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Abstract

Skin Cancer is a cancer form that has become very prevalent in recent times and, if
left untreated, has the potential to cause premature death. That is why early diag-
nosis and treatment are important to cure this disease. For this, we can use Machine
Learning based methods to effectively impact the identification and categorization
of skin cancer. Previously it was seen that the CNN models had a notable impact on
the performance of the classification tasks. However, Vision transformers (VIT) are
also the solution chosen by the researchers which have displayed significant perfor-
mance in classification works. To make the outcomes of diverse data as distinct as
feasible, contrastive learning is utilized to make similar skin cancer data for encod-
ing similarly. The categorization of skin cancer depending upon multimodal data
is made possible by the transformer network’s exceptional performance in natural
language processing and field of vision. In this paper, we have offered a detailed
analysis of VGG-16, a CNN architecture, and ViT, a transformer-based method to
classify skin lesion images for aiding the early diagnosis of skin cancer. The find-
ings indicate that the VGG-16 model attained an accuracy of 82.14%, whereas the
Vision Transformer achieved a slightly lower accuracy of 76.15%. A modified ver-
sion of the original vision transformer, the shifted patch tokenization, and locality
self-attention modified Vision transformer showed an accuracy of 74.55% with ex-
pectations for further improvement in the future. Moreover, nowadays people have
to choose a model from several other models to solve an issue, and as the model
keeps on improving, it becomes very difficult to understand how the model works
internally. So, for this reason, Explainable Artificial Intelligence (XAI) is introduced
to give an idea of a human-readable explanation for the decision-making process of a
model. This will certainly benefit cosmetologists, health researchers, research scien-
tists, and researchers working in various areas and offer patients more convenience.

Keywords: Skin cancer, Deep Learning, CNN, VGG-16, ViT, XAI, Dermatoscopy,
Augmentation, GradCam

iv



Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis has been completed with-
out any major interruption.

Secondly, to our supervisor Dr. Md. Ashraful Alam sir and our co-supervisor Md
Tanzim Reza for their kind support and advice in our work. They helped us when-
ever we needed help.

And finally to our parents without their support, it may not be possible. With their
kind support and prayer, we are now on the verge of our graduation.

v



Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract iv

Dedication v

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables 1

1 Introduction 2
1.1 Background of Skin Cancer . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Reviews 5

3 Research methodology 9
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Dataset Source . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Description of the Dataset . . . . . . . . . . . . . . . . . . . . 10

3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Data Resize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Validation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Testing Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Used Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



4 Implementation And Result Analysis 17
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.4 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.5 F1 score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 GradCam 23

6 Conclusion 25

Bibliography 28

vii



List of Figures

3.1 Our proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Sample of ISIC 2019 dataset: A) scc, B) bkl, C) akiec, D) vasc, E)

bcc, F) mel, G) nv, and H) df . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Internal Architecture of VGG-16 . . . . . . . . . . . . . . . . . . . . . 14
3.4 Internal Architecture of Vision Transformer . . . . . . . . . . . . . . 15
3.5 Internal Architecture of Shifted Patch Tokenization and Locality Self

Attention modified ViT model (ViT-STP) . . . . . . . . . . . . . . . 16

4.1 Loss and accuracy of VGG-16 model . . . . . . . . . . . . . . . . . . 19
4.2 Loss and accuracy of ViT model . . . . . . . . . . . . . . . . . . . . . 19
4.3 Loss and accuracy of vanilla ViT model . . . . . . . . . . . . . . . . . 19
4.4 Loss and accuracy of Shifted Patch Tokenization and Locality Self

Attention modified ViT model . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Classification report and confusion matrix of VGG-16 model . . . . . 20
4.6 Classification report and confusion matrix of ViT model . . . . . . . 20
4.7 Classification report and confusion matrix of vanilla ViT model . . . 21
4.8 Classification report and confusion matrix of Shifted Patch Tokeniza-

tion and Locality Self Attention modified ViT model . . . . . . . . . 21

5.1 GradCam outputs for 4 different classes (BCC, BKL, MEL, NV) on
VGG-16 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



List of Tables

3.1 Class-wise data distribution . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



Chapter 1

Introduction

1.1 Background of Skin Cancer

Skin cancer primarily is the uncontrolled enlargement of epithelial cells that predom-
inantly affects the skin that has been exposed to UV rays. Skin cancer comes in three
main varieties: Basal Cell Carcinoma, Squamous Cell Carcinoma, and Melanoma.
However, skin cancer of the typical form might develop across areas of the body
which is not commonly revealed in direct sunlight. It is also seen that skin cancer
may affect people of any type of skin tone, but it is most common among individuals
with a darker complexion. It most likely appears on the parts of the body that are
in direct sunlight for example face, head, scalp, mouth, ears, nose, throat, chest,
forearm, and legs. However, the skin right below our fingernails or toenails, hands,
or pubic regions are examples of sites where it can also appear. Furthermore, those
with darker skin tones tend to be more susceptible to melanoma on the palms of
their hands and bottom of their feet, which are typically not exposed to the sun.

By keeping an eye out for unusual changes on the surface of the skin, one may
discover the early indications of skin cancer. Some types of skin cancer and their
symptoms are as follows:

1. Basal Cell Carcinoma typically develops in the outer skin that usually has di-
rect contact with the sun, such as the face or neck area. Pearly or waxy lumps,
plain, skin-colored, or fleshy type sores that are brown, and hemorrhagic or
blistering sores that recover and recur are signs of the condition.

2. Those having tanned complexions are often more prone to develop Squamous
Cell Carcinoma than those who are not regularly under the sun. It develops in
sun-exposed parts of the body. Firm, red nodules and flat sores with a crusty
and rough surface are signs of the condition.

3. Any skin tone can be impacted by melanoma. The symptoms include huge
brown patches with black freckles and moles which fluctuate in size, and color,
and little sores with an erratic borderline that are red, pink, white, blue, or
blue-black.

If skin cancer is found in its earliest stages, we have the highest chance of effectively
treating it. Mainly, for skin cancer, the major possible causes are lighter skin tone,
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extensive UV contact, sunburn, moles, climatic factors, family history, weak immu-
nity system, and exposure to certain substances like arsenic.

Again, it is evident that the rapidly aging population would be blamed for the
considerable rise in skin cancer cases over the past several years. With this grow-
ing number of skin cancer incidences, dermatologists and medical institutions face
greater challenges in diagnosing it accurately. Dermatoscopy has become very popu-
lar recently among medical experts for detecting skin lesions but it is quite expensive
and requires highly skilled and experienced professionals to make the correct diag-
nosis. To meet the challenges of dermatoscopy, AI has advanced remarkably in the
realm of medical imaging. On the other hand, a Deep Learning algorithm called
CNN (Convolutional Neural Network) is frequently employed in image categoriza-
tion and has demonstrated effective performance in diagnosis. However, CNN lacks
in learning long-range spatial relations sometimes and often does not focus on the
important part of the images.

Therefore, we aim to implement a popular CNN-based architecture, VGG-16, and
two transformer-based models named Vision Transformer and Shifted Patch Tok-
enization and Locality Self-attention modified Vision Transformer and then provide
some visual explanation of how our model works through Explainable AI on the
available dataset for classifying skin lesion images to diagnose skin cancer as timely
and as accurately as possible.

1.2 Problem Statement

Among all the organs in the human body, the skin is the largest one which covers
the whole body and protects it from external harm. Because the skin is our body’s
external defense system, it is prone to a variety of conditions. According to a study,
some form of skin condition affects about one-third of people worldwide. Despite its
high occurrence rate, people often pay less attention to skin-related issues consid-
ering them minor infections. Patients feel uncomfortable to share about their skin
conditions with the doctor and tend to hide those as they can occur in any part
of the body. Moreover, skin diseases are still considered taboo and there are many
misconceptions associated with them. People avoid skin disease patients thinking
that they will spread their disease which makes the patient reluctant to go to the
doctor and treat their issues. However, some of the conditions can worsen over time
and become cancerous if not treated timely.

Therefore, diagnosing skin cancer at the earliest stage is crucial to reduce the pa-
tient’s lifetime risk. It is estimated that 99% of patients with melanoma will survive
for five years if detected early but the percentage decreases significantly with the
delay in detection. It is to be mentioned that to train data-driven models properly,
a large amount of data is needed to achieve their full potential. However, there is
always a limitation in the availability of skin-related data. That is because skin
abnormalities can appear in any part of the body and the data becomes more confi-
dential than any other medical data. Access to skin-related data is strictly regulated
and medical centers don’t share it with others because of privacy issues. Thus work-
ing with skin-related data becomes more challenging. Although there are traditional
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methods for detecting skin lesions like dermatoscopy, they are time-consuming and
might produce inaccurate results, leading to treatment delays. So, developing a
consistent way for early skin lesion detection has become very essential. For this,
we plan to train a CNN model, VGG-16, and two transformer models named vision
transformers on our dataset and assess which model achieves the best results to
classify skin lesions for diagnosing cancer properly with the least execution time.

Again, the use of the desired methods for addressing AI’s ”black box” dilemma has
increased recently. It is a result of the deep learning networks’ intricate architecture,
which includes numerous hidden layers and makes the internal logic of the network
difficult to understand. Although the model’s architecture can be easily visualized
at a detailed level, that does not provide us with a complete view of what the model
perceives when it solves a specific issue. So it arises the concept of Explainable AI
(XAI) which is the idea of providing a human-readable explanation for a model’s
decision-making process. These days, people can choose from hundreds of differ-
ent intricate model architectures to solve only one issue, and as model performance
keeps on improving, it becomes more difficult to understand how the models work
internally. Comprehending and visualizing the internal processes of models, espe-
cially those pivotal in making classification decisions, is essential, particularly when
human lives are at stake. For this reason, Explainable AI is used for exploring and
understanding what a model sees while deciding on a classification task.

1.3 Research Objectives

The objective of the research would be to make a comparison analysis between CNN
and transformer-based architectures on dermoscopic images for advanced skin can-
cer diagnosis. To enhance the model’s performance, the data will be first processed
by different pre-processing techniques such as image resizing and augmentation. We
intend to apply a predefined deep learning model like VGG-16 and also two of the
vision transformer models on our dataset and further use XAI, specifically, Grad-
Cam on the best-performing model to visualize its classification decision.
Our objectives for the research are:

1. Implementation of early detection of skin cancer using CNN and vision trans-
former architectures.

2. Implementation of XAI to comprehend model performance, assist the cognitive
comprehension of the model’s functionality, and provide visual information
regarding the model’s emphasis.

1.4 Research Orientation

Following this chapter, we have presented the literature review in Chapter 2 and
proposed methodology, dataset description, and also the description of the models
along with some visual representations in Chapter 3. In Chapter 4, we have pre-
sented the implementation and result analysis. Later, in chapter 5, we illustrated a
short description of GradCam and lastly, we concluded in chapter 6.
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Chapter 2

Literature Reviews

(Cai et al.,2022) [1] used two multimodal datasets of images depicting skin disorders
and metadata for clinical trials. The model they initiated was made up of a decoder
and 2 encoders inspired by the transformer framework. They compared multiple
ViTs against some widely used CNN architectures where NesT achieved higher ac-
curacy (75%) than DenseNet121 and ResNet101 (66%) within the private dataset
hence, during the study of the private dataset, it acted as the network’s support
structure. For the metadata, SLE and MA block proved to be more suitable than
the one hot encoder method in this case. When the proposed model was put up
against the other that takes input images, the accuracy reached 0.816 from 0.75.
It is to be noted that in the medical sector, image processing and segmentation
play an important role. To detect Melanoma, a type of skin cancer, the melanoma
parameters can be used for image segmentation and feature stages. The picture is
identified either as cancer-free or as a melanoma cancer lesion using the texture,
size, and shape retrieved from feature parameters. According to the authors [2],
computer vision can be useful for image diagnosis in healthcare. It is necessary to
create computed diagnostic techniques to assist individuals in the early diagnosis
of melanoma to cope with this issue. Segmenting skin lesions is the initial step.
Feature and pattern analysis processes must be executed as the next crucial step
to diagnose the damaged region. Many methods for skin lesion segmentation have
been created by integrating various CNN architectures with multi-scale data. Such
approaches either require extra labeling or rely on large, practically useless parame-
ters. Therefore, in [3] researchers offered a hybrid form of segmentation algorithms
which is the combination of ViT and ConvNet that showcased high accuracy in both
the localization of infection and the identification of skin lesions.

According to [4], the researchers believe that to prevent the spread of fatal melanoma
skin cancer, detection of the skin lesions at the earliest possible time is crucial and
dermatoscopy is the best way for that. However, automatic skin lesion segmentation
becomes difficult when the lesions are similar in color or visual pattern. To exceed
the limitations of CNN on skin lesion segmentation, the researchers have applied
convolution-deconvolution-based (U-NeT, V-NeT) and attention-based (Attention
U-NeT, TransUNeT, Swin-UNeT) models on the ISIC 2018 dataset in a modified way
for each specific task. While comparing with the separate U-NeT-based methods,
attention-based methods integrated with U-NeT properties achieved better results
in distinguishing pigment regions. In the paper [5], researchers applied SVM, KNN,
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and CNN models to test the dataset and among the three models, CNN obtained
the best results of 85.5%. On a histopathologic cancer diagnostic dataset in [6], the
researchers evaluated the effectiveness of 14 pre-trained ImageNet models, each of
which is classified as a fine-tuned model, naive model, or feature extractor model.
The study showed that Resnet101 had a high recall rate whereas Densenet161 dis-
played more precise performance. Densenet161 had an AUC score of 0.9924 and an
f1 Score of 0.95, which outperformed the other designs within the feature extractor
model. In the paper [7], a GWO technique-based CNN was created to accurately
identify the skin cancer type based on input photos. By using a suitable encod-
ing technique, the approach optimized the CNN hyperparameters using the Grey
Wolf Optimization algorithm. The researchers combined all of the available skin-
level characteristics and provided a thorough forecast of the patient’s health using
a variety of deep-learning neural networks and data analysis approaches [8]. To
identify melanoma, again CNNs that were pre-trained on pictures of skin lesions
were selected and fine-tuned. The article [9] presented a more complete approach to
dermoscopy image-based skin cancer detection. The method’s key addition was the
usage of CNN which was improved by SBO, which improved the network’s accuracy
in comparison to the traditional conjugate gradient approach.

To classify skin lesions, many researchers chose to conduct extensive experiments on
the widely available skin cancer dataset named HAM10000 (Human Against Ma-
chine). In [10] the researchers initiated a simple transformer framework to classify
skin cancer on this dataset incorporating a clinical dataset. For the HAM10000
dataset, in contrast with the state-of-the-art methods, the proposed model showed
94.3% accuracy. The multi-scaled network integrating contrastive learning showed
the most efficient result having 94.1% accuracy which was much higher in com-
parison to the traditional CNN such as MobileNetV2, ResNet50, and InceptionV2.
Aladhadh et al. (2022) developed a two-tier framework to overcome the challenges
involved with accurately classifying skin diseases in another research [11] and pre-
sented a comprehensive evaluation of the MVT model on the HAM10000 dataset
to classify SC images effectively. The accuracy of the training set was 98% and
the validation set was 90% without any preprocessing of the data. The authors
trained the same dataset using the GrabCut-stacked CNN (GC-SCNN) model with
a fuzzy base [12]. Support vector machines (SVM) and fuzzy GC-SCNN in this
case achieved almost 99.75% classification accuracy. Again, Wu et al. claimed that
skin biopsy specimens are diagnosed by pathologists based on their visual assess-
ments which often can be inaccurate [13]. To solve this problem, they initiated a
Scale-Aware Transformer Network (ScAtNet) to categorize melanocytic skin lesions
in digital WSI. To do this, CNN was utilized to separately develop patch-wise map-
pings to every data scale. Next, from the combined multi-scale patch embeddings,
the model learned inner patch and inter-scale representation using a transformer.
The network was compared with patch-based classification, ChikonMIL, weighted
feature aggregation, streaming CNN, and MS-DA-MIL the test set achieved 64%
accuracy for multiple input scales.

It is stated that in Medical Data Analysis, a crucial component for the efficacy
of deep learning is a large-scale and thoroughly annotated dataset mentioned in
[14]. However creating such massive annotations is quite difficult, especially for
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histopathology pictures with distinctive features. Therefore, the researchers used
the widest publicly accessible datasets of histopathology imaging for developing a
transformer-based unsupervised feature extractor. The system’s primary component
was a combination of CNN and a multi-scale Swin Transformer architecture. The
dataset in [7] was again trained using a CNN model. A trained VGG-16 model was
used which showed better accuracy for sensitivity, NPV, and PPV. Furthermore,
in paper [15] the authors assessed the potential of GANs (Generative Adversarial
Networks) to address a variety of major issues related to cancer imaging, including
data imbalance, domain, and dataset changes, access to data and confidentiality,
data analysis and quantification, cancer determination, tumor profiling, and surgi-
cal planning. The literature on GANs used for cancer images was reviewed crit-
ically, and recommendations were offered for future research areas to solve these
issues. Additionally, a feature-based responsive transformer network that utilizes
the traditional decoder encoder architectural style, known as FAT-Net, was pre-
sented in [16] to completely regulate lengthy interdependence and broad relevant
data. This network integrated an additional transformer subsidiary because stan-
dard CNN-based methods frequently struggle to achieve a satisfactory segmentation
performance. This transformer encoder performed image segmentation utilizing a
unique sequence-to-sequence predictive model, in contrast to typical CNN-based en-
coders.

The study [17] revealed that the processing of digital images could be used to classify
thermal imaging pictures of skin cancer lesions. The researchers demonstrated that
skin lesions that are cancerous possessed red component values exceeding 100 on a
scale from 0-255 in the RGB color space. When segmenting based on the k-means
algorithm thermography, the affected area’s average value in the red component was
greater than that in other areas including melanoma. Using these findings as a guide,
a non-invasive tool for diagnosing skin cancer was created, cutting down on point-
less diagnostic procedures and streamlining the diagnosis. The article [18] briefly
discussed the utilization of computational Intelligence in Image Processing to detect
skin cancer. It revealed the effectiveness of dermoscopy, the inspection of the pattern
of the algorithms- the ABCD rule, the Menzies grading technique, and the seven-
point checklist for assessing skin lesions. The primary aims of the study [19] were
to assess several ViT architectures based on the recommended models and training
techniques for breast cancer classification. The implemented Vision Transformer
models’ usefulness in the medical sector was proved as it outperformed ResNet-50
while using fewer model parameters. It is worth mentioning that in recent years,
many academics have been working on creating computer-aided diagnostic (CAD)
methods for classifying skin cancer [13]. Before the advent of deep learning, machine
learning (ML) techniques were primarily employed in CAD systems. However, ML-
based approaches can only identify a portion of skin illnesses because of the difficulty
of feature building and the constraints of handmade features. Again, Deep Learning
Algorithms are more accurate and effective at automatically learning semantic char-
acteristics from large-scale datasets. Hence, the authors [20] proposed to improve
computer-aided diagnostics by including non-standard picture decomposition tech-
niques and using classification systems that utilize ensemble models with statistical
learning in addition to conventional methods that focus on geometrical characteris-
tics and color or pattern analysis. Their proposed methodology combined medical
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expertise with multiple cutting-edge technologies including image processing, clas-
sification of patterns, statistical learning, and ensembling methods to classify skin
lesions with the assistance of technology for diagnostic aid.

Skin lesion classification is a challenging aspect of dermatological image analysis
and has seen notable progress with the integration of deep learning. The paper
explores [21] the use of pre-trained Convolutional Neural Networks (CNNs) as fea-
ture extractors combined with other machine learning classifiers to improve skin
lesion recognition accuracy. The study highlights the value of transfer learning by
utilizing pre-trained models such as DenseNet201 and applying them to smaller
datasets to increase efficiency. To ascertain their influence on categorization results,
three data scenarios original, pre-processed, and augmented are investigated. Using
datasets such as PH2 and ISIC 2019, the study examines 17 pre-trained CNN archi-
tectures and 24 classifiers to find viable combinations. The accuracy of DenseNet201
combined with Weighted KNN is noteworthy, achieving 62.43%, demonstrating the
promise of this technique. The results additionally demonstrate the effectiveness of
alternative combinations: ShuffleNet with Linear SVM (71.42%), DarkNet53 with
LDA (67.29%), and ResNet18 with LDA (60.34%). In addition to highlighting deep
learning’s versatility in dermatological image analysis, these findings provide in-
sightful information for the development of skin lesion categorization systems in the
future.

Using the same dataset, Nunnari et al. [22] investigate how to improve the clas-
sification of skin lesions in images by merging pixel data with patient metadata,
such as age, gender, and body location. The study explores metadata fusion using
shallow neural networks and non-neural machine learning techniques, VGG16 and
RESNET50 as baseline Convolutional Neural Networks (CNNs). Per-class sensitiv-
ity declines for three of the four CNN cases, despite an overall accuracy improvement,
hinting at possible difficulties for underrepresented classes. Surprisingly, seven out
of 16 teams experienced decreased accuracy when integrating metadata, highlighting
the practice’s limited acceptance in CNN-based architectures. The study emphasizes
how crucial it is to assess the value of metadata and take dataset design biases into
account. Model accuracy with VGG16 is 66.76%, and improvements are seen with
VGG16+SVM (75.32%), VGG16+RF (76.79%), and VGG16+XGBoost (73.38%)
which shows that in terms of improving accuracy, shallow neural networks do better
than other methods. Moreover, EfficientNets, SENet, and ResNeXt WSL are the
deep learning models combined in the paper[23] that were chosen using a search
approach. Data-driven methods such as loss balancing, multi-crop evaluation, and
an unknown class in the test set are used to overcome challenges such as severe
class imbalance and moderate class imbalance. Making use of a variety of Efficient-
Nets, the study emphasizes the importance of multi-resolution input and effective
data augmentation. The addition of metadata enhances the method’s effectiveness,
which helps smaller models in particular. The absence of metadata for the unknown
class during training causes problems even with cross-validation improvements with
more metadata. The research highlights the usefulness of different input resolutions
and highlights how well EfficientNet performs in skin lesion classification.
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Chapter 3

Research methodology

Figure 3.1, illustrating a general outline of the steps we intend to follow to conduct
our research efficiently is given below:

Figure 3.1: Our proposed methodology
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For this research, we will use some skin cancer dataset. Following the collection
of data, we will move to pre-processing. The techniques we intend to use to pre-
process the data are image resizing and augmentation. Through image resizing
technique, a uniform size will be chosen for all the images of the dataset whereas
image augmentation involves altering the existing data to generate new training
data for the model. After pre-processing is done, the data will be split into a 7:2:1
ratio which means training, validation, and test sets will include 70%, 20%, and 10%
of data respectively. Following that, we will use the dataset to train our models. To
observe the accuracy of the constructed model, we will utilize the test set from our
dataset once it is trained. Next, we will analyze the performance of the models and
then we will use the XAI technique on the best-performing model to find out the
focal regions of the output images and analyze the results. Hence, our model will
be able to detect cancerous skin lesions in the early stage of cancer.

3.1 Dataset

3.1.1 Dataset Source

The dataset we used for our work is ISIC2019 which is available on the ISIC archive
[24]. The dataset contains a total of 25,331 images that are distributed among 8
distinct classes.

3.1.2 Description of the Dataset

The class-wise distribution of the images is shown below:

Class wise distribution
Name of classes Number of classes

Train Test Val
Actinic keratosis 716 75 76
Basal cell carcinoma 2820 250 253
Benign keratosis 2215 203 206
Dermatofibroma 206 11 22
Melanocytic nevus 10979 965 931
Melanoma 3812 360 350
Squamous cell carcinoma 541 42 45
Vascular lesion 202 24 27

Table 3.1: Class-wise data distribution
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Figure 3.2: Sample of ISIC 2019 dataset: A) scc, B) bkl, C) akiec, D) vasc, E) bcc,
F) mel, G) nv, and H) df

Melanoma is the deadliest type of skin cancer that occurs when melanocytes begin
to proliferate uncontrollably. Its rapid growth and capability to spread to other
organs make it more serious than other kinds of skin cancer. It can occur in any
part of the body but is more likely to appear on the legs in the case of women and
on the upper back of men. Melanomas are usually brown or black although they
can also be red, pink, or flesh-toned.

Basal cell carcinoma (BCC) commonly develops when basal cells in the outermost
layer of skin (epidermis) undergo alterations and grow uncontrollably due to the
effects of ultraviolet (UV) radiation from the sun or indoor tanning. BCCs can have
different appearances, including open sores, red spots, pink growths, shiny bumps,
scars, and growths with slightly raised, rolling edges with a central indentation.

Small dry, scaly, or rough patches of skin are typical Actinic Keratosis appearances.
They can be of any color—sometimes red, pink, light or dark tan, or flesh-toned and
usually develop on the sun-exposed areas of the human body.
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Squamous cell carcinoma (SCC) can be defined as the abnormal and rapid devel-
opment of squamous cells. It typically occurs when ultraviolet radiation and other
harmful factors cause aberrant alterations in the squamous cells. SCCs can take the
form of scaly red patches, open sores, rough, thickened, or raised growths resembling
warts on the scalp, ears, lips, or back of the hands.

Melanocytic nevus or mole is a prevalent and benign skin lesion caused by the local-
ized enlargement of pigment-producing cells called melanocytes. It can be congenital
or develop later in life. Melanocytic nevus can appear on any part of the body in
mostly round or oval shapes and various colors from flesh tone to brown to black.

The fibrous tissue that makes up the dermis, the deeper of the two primary layers of
skin, frequently overgrows, resulting in dermatofibroma. It is usually not cancerous
and is benign. It can appear in pink to light brown color in light skin and dark
brown to black color in dark skin.

Vascular lesions are clusters of blood vessel enlargements that are typically known
as birthmarks. They can be categorized into three major types: Hemangiomas, the
most common type which are benign tumors of blood vessel cells. The other two
types are vascular malformations which refer to congenital abnormalities in vascular
development and capillary malformations which are caused by the uneven capillary
and tiny veins of the skin’s deeper layer.

Benign keratosis is a general term to define similar scaly skin lesions like Solar
lentigo, Seborrheic keratosis, and Lichen planus-like keratosis. Solar lentigo refers
to macular hyperpigmented lesions caused by prolonged exposure to sunlight. They
can be oval, round, or uneven in shape and mostly appear in light brown. Sebor-
rheic keratosis is a noncancerous growth of keratinocytes in the epidermis, generally
prevalent among aged people. Except for the mucous membranes, soles, and palms,
they can appear on any area of the body. Another frequent benign skin growth is
Lichen planus-like keratosis which is either a regressing seborrheic keratosis or solar
lentigo. The features of such lesions are pink, brown, gray, and black colored papules
or macules.

While working on the dataset, we observed that the dataset has a very imbalanced
distribution. The highest number of instances(10979) exist in the ‘Melanocytic Ne-
vus’ class. Compared to that, classes like ’Actinic keratosis’, ’Dermatofibroma’,’
Squamous cell carcinoma’, and ’Vascular Lesions’ have a very negligible amount of
instances which are 716, 206, 541, and 202 images respectively. Therefore, we dis-
regarded those four classes and utilized the images of the remaining four classes to
train and evaluate the models.
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3.2 Data Preprocessing

3.2.1 Data Resize

The ISIC2019 dataset is a combination of HAM10000, BCN20000, and MSK datasets.
The HAM10000 dataset consists of images with a dimension of 600 * 450 whereas
the BCN20000 has images of 1024 * 1024 dimensions. On the other hand, the MSK
dataset contains images of various pixel sizes. To address the issue of various image
sizes, the data has been processed through resizing. So, all our input images in the
training dataset were resized into 128 * 128 pixels.

3.2.2 Data Augmentation

A further step of data augmentation has been implemented to address the unequal
distribution of the images across the classes. By applying techniques like random
rotation, zooming, horizontal/vertical flipping, and normalization on the existing
training samples, new data were generated for the classes for further use.

3.3 Data Splitting

As the dataset was highly imbalanced, we decided to work with the four classes that
had the highest number of instances among all the classes. We took 1800 instances
from each of these classes and split them into training, validation, and testing sets.

3.3.1 Training Set

To make the model learn potential patterns and hidden features of the data, the
training set is fed into the model. For training, we have used 70% of the data which
means 1260 images from each class have been used to train the model.

3.3.2 Validation Set

The validation dataset is used to adjust the hyperparameters of a classifier. In our
case, the validation set consists of 20% data which means 360 images from each class
are used to validate the performance of our model at the time of training.

3.3.3 Testing Set

A test dataset is a sample that assesses the model’s fit without any bias, which
can be used to estimate the model’s accuracy. Among the 1800 images,180 images,
which is 10% of the distribution, are allotted for our model’s testing.
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3.4 Used Architectures

Below is a brief explanation of the CNN and transformer models that we will be
using in this research:

1. VGG-16

The VGG-16 model is a deep convolutional neural network with 16 layers
which is the initial for the Oxford Visual Geometry Group [18]. The VGG
model that we used follows a transfer learning approach by initializing the
weights of the original VGG-16 of a pre-trained model from imageNet. It is a
16-layer model with 13 convolutional layers. The convolutional layers have 3
* 3 filters with a stride length of 1 which are followed by 2 * 2 max pooling
layers each with a stride length of 2. The model has 3 fully connected layers
and 2 dropout layers. The convolutional layers are connected with the GeLU
activation function and the output layer is connected with the softmax acti-
vation function.

Figure 3.3: Internal Architecture of VGG-16
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2. Vision Transformer (ViT)

A Vision Transformer is a transformer designed specifically for vision process-
ing applications such as image identification. The vision transformer concept
in computer vision uses multiple units of layers without the application of bias
tailored to particular images. The performance of a vision transformer model
is determined by decisions such as the optimizer, network length, and specific
dataset hyperparameters [25]. The ViT models work by dividing input images
into 16 * 16 patches that are flattened, linearly projected in a dimension of 32,
and converted into lower-dimensional embeddings. These embeddings then
go through a transformer encoder of size 64 * 32, followed by 4 Multilayer
Perceptron (MLP) heads of size 1024 * 512 with 8 fully connected layers to
classify images.

Figure 3.4: Internal Architecture of Vision Transformer
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3. Shifted Patch Tokenization and Locality Self Attention modified ViT model
(ViT-STP)

Since its inception in 2020, Vision Transformers (ViTs) have undergone various
enhancements. One notable modification involves integrating Shifted Patch
Tokenization (SPT) and Locality Self Attention (LSA). This alteration allows
ViT to focus on local correlations between 128 * 128 image pixels, reducing
the reliance on larger datasets. Unlike the normal ViT model, SPT introduces
a spatial shift to images in four diagonal directions up-left, up-right, down-left,
and down-right. This shift improves the way how input images are represented
spatially which merges shifted features into a single image [26]. After images
undergo spatial shifting, they are split into non-overlapping patches and con-
catenated with the model input which improves the model’s performance [27].
These overlapping patches are linearly embedded into vectors of dimension
32, creating the initial tokenized input for the transformer, where positional
embeddings are added. In Shifted Patch Tokenization, a crucial modification
occurs in the tokenization process. Rather than treating patches individually,
adjacent patches are combined to form tokens representing shifted pairs. This
shift aids in capturing relationships between neighboring patches that were
flattened and transformed into lower-dimensional embeddings. These embed-
dings then undergo a transformer encoder of size 128 * 64, followed by 4 MLP
heads of size 2048 * 1024 with 8 fully connected layers.

Figure 3.5: Internal Architecture of Shifted Patch Tokenization and Locality Self
Attention modified ViT model (ViT-STP)
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Chapter 4

Implementation And Result
Analysis

4.1 Experimental Setup

All the experiments for this research have been performed on AMD Ryzen 5 5600X
6 Core processor, and a single GPU (Zotac GeForce GTX 1660 AMP Edition).
Tensorflow with Keras, the deep learning framework is used to build the models.
The dimensions of the training images are 128 * 128 and the batch size is 32. AdamW
has been used as an optimizer. The learning rate is 0.00001 and the training epoch
is set to 100. To ensure a fair comparison, we maintained identical experimental
setups and overall architectures for the models. Several evaluation matrices are
implemented to assess the performance such as accuracy, precision, recall, F1 score,
and so on.

4.1.1 Confusion Matrix

Confusion matrices are N x N matrices employed to estimate the performance of
classification models, where N determines the total target classes. These matrices
help us to see how effectively our classification model performs and what sorts of
errors it makes by comparing the actual values with the model’s predicted values.

Actual values
Predicted
values

Positive Negative

Positive TP TN
Negative FN FP

Table 4.1: Confusion Matrix

The above is shown as a representation of a 2 x 2 confusion matrix where the
columns stand for the actual values and the rows stand for the predicted values of
the target variable. Both true positive (TP) as well as true negative (TN) denotes
that the predicted value is the same as the actual value. When the actual and the
predicted values are positive, it falls under the true positive (TP). On the other
hand, when both the values are negative, it falls under true negative (TN). False

17



negative (FN) and false positive (FP) imply false predictions of the model. When
the model predicts a negative value for an actual positive value, is referred to false
negative (FN) whereas the model predicting a positive value for an actual negative
value is called a false positive (FP).

4.1.2 Accuracy

A model’s accuracy is generally defined as the overall performance of the model
across all classes of data. This metric is particularly efficient for balanced classifica-
tion tasks. It is directly connected with the values of the confusion matrix. Accuracy
can be calculated in the following way:

Accuracy = Number of correct predictions / Number of total predictions

4.1.3 Precision

Precision measures the ability of the model to classify positive samples correctly
while considering the negative samples. Precision is determined by dividing the
number of accurately segregated positive samples by the sum of all the Positive
samples (both correct and incorrect).

Precision = True Positive / (True Positive + False Positive)

4.1.4 Recall

Recall also determines the model’s potential to classify positive samples but does
not take negative samples into account while classifying. A higher value of recall
indicates that more positive cases have been detected by the model. The calculation
of sensitivity goes as follows:

Recall = True Positive / (True Positive + False Negative)

4.1.5 F1 score

F1 score is a better-suited measure for solving imbalanced classification problems.
It represents the harmonic mean of precision and recall. The value typically ranges
from 0 to 1. An F1 score closer to 1 means the model has a lower false positive and
lower false negative. When the value is 1, means the model is perfect.

F1 Score = 2 * ((Precision * Recall) / (Precision + Recall))
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4.2 Performance Measure

The performance measures of all the used models are as follows:

Figure 4.1: Loss and accuracy of VGG-16 model

Figure 4.2: Loss and accuracy of ViT model

Figure 4.3: Loss and accuracy of vanilla ViT model
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Figure 4.4: Loss and accuracy of Shifted Patch Tokenization and Locality Self At-
tention modified ViT model

Figure 4.5: Classification report and confusion matrix of VGG-16 model

Figure 4.6: Classification report and confusion matrix of ViT model
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Figure 4.7: Classification report and confusion matrix of vanilla ViT model

Figure 4.8: Classification report and confusion matrix of Shifted Patch Tokenization
and Locality Self Attention modified ViT model

4.3 Result Analysis

In Table 4.2, there is a detailed analysis of our results with other research papers’
results using the same dataset, ISIC 2019. In the paper of Nunnari et al. [22], using
the VGG-16 model on the dataset, they achieved an accuracy of 66.76% whereas our
accuracy reached 82.14%. The reason for this difference in accuracy mainly lies in
the data augmentation and configuration settings chosen during the model training.
Their paper indicates that the model was trained only on a subset of images from 8
imbalanced classes of the dataset for 10 epochs. To avoid training bias and achieve
a better performance score, we balanced the data of the 4 largest classes and trained
the model for 100 epochs. They used a batch size of 8 with an SGD optimizer. On
the other hand, our model was trained on a batch size of 32. Due to the AdamW
optimizer’s competency in deeper CNN models [28], we used it as an optimizer over
SGD. Hence, in our case, the VGG16 model showed better performance on the
dataset. While comparing the performance of VGG16 with the vision transformer,
we found that ViT showed slightly reduced performance scores than VGG16. The
possible reason behind this performance drop could be that ViTs need a very large
amount of data [29] to be trained properly. We further compared the original Vit
with the shifted patch tokenization and locality self-attention modified Vit which
generally tends to improve the performance of Vit [30] for smaller-size datasets.
However, it was observed that the difference between the performance scores of the
original and the modified Vit is very small and the inclusion of the modified ViT
has not conferred significant benefits in our scenario. Therefore, we can conclude
that the VGG16 model has outperformed the other transformer models.
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Study Method
Accuracy

(%)
Precision

(%)
Recall
(%)

F1 Score
(%)

Gessert
2020 [23]

Ensembles
of multi
resolution

EfficientNet

63 - 73 -

Nunnari
et al.

2020 [22]
VGG16 66.76 - 65.97 55.97

VGG16+
GradBooost

59.20 - 52.36 42.93

VGG16
+SVM

75.32 - 65.43 64.63

VGG16
+RF

76.79 - 67.28 67.54

VGG16+
XGBoost

73.38 - 67.30 64.20

Beniyahia
et al.

2021 [21]

DenseNet201+
Weighted KNN

62.43 74.47 - 58.11

ResNet18
+LDA

60.34 - - -

ShuffleNet+
Linear SVM

71.42 - - -

EfficientNet B0
+ GNB

40 - -

DarkNet53
+LDA

67.29 - - -

Our
used

models
VGG16 82.14 82.52 82.14 82.05

VGG16
+GradCam

- - - -

ViT 76.15 75.42 76.15 75.26
ViT+
Shifted
Patch

74.95 75.50 74.95 75.01

74.55 75.40 74.55 74.70

Table 4.2: Result Analysis
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Chapter 5

GradCam

It is seen that the model’s architecture and parameters can be easily visualized at a
detailed level, but this does not provide us with a complete view of what the model
perceives when it solves a specific issue. But it can be viewed using Explainable or
Interpretable Artificial Intelligence (XAI) which is the idea of providing a human-
readable explanation for a model’s decision-making process [31].

Within the realm of XAI, GradCam is a popular method that helps to bridge the
gap between the high-dimensional representation of the models and the human-
understandable representation of the models. The full form of GradCam is Gradient-
weighted Class Activating Mapping. Usually, in deep learning architecture, a class-
specific technique is used to understand the focal regions of an input image which
are important for the prediction of the network of a particular class while making
a decision. GradCam produces an output that is essentially a heatmap visualiza-
tion for a particular class label which can be used to visually confirm the pixels in
the image which is been focused by the model [32]. There are several benefits of
GradCam. They are:

1. Comprehending models’ performance,

2. Assisting the cognitive comprehension of the model’s functionality, and

3. Providing visual information regarding the model’s emphasis.

Moreover, the output of GradCam shows which particular pixels of the images are
required by the model for the performance of the classification tasks. There are two
steps for the implementation of GradCam:

1. Identifying the last convolutional layer in the network, and

2. Observing the gradient information flowing into the last layer.

For our case, we found that our VGG-16 model was performing better so we decided
to use GradCam on the VGG-16 model. In the initial implementation of GradCam,
we had to identify the last convolutional layer which is ”block5-conv3”, also load the
checkpoint which is the h5 file of the model, and observe the gradient information
flow in the last layer. After implementing GradCam on the VGG-16 model some
output images were generated which are as follows:
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Figure 5.1: GradCam outputs for 4 different classes (BCC, BKL, MEL, NV) on
VGG-16 model

In GradCam when the input image is passed through the network layer it produces a
final classification score. After that, it calculates the gradient of the prediction with
the feature maps of the last convolutional layer which is done using backpropagation.
Then Global Average Pooling (GAP) is done to obtain the corresponding weight to
each important feature map. Subsequently, weighted sum, ReLU, and Upsampling
are done on the predicted class and finally, a heatmap is generated which is our final
result of the GradCam. Here, the heatmap highlights the region that plays a role
in the contribution of the model’s prediction. The heatmap has several classes of
colormaps where we used the ”miscellaneous” class [33].

In Figure 4.1, for all the classes it is observed that in the region where the cancerous
cell is located, the heatmap generates a darker gradient meaning that the model
focuses on that region while making a decision and our model performed well in
the detection of skin cancer cells and it gave an accurate decision. To verify the
detection and classification of skin lesions by our model, it can be compared with
the traditional method which is Dermatoscopy. In the clinical classification of BCC,
it is detected by seeing the arborizing telangiectasias, large blue/gray oval nest-like
nodules, ulceration, leaf-like regions, and structureless reddish white background
[34]. In above Figure 5.1, we can see that the visualization of the activation mapping
is densely shown in the regions where there is swelling,large blue/gray oval nest-like
nodules and in the rest of the region, the gradient is sparse meaning that the model
did not focus on those regions while making its decision.
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Chapter 6

Conclusion

It is seen that early detection of skin cancer can help to cure it. So for this reason
other than Dermatoscopy deep learning models can be implemented to detect it.
CNN models like VGG-16 have long dominated the area of medical image analysis,
but sometimes they are confined to focusing on local alterations in visual patterns.
Due to the amazing performance and expanding potential of employing transformer
processes, Vision Transformers are gradually becoming the next emerging trend in
computer vision. In the world of health, even an erroneous classification result might
endanger lives. Therefore, we can not fully rely on the model’s prediction and for
this reason, we incorporated explainable AI (XAI) to interpret the outcomes of the
model and help in the accurate decision-making process. It is seen that all the
machine learning models are like black-boxes meaning we can not see the intricate
internal architecture of the models. All the deep learning models have several hid-
den layers that make the internal logic of the network quite difficult to understand
for human beings. While the parameters and architecture of the network can easily
be viewed at a technical level it does not fully provide the complete visualization
of what the model does while doing certain tasks. To make it easier to understand
our model and come to a conclusion, we used Gradcam on the model to observe the
focal region of our model in detecting skin lesions and making a decision. We dis-
covered that in our case, the VGG-16 model outperformed the other models with an
accuracy of 82.14% which is why we used GradCam on it to understand the internal
function of whether the model can perform well and make an accurate decision by
detecting the correct region that is responsible for classifying the cancerous cells.
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