
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Chapter 3

Methodology

Hate speech detection with machine learning entails building a model to identify
and classify hostile or offensive text or speech. The data sets and the planned study
are introduced and described in detail. Explain how you got your hands on this info
and what you did with it. A comprehensive overview of the paper’s data sets and
proposed work is provided. Describe the data collection process and the data set.
Below is a detailed diagram of the workflow.

Figure 3.1: Workflow for Text-based Hate Speech Detection

3.1 Data Set
In this section, we delineate the comprehensive data collection process undertaken to
construct the datasets utilized in this study. Our efforts encompassed the acquisition
of textual data from social media platforms, specifically Facebook and Twitter, and
the subsequent conversion of this audio information into text files.
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3.1.1 Text Data Collection
The objective of this phase is to curate a dataset containing instances of hate speech,
with a focus on identifying content that may exhibit racist or sexist sentiments. We
conducted the data collection in adherence to a structured approach outlined below:

Data Source Selection

We constructed a dataset by combining three frequently used hate speech detection
datasets: the OLID dataset [61], the White Supremacy Forum [60], and the AHSD
dataset [62]. Our preparation included removing texts that included no terms from
the provided list, marked as L. The resulting dataset contains 27,368 messages,
4,818 of which are classified as normal and 22,550 as hate speech. Following that,
we executed a 4:1 random split into training and test sets. Each experiment was
iterated five times to ensure robustness, using different random seeds for variety.

Data Crawling and Sampling

We used data sourcing methods to gather the information, mostly depending on
GitHub rather than web scraping techniques such as the Facebook Graph API and
other similar tools because of the inherited meaning of various words. Our data-
gathering technique was designed to include posts and comments from a variety of
topical topics, guaranteeing a complete representation of user-generated material.

Data Processing for Hate Speech

Several main functions are used in the data processing step to prepare and sup-
plement the dataset for hate speech identification. The following are the major
functions:

• Estimating Probability - The get_prob_dict function was used to retrieve
the probability distribution of each word in the dataset. specified the whole
dataset, this function computes the probability (P(h’)) of each word in a speci-
fied list. It uses a Counter object to count word occurrences and then computes
the probability.

• Data Augmentation: - We used the get_augmented_tweets_with_prob func-
tion to enrich the data. This method substitutes words in a given tweet with
terms from a list provided. The replacement is carried out based on the
predicted probabilities, ensuring that the adjustments are diverse and contex-
tually relevant. Furthermore, the function allows for word misspellings, which
adds to the variety of the supplemented dataset.

• Misspelling Function - The misspell_hw function creates misspellings for hate
words, adding spelling variances to improve the model’s resilience.

• Misspelling Dictionary - The get_misspell_dict method generates a dictionary
that maps original hate words to misspelled variants, easing the misspelling
augmentation process.
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• Replacement and Misspelling of Test Data - The replace_test_hw and mis-
spell_test_hw routines replace or misspell hate words in the test dataset.
These features imitate real-world settings in which hate speech may include
misspellings or the usage of synonyms.

We want to improve the diversity and complexity of our dataset by using these data
processing methods, which will provide a solid foundation for training and assessing
our hate speech detection model. The use of probability-based word substitution
and misspelling provides subtle variations, which improves the model’s capacity to
generalize across various forms of hate speech in both text and audio modes.

Privacy and Ethical Considerations

Adhering to stringent privacy and ethical standards, we took measures to safeguard
user identities. Both commenter and original poster names were meticulously re-
moved from the dataset, ensuring the privacy and anonymity of the individuals
involved. These steps underscore our unwavering commitment to data integrity and
privacy protection throughout this study.

3.1.2 Audio-to-Text Conversion for Hate Speech Detection:
An important part of our technology for hate speech identification is the translation
of audio data into text. The approach is critical for seamlessly integrating both
textual and aural data for a thorough study of hate speech. Our methodology is
outlined by the approaches listed below:

Speech Recognition Library Integration

We used the SpeechRecognition package to make it easier to convert audio files to
text. This sophisticated library provides a variety speech recognition engines, and
we chose the Google Web Speech API for its strong performance.

Audio-to-Text Conversion Function

The audio-to-text conversion mechanism is encapsulated in the convert_audio_to_text
function. This method handles ambient noise with the SpeechRecognition recog-
nizer, records the audio, and then uses the Google Web Speech API for transcrip-
tion.

Integration with Google Drive

The solution offers capabilities to download audio files from Google Drive to the local
Colab environment, improving accessibility and integrating audio data seamlessly
into the hate speech detection pipeline.

Audio File Processing with FFmpeg

To ensure compatibility and efficient audio file processing, the code involves the
installation of FFmpeg, a multimedia processing program.
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Formatted Path and Text Conversion

The path to the converted audio file is prepared for further examination. To retrieve
the transcribed text from the audio, the convert_audio_to_text function is called.
Finally, the identified text is presented, bringing the audio-to-text conversion process
to a close. This transcribed material is incorporated into our dataset for hate speech
detection.

Quality Assurance

To maintain the highest standards of data quality, we performed periodic checks on
the converted audio files. This involved verifying that the audio accurately reflected
the corresponding text content, with particular attention to any subtle variations or
nuances that might carry additional meaning.

3.1.3 Data Consistency
Efforts were made to ensure that the audio data maintained consistency with the
text data. Each audio file corresponded to a specific text record, facilitating a
cohesive analysis of hate speech and offensive language across both modalities.
This robust and efficient audio-to-text conversion process guarantees that audio
data is seamlessly integrated into our hate speech detection framework, boosting the
model’s capacity to evaluate and contextualize hate speech across multiple modali-
ties.

3.2 Proposed Work
In our research, we aim to address the pervasive issue of hate speech, which manifests
in both textual and auditory forms. Our approach is bifurcated into two primary
sections: text-based and audio-based hate speech detection. Each of these methods
is designed to tackle the unique challenges posed by their respective mediums. Then
observing the complex analysis we try to build a multi-modal transformer-based
Hate Speech Detection method.

3.2.1 Text-Based Hate Speech Detection
The plan of action drawn out to conduct the research included a number of steps.
First, we will conduct an analysis of how hate speech was communicated in a gen-
eral sense as well as what material we ought to concentrate on. After conducting
research, we discovered that there are three primary modes by which hate speech is
communicated. The following tweets and posts from Facebook and Twitter that con-
tain mixed language, inflammatory language, and hate speech were then collected.
A dataset is created by combining all of them together. We compiled the dataset,
and then we turned it into a variety of other sorts of data. From each distinct kind
of dataset, we extracted the determining elements and attributes. The next step
was to collect features, after which we used a number of different machine learning
algorithms and deep learning methods to determine whether or not the content was
hateful. We used the results from each of these algorithms and methods in a unique
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way and then combined them to get the final result. The figure shows the whole
process of prediction of the data set:

3.2.2 Audio-Based Hate Speech Detection
The process for audio-based hate speech detection is more intricate due to the com-
plexities of auditory data. Initially, we embarked on a data collection phase, sourcing
audio files that potentially contained hate speech. This was followed by a prepro-
cessing step, where the audio files were cleaned, normalized, and readied for feature
extraction. In the feature extraction phase, key auditory signatures indicative of
hate speech, such as tone, pitch, and specific phonetic patterns, were identified.
Once the features were extracted, we proceeded to the model training phase. Here,
the extracted features were fed into machine learning algorithms to train them to
recognize hate speech patterns. Post-training, the models underwent a rigorous
evaluation phase to ascertain their accuracy and reliability. Successful models were
then deployed in real-world scenarios for hate speech detection.
The deployment phase is crucial. Here, the models actively scan and analyze audio
data in real-time or batch-processing modes to detect hate speech. Any detected
hate speech triggers the feedback loop, where the model’s decision is either reinforced
or corrected based on the accuracy of its detection. This continuous feedback ensures
that the model remains updated and evolves with changing patterns of hate speech.

Figure 3.2: Workflow for Audio-based Hate Speech Detection

3.2.3 Data Processing for Transformer based model
The process incorporates downloading an audio file from Google Drive, loading it,
adjusting for ambient noise, recording the adjusted audio, converting it to text using
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the SpeechRecognition library, and displaying the transcribed text output, indicat-
ing the successful audio-to-text conversion process. The script then uses the Google
Web Speech API to convert the audio into text. The workflow diagram illustrates
the execution of a process for detecting hate speech. It starts by calculating the
probability of each word’s occurrence in the dataset, P(h’), which is crucial for data
augmentation. The script then augments tweets by replacing words with random
words, introducing diversity and variability. A misspelling dictionary is generated
for hate words, enhancing the model’s robustness. The code then replaces hate words
in test data with random words, showcasing variations in hate speech expressions.

Figure 3.3: Data Processing for Transformer based model.
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Chapter 4

Model Specification

4.1 Machine Learning
Machine learning (ML) is a subfield of artificial intelligence that studies strategies
that allow computers to acquire knowledge from data requiring explicitly program-
ming it. In basic terms, an ML model detects similarities in data to generate ac-
curate predictions or judgments. The procedure includes conditioning the model
using data, assessing its efficacy, and using variables that were provided (features)
to foresee an output (goal). There are three forms of machine learning: supervised
training (using labeled data), unsupervised training (using unlabeled data), and re-
inforcement programming (in which the model learns via interaction and feedback).
The mathematical foundation of machine learning includes likelihood, linear algebra,
data analysis, calculus, as well as data theory. These fundamentals are critical for
optimizing and understanding algorithm behavior. In the setting of discriminatory
language detection, the goal is to determine if a particular piece of writing or audio
includes hate speech. Audio data is frequently converted into characteristics such as
spectrograms prior to analysis. Dan Jurafsky and James H. Martin’s ”Speech and
Language Processing” provides insights into natural language processing, whereas
Ian Goodfellow, Yoshua Bengio, and Aaron Courville’s ”Deep Learning” explores
the complexities of deep learning. The work ”Automated Hate Speech Detection
and the Problem of Offensive Language” by Davidson et al. (2017) addresses the
difficulty of identifying hate speech. It’s imperative to approach hate speech detec-
tion with an awareness of ethical considerations, as biases in training data can lead
to skewed or unjust classifications.

4.2 Text-based Detection Experiment

4.2.1 Supervised Learning
Supervised training is a fundamental technique to machine learning in which a model
is trained on a dataset that includes both the input information as well as the
expected outputs or labels. The model’s goal in learning from this labeled data
is to develop a connection among both inputs and outputs, permitting it to make
projections on previously unknown data. The basic concept of supervised learning is
iteratively modifying a model’s inner parameters in order to reduce the discrepancy
between predictions and actual labels within the set used for training.
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Given a dataset with m examples, each input is represented as a vector x(i) and
has a corresponding label y(i). The model’s predictions are given by the hypothesis
function hθ(x

(i)). The objective is to find parameters θ that minimize the overall
error or loss, often represented as:

J(θ) =
1

m

m∑
i=1

L(y(i), hθ(x
(i))) (4.1)

where L is a suitable loss function.
When applying supervised learning to hate speech detection, the task becomes a
binary classification problem: categorizing text or audio as either hate speech or not.
The labeled dataset provides examples of both categories, and the model learns the
distinguishing features and patterns associated with hate speech. Feature extraction
becomes pivotal, transforming raw text or audio into a numerical format that can
be processed by the model. Once features are extracted, the model is trained to
recognize and differentiate between hate speech and non-hate speech patterns.
For a text with n unique words or features, its representation can be a vector x ∈ Rn.
The label, indicating hate speech, is y, where y ∈ {0, 1} (0 for non-hate speech
and 1 for hate speech). The loss function for binary classification, such as logistic
regression, can be:

L(y, hθ(x)) = −y log(hθ(x))− (1− y) log(1− hθ(x)) (4.2)

Optimization techniques, like gradient descent, adjust the model’s parameters θ to
minimize this loss, with the update rule:

θnew = θold − α∇θL (4.3)

where α is the learning rate.

4.2.2 Support Vector Machine (SVM)
Support Vector Machines (SVMs) are a collection of supervised learning techniques
used for regression and classification. At their heart, SVMs seek to identify the
region of space that best separates a dataset into classifications. The ”support
variables” are the data values closest to the hyperplane and the most troublesome
to categorize, impacting the hyperplane’s location and orientation. The capacity of
SVMs to convert the input space into a space with more dimensions using kernel
functions enables non-linear classification.
Given a dataset with data points xi and labels yi ∈ {−1, 1}, the objective of SVM
is to find the optimal hyperplane defined by weights w and bias b that maximizes
the margin between the two classes. The decision function is given by:

f(x) = w · x+ b (4.4)

The optimization problem can be formulated as:

min
w,b

1

2
‖w‖2 (4.5)
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subject to the constraints:

yi(w · xi + b) ≥ 1∀i (4.6)

where the constraint ensures that all data points are correctly classified outside the
margin.
When applying SVMs to hate speech detection, the goal is to classify text data as
either hate speech or not. Each piece of text is transformed into a feature vector,
often using techniques like TF-IDF or word embeddings. The SVM then learns
the optimal hyperplane that separates the hate speech examples from the non-hate
speech ones in this feature space. Given the high-dimensional nature of text data
and the potential non-linear boundaries between hate speech and non-hate speech,
kernelized SVMs, which implicitly map data to a higher-dimensional space, are often
preferred for this task.
For non-linear classification, SVMs employ kernel functions to implicitly map the
input data into a higher-dimensional space. A popular choice is the Radial Basis
Function (RBF) kernel:

K(xi,xj) = exp(−γ‖xi − xj‖2) (4.7)

where γ is a parameter controlling the shape of the decision boundary. In the
transformed space, the decision function becomes:

f(x) =
m∑
i=1

αiyiK(xi,x) + b (4.8)

where αi are the Lagrange multipliers obtained from solving the dual optimization
problem, and m is the number of training examples.

4.2.3 Logistic Regression
Logical regression is a method of statistical analysis that is commonly used for
problems related to binary classification. Unlike the method of linear regression,
whose predicts values that are continuous, logistical regression predicts the likelihood
that a given occurrence falls into a certain category. This probability is estimated
by the model using a logistic function, which ensures that the outcome is between
0 and 1. Typically, the selection boundary is set at a value of 0.49 with examples
having a probability larger than this threshold assigned to one class and those with
a probability less than this level assigned to another.
Given an input feature vector x, the logistic regression model computes a weighted
sum of the features, z = wTx + b, where w is the weight vector and b is the bias
term. This sum is then passed through the logistic (sigmoid) function to produce
the probability p that the instance belongs to the positive class:

p = σ(z) =
1

1 + e−z
(4.9)

The model is trained by adjusting w and b to maximize the likelihood of the observed
data, which is equivalent to minimizing the logistic loss.
In the context of hate speech detection using Logistic Regression, the text data is
first transformed into a numerical representation, such as TF-IDF scores or word
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embeddings. Each piece of text is then associated with a probability of being hate
speech. By setting a threshold, typically 0.5, the model classifies texts with proba-
bilities above the threshold as hate speech and those below as non-hate speech. The
strength of logistic regression lies in its simplicity and interpretability, making it a
popular choice for binary classification tasks like hate speech detection.
For a given text represented by x, the probability p that it is hate speech is given
by:

p = σ(wTx+ b) (4.10)

The model’s parameters w and b are learned by minimizing the logistic loss over the
training data:

L(y, p) = −y log(p)− (1− y) log(1− p) (4.11)

where y is the true label (1 for hate speech and 0 for non-hate speech). The opti-
mization is typically performed using methods like gradient descent.

4.2.4 Naive Bayes
The naive Bayes method is a stochastic method of categorization that uses Bayes’
theorem and makes the assumption that features are independent. This ”naivety”
relates to the technique’s simplistic assumption that each variable contributes sepa-
rately to the likelihood of an outcome, no matter the other features’ values. Despite
its straightforward nature and naïve assumptions, naïve Bayes may be quite success-
ful, particularly in text classification applications, because to its capacity to handle
a huge number of features.
Given a set of features x = (x1, x2, . . . , xn) and a class label C, Bayes’ theorem
states:

P (C|x) = P (x|C)× P (C)

P (x)
(4.12)

In the context of classification, we’re interested in finding the class C that maximizes
P (C|x). Using the naive independence assumption, the likelihood term P (x|C) can
be decomposed as:

P (x|C) =
n∏

i=1

P (xi|C) (4.13)

When applying Naive Bayes to hate speech detection, the algorithm calculates the
probability of a text being hate speech based on the occurrence of individual words
or n-grams within it. Each word or n-gram contributes independently to the overall
probability. Texts are then classified as hate speech or non-hate speech based on
which category has a higher posterior probability. Due to its efficiency and scal-
ability, Naive Bayes is particularly suited for high-dimensional datasets, like those
encountered in text classification tasks.
Given a text represented by a set of words w = (w1, w2, . . . , wm), the probability
that it belongs to a class C (e.g., hate speech) is proportional to:

P (C|w) ∝ P (C)×
m∏
j=1

P (wj|C) (4.14)
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To classify the text, we compare P (C|w) for each possible class and choose the
one with the highest probability. In practice, to avoid numerical underflow due
to multiplying many small probabilities, the computations are often done in the
logarithmic domain:

logP (C|w) ∝ logP (C) +
m∑
j=1

logP (wj|C) (4.15)

4.2.5 Gradient Boosting
Gradient enhancement is an aggregate machine learning approach that creates a
powerful predictive model by integrating the outputs of numerous weak learners,
most often decision trees. The basic principle underlying the booster of gradients is
to repeatedly add branches to the model, with each new tree correcting the mistakes
committed by the preceding trees. This allows the model to continue to improve its
predictions. The term ”gradient” in the context of gradient boosting alludes to the
technique’s use of slope descent in order to reduce the loss function, directing the
formation of new branches to locations where they will be most useful.
Given a dataset with n samples {(x1, y1), (x2, y2), . . . , (xn, yn)}, the prediction of the
model after adding m trees is:

Fm(x) = Fm−1(x) + α · hm(x) (4.16)

where Fm−1(x) is the prediction of the model after m − 1 trees, hm(x) is the pre-
diction of the m-th tree, and α is the learning rate. The new tree hm is trained to
approximate the negative gradient of the loss function with respect to the model’s
predictions.
In the context of hate speech detection using Gradient Boosting, the algorithm is
trained to classify text data as either hate speech or not. Each piece of text is
transformed into a feature vector, often using techniques like TF-IDF or word em-
beddings. The gradient boosting model then learns to differentiate between hate
speech and non-hate speech by iteratively adding trees that correct the misclassifi-
cations of the previous trees. The ensemble nature of gradient boosting, combined
with its ability to focus on hard-to-classify instances, makes it a powerful tool for
tasks like hate speech detection where the decision boundary might be complex.
Given a text represented by a feature vector x, the gradient boosting model updates
its prediction as:

Fm(x) = Fm−1(x) + α · hm(x) (4.17)

The new tree hm is trained to fit the residuals, which are the differences between
the true labels and the predictions of the model after m− 1 trees. The residuals are
given by:

ri,m = yi − Fm−1(xi) (4.18)

for each sample i. The tree hm is then fit to these residuals, effectively guiding the
model to focus on the samples it currently misclassifies.

23



4.2.6 Random Forest
Random forest modeling is a method of collaborative learning that uses several de-
cision trees to create a more precise and robust model. Each tree in the natural
environment is built using a portion of the data used for training and a selected
number of the features, adding unpredictability and variety to the model. When
producing forecasts, the random forest combines the outputs of all individual trees,
usually utilizing majority voting for tasks such as classification. This ensemble tech-
nique aids in preventing overfitting, addressing missing data, and assigning priority
ratings to features.
Given a dataset with n samples, a Random Forest with B trees selects a bootstrap
sample of size n (with replacement) for each tree. For each split in a tree, a random
subset of k features is chosen, and the best split among those features is used. The
final prediction for a new instance x is given by:

ŷ(x) =
1

B

B∑
b=1

Tb(x) (4.19)

where Tb(x) is the prediction of the b-th tree for instance x.
In the case of recognizing hateful speech with a random forest approach, the method
classifies text input as hate communication or not depending on the combined choices
of several decision trees. Every single piece of information is first turned into the
vector of features, which is frequently achieved by techniques such as TF-IDF or
word embedding. The system of random forests then assesses each text by routing
it through all of the trees in the canopy of the forest. The final categorization
is decided by a majority vote of each tree. Random Forest’s capacity to capture
complicated decision boundaries and natural resistance to overestimation make it
an appropriate candidate for hate speech identification.
Given a text represented by a feature vector x, the Random Forest model aggregates
the predictions of all its trees to make a final decision. If we denote the decision
of the b-th tree as Db(x) (with 1 indicating hate speech and 0 indicating non-hate
speech), the overall prediction is:

ŷ(x) =

{
1 if 1

B

∑B
b=1 Db(x) > 0.5

0 otherwise
(4.20)

This formula indicates that the text is classified as hate speech if more than half of
the trees in the forest vote in favor of it being hate speech.

4.2.7 K-Nearest Neighbors (KNN)
The k-nearest-neighbors algorithm (KNN) is a parametric in nature, instance-based
learning technique used in classification and regression problems. KNN is based
on the principle that data points that are connected ought to carry similar labels.
When predicting an unknown data the point, the algorithm examines the dataset
used for training for the k training instances closest to the point and delivers the
most frequent output value between them for categorization or a standard deviation
for regression. The ”distance” among data points may be calculated in a variety of
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methods, the distance calculated using Euclid constituting the one that is the most
used.
Given a dataset D with n samples and an unseen data point x, the KNN algorithm
identifies the k samples x1,x2, . . . ,xk from D that are closest to x based on a distance
metric, typically the Euclidean distance:

d(x,xi) =

√√√√ m∑
j=1

(xj − xij)2 (4.21)

where m is the number of features. For classification, the predicted label y for x is
the mode of the labels of the k nearest neighbors.
When applying KNN to hate speech detection, the algorithm classifies text data
based on the labels of its neighboring texts in the feature space. Each piece of text
is first transformed into a feature vector, often using techniques like TF-IDF or word
embeddings. The KNN algorithm then determines the classification of a given text
by examining the labels of its k closest texts in this feature space. If the majority
of these neighbors are labeled as hate speech, the text in question is also classified
as such. The simplicity of KNN, combined with its ability to make decisions based
on local data structures, can make it effective for tasks like hate speech detection,
especially when the decision boundary is complex.
For a given text represented by a feature vector x, the KNN algorithm finds the k
training examples x1,x2, . . . ,xk that are closest to x based on the chosen distance
metric. The predicted label y for x is then determined as:

y = mode{y1, y2, . . . , yk} (4.22)

where yi is the label of the i-th nearest neighbor. In the context of hate speech
detection, y = 1 might indicate hate speech, while y = 0 indicates non-hate speech.

4.2.8 Decision Trees
Decision Trees are a common machine learning approach for classification and re-
gression applications. They function by recursively partitioning data according to
attribute values, producing a decision tree-like model. At every branch of the tree,
the choice takes place based on a characteristic value, going down through the leaf
nodes, which reflect the ultimate predictions. The choice to divide at all nodes is
often made based on metrics such as knowledge gained or Gini contaminants, with
the goal of maximizing class separation or reducing variation.
The decision to split the data at a node based on a feature f and threshold t can
be determined using the Information Gain (IG) criterion, which is defined as:

IG(f, t) = Entropy(D)−
∑

v∈{L,R}

|Dv|
|D|

Entropy(Dv) (4.23)

where D is the dataset at the current node, DL and DR are the datasets that result
from splitting D based on the threshold t for feature f , and the entropy is given by:

Entropy(D) = −
c∑

i=1

pi log2(pi) (4.24)
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where pi is the proportion of samples in D that belong to class i, and c is the number
of classes.
In the context of hate speech detection using Decision Trees, the algorithm classifies
text data based on decisions made on its features, which can be word frequencies, TF-
IDF scores, or even embeddings. Each decision node in the tree evaluates a feature
of the text and decides which subsequent node to proceed to, eventually leading to
a leaf node that provides the classification. Decision Trees offer a transparent and
interpretable model, making it easier to understand which features play a significant
role in classifying a text as hate speech or not. However, they can be prone to
overfitting, especially when the tree is deep.
For a given text represented by a feature vector x, the Decision Tree provides a
classification by traversing from the root to a leaf node based on the decisions at
each node. The decision at each node n can be represented as:

Decision(n) =

{
Go to Left Child if x[fn] ≤ tn

Go to Right Child otherwise
(4.25)

where fn is the feature being evaluated at node n and tn is the threshold for that
feature at node n. The traversal continues until a leaf node is reached, which provides
the final classification.

4.3 Audio-based Deep Learning Experiment

4.3.1 Simple Feed-forward Neural Network
A Simple Feed-forward Neural Network (FFNN), sometimes known as a Feed-
forward Neural Network, is a sort of artificial neural network in which the con-
nections between the nodes (neurons) do not form a cycle. It is made up of three
layers: an input layer, one or more hidden layers, and an output layer. Each neuron
in one layer is linked to every neuron in the next layer. When input is supplied
into the network, it goes through each layer, going through a sequence of weighted
summations and activations until it reaches the output layer, where it produces a
prediction. The output of a neuron in the first hidden layer may be written as
follows given an input vector x:

h1 = σ(w1 · x+ b1) (4.26)

where w1 is the weight vector, b1 is the bias, and σ is the activation function (e.g.,
sigmoid, ReLU). This process is repeated for each layer, with the output of one layer
serving as the input to the next, until the final output layer is reached.
In the context of hate speech detection using a Simple Feed-forward Neural Network,
the network is trained to classify text data as either hate speech or not. Text data is
first transformed into a numerical representation, often using techniques like word
embeddings or TF-IDF. The FFNN then processes this numerical data, layer by
layer, to produce a final prediction. The power of FFNNs lies in their ability to
learn complex, non-linear decision boundaries, making them suitable for tasks like
hate speech detection where the relationship between features and labels might be
intricate.
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For a given text represented by a feature vector x, the FFNN processes it through
its layers to produce a prediction. If we consider a network with one hidden layer,
the output from the hidden layer is:

h = σ(Whx+ bh) (4.27)

where Wh is the weight matrix for the hidden layer and bh is the bias vector. The
final prediction ŷ from the output layer can be represented as:

ŷ = σ(Woh+ bo) (4.28)

where Wo is the weight matrix for the output layer and bo is the bias for the output.
The activation function σ can be a sigmoid function for binary classification, ensuring
the output is between 0 and 1.

4.3.2 Convolutional Neural Network (CNN)
Convolutional neural networks, more commonly are a form of deep neural network
designed primarily to interpret grid-like inputs such as images and sequences. They
excel at recognizing images and conversational processing. CNNs consist of layers
using convolution, layers using pooling, and fully interconnected layers. Convo-
lutional layers scan incoming data with filters (kernels) to detect local patterns.
Layer pooling decreases the dimension of space, but fully connected layers generate
classification results.
In a CNN, a convolutional layer performs convolution operations on the input data
using learnable filters. Given an input tensor I and a filter tensor K, the output
tensor O is computed by sliding the filter across the input and computing element-
wise multiplications and summations:

O(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n) ·K(m,n) (4.29)

This process is repeated for multiple filters, producing feature maps. Pooling layers
typically use operations like max-pooling to reduce the spatial dimensions of feature
maps.
When CNNs are used to identify hate speech, the network is trained to classify
text input as hate speech or non-hate speech. CNNs are created for image data,
but they may be adapted to text data by considering text as sequences of discrete
symbols such as words or letters. 1D convolutions are employed in text-based CNNs
to scan over sequences, collecting local patterns of words or characters. This enables
CNNs to learn hierarchical text representations, from individual letters to higher-
level language structures, making them useful for hate speech identification when
context and patterns are essential.
In a text-based CNN, given a sequence of word embeddings or characters x1, x2, . . . , xn,
a 1D convolution operation is applied using filters of various sizes. For each filter,
the convolution is computed as:

ci = ReLU(xi:i+k−1 ∗K) (4.30)

where xi:i+k−1 is a subsequence of x of length k starting at position i, K is the filter,
and ReLU is the rectified linear unit activation function. This operation captures
local patterns in the text. The resulting feature maps are then processed by fully
connected layers for classification.
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4.3.3 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks, also referred to as RNNs are neural networks that han-
dle sequential data. RNNs, unlike feedforward neural networks, include intercon-
nections that continually loop over themselves, allowing them to maintain a hidden
state or memory of previous inputs. RNNs are ideal for applications that need pat-
terns, like the processing of natural language and time sequence analysis, because
of their ability to detect temporal correlations. RNNs go through information one
phase at a time, modifying their internal concealed state based on its current input
and previous hidden condition at each step.
At each time step t in an RNN, the hidden state ht is updated based on the input
xt and the previous hidden state ht−1 using a set of learnable parameters W and U
as well as an activation function φ:

ht = φ(W · xt + U · ht−1) (4.31)

The output yt at each time step can be computed based on ht and is often used for
various tasks such as sequence prediction or classification.
When utilized for hate speech identification, RNNs may be used to process and
evaluate text input sequentially. The RNN treats text data as a sequence of words
or characters, and it processes each word in the sequence while updating its hidden
state. This enables the RNN to record word dependencies, which is critical for inter-
preting context and recognizing hate speech. Traditional RNNs, on the other hand,
might suffer from the vanishing gradient problem, which restricts their capacity to
capture long-term relationships.
In the context of hate speech detection, given a sequence of word embeddings or
characters x1, x2, . . . , xt, the hidden state ht at each time step t is updated as follows:

ht = φ(W · xt + U · ht−1) (4.32)

Classification may be performed using the output yt at each time step. To overcome
the problem of vanishing gradients, RNN versions that utilize LSTM (Long Short-
Term Memory) and the Gated Recurrent Unit, or GRU, have been created to better
capture long-range relationships in sequential data.

4.4 Transformer Based Proposed Model Architec-
ture

The BERT model architecture (Bidirectional Encoder Representations from Trans-
formers) is a multi-layer bidirectional Transformer encoder. It is based on the orig-
inal implementation reported by Vaswani et al. (2017) and is available in the ten-
sor2tensor library,[object Object]. The architecture is made up of several layers
(Transformer blocks) labeled as L, a hidden size denoted as H, and a number of
self-attention heads denoted as A,[object Object]. Unlike some other language rep-
resentation models, BERT’s architecture is consistent across tasks, with only minor
differences between the pre-trained and final downstream architectures,[object Ob-
ject]. Because of its uniform design, BERT can be fine-tuned with only one extra
output layer to generate cutting-edge models for a wide range of tasks without
requiring significant task-specific architectural modifications,[object Object].
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Figure 4.1: Presented a detailed overview of our proposed model
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A hate speech detection model may be thought of as a functional projection from
a set of input texts (T) to a set of target labels (Y), with each input text (t)
corresponding to a specific label (y). The softmax probabilities for forecasting each
class (k) are commonly represented by the model output, indicated as fk(t; θ) =
P(Y = yk‖t), where denotes the model parameters. We assume the presence of a
specified collection of target words (H), which often includes hostile or sentimental
expressions. Let X represent the rest of the text after removing the words from H,
i.e., T = X, H. Adversarial cases are instances in which detection model inputs are
deliberately perturbed on H to cause errors in the model’s predictions.
As Pearl [63] pioneered, causal graphs are frequently used techniques for depicting
causal links among variables. These graphs are basically directed acyclic graphs
(DAGs), represented by the formula G = V, E, where V represents a set of variables
and E denotes the causal connections between them.
As shown in Fig. 1, we propose a causal network to explain hate speech detection
in our technique. This graph contains variables X, H, and Y, and introduces I to
represent a user’s hatred intent. Recognizing the inherent difficulty in determining
a user’s actual intent, we regard I as a latent variable represented by the dashed
circle in the graph.

Figure 4.2: Casual Graph for Hate Speech Detection

The graph’s causal links may be explained as follows: when a user is motivated
to distribute hateful information, they choose target words (possibly vulnerable
to subsequent changes) to communicate the hostile meaning within the remaining
text. As a result, I is the parent variable of both H and X, which in turn are the
parents of Y. To illustrate, given a text T, such as ”We don’t want more [religious
group] in this country. Enough with those MAGGOTS,” H corresponds to the term
”MAGGOTS,” and X signifies the leftover text.
We identify a key explanation for the lack of resilience in vanilla detection models
against adversarial assaults using the causal network. The problem is that these
models make predictions based not just on the semantic meanings of texts, but also
on the accidental association between X and Y via H (i.e., X - I - H - Y). The
inclusion of target words has a significant impact on this association. For example,
if some target phrases, such as explicit language, show a significant association with
the hate label during training, the model may become unduly reliant on predicting
hatred based on the mere appearance of these words, ignoring the larger context
of the entire text. As a result, when adversarial assaults interfere to disrupt such
correlations, such as by eliminating the target words, the detection model becomes
manipulable and prone to producing incorrect predictions.
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To improve the detection model’s resilience to perturbations, it is critical to prevent
the model from learning erroneous correlations. The penalty we suggest for the
causal influence of H on Y during training effectively prevents the emergence of such
misleading correlations. The job of inferring causal impacts in machine learning is
extremely difficult. We argue in this study for the use of the idea of causal strength,
as established in [64]. This measure seeks to assess the impact of a causal graph
intervention that removes certain arrows. In this case, we want to test how deleting
the link between target terms and hate labels by changing the target words affects
the outcome. The causal strength of the arrow from H to Y (H Y) reflects this.

L = LCE + λCH → Y = (1− λ)LCE + λLI (4.33)

In the equation above, we go deeper into the understanding of the word LI. As pre-
viously stated, the artificial correlation between X and Y makes standard detection
methods vulnerable to adversarial assaults. The backdoor adjustment technique, a
well-established strategy for removing false correlations [63], is used to solve this
issue. This method has found effective applications in a variety of tasks, including
picture captioning and question answering, adding to model robustness enhance-
ment.
The interventional distribution P(Y |do(X)) is determined via backdoor adjustment,
as shown in the causal graph in Fig. 4.1.

P (y|do(x)) =
∑
h′

P (h′)P (y|x, h′) (4.34)

When the two formulations are compared, a striking likeness appears. This re-
semblance stems from the fact that both the ”arrow cutting” and the backdoor
adjustment procedures disturb the route X - I - H - Y. However, using the interven-
tional distribution P(Y ‖do(X)) directly for predictions is difficult since the model’s
utility is dependent on the closeness of P(Y ‖do(X)) to the real distribution, which is
beyond of the user’s control. As a result, our loss formulation in the previous equa-
tion may be considered as an extension of backdoor adjustment-based techniques
that are solidly founded on the causal strength theorem.
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Chapter 5

Performance Analysis

5.1 Data Analysis
Hate speech, which is defined as any kind of discourse that discriminates or pro-
motes assault against people or groups based on characteristics such as race, faith,
sexual orientation, or ethnicity, presents a serious difficulty in the modern digital
age. The emergence of the internet as well as online forums has accelerated the
dissemination of hate speech, necessitating the development of efficient measures
for its identification and prevention. In this data analysis part, we take a thorough
approach to addressing this issue, leveraging a wide range of machine education and
deep learning strategies.

5.1.1 Text-Based Hate Speech Detection: Leveraging Ma-
chine Learning Algorithms

In the realm of text-based hate speech detection, we employ a suite of machine
learning algorithms, each with its own strengths and capabilities. These algorithms
include Support Vector Machines (SVM), Logistic Regression, Naive Bayes, Deci-
sion Trees, K-nearest neighbors (KNN), Random Forest, and Gradient Boosting.
Through this extensive selection, we aim to assess the effectiveness of both linear
and non-linear models, ensemble techniques, and tree-based methods in identifying
and classifying hate speech within textual content.

Support Vector Machine (SVM)

In the domain of hate speech detection from textual data, the performance of the
Support Vector Machine (SVM) classifier was subjected to rigorous evaluation. To
assess the model’s effectiveness, a comprehensive examination of its classification
outcomes was conducted employing the confusion matrix, a fundamental tool for
evaluating binary classification models.
The resulting confusion matrix is presented as follows:[

7008 0
427 0

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
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and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”0.”

• False Positives (FP): The number of instances erroneously classified as hate
speech is ”0.”

• True Negatives (TN): Instances correctly classified as non-hate speech total
”7008.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are, in fact, hate speech amount to ”427.”

The calculated accuracy of the SVM-based hate speech detection model stands at
0.9425 (94.25%). Accuracy serves as a foundational performance metric, denoting
the ratio of correctly predicted instances out of the overall dataset. In this specific
context, it reflects the model’s ability to accurately discern instances as either hate
speech or non-hate speech based on the textual data provided.
The performance evaluation outcomes underscore that while the SVM model ex-
celled in correctly identifying instances of non-hate speech, it faced challenges in
detecting hate speech, as demonstrated by the notable count of false negatives.
This observation underscores the need for further model refinement to enhance its
sensitivity to hate speech instances, all while preserving a high level of precision.
The presented performance evaluation findings constitute a pivotal step toward the
advancement of more robust and effective hate speech detection systems. Such
endeavors are paramount in fostering safer and more inclusive digital platforms in
the contemporary digital landscape.

Logistic Regression

In the context of hate speech detection from textual data, we employed a Logis-
tic Regression classifier and subsequently evaluated its performance rigorously. To
comprehensively assess the model’s effectiveness, we employed a confusion matrix,
a fundamental tool for evaluating binary classification models.
The resulting confusion matrix is presented as follows:[

6910 98
347 80

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”80.”

• False Positives (FP): The number of instances erroneously classified as hate
speech when they are non-hate speech is ”98.”
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• True Negatives (TN): Instances correctly classified as non-hate speech total
”6910.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are hate speech amount to ”347.”

The calculated accuracy of the Logistic Regression-based hate speech detection
model stands at 0.94014 (94.01%). Accuracy is a fundamental performance met-
ric representing the ratio of correctly predicted instances out of the entire dataset.
In this specific context, it reflects the model’s ability to accurately distinguish be-
tween instances of hate speech and non-hate speech based on the provided textual
data.
It is noteworthy that while the Logistic Regression model demonstrated a high
accuracy rate, there were instances of false positives and false negatives. False
positives indicate cases where non-hate speech was incorrectly classified as hate
speech, while false negatives signify instances of hate speech that were erroneously
labeled as non-hate speech. These results underscore the necessity of further model
refinement to minimize such misclassifications and enhance overall performance.
The presented performance evaluation findings represent a pivotal step in the ongo-
ing effort to develop robust and effective hate speech detection systems, contributing
to the creation of safer and more inclusive digital environments.

Naive Bayes

In the domain of hate speech detection from textual data, we employed the Naive
Bayes classifier and subsequently conducted a comprehensive evaluation of its per-
formance. The evaluation leveraged a confusion matrix, a foundational tool for
assessing binary classification models.
The resulting confusion matrix is presented as follows:[

3289 3719
168 259

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”259.”

• False Positives (FP): The number of instances erroneously classified as hate
speech when they are non-hate speech is ”3719.”

• True Negatives (TN): Instances correctly classified as non-hate speech total
”3289.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are hate speech amount to ”168.”
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The calculated accuracy of the Naive Bayes-based hate speech detection model
stands at 0.4772 (47.72%). Accuracy is a central performance metric representing
the ratio of correctly predicted instances out of the entire dataset. In this specific
context, it reflects the model’s ability to distinguish between instances of hate speech
and non-hate speech based on the provided textual data.
It is worth noting that the Naive Bayes model, while achieving a certain level of
accuracy, exhibited a substantial number of false positives and false negatives. False
positives denote instances where non-hate speech was incorrectly classified as hate
speech, while false negatives signify instances of hate speech that were erroneously
labeled as non-hate speech. These results underscore the need for further model
refinement to mitigate such misclassifications and enhance overall performance.
The presented performance evaluation findings contribute to our understanding of
the capabilities and limitations of Naive Bayes in hate speech detection. They
represent an essential step in the ongoing endeavor to develop more robust and
effective hate speech detection systems, ultimately fostering safer and more inclusive
digital environments.

Gradient Boosting

In the domain of hate speech detection from textual data, we employed the Gradi-
ent Boosting classifier and conducted a comprehensive evaluation of its performance.
This assessment included a detailed examination of the model’s classification out-
comes using a confusion matrix, a fundamental tool for assessing binary classification
models.
The resulting confusion matrix is presented as follows:[

6971 37
380 47

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”47.”

• False Positives (FP): The number of instances erroneously classified as hate
speech when they are non-hate speech is ”37.”

• True Negatives (TN): Instances correctly classified as non-hate speech total
”6971.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are hate speech amount to ”380.”

The calculated accuracy of the Gradient Boosting-based hate speech detection model
stands at 0.943913 (94.39%). Accuracy is a fundamental performance metric rep-
resenting the ratio of correctly predicted instances out of the entire dataset. In
this specific context, it reflects the model’s ability to accurately distinguish between
instances of hate speech and non-hate speech based on the provided textual data.
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It is important to note that while the Gradient Boosting model demonstrated a high
level of accuracy, the presence of both false positives (instances incorrectly classified
as hate speech) and false negatives (instances of missed hate speech) necessitates
careful consideration. These misclassifications can have significant consequences in
real-world applications, where the accurate identification of hate speech is crucial.
In conclusion, the presented performance evaluation findings provide insights into
the capabilities of the Gradient Boosting algorithm in hate speech detection. While
the model exhibited a commendable level of accuracy, further refinements may be
necessary to minimize false positives and false negatives, ultimately enhancing the
precision and effectiveness of hate speech detection systems.

Random Forest

In the realm of hate speech detection from textual data, we employed the Random
Forest classifier and conducted an in-depth evaluation of its performance. This eval-
uation involved a thorough examination of the model’s classification outcomes using
a confusion matrix, a fundamental tool for assessing binary classification models.
The resulting confusion matrix is presented as follows:[

6861 147
290 137

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”137.”

• False Positives (FP): The number of instances erroneously classified as hate
speech when they are non-hate speech is ”147.”

• True Negatives (TN): Instances correctly classified as non-hate speech total
”6861.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are hate speech amount to ”290.”

The calculated accuracy of the Random Forest-based hate speech detection model
stands at 0.94122 (94.12%). Accuracy is a central performance metric representing
the ratio of correctly predicted instances out of the entire dataset. In this specific
context, it reflects the model’s ability to accurately distinguish between instances of
hate speech and non-hate speech based on the provided textual data.
It is crucial to note that while the Random Forest model exhibited a commendable
level of accuracy, the presence of both false positives (instances incorrectly classi-
fied as hate speech) and false negatives (instances of missed hate speech) warrants
careful consideration, especially in real-world applications where the consequences
of misclassification can be significant.
In conclusion, the presented performance evaluation findings shed light on the capa-
bilities of the Random Forest algorithm in hate speech detection. While the model
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demonstrated a high level of accuracy, further refinements may be necessary to re-
duce false positives and false negatives, ultimately enhancing the overall precision
and efficacy of hate speech detection systems.

K-Nearest Neighbors (KNN)

In the domain of hate speech detection from textual data, the performance of the K-
Nearest Neighbors (KNN) classifier was subject to a comprehensive evaluation. The
assessment entailed a detailed examination of the model’s classification outcomes
using a confusion matrix, a fundamental tool for evaluating binary classification
models.
The resulting confusion matrix is presented as follows:[

6894 114
322 105

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”105.”

• False Positives (FP): The number of instances erroneously classified as hate
speech when they are non-hate speech is ”114.”

• True Negatives (TN): Instances correctly classified as non-hate speech total
”6894.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are hate speech amount to ”322.”

The calculated accuracy of the KNN-based hate speech detection model stands at
0.94135 (94.14%). Accuracy serves as a fundamental performance metric represent-
ing the ratio of correctly predicted instances out of the entire dataset. In this specific
context, it reflects the model’s ability to accurately distinguish between instances of
hate speech and non-hate speech based on the provided textual data.
The performance evaluation outcomes underscore that the KNN model exhibited
a high degree of accuracy, indicating its effectiveness in correctly classifying both
hate speech and non-hate speech instances. However, as with any classification
model, there are trade-offs to consider. Notably, false positives (instances incorrectly
classified as hate speech) and false negatives (instances of missed hate speech) are
important considerations, especially in real-world applications.
In conclusion, the presented performance evaluation findings provide insights into
the capabilities of the K-Nearest Neighbors (KNN) algorithm in hate speech de-
tection. While the model demonstrated a commendable level of accuracy, further
refinements may be necessary to reduce false positives and false negatives, enhancing
the overall precision and utility of hate speech detection systems.
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Decision Trees

In the context of hate speech detection from textual data, the performance of the
Decision Trees classifier was subjected to rigorous evaluation. The assessment in-
volved a detailed examination of the model’s classification outcomes through the use
of a confusion matrix, a fundamental tool for assessing binary classification models.
The resulting confusion matrix is presented as follows:[

6699 309
285 142

]
This matrix is structured as a 2x2 table, where the rows correspond to the ac-
tual class labels, distinguishing between instances of hate speech (denoted as ”1”)
and non-hate speech (denoted as ”0”), while the columns represent the classifier’s
predictions.

• True Positives (TP): The count of instances accurately classified as hate
speech is ”142.”

• False Positives (FP): The number of instances erroneously classified as hate
speech when they are non-hate speech is ”309.”

• True Negatives (TN): Instances correctly classified as non-hate speech total
”6699.”

• False Negatives (FN): Instances incorrectly labeled as non-hate speech
when they are hate speech amount to ”285.”

The calculated accuracy of the Decision Trees-based hate speech detection model
stands at 0.9201 (92.01%). Accuracy is a fundamental performance metric that
quantifies the ratio of correctly predicted instances out of the entire dataset. In
this specific context, it reflects the model’s ability to accurately distinguish between
instances of hate speech and non-hate speech based on the provided textual data.
The performance evaluation results highlight that the Decision Trees model demon-
strated a high degree of accuracy, signifying its effectiveness in correctly classifying
both hate speech and non-hate speech instances. However, it is important to con-
sider the trade-offs between accuracy and other metrics, as false negatives (instances
of missed hate speech) may have significant consequences in real-world applications.
In conclusion, the presented performance evaluation findings contribute to our un-
derstanding of the Decision Trees algorithm’s capabilities in hate speech detection.
While the model showcased notable accuracy, further refinements may be necessary
to reduce false negatives and enhance its overall precision, ultimately contributing
to the development of more effective hate speech detection systems.

5.1.2 Speech-Based Hate Speech Detection: Harnessing the
Power of Deep Learning

We shift our attention to the identification of vitriol in spoken English, using deep
learning approaches. We investigate the use of Straightforward Feed-forward Neural
Networks (SFFNs), neural networks based on convolution (CNNs), and neural net-
work recurrent networks (RNNs). These systems for deep learning have exhibited
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amazing skills in a variety of applications, including image identification and natural
language processing. By applying them to speech data, we want to use their abilities
to discern hidden trends and contextual data from recordings of voices to identify
incidents like insulting language.

Feature Extraction: MFCC

The provided code snippet is designed to visualize the Mel-frequency cepstral coeffi-
cients (MFCCs) of an audio file. Initially, a CSV file named level.csv is read into
a pandas DataFrame, labels_df. This DataFrame likely contains metadata about
various audio recordings, including their filenames. The function visualize_mfccs
is then defined to process and visualize the MFCCs of a given audio file. Within this
function, the librosa library is employed to load the audio file and subsequently
extract its MFCCs. The extracted MFCCs are then visualized using the matplotlib
library. As a demonstration, the MFCCs of the first audio file listed in labels_df
are visualized.
MFCC, an acronym for Mel-Frequency Cepstral Coefficients, offers a representation
of the short-term power spectrum of sound, making it a widely recognized feature in
speech and audio processing. The underlying Mel scale, which the MFCCs are pred-
icated upon, is a perceptual scale of pitches. This scale is designed to approximate
the human ear’s response to varying frequencies, rendering it especially pertinent for
audio tasks centered around human speech. The cepstral coefficients, on the other
hand, are derived from the audio clip’s cepstral representation. This representation
is ascertained by taking the inverse Fourier transform of the logarithm of the signal’s
estimated spectrum.

Figure 5.1: Feature Extraction: Mel-Frequency Cepstral Coefficients (MFCC)

Utilizing MFCCs for feature extraction in hate speech detection from audio record-
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ings is underpinned by several compelling reasons. Primarily, given that MFCCs
mirror the human perception of frequencies, they are aptly suited for discerning
nuances in human speech. Furthermore, MFCCs proffer a compact representation
of audio, thereby effectively curtailing dimensionality while preserving the salient
characteristics essential for machine learning models. Their robustness against spe-
cific noise types further bolsters their utility in real-world scenarios characterized by
fluctuating audio quality. Given the extensive research and tools that revolve around
MFCCs, they are a logical choice for tasks like hate speech detection. The overar-
ching objective in such tasks is to extract features from audio that can differentiate
between regular and hate speech. Owing to their intrinsic properties, MFCCs are
adept at capturing the subtle inflections in speech that might be indicative of hate
speech.

Simple Feed-forward Neural Network

In our research to identify hate speech within audio recordings, we employed a
Simple Feed-forward Neural Network. This architecture, while basic in its design,
has been instrumental in various machine learning tasks. For this specific endeavor,
our training dataset comprised 200 audio samples labeled as normal and 201 samples
categorized as hate speech. [

5793 1481
1111 8889

]
Upon training and subsequent evaluation, the Simple Feed-forward Neural Network
model delivered the following performance metrics:

• Accuracy: 0.7284

• Precision: 0.8519

• Recall: 0.8889

• F1 Score: 0.7708

To further understand the model’s training progression and performance, we engaged
in a series of meticulous visualizations, each tailored to shed light on specific aspects
of the model’s learning dynamics.
The Plotting Training Accuracy vs Epochs graph served as a beacon, illuminating
the model’s learning trajectory. As epochs progressed, a consistent upward trend
in this graph would signify the model’s increasing adeptness at making correct pre-
dictions. Any fluctuations or plateaus could hint at potential challenges, such as
overfitting, or might suggest the need for hyperparameter adjustments.
Concurrently, the Plotting Training Loss vs Epochs graph painted a picture of the
model’s optimization journey. A steady decline in the loss values would indicate the
model’s capability to minimize errors and refine its predictions over time. However,
any sudden spikes or stagnation in this graph could be indicative of challenges,
perhaps suggesting that the model might be getting trapped in local minima or that
the learning rate might require tuning.
The plotting training accuracy vs training loss visualization is particularly enlight-
ening. It juxtaposes two critical metrics, offering a panoramic view of the model’s
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performance dynamics throughout the training phase. Ideally, as the model’s loss
diminishes, its accuracy should surge, indicating a harmonious balance and effective
learning. Divergences between these two metrics, however, might signal underlying
issues that warrant further investigation.
Lastly, our dedicated comparison graph, which juxtaposes the model’s Accuracy,
Precision, Recall, and F1 Score, serves as a performance compass. While accuracy
provides a broad measure of the model’s overall correctness, precision and recall of-
fer nuanced insights into its performance concerning positive (hate speech) samples.
The F1 Score, being the harmonic mean of precision and recall, encapsulates a bal-
anced performance metric, especially vital when dealing with imbalanced datasets.
This consolidated visualization aids in making informed decisions, whether they
pertain to model adjustments or its eventual deployment in real-world scenarios.

Figure 5.2: Training Accuracy vs Epochs
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Figure 5.3: Training Loss vs Epochs

Figure 5.4: Comparison of Accuracy, Precision, Recall, and F1 Score
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Figure 5.5: Comparison of Accuracy, Precision, Recall, and F1 Score

These visual aids not only corroborated the model’s proficiency but also pinpointed
areas for potential enhancement.

Convolutional Neural Network (CNN)

In our endeavor to detect hate speech from audio data, we employed the Convolu-
tional Neural Network (CNN) architecture. CNNs, renowned for their capability in
handling spatial hierarchies in data, have been successfully applied in various au-
dio processing tasks. Their unique structure, which consists of convolutional layers
designed to automatically and adaptively learn spatial hierarchies from the data,
makes them particularly suited for this task. For this specific task, our training
dataset comprised 200 audio samples labeled as normal and 201 samples labeled as
hate speech. The choice of using a balanced dataset was deliberate, aiming to ensure
that the model doesn’t develop a bias towards any particular class. This balance in
data representation is crucial, especially in sensitive tasks like hate speech detection,
where misclassification can have significant repercussions. By leveraging the power
of CNNs and a carefully curated dataset, our goal was to develop a robust model
capable of discerning subtle nuances in audio data to accurately classify hate speech.[

7037 2222
3333 7778

]
Upon training and subsequent evaluation, the CNN model delivered the following
performance metrics:

• Accuracy: 0.7037

• Precision: 0.7778
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• Recall: 0.6667

• F1 Score: 0.7143

To delve deeper into the model’s learning behavior, we visualized its training tra-
jectory. The Training Accuracy vs Epochs plot illustrated the model’s accuracy
progression over successive training epochs. The Training Loss vs Epochs graph
depicted the decrement in the model’s error as training advanced. The combined
Training Accuracy vs Training Loss visualization provided an integrated perspective
of the relationship between accuracy and loss throughout the training phase. Fur-
thermore, a comparative graph was plotted to juxtapose the metrics of Accuracy,
Precision, Recall, and F1 Score, offering a holistic view of the model’s performance.

Figure 5.6: Training Accuracy vs Epochs
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Figure 5.7: Training Loss vs Epochs

Figure 5.8: Comparison of Accuracy, Precision, Recall, and F1 Score
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Figure 5.9: Comparison of Accuracy, Precision, Recall, and F1 Score

In conclusion, the CNN model, trained on a balanced dataset of normal and hate
speech audio samples, showcased promising results in the realm of hate speech de-
tection. The accompanying visualizations further illuminated the model’s learning
patterns and performance, suggesting avenues for potential refinements in subse-
quent iterations.

Recurrent Neural Networks (RNNs)

In our recent research on hate speech detection from audio data, we employed Re-
current Neural Networks (RNNs). RNNs, known for their prowess in handling se-
quential data, are particularly well-suited for audio processing tasks. Our dataset
for training the RNN model consisted of 200 audio samples labeled as normal and
201 samples labeled as hate speech.[

7284 2195
2000 7805

]
Post-training and evaluation, the model yielded the following performance metrics:

• Accuracy: 0.7284

• Precision: 0.7805

• Recall: 0.8000

• F1 Score: 0.7473
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To gain a deeper understanding of the model’s learning dynamics, we visualized its
training progression. The Training Accuracy vs Epochs plot showcased the evolu-
tion of the model’s accuracy across successive training epochs. The Training Loss
vs Epochs plot depicted the reduction in the model’s error over the training pe-
riod. The combined Training Accuracy vs Training Loss visualization provided a
comprehensive view of the interplay between accuracy and loss during training.
Additionally, we also visualized a comparison graph that juxtaposed the metrics
of Accuracy, Precision, Recall, and F1 Score, offering a consolidated view of the
model’s performance.

Figure 5.10: Training Accuracy vs Epochs
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Figure 5.11: Training Loss vs Epochs

Figure 5.12: Comparison of Accuracy, Precision, Recall, and F1 Score
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Figure 5.13: Comparison of Accuracy, Precision, Recall, and F1 Score

In summation, the RNN model, trained on a balanced dataset of normal and hate
speech audio samples, demonstrated commendable results in the domain of hate
speech detection. The accompanying visualizations further elucidated the model’s
learning trajectory and performance, paving the way for potential enhancements in
future iterations.

5.1.3 Evaluation of Transformer-Based Hate Speech Detec-
tion Model

The training process involves four epochs, each consisting of batches with corre-
sponding losses. The average training loss decreases from 0.21 in the first epoch to
0.09 in the final epoch. The training time for each epoch is approximately 4 minutes.
Upon evaluating the original test dataset, the model demonstrates strong perfor-
mance with an accuracy of 0.909, precision of 0.948, recall of 0.941, and an F1 score
of 0.944. The confusion matrix reveals minimal misclassifications, particularly ex-
celling in identifying instances of class 1.

• Accuracy: 0.909

• Precision: 0.948

• Recall: 0.941

• F1 Score: 0.944
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Figure 5.14: Confusion Matrix for Test Set

Subsequent evaluations on the original replaced dataset and the original misspelled
dataset reveal changes in performance metrics. The model’s accuracy decreases to
0.710 for the replaced dataset and 0.716 for the misspelled dataset. Precision re-
mains high for both, indicating a low false positive rate, while recall is comparatively
lower, suggesting a reduction in true positive identification. The F1 score reflects a
balance between precision and recall.

• Accuracy: 0.710

• Precision: 0.896

• Recall: 0.733

• F1 Score: 0.806
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Figure 5.15: Confusion Matrix for Original Replaced Dataset

These results indicate that while the model performs exceptionally well on the origi-
nal test dataset, introducing perturbations such as word replacement or misspelling
affects its performance. The reduction in accuracy and changes in precision and re-
call metrics underscore the model’s sensitivity to alterations in the input data. This
insight is crucial for understanding the model’s robustness and potential vulnerabili-
ties in real-world scenarios, contributing valuable information to our research paper.

• Accuracy: 0.716

• Precision: 0.931

• Recall: 0.709

• F1 Score: 0.805
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Figure 5.16: Confusion Matrix for Original Misspelled Dataset

Finally, the findings reveal that the model performed well on the original test dataset,
with good accuracy, precision, recall, and F1 score. This displays the model’s ability
to reliably recognize instances of hate speech without being perturbed. However,
when subjected to modifications such as word substitution and misspelling, the
model’s performance significantly changed. The drop in accuracy, as well as varia-
tions in precision and recall measures, suggest that the system is sensitive to changes
in input data. These findings highlight the necessity of identifying any flaws in the
model’s generalization capabilities and sensitivity to hostile manipulation.
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Chapter 6

Discussion

Navigating the multifaceted domain of hate speech detection, the role of preliminary
analysis emerges as both a beacon and a compass. This foundational step offers a
panoramic view into the vast data landscapes of text and speech, shedding light on
initial patterns and guiding the trajectory of deeper explorations. Whether sifting
through the intricacies of written words or deciphering the subtleties in vocal tones,
this stage is instrumental. It ensures that our investigative efforts are rooted in
clarity and purpose, setting the stage for a comprehensive understanding of the
complexities of hate speech across diverse mediums.

6.1 Preliminary Analysis: Text-Based Hate Speech
Detection

In this study, we examine the data as well as the machine learning models. Find
the Confusion Matrix and accuracy after studying everything.

The confusion matrix produced by Naive Bayes is relatively balanced. It predicted
3289 cases of the first class correctly but misclassified 3719 first-class instances as
instances of the second class. It also correctly predicted 259 issues of the second class
while misclassifying 168 instances of the second class. The model suffers from both
false positives and false negatives. The SVM model generates a confusion matrix
that correctly classified all cases of the first class (no false negatives) but incorrectly
classified all instances of the second class (427 false positives). This suggests that
the SVM model cannot successfully distinguish between the two classes and is biased
toward predicting the majority class. Logistic Regression successfully predicts 6910
instances of the first class but incorrectly classifies 98 as examples of the second
class. It accurately predicts 80 cases of the second class but incorrectly classifies 347
instances of the second class. The model does better in the first class than in the
second class. Decision Trees accurately identify 6699 instances of the first class but
incorrectly categorize 309 instances of the first class as instances of the second class.
It accurately predicts 142 cases of the second class but incorrectly classifies 285
instances of the second class. The model appears to produce more false negatives
for the first class and more false positives for the second class. KNN accurately
predicts 6894 instances of the first class but incorrectly classifies 114 instances of
the first class. It accurately predicts 105 cases of the second class but incorrectly
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classifies 322 instances of the second class. KNN, like decision trees, has a greater
rate of false negatives for the first class and false positives for the second. Random
Forest properly predicts 6861 instances of the first class but incorrectly classifies
147 instances of the first class. It accurately predicts 137 cases of the second class
but incorrectly classifies 290 instances of the second class. In addition, the model
exhibits a greater rate of false negatives for the first class and false positives for the
second class. According to the confusion matrices, certain models perform better
than others in correctly categorizing the occurrences of each class. Although Naive
Bayes appears to have the best-balanced confusion matrix, its overall accuracy is
lower than that of other models. SVM and Logistic Regression produce imbalanced
predictions, whereas Decision Trees, KNN, Random Forest, and Gradient Boosting
produce comparable results, with more significant false negatives for the first class
and false positives for the second. It is vital to highlight that selecting the best model
should not be based entirely on the confusion matrix; other assessment metrics and
aspects should also be considered.

SVM performs admirably, with an accuracy of 0.9426. It is a strong and versatile
model that excels at dealing with complex decision limits. SVM selects the best
hyperplane to divide various classes while maximizing the margin between them.
Logistic Regression performs well as well, with an accuracy of 0.9401. It is a linear
model that predicts the likelihood of a binary result. Despite its simplicity, logistic
regression can be useful in a variety of situations, particularly when the connection
between features and the objective is roughly linear. With a value of 0.4772, Naive
Bayes has poorer accuracy than the previous models. Naive Bayes is a probabilistic
model that assumes feature independence. It can perform well in certain contexts,
particularly text classification, but it may suffer when the independence assumption
is violated or when features have complex interactions. Gradient Boosting, like the
SVM, achieves a high accuracy of 0.9439. It is a method of ensemble learning that
combines weak prediction models, typically decision trees, to generate a powerful
predictive model. Gradient Boosting increases the model’s performance iteratively
by sequentially adding new models that address earlier models’ faults. Random
Forest performs well as well, with an accuracy of 0.9412. It is yet another ensemble
learning method that integrates the predictions of several decision trees. Random
Forest effectively manages high-dimensional data and captures complicated interac-
tions since each tree is trained on a random sample of the input. The accuracy of
K-Nearest Neighbors (KNN) is 0.9414, which is consistent with the prior models.
KNN categorizes data points using the majority vote of their nearest neighbours.
KNN is simple to learn and construct, but its performance varies depending on the
K and distance metric used. Compared to the other models, Decision Trees have a
somewhat lower accuracy of 0.9201. Decision Trees are hierarchical models that pre-
dict using a tree-like structure of binary decisions. While decision trees are simple
to comprehend, they are prone to overfitting and may only generalize if regulariza-
tion procedures are used. Overall, the accuracy of the SVM, Gradient Boosting,
Random Forest, Logistic Regression, and K-Nearest Neighbors models ranges from
0.9401 to 0.9439. These models are appropriate for a variety of tasks and dataset
sizes. On the other hand, Naive Bayes could be performing better in this analysis,
indicating that the dataset violated the independence assumption. It is crucial to
remember that accuracy values alone do not provide a whole picture, and additional
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evaluation metrics and aspects should be considered when picking the best model
for a particular problem.

6.2 Preliminary Analysis: Speech-Based Hate Speech
Detection

In the rapidly evolving domain of hate speech detection from audio data, we under-
took an examination of three distinct neural network architectures: Recurrent Neu-
ral Networks (RNNs), Convolutional Neural Networks (CNNs), and Simple Feed-
forward Neural Networks. These models were methodically trained on a dataset, a
balanced mix of 200 normal words and 201 hate speech-laden words. The findings
from this exercise are illuminating. The RNNs delivered an accuracy of 0.7284, with
precision, recall, and F1 scores standing at 0.7805, 0.8000, and 0.7473 respectively.
This showcases the RNN’s ability to capture sequential data patterns, thus making
it a viable contender for audio-based hate speech detection. On the other hand,
the CNN, renowned for its prowess in handling spatial hierarchies, yielded an ac-
curacy of 0.7037. While its precision of 0.7778 is commendable, a recall of 0.6667
indicates potential challenges in effectively capturing all instances of hate speech.
The F1 score at 0.7143 further reiterates this observation. Surprisingly, the Simple
Feed-forward Neural Network, a more basic architecture, mirrored the RNN’s accu-
racy at 0.7284 but outshone the others with a precision of 0.8519 and a remarkable
recall of 0.8889. Its F1 score of 0.7708 underscores its balanced performance. In
essence, while each model offers unique strengths, the Simple Feed-forward Neural
Network’s promising performance suggests that, with the right data and features,
even traditional architectures can be formidable tools in the fight against online hate
speech. As we move forward, these insights will be invaluable in refining our models,
optimizing features, and ensuring our strategies are both robust and scalable.

6.3 Preliminary Analysis: Transformer-Based Hate
Speech Detection

Our investigation in the field of hate speech identification goes beyond standard
approaches to embrace the revolutionary potential of learning, employing a cutting-
edge transformer-based model. This comparison examines the effectiveness of our
proposed model vs established machine learning techniques, offering insight on its
strengths, concerns, and larger implications for hate speech identification.

6.3.1 Accuracy and Comparative Metrics:
The hate speech detection model based on transformers has an amazing accuracy
of 90.9%. This measure highlights the model’s ability to detect hate speech in both
written and audio formats. A more detailed review, on the other hand, entails eval-
uating false positives and false negatives to highlight unique obstacles and benefits.
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6.3.2 Strengths and Considerations:
1. Significant Accuracy: The model has significant accuracy, which aligns with

the broader goal of constructing a complete hate speech detection system.

2. False Positives and Negatives: Misclassifications give useful information for
model modification. It is critical for continual improvement to investigate the
contextual details that contribute to these misclassifications.

6.3.3 Comparative Performance:
While the transformer model’s accuracy is noteworthy, it is critical to grasp its
relative strengths and weaknesses in comparison to existing models.

• Collecting subtle Correlations: Because the transformer excels at collecting
subtle correlations in data, it is a potential model for hate speech detection.

• Early study supports the transformer’s potential, but further research into fine-
tuning, interpretability, and generalization across varied datasets is required.

The early research lays the groundwork for more in-depth investigations into model
fine-tuning, interpretability, and generalization across various datasets. Future re-
search should focus on resolving particular issues indicated in the confusion matrix,
enabling a continuous development toward more robust and morally sound hate
speech detection algorithms. We pave the path for a thorough understanding of the
transformer-based hate speech detection model’s function in fighting hate speech
across varied mediums by including its analysis in our larger study.
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Chapter 7

Conclusion

7.1 Conclusion
The identification of hate speech in online social media for a variety of major lan-
guages is a complicated issue because of the wide variety of languages and usage
patterns employed by users. First, we will analyze hate speech and decide what to
focus on. We found three main ways hate speech is spread. Then, mixed-language,
offensive, and hate tweets and posts from Facebook and Twitter were gathered.
Combining them creates a dataset. We created a range of data from the dataset.
We retrieved critical features from each dataset. After collecting characteristics,
we employed several machine learning and deep learning algorithms to assess if the
content was hostile. We merged the findings from each algorithm and approach
uniquely to reach the final result.

Accuracy ranged from 0.9201 to 0.9439 for SVM, Logistic Regression, Decision Trees,
KNN, Random Forest, and Gradient Boosting models. These models show encour-
aging results when classifying instances of hate speech. In contrast, Naive Bayes
achieved a lower accuracy of 0.4772, demonstrating that it struggled to classify in-
stances of hate speech correctly. As hate speech identification frequently involves
complicated interactions between features, this may imply that the independence
assumption given by Naive Bayes does not hold well for this problem. Examining
the confusion matrices reveals that the models have difficulty reliably recognizing
instances of hate speech. The confusion matrices’ false positives and false negatives
reflect misclassifications of hate speech incidents as non-hate speech and vice versa.
It is vital to highlight that selecting the best model for hate speech detection should
be based on more than just accuracy or the confusion matrix. Other considerations
include the problem’s specific needs, computing efficiency, interpretability, and the
availability of labeled data. Further study and model enhancement could improve
hate speech detection performance. Techniques such as feature engineering, en-
hanced text preprocessing, and the use of deep learning models specifically intended
for natural language processing tasks could be investigated. Furthermore, testing
the models using additional metrics such as precision, recall, and F1-score would
provide a more comprehensive assessment of their performance, particularly given
the unbalanced nature of hate speech detection, where incidences of hate speech
are often a minority class. In conclusion, while various models indicate reasonably
high accuracies, further improvements and considerations are required to classify
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instances of hate speech and reduce misclassifications successfully.

This study uses machine learning methods to address the problem of detecting hate
speech on Twitter. Initially, using the extracted characteristics, machine learning-
based classifiers like LR, RF, NB, SVM, DT, GB, and KNN were used to detect
HS-related tweets on Twitter. Hate speech and offensive language on Facebook and
Twitter are identified in the initial data collection we are attempting to compile.
Furthermore, everyday language is contaminated with hate speech and abusive vo-
cabulary. We detect them using machine learning methods and test their accuracy.
This research examines the accuracy of specific fundamental machine learning tech-
niques utilizing deep learning and neural language processing.

Our exploration into the detection of hate speech from audio using various neural
network architectures underscores the multifaceted nature of this challenge. Each
model, from the Recurrent Neural Networks and Convolutional Neural Networks to
the Simple Feed-forward Neural Network, brought its strengths to the fore. Par-
ticularly notable was the performance of the Simple Feed-forward Neural Network,
which, despite its basic architecture, rivaled and even surpassed its more complex
counterparts in certain metrics. This suggests that with appropriate data prepro-
cessing and feature engineering, even traditional models can be harnessed effectively
for such contemporary challenges.

7.2 Future Work
For future endeavors in the realm of hate speech detection from audio, several av-
enues beckon exploration. The augmentation of our dataset can enhance the gen-
eralizability and robustness of our models, introducing variability and potentially
revealing more intricate hate speech patterns. Ensemble methods, which leverage the
strengths of each individual model, offer a promising approach to boost overall per-
formance. There’s also potential in transfer learning, especially given our dataset’s
limited size. By fine-tuning pre-trained models from larger audio datasets, we might
achieve more nuanced detection capabilities. Advanced deep learning architectures,
such as attention mechanisms or transformers, which have shown substantial promise
in other domains, warrant investigation. Context, an often-underestimated factor in
hate speech, can be further integrated into our models. By assimilating metadata
or additional information from audio sources, we can refine the accuracy of our de-
tections. Ethical considerations remain paramount; as our models evolve, we must
ensure they neither perpetuate nor amplify existing biases. Rigorous evaluation,
possibly incorporating adversarial testing, can help ascertain both the effectiveness
and ethical soundness of our models. Collaboration with experts from diverse fields,
including sociologists, linguists, and ethicists, will undoubtedly lead to more holistic
and impactful solutions in our fight against online hate speech.

1. Data Augmentation: To improve the generalizability and robustness of
our models, we can explore techniques to augment our dataset, introducing
variability and potentially uncovering more intricate patterns of hate speech.

2. Ensemble Methods: Leveraging the strengths of each individual model, en-
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semble methods could be employed to combine predictions, potentially boost-
ing overall performance.

3. Transfer Learning: Given the limited size of our dataset, pre-trained mod-
els on larger audio datasets could be fine-tuned for our specific hate speech
detection task.

4. Deep Learning Architectures: Advanced architectures like attention mech-
anisms or transformers, which have shown promise in various domains, could
be explored for this task.

5. Ethical and Bias Considerations: As we refine our models, it’s crucial to
ensure they don’t perpetuate or amplify existing biases. Rigorous evaluation
and perhaps even adversarial testing can ensure our models are both effective
and ethically sound.

6. Refinement of the Model: Addressing particular concerns indicated in the
confusion matrix will be critical for improving the transformer-based model.
To ensure accessibility and ethical concerns, future research should focus on
improving the interpretability of the model’s judgments.

7. Robust Generalization: Ongoing development intends to encourage a more
in-depth knowledge of the model’s function, opening the way for robust and
ethically sound hate speech identification across several mediums.

In the broader scheme, the fight against online hate speech is not just a technical
challenge but also a societal one. While our models form a crucial line of defense,
collaboration with sociologists, linguists, and ethicists will be pivotal in creating
holistic and effective solutions. Understanding the model’s sensitivity to perturba-
tions is critical for real-world applications as we dig into the intricacies of hate speech
identification. More study and exploration into strategies for improving robustness
and minimizing adversarial effects would help to enhance hate speech detection mod-
els in the long run. This work provides a solid platform for future developments in
the field of hate speech identification.

7.3 Limitations

7.3.1 Various Experimental Findings
Detecting hate speech, whether sourced from audio or text, is an intricate task laden
with challenges. The nuances of human communication, such as tone, pitch, and
contextual ambiguity, can often transform the meaning of words, making sarcasm
in audio or humor in text tricky to decipher. Variability in language, be it accents
in spoken words or slang and abbreviations in written form, further complicates
detection. Additionally, the dynamic nature of hate speech, which evolves with
societal changes, mandates regular model updates to maintain relevance. Data
imbalance, where genuine hate speech instances are dwarfed by non-hate instances,
can skew detection algorithms. There are also pressing ethical dilemmas, especially
when probing personal communications. Factors like background noises in audio
or the lack of context in text can lead to over-generalization, while cultural and
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regional differences can introduce variability in what’s considered hate speech. The
resource-intensive nature of processing vast audio or textual datasets, combined
with the potential for false positives and negatives, underlines the complexity of the
task. In essence, while the endeavor to detect hate speech is vital in our digital
age, it remains a multifaceted challenge requiring continuous refinement and ethical
oversight.

7.3.2 Transformer Based Approach
Several restrictions were discovered during the construction of the hate speech de-
tection model, the majority of which stemmed from resource limits and language
difficulties. As restrictions in the scope of this work, the following constraints and
concerns should be acknowledged:

• Resource Constraints: The detection model was constrained by available re-
sources, primarily RAM and GPU capacity. These constraints impacted the
model’s scalability and caused issues when dealing with bigger datasets or
more complicated models, lowering the overall efficiency of the hate speech
identification process.

• Language Proficiency: Because English is not the researcher’s first language,
there were inherent limits in linguistic subtleties and contextual knowledge.
The potential influence of cultural or language-specific expressions on hate
speech identification may be underestimated, injecting linguistic bias into the
model’s performance.

• Word Shuffling for resilience: To improve the model’s resilience, word shuffling
strategies were considered. However, the existing technical landscape made it
difficult to adopt such techniques. The lack of support for word shuffling in
existing technologies limited the investigation of this strategy for enhancing
the model’s robustness to hostile attacks.

• Incorporation of Native Language Components: The study’s limitations ex-
tend to the incorporation of components peculiar to the researcher’s native
language. This may affect the model’s generalization to diverse language and
cultural situations.

• Word Restrictions: We encountered difficulties due to vocabulary and expres-
sion limits in English. The number of words and phrases that may be properly
included in the hate speech detection model may be limited, thereby reducing
the model’s sensitivity to certain linguistic structures.

These limitations must be acknowledged since they affect the generalizability, flex-
ibility, and comprehensiveness of the hate speech detection model. Future research
might overcome these constraints by examining resource optimization strategies,
including language-specific concerns, and researching new techniques for model ro-
bustness.
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