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Abstract

In the realm of education, student evaluation holds equal significance as imparting
knowledge. To be evaluated, students usually need to go through text-based aca-
demic assessment methods. Instructors need to make diverse sets of questions that
need to be fair for all students to prove their adequacy over a particular topic. This
can prove to be quite challenging as they may need to manually go through several
different lecture materials. Our objective is to make this whole process much easier
by implementing Automatic Question Answer Generation (AQAG), using fine-tuned
generative LLM. For tailoring the instructor’s preferred question style (MCQ, con-
ceptual, or factual questions), prompt Engineering (PE) is being utilized. In this
research, we propose to leverage unsupervised learning methods in NLP, primarily
focusing on the English language. This approach empowers the base Meta-Llama
2-7B model to integrate RACE dataset as training data for the fine-tuning process.
Creating a customized model that will offer efficient solutions for educators, instruc-
tors, and individuals engaged in text-based evaluations. A reliable and efficient tool
for generating questions and answers can free up valuable time and resources, thus
streamlining their evaluation processes.

Keywords: Automatic Question Answer Generation(AQAG); Natural Language
Processing(NLP); Machine Learning(ML); LLM(Large Language Model); Prompt
Engineering (PE); ReAding Comprehension dataset from Examinations(RACE)
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Chapter 1

Introduction

1.1 Overview

A key function of the natural language process (NLP) is to produce sets of mean-
ingful questions and answers from a given text. On the other hand, large language
models (LLMs) have revolutionized the area of natural language processing (NLP)
in recent years. Certain models have shown unparalleled ability to comprehend
and produce writing that is human-like. The automatic generation of question
and answer pairs is an intriguing application that has arisen from this innovative
technological leap, and it represents an important milestone in the progress of ma-
chine learning. The fundamental working principle of LLMs is training on a variety
of datasets which allows them to catch up on subtleties in language, context, and
domain-specific information. Consequently, these models demonstrate an impressive
ability to comprehend the nuances of many subjects, rendering them appropriate
choices for the development of systems that generate questions and answers in a va-
riety of fields, including science, technology, literature, and other fields. Exploring
automatic question-answer generation is motivated by the growing need for intel-
ligent systems that can understand and react to natural language questions. The
scalability and adaptability of traditional techniques to question answering were
limited since they frequently depended on rule-based systems. On the other hand,
LLMs use enormous volumes of pre-existing linguistic data to understand intricate
patterns and semantic linkages on their own. By fine-tuning these models for certain
tasks, like answering questions, their capacity to produce precise and well-reasoned
answers is improved. This allows them to produce queries and responses that are
appropriate for the given context. But even with these amazing improvements, there
are still difficulties when it comes to incorporating Large Language Models into QA
systems. The potential to provide inaccurate or misleading information, biases in
training data, and ethical considerations are important issues that need to be care-
fully considered. However, automated question-answer generating has a wide range
of significant applications. This question and answer creation technique will help
users in many ways. For example, it will help to improve understanding of the topic
by answering questions and promoting critical thinking. This technique is mainly
useful for teachers because they need to generate several sets of questions from var-
ious texts within a short period of time, sometimes this may be a big challenge for
them. In this paper , we propose a system where diverse types of questions can be
constructed which can result in creating more comprehensive assessments in an effi-
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cient way compared to manual approach. At first, our system will fine tune the large
language model with our dataset using prompt engineering for the question answer
generation process. This attempts to provide more relevant outputs.Then, it will
generate multiple questions in different formats and their corresponding answers.
Our work will focus on the English language by the help of NLP and ML.

1.2 Problem Statement

In the realms of education, evaluating a student’s knowledge regarding any topic
requires a process of question-answer phase. This whole approach creates a real
burden to the educators or instructors as they need to formulate questions: subjec-
tive and objective. While preparing the questions, they have to be careful about
the question patterns to ensure that meaningful, information-based questions are
produced. The responsibility is not bound to the question generation, they need to
evaluate the students’ responses as well. This whole manual process takes immense
time and effort for an educator, sometimes the diversity of questions might be ham-
pered. It could be challenging for instructors to maintain the dynamic and diversity
of questions that properly capture a student’s understanding.
From the learners’ perspective, they sometimes are unable to get their assessments
feedback from educators in time as sometimes educators can’t provide the feedback
due to business. After studying a particular topic, a student might need to evaluate
himself so that he/she can be well known about his/her preparation before any im-
portant formal assessment task. By this, students can find out their lackings about
any topic so that they can give more time on those particulars. Moreover, they will
have knowledge about the significance of the article by analyzing the comprehen-
sive text-based questions, helping them to acquire more knowledge and enrich their
writing skills.
Beyond the educational field, “Automatic Question and Answer Generation” model
can make a significant contribution in the corporate or professional world. For hir-
ing employees, it is a great challenge for the company to choose the best suited
candidate for any particular position among thousands of applicants. The selec-
tion criteria must be arranged in such a way that there is no chance of questioning
biasness. Following these concerns, our proposed model can be a great solution
for arranging an assessment for the candidates based on some key words for that
following position. Thus, it lessens the dependence on the information of CV and
prioritizes the required skills of the role. Thereby, all candidates can get equal op-
portunity to hold eligibility for the job.
To summarize, our proposed model “Automatic Question and Answer Generation”
system will add a new dimension to this new era, ensuring a dynamic and significant
learning area. This research will have an overview of developing and implementing
the model for the purposes that we have discussed above.
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1.3 Research Objective

In this research, we develop a contextually suitable question-answer generator from a
given document. Our strategy for summarization and question generation make use
of unsupervised learning techniques in the language processing domain. Specifically,
the main contributions of this research are:

• The model sought to develop an “Automatic Question Answer Generator”
using Large Language Model(LLM).

• Our model will be able to generate meaningful questions and their correspond-
ing answers from a given text.

• The education sector will take on a new dimension using this model as the
faculties will be able to automatically generate their preferred questions and
the students will be able to practice and evaluate themselves on their own.

• The model will save a lot of time and hard-work for the user.

• After completion, we aim to release the model and publish our work.
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1.4 Research Contribution

In this research, we develop a contextually suitable question-answer generator from
a given document. Our strategy for question generation makes use of unsupervised
learning techniques in the language processing domain. Specifically, the main con-
tributions of this research are:

• We developed a reliable tool “Automatic Question Answer Generator” for
extracting relevant information from context articles and automatically gen-
erating insightful questions and the corresponding answers.

• The developed model shows similar results to the 4-bit quantized base Llama-2
model, with the addition of our fine-tuning parameters.

• As Meta’s Llama-2 is quite new, with an open-source release of less than 1 year,
we strived to contribute to research literature to expand upon the scholarly
understanding of this particular LLM’s capabilities.

1.5 Thesis Structure

The thesis is organized into 6 chapters. The first chapter ”Introduction”, states an
outline of the research statement, the objectives of the research and the research
contributions. The second chapter is titled “Related Work” where some literature
focusing on the research problem is reviewed. Chapter three, titled ”Dataset, Data
Analysis,and Data Preprocessing” states an overview of our dataset and the ex-
ploratory data analysis. Chapter four “Methodology, Architecture and Model Spec-
ification” outlines how the research problem was examined and addressed along with
the workflow of the model. Chapter five “Result Analysis”, is about the results and
performance of our model. Finally, in Chapter 6 ”Conclusion”, the results and con-
clusions of our work on the entire research problem are summed up along with the
problems we faced during the research process and some approaches we tried to
overcome those problems are mentioned.
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Chapter 2

Related Work

2.1 Extractive Text Summarization

To realize our scope in the field of extractive text summarization, we have researched
some scholarly articles. For selecting, we have tried our best to choose those articles
which have a decent number of citations, published in recent years.
The paper [2] proposes a learning-based method for combining different sentence
features. They suggest that combining the sentence features is beneficial because
each one of them makes a distinct contribution. Determining integrated sentence at-
tributes for extractive summarization is what they research. They use a supervised
learning framework to estimate the weights of various characteristics in order to
evaluate how probable it is that a sentence will be significant. To determine which
sentences are crucial for summarization, they use supervised learning to test the
efficacy of various sentence attributes. Sentence feature vectors are analyzed, and
then a supervised learning classifier is used. Candidate sentences are re-ranked in
particular since final summaries’ lengths are fixed. The final summaries are gener-
ated by extracting the strongest sentences. Combining characteristics considerably
improves summarization performance, according to experiments. The tests have
made use of DUC 2001 dataset. It has 308 total papers in 30 clusters of perti-
nent documents. Each cluster includes model summaries written by NIST assessors
and addresses a particular subject (such as a hurricane). In supervised learning
and semi-supervised learning studies, the structure for training and testing is the
same. To assess the summarization performance, ROUGE (Lin and Hovy, 2003), an
automated assessment software, is used. Based on the overlap, it contrasts model
summaries with summaries produced by machines. They create a training strategy
to train several classifiers using the same feature space. The combination of surface,
content, and relevance aspects is implemented using PSVM and NBC. According to
experiments, features that combine surface, content, and relevance function the best
and compared to supervised learning, the semi-supervised learning strategy retains
equivalent performance while saving half of the labeling cost.

Mahmood Yousefi-Azar and Len Hamey [6] authored a paper focusing on an unsu-
pervised model featuring its deep learning capabilities. The paper highlights query-
based single-page documents using an automatic metric including Auto-encoders
[AE] for text summarization. Auto-encoders are methods that learn to create effi-
cient data representation. Taking input data the encoder model compresses it into
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a smaller, more efficient state. With this smaller state of representation, the de-
coder tries to recreate the input state as closely as it possibly can. Through this
process [AE] learns efficient data outputs. Word representation is a key factor of the
proposed model. As other systems rely on sparse representations of data, it causes
problems in the training process where there enough data input is not observed.
This subsequently increases the problem where only the sub-parts of the text are
used as training data. The proposed model structure combats this by representing
only distinct local word structures as input and by adding random noise in the vector
representation. The effect of adding random noise into the input vector is also used
multiple times with different added noises. [AE] has been used in unsupervised text
summarization models before but only as a word filter. The application of AE’s,
and the [ENAE] method in word ranking is the primary focus of this paper. Con-
sequently, it becomes a stochastic model rather than a deterministic feed-forward
network composition. Distinct models extracted summaries of different lengths. Lo-
cal vocabulary enhances recall by an average of 11.2% when [AE] is used. It causes
no adverse effects when the encoder maps sentences of different documents to dif-
ferent semantic spaces. BC3 datasets, For comparison analysis, average weighted
Recall (AWR) was used as a metric for supervised and unsupervised analysis.The
authors draw the conclusion that their novel strategy is on par with the best super-
vised strategies. With hopes that reduced computational cost makes the new model
more suitable, where semi-supervised learning implementation can be explored in
the future.

Another paper by Devi Krishnan, Preethi Bharathy, Anagha and Manju Venu-
gopalan [14] states extractive summarization from the text based on some robust
features which is a supervised approach. The whole model works as a flow of some
steps. At first, the training data needs to be preprocessed for feature extraction. In
the preprocess steps, tokenization, part of speech tagging, stemming and stop-word
removal have been followed. To resolve the class imbalance, it has mentioned a ‘Sam-
pling’ method which can reduce the majority classes or increase the minority classes
according to necessity. To train the extractor, the model has used some significant
algorithms like Näıve Bayes, KNN, Random Forest, SMO, J48, Bagging. To mea-
sure the accuracy of the trained model in extractive summarization, the used data
set is “BBC news article” from 2004 to 2005 containing 2225 documents divided
in 5 domains. The proposed model summary has been compared to the dataset
summary and on ROUGE scale it has given average scores beyond 0.4 which is far
better than other trending research. It has also stated that ROUGE-1 has provided
the best result as it works based on unigram overlapping.

Akanksha Joshi, E. Fidalgo, E. Alegre and Laura Fernández-Robles has introduced
a new innovative technique SummCoder for creating extractive summarization [13].
This technique requires three metrics developed by the researcher of this paper to
select sentences for generating the summary. First metrice is sentence content rele-
vance and to determine this they use a deep auto-encoder network.Second metrice
is sentence novelty is used for measure the similarity between sentences and third
one is sentence positive relevance, this feature is designed by hand and it gives
more importance to the initial sentences using weight calculation method which
generated through the length of the paper or document dynamically. To test their
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method more accurately they introduced a new dataset TIDSumm. In their re-
search they used 5 datasets. For training and validation their approach they use
CNN and DailyNews dataset and for testing purposes they use DUC2002 dataset
which contains news, Blog Summarization dataset containing blogs and TIDSUM
dataset which they made, containing illegal activities.Using DUC2002 dataset, heir
method gained a more brilliant score in Rouge than other algorithms for extractive
summarization on single documents. Their model gained 51.7 in ROUGE-1, then
27.5 in ROUGE-2, 28.5 in ROUGE-SU4 and lastly 44.6 in ROUGE-L. Their model
shows better performance than other text summarizers. Though it does not score
better in ROUGE-1 than the CoRank approach. By using their self build dataset
TIDSumm they gain scores in ROUGE-1 is 58.8, ROUGE-2 is 48.9, ROUGE-SU4 is
45.9 and ROUGE-L is 49.3. By seeing this score they are clear that their approach
is better than compared to other baseline algorithms.They also observed when they
use Blog Summarization dataset their approach SummCoder gets the highest score
in ROUGE score compared to the other baseline approaches.

Jiacheng Xu , Zhe Gan, Yu Cheng, Jingjing Liu[17] proposed extractive models
which are sentence based sometimes produce ineffective and redundant sentences
in the summary and also Bidirectional Encoder Representations from Transform-
ers(BERT) a language model fails to capture wide dependencies properly because
it is trained on pairs of sentences but not for the full size documents. This DIS-
COBERT model works with the smaller chunks of a sentence which they call dis-
cours unit and from this it has the ability to minimize redundant details which are
present in the sentences. They have three contributions in this research.This model
generates two types of discourse related graph which shows the connection and re-
latedness among sentences. And using this information this model can generate
summaries that capture the sense of the original documents. According to their re-
search this model is better than the previously built best performing models when it
comes to generate the qualityful summaries. They compare their model with other
BERT based models and it gives better performance on generating summaries. New
York Times (NYT),CNN and DailyMail (CNNDM) these two datasets they used
in their research to test their model. From See et al. (2017) they use 5026 script
to extract summaries from raw data and they use Stanford CoreNLP for detect-
ing the boundaries of the sentence, then tokenizing the sentence and parsing the
syntactic structure.when they use CNNDM dataset the result they get from their
DISCOBERT model that beats the other state of the art BERT model by gaining
higher scores differences 0.52 on R-1, 0.51 on R-2 and 1.04 on R-L on the F1 evalu-
ation metric. Using the NYT dataset they get the result of a significant gain of 1.30
on R-1, 1.29 on R2 and 1.82 on R-L when it compares with the BERT baseline.

The paper by Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming Zhou [12]
proposes an extractive model for latent variables and consider the labels of sen-
tences as binary latent variables. An extractive model is used to predict the latent
variables, and gold summaries are directly responsible for the training loss. The au-
thors claim that existing extractive summarization models are minimal as they rely
on sentence-level labels. The model may be thought of as a reinforcement learning
model. It includes a fundamental linear regression model to lessen the variance of
gradients. The authors initiate the latent model using a pre-trained extractive model
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to prevent random label sequences while sampling. The paper starts by introducing
the neural extractive summarization model, which serves as the foundation for the
latent model. Then it next goes through the sentence compression model that the
latent model uses. The authors tested their model on the CNN/Dailymail dataset
and the results revealed that it outperformed an effective extractive baseline trained
on rule-based labels. By a large margin, the extractive model performs better than
LEAD3. Additionally, EXTRACT performs better than previously released extrac-
tive models like SummaRuNNer, EXTRACT-CNN, and REFRESH. The suggested
model can indeed outperform a robust extractive model, according to experimental
findings.

The paper by Ramesh Nallapati, Feifei Zhai and Bowen Zhou [4] provides an in-
novative approach for extractive summarizing that makes use of a recurrent neural
network RNN. The authors believe that this method is more interpretable and can
produce greater results than earlier approaches. The model is capable of extracting
sentences that are both prominent and informative. It was trained on a dataset of
human-generated summaries. The proposed method consists of two key phases. The
RNN is initially taught to predict a probability distribution across the document’s
phrases. Then a greedy algorithm is applied in order to choose the sentences with the
greatest probability ratings. The authors tested SummaRuNNer on several different
datasets and discovered that it performed better than earlier approaches. Addi-
tionally, they discovered that SummaRuNNer was easier to understand than earlier
techniques since it could recognize the sentences that it thought were crucial. Ac-
cording to the paper’s findings, SummaRuNNer, a recurrent neural network (RNN)
based sequence model for extractive document summarization, delivers state-of-the-
art performance on the CNN/Daily Mail dataset. The study provides two more
contributions in addition to the suggested method. First, the authors suggest a
novel technique for abstractive training of extractive models. Sentence-level extrac-
tive labels are not necessary with this model since training can be done using only
human-generated reference summaries. Additionally, they intend to build a joint
extractive-abstract model in which the predictions of their extractive component
generate stochastic intermediate units that the abstractive component consumes.
The authors also give a thorough assessment of extractive summarization techniques.

Shashi Narayan Shay, B. Cohen, Mirella Lapatathis[9] has introduced a unique
training algorithm which uses reinforcement learning objectives to globally maxi-
mize the ROUGE evaluation metric. They use CNN and DailyMail dataset and
on this dataset, they use this algorithm to build a neural summarization model.
They demonstrate through trials that their model performs better than the extrac-
tive and abstractive systems currently in use, both when judged automatically and
by the help of the humans. The researcher of this paper contended that in their
study the cross-entropy is an inadequate approach for the extractive summarization.
This method of training the models makes them more likely to provide more wordy
summaries that are the reason for long sentences and those summaries contain a
lot of redundant information. For summary creation they rank sentences through
a reinforcement learning objective and ROUGE evaluation metric to overcome the
mentioned challenges. Their algorithm which they used for training has the abil-
ity to explore the grounds of summaries and make their model stronger to new
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information. For this reason, reinforcement learning helps the process of extrac-
tive summarization in two ways.firstly,the evaluation metric is optimized straight
and secondly it makes their model a better version while the model selects the sen-
tences. The researchers use the CNN and DailyMail news highlights datasets to
assess their model and for training and testing they use standard splits of Hermann
et al. (2015). According to the result their model REFRESH is more efficient than
LEAD baseline. In human evaluation, participants answer 66.34% of the question
that is summarized through REFRESH and summary that are produced by LEAD
and other systems, participants can answer the question 36.33% and 28.73% respec-
tively.

Another paper authored by Changjian Fang, Dejun Mu, Zhenghong Deng, and Zhi-
ang Wu[5] proposed a new Co-Ranking method for sentence ranking. This model
named CoRank explores the relationship between graph-based general algorithms
e.g. PageRank with weighted biases in words. Highlighting that general graph-
based ranking methods do not consider sentence importances biases, weights of
every word are considered equal. The authors correlated how the linkage between
words in sentences deserves higher importance and scores in the Automatic Ex-
tractive Text Summarization [AETS] matrices. Sentences containing high-weighted
words and the number of appearances in a sentence should get higher scores in the
proposed ranking model. Extractive summarization methods operate by creating
an intermediate node representation of the input text data and assigning ranking
scores by adding biases. Unlike the more commonly used ranking algorithms, e.g.
TextRank and TextRankExt, redundancy elimination and adding the dual crite-
ria of word-sentence relationship justifies the effectiveness. The CoRank model,
working under the bag-of-words [BOW] structure, includes the word-sentence score
feedback system to improve its weighted graphs, giving importance to rankings of
distinct words. A structure of redundancy elimination is also proposed to justify
the effectiveness of the proposed methods in real-world applications, resulting in a
sub-technique CoRank+. Utilizing the News and DUC02 datasets, and the analysis
of external validation measures, the efficacy of the CoRank method in some cases
and the CoRank+ method in all cases outperforms other relevant ranking methods.
An unsupervised learning approach to the [AETS] structure is fundamental to this
system as the proposed CoRank model can be considered as an addition to the
unsupervised graph-based ranking. Although currently focusing on single-page doc-
uments with enhancements in word-sentence rankings, the authors conclude with a
vision to improve their model to work with multi-page text collection summarization.

The paper, [8] authored by Yue Dong, Yikang Shen proposes a new model of single-
document extractive summarization by training neural networks . The model is
referred as BANDITSUM which considers extractive summarizing as a contextual
bandit issue in which the model is given a context to determine a some sentences
to generate summary. The model is trained to choose sentence sequences that opti-
mize ROUGE score using a policy gradient reinforcement learning technique. The
sequential binary labeling setup is eliminated in this technique. This action drasti-
cally decreases the amount of space that must be investigated, eliminates the need
for supervised pre-training, and stops early phrases from being systematically given
preference over later ones. The authors of the paper evaluate their approach on
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the CNN/Daily Mail dataset. For training, validating, and testing, they follow Her-
mann et al.’s (2015) conventional split; however, they do not apply anonymization on
the three corpora. The outcomes demonstrate that BanditSum outperforms other
similar approaches in terms of ROUGE scores. BANDITSUM outperforms Sum-
maRuNNer, the cutting-edge maximum likelihood-based extractive summarizer, as
well as two RL-based techniques, by a large margin. According to empirical findings,
their methodology converges substantially faster than competing methods while out-
performing or on the same level of some decent extractive summarization models’s
performance.

The research paper, written by Hans Christian, Mikhael Pramodana Agus and
Derwin Suhartono[7] introduced TF-IDF algorithm which is a new technique for
extractive text summarization. It is a statistical measure that identifies the impor-
tance of a word in a paragraph and selects sentences containing those important
words and then extracts those sentences. It helps to read any document efficiently
and shortly using this program. As, this program summarizes the document. This
program can summarize more than one document while other summarizing tools can
summarize one document only. The researchers of the paper also focus on the accu-
racy of the summary. In this research they used only descriptive text. Throughout
the research they show how they formed an extractive summary using the TF-IDF
algorithm. They found that the algorithm is able to produce an accurate and in-
formative summary of any documents and this summary is easier and shorter to
read than the main articles. They run the program several times each time using
different combinations of documents and compression rates. In their experiment,
they use 6 different documents. They use the same documents in two different on-
line summarizers beside their program to compare the comparison rate. The results
are, this summarizer is able to generate summaries that were 67% accurate. The
summary which is produced from this program is more accurate than the summary
which is produced using two other online summarizers. According to them, this is
very powerful to calculate the importance of a word in documents which helps to
determine which sentence should be in the summary.

Authors M. Bidoki, M. Fakhrahmad and M.R. Moosavi [20] explained the pur-
pose of multi-objective optimization, through the application of harmony search
and extractive multi-document summarization. Text summarizer methods aim to
create a compressed version of the input statement. Hierarchical structure based on
Score based rankings initializes the sentence’s importance. After pre-processing the
system trains on the Doc2Vec model, which is an extension of the Word2vec model
that is used to generate vectors for words. Doc2vec generates vectors for documents
by training a neural network on a large corpus of documents. The model learns
to predict the context of a word or document in the corpus. The resulting vectors
can be used to calculate the similarity between documents or clusters. Word2Vec
is used as the word embedding in the numeric semantic vector. A sentences mean
vectors measure the similarity, words with more relation with the main topic may
have higher semantic loads. Harmony search is implemented to produce the optimal
summary-building process. Utilizing the strengths of meta-heuristic algorithms in
combination with multiple summarizer systems, the proposed framework tends to
outperform other cited summarizer systems.
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The paper by Jesus M. Sanchez-Gomez, Miguel A. Vega-Rodŕıguez , Carlos J. Pérez
[10] has introduced a new algorithm named Multi-Objective Artificial Bee Colony
(MOABC) to execute their task. This algorithm is specially built for extractive
text summarization from multiple documents. Three distinct bee categories exist
in MOABC which allows for various searches for each of the bee categories .The
prime goal of this research is to reduce the redundancy and simultaneously optimize
content coverage and treat both of them as separate objectives. For evaluating the
performance of their model they use the DUC 2002 dataset. To calculate the effi-
ciency and result they evaluated their models using ROUGE metrics.This metrics
determines how closely a summary produced by a computer and summary produced
by humans are comparable. After counting the number of overlapping units it com-
pares which is better and provides results. For the evaluation they use ROUGE-2
and ROUGE-L. In the result part the ranges and CVs clearly demonstrate that
the suggested model’s output is very strong. The findings of the model give them
significant improvements by considering an average improvement is in best single
objective ROUGE-2 31.09% and ROUGE-L 8.43% compared with the multi objec-
tive result ROUGE-2 18.63% and ROUGE-L 6.09%. It also shows that when they
repeat the execution of the algorithm , the suggested model generates higher qual-
ity ROUGE values.It results in more reliable outcomes in the relative dispersion
between 620.63% and 1333.95% of reduction which is better 6 and 13 times.

The proposed model by Ming Zhong, Pengfei Liu, Yiran Chen, DanqingWang,
Xipeng Qiuy, Xuanjing Huang[18] is “MATCHSUM” which is a novel framework,
focusing on semantic text matching. Summarization based on sentence-level score
has some drawbacks as it prioritize sentences according the system score and ex-
tract sentences accordingly, ignoring semantic of the whole summary. Reinforcement
Learning is used by Narayan et al. (2018b) and Bae at al. (2019), focusing on sum-
mary level scoring. But, this approach has not been so effective due to some limita-
tion like auto regression or non-auto regression. Therefore, the paper has provided
a visual representation of summary level approaches which boost the performance
regarding semantical similarity between the main text and the summary. Before
working on this model, some candidate summaries have been chosen by pruning
the irrelevant information from the document which it introduced as “content se-
lection module”. Six vast datasets have been used here to measure the performance
score. It has portrayed tremendous performance on mid-level length summary like
CNN. Besides that, when we arrange sentences according to the sentence-level score
from higher to lower, the learning phase of sentence extractor becomes more chal-
lenging as it has to handle with pearl-summary(sentence-level score is low). On
CNN dataset, there are 18.9% which not considered as those kind of summary by
which using sentence extractor might have risk for losing significant data. Using the
BERT base, the proposed model has illustrates a clear view that on ROUGE met-
rics, “MATCHSUM” model has scored far better than all other models. Changing
the encoders to baseline BERT or RoBERTa also gives the best outcome than others.

Erkan, Günes and Radev [1] have introduced another method which is basically
graph based. This paper looks into how lexical centrality, which evaluates central-
ity based on the lexical characteristics of sentences, can potentially be measured
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in multi-document summarization. Here, three new metrics for sentence centrality:
Degree, LexRank with threshold, and continuous LexRank are modeled after the
social network idea of prestige. Moreover, it has introduced graph representation
of a document cluster in place of traditional heuristics for centrality. The centroid
basically determines the construction of words having greater scores than threshold.
And the sentences from which more words match with the centroid are considered
as central. Therefore, to measure the similarity between sentences, a model named
“Bag-of-words” has been introduced where the similarity between two vectors are
calculated. Here, vector represents each word that constructs the whole sentence.
Using cosine similarity scores, cosine similarity matrix can be generated which is
used to calculate sentence centrality. Here, it denotes each edge as cosinse similarity
matrix which is considered as vote between two sentences which is denoted as nodes.
In this case, it set a threshold score value to ignore the overall less similarity scores
compare to others as it finds it less necessary to be included in summary. But, the
drawbacks of it is that sometimes it may include unnecessary information if those
kinds of similar sentences will be found. To resolve this issue, eigen centrality con-
cept can be used. Therefore, the centrality of a particular node(u) is divided in
between nodes that are adjacent to u. Moreover, using the Perron-Frobenius the-
orem, it is proved that the Markov Chain with the stochastic matrix X converges
to a unique stationary distribution. Because of this converging property, it works
like an iterative algorithm where in every iteration, it results in a new eigenvector
by multiplying it to . Using these “Power method” LexRank score is calculated for
undirected sentence similarity graphs. It may boost the performance if the cosine
values can be directly used in the graph. For testing the whole model, the chosen
data set is DUC 2003 and 2004 where in total 70 clusters of documents have been
used. Total eight experiments have been run for each cetrality method and in every
experiment the proposed methodology have achieved higher scores on ROUGE-1
metrics than the baselines, even than the centroid based extractive summarization.
It also highlighted that the lower thresholds for degree and LexRank features pro-
vide the best outcome.

Yang et al. (2019) looks at the potential of BERT for text summarization in his
paper [16] . A number of natural language processing tasks, including text catego-
rization, question answering, and natural language inference, have been successfully
completed by BERT. The authors propose two different models: an extractive model
and an abstractive model using BERT. The authors test the performance of their
models on three datasets: CNN/DailyMail, NYT, and XSum. While XSum is largely
abstract, CNN/DailyMail and the New York Times are rather extractive. The au-
thors observe that their abstractive model performs similarly to the state-of-the-art
on XSum while their extractive model beats the state-of-the-art on CNN/DailyMail
and NYT. The impact of various BERT hyperparameters on summarization per-
formance is also investigated by the authors. On all three datasets, they discover
that using a bigger BERT model (BERT-large) results in superior performance. Ad-
ditionally, they discover that optimizing BERT for the summarization job results
in even greater performance gains. Overall, the study ”Text Summarization with
Pretrained Encoders” significantly advances text summarization research. The au-
thors demonstrate how BERT may be utilized to produce cutting-edge outcomes on
challenges requiring both extractive and abstractive summarization. Their research
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conveys new possibilities for using pretrained language models to problems involving
natural language processing.

2.2 Multi Document Summarization

Another study by Yang Liu [15] has highlighted an updated variant of the BERT
model (BERTSUM) for extractive summarization which can enhance the perfor-
mance better than previous. To enable obtaining summaries within multiple sen-
tences, the model changes the BERT’s input sequence and embeddings. In that
instance, several summarization layers have been piled on top of the BERT outputs.
This BERT outputs basically indicates the sentence vectors(T1,T2. . . ..Ti) which
can be achieved by following token embeddings, interval segment embeddings and
position embedding. After that, for each sentence, a predictive score (i=1,2,3. . . )
is calculated. In order to calculate this score, it has followed a sigmoid equation
depending on different variety layers (simple classifier, Transformer, LSTM). BERD
with Transformer layer results,

Ŷi = σ(W0h
l
i +B0) (2.1)

In the paper, it has shown the ROUGE F1 scores for each category layers applying
on two large datasets, CNN/DailyMail and NYT. From the test set results it is
clearly seen that BERTSUM with Inter-sentence Transformer layers have given the
best outcome which has tested on, scores 43.25 on ROUGE-1 metrics and 39.63 on
ROUGE-L metrics. They have also compared these BERTSUM results with some
previously proposed systems like LEAD, REFRESH, NEUSUM. Additionally, it has
been evaluated on the aforementioned dataset and shows that several BERTSUM
components, such as interval segment and trigram blocking, can produce better re-
sults and more informative summaries, respectively. Here, interval segment indicates
the distinction of sentences and trigram blocking is used to reduce the redundancy
which is more simple compared to other pre-modeled algorithms, but simpler and
more feasible.

On the other hand, the paper[3] talked about extractive text summarization on the
basis of selection of sentence rankings. Extraction of summarized data usually starts
from data pre-processing through the creation of paragraphs, sentences, tokens, and
nodes. This paper dives into various different scoring methods widely used in the
realm of single-page document summarization. 15 different scoring methods are de-
scribed and implemented on three seperate datasets in this paper. For quantitative
analysis, ROGUE assessment metric was implemented. ROGUE is used to quanti-
tatively assess the summaries produced by the various scoring techniques. This fully
automated evaluator essentially compares the system-developed summaries to the
corresponding gold summaries in terms of content similarity. This paper hopes to
fill up the gap between summarization techniques and comprehensive assessments.
Considering large portions of stop words, co-reference ambiguity and redundancy
the system implements sentence scoring methods like word scoring; e.g. ( word
frequency. Word Frequency, TF/IDF, Lexical Similarity, and Sentence Length are
describes as best proven techniques.
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2.3 Question-Answer Generation

Paper authored by Miroslav Bľsták and Viera Rozinajová[11] talks about the frame-
work of an automatic question generation [AQG] structure analysis using machine
learning approaches. This paper focuses on generating factual questions from un-
structured English language text collections. After preprocessing, the framework
begins by obtaining the lexical, syntactic, and semantic role labeler information of
the input data. This focuses on pattern-matching tools for natural language pro-
cessing. The authors explore through a comparison between the combination of
traditional linguistics-based pattern recognition and a more statistical approach us-
ing neural networks. After the publication of the SQuAD data set, utilizing neural
network methods started to gain popularity in question-generation tasks. Perfor-
mance metrics such as BLEU-3, BLEU-4 and METEOR were used for performance
analysis. In the proposed framework data sets consist of the sentence–question pairs
extracted from text, and generating feedback using the reinforcement learning ap-
proach to improve the system. Sentence processing represents the sentence as a
series of sequence tokens, named Composite pattern [CP]. There is no statistically
significant method of evaluating [AQG] systems. Human evaluation can be an op-
tion, but due to large data sets it’s not possible for humans to evaluate the questions
out of subset instances. Multi-level classifications and distance metrics were used in
the machine learning approach of assigning new question sentences.

Using the extractive text summarization technique, A. Nwafor, Chidinma and E.
Onyenwe and Ikechukwu[19] published a paper focusing on generating multiple
choice question answers using NLP. The whole process is divided into three main
cores. One is extractive summarization to extract the keywords of the selected
chapter or article to extract. Before doing summarization, it has followed some
preprocessing techniques before following the extractive text summarizer features.
Moreover, irrelevant data needs to be erased from the text before word normal-
ization. The word is basically the tokenized form of a sentence where each word
denotes as single token. For filtering the stop-words, IF-IDF concept has been used
to measure the weight of a particular sentence. Moreover, it includes stemming for
boosting the precision score and recall score of MCQ generations. After the extrac-
tion has been done, it is necessary to find the context of each sentence which are
semantic and meaningful and then analyze which question will be standard leveled.
To analyze it, it is important for having a list of keywords which may be created by
the teacher or who wants auto generating question answers from the text. Then the
precision and recall score will indicate the accuracy of the model finding the exact
keywords from the text. As a test case, the system has chosen five different mate-
rials on which it has portrayed recall score indicating the majority of the extracted
words are in the listed keywords and precision stating more important words rather
than those selected keywords. To make the question, extracted keywords having
higher IF-IDF values will be mapped to the real position in the text and these can
be easily replaced by dash —–. After that, we can choose the number of options for
the question and each option can be filled with other keywords whereas remaining
one option must be filled with the main keywords for that blank space. It will be
reviewed by teacher as well for approving the question.
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Chapter 3

Dataset, Data Analysis and Data
Pre-processing

3.1 Description of the Data

We have chosen a race training dataset which has 10,000 reading comprehension and
for each comprehension it has four questions and each question has corresponding
four multiple options to choose. So in this dataset there are 40,000 questions. The
data initially existed in JSON format but was transformed into a Microsoft Excel
CSV file format named ”race-train40 FINAL.csv.”. These passages and questions
were taken from English tests given to students in middle and high schools in China.
Models for automatic understanding can be trained and tested using this dataset.

In the data features, each passage is assigned a distinct identification number within
this dataset. Furthermore, an article is a text, essentially a passage of content.On
the other hand, questions are the list of strings .In this case there are two types one
of them is interrogative sentences and the other one is placeholders represented by
dash which are called fill in the blanks. Additionally, there is a list of options in the
dataset and Each list has 4 candidate options to choose from. Lastly, answers are a
list containing the golden label for every question.

15



Figure 3.1: Preprocessing Workflow

3.2 Data Pre-processing and Exploratory Data Anal-

ysis

We reduced certain data that didn’t include all the multiple-choice question (MCQ)
options to ensure our model could train effectively. At the beginning of the pre-
processing, we manipulate the text by converting contractions to their full forms
and handle the null values in each of the columns. A contraction is a shortened
word or word group that is usually made by joining two words together and leaving
out one or more letters. Although contractions frequently appear in spoken language
and casual writing, they should be avoided in official or academic environments. It
is important to remove contractions while pre-processing in the natural language
processing context due to various reasons. It increases the unity and consistency of
the text. Moreover, eliminating contractions makes tokenization easier since each
one is handled as a single token which facilitates easier processing and analysis later
on. On the other hand, in order to ensure the accuracy, dependability, and smooth
operation of data analysis and modeling procedures, null values must be eliminated.
After that, by using the pandas library we have created a column named “correct”
where the correct answer option is written for particular questions. Then we counted
the average length of an article in terms of the number of words. Not only this but
also we have counted the average length of the text in articles, questions, and right
answer choices, as well as the average length of all answer options for data analysis.
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After pre-processing, we have decided to work with 33840 rows of in-
put data for our training dataset.

Average Article word count= 311.66
Average Question length= 10.500975234942963

The Fig. 3.2 illustrates the distribution of a whole correct option into its constituent
parts or categories which means which option occurred more frequently.Among the
4 options, we observe that chances are almost evenly split ;Option A appears as the
correct answer 22% of the time, Option B appears as the correct answer 26% of the
time, Option C appears as the correct answer 27% of the time, Option D appears
as the correct answer 25% of the time. The same thing is shown using a bar chart.

Figure 3.2: Correct Options

And lastly in the Fig. 3.3, For a more accurate picture of the typical length of text
for each option, create a bar chart to show it visually.

Figure 3.3: Average length of option texts
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We have splitted the whole dataset in into two new datasets for separating inter-
rogative and fill-in-blank questions showing Fig. 3.4. Then, We have worked with
10 thousands question raws for each dataset. The distribution of a whole correct
option into its constituent parts or categories, in other words which option occurred
more frequently is represented in the following pie-charts.

Figure 3.4: Correct Option distribution for Interrogative and Fill in the blank Ques-
tions

These visual representation provides an insightful perspective, showing that the
freqeuncy with each option came up with correct option holds close to each other.
It enhances the reliability of our research work by ensuring impartiality and the
absence of bias.
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Chapter 4

Methodology, Architecture, and
Model Specification

4.1 Overview of the Proposed Model

The purpose of our proposed model is to generate relevant fill in the gaps and mul-
tiple choice questions and answers from a given article. In order to do so, we have
used an open source LLM (Large language model) Llma2 (by Meta) as our base
Transformer. The project was implemented using primarily the Pytorch ML frame-
work, its libraries and dependencies. We have used the Hugging face module to
import the (Llama-2-7b-hf) LLM model, which uses 7 Billion parameters for calcu-
lation. The Base LLM model was fine tuned with our collected dataset to perform
better with our AQAG process. This aims to create more relevant outputs accord-
ing to our Question and Answer generation use case. Before that, we collected our
dataset from English tests given to students in middle and high schools in China
and preprocessed our collected data for data pipelining procedures. Then we im-
ported all the necessary libraries needed for our AQAG process. We used prompt
engineering in order to obtain desired and precise outcomes from our model. Then
we used parameter quantization and parameter tokenization which makes the data
easier and efficient to analyze and process. After that, creating a model instance, we
fine tuned the Base LLM model with our dataset defining the training arguments.
Finally, after the generation of question and answer, we evaluated the performance
of our model using different evaluation metrics. The following figure represents the
workflow and data-pipelining process of our system.
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Figure 4.1: Data Pipeline of the proposed Model

4.2 Experimental Setup

The proposed Question and answer generation method and other implementations
are developed on Google Colab Pro, Google’s in-house cloud solution for remote
computing. To implement our model and all the work related to our research were
done by using SSD which is 512GB, AMD Ryzen 5 5600 system with 16GB RAM
and 12 GB graphics memory which is Nvidia RTX3060 . All the work we have
done is in the Python language. Also, we have used many python libraries. For
instance, json,re, pprint, pandas, torch,datasets,huggingface hub and transformers,
scikit-learn, spacy and TensorFlow libraries. Lastly, to produce the result Matplotlib
and Seaborn libraries of python were used.
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4.3 Model Specification

Llama 2 (Open source Large Language Model by Meta AI): Essentially, it is a large
open source language model. This model has a solid understanding of natural lan-
guage processing due to its adaptive and robust tools. To exhibit this understanding,
a large amount of data is being trained to make the model adaptable for generating
contextual meaningful questions and responses. Large language models are capable
of achieving state-of-the-art performance in activities like question-answering, de-
pending on the unique use case and fine-tuning.

In Machine Learning, fine-tuning refers to the process of modifying any pre-trained
model by adjusting weights and parameters to enhance the performance to get the
desired outcomes. This fine-tuning is a significant aspect of boosting the model’s
capabilities. This whole process entails training the model on a specific dataset,
allowing it to adapt its understanding and modifying the model’s previous knowl-
edge or refining it to improve its performance in the particular task. Based on
this, the model further trains with a focus on tasks such as text summarization ,
language translation and question answering. Because of this training process the
model improves its adaptive capability of understanding which ultimately makes it
more efficient and effective in handling tasks related to summarizing text, translat-
ing languages, and providing relevant answers to questions. Essentially, fine-tuning
tailors the model’s skills to meet the specific requirements of these tasks, optimizing
its performance for practical applications.

So, Llama-2 can be adapted for different uses by adjusting to specific datasets during
fine-tuning which make it well suited for a wide range of real world scenarios. Even-
tually , The objective of fine-tuning helps to provide very efficient and contextually
rich language processing over many applications. Considering our desire, we have
used the Llama-2’s fine-tuned capabilities to make it a powerful tool in the realm of
natural language understanding and automatic question and answer generation.

In our research, we have used Llama-2 with 7 billion parameters which is almost
13.5 GB. Normally, Llama-2 comes with three different sizes and those are 7 billion,
13 billion and 70 billion. We have chosen Llama-2 with 7 billion parameters because
of the limitation of the resources. These models are very advanced and need partic-
ularly large storage so we have to work with Llama-2 with 7 billion parameters, as
it takes comparatively less storage space than the other versions.
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4.4 Import Necessary Pre-requisites

Early on in the implementation of our model, necessary environments and libraries
need to be set up for constructing a robust and efficient configuration. Based
on this, we installed some significant versions of python libraries, allowing us to
work on solely for our desired outcomes. For example json,re, pprint, pandas,
torch,datasets,huggingface hub and transformers. These libraries are important for
Natural Language Processing tasks.

The description and purpose of the each libraries are:

• JSON (JavaScript Object Notation): it is a lightweight data interchange
format which makes it easier for humans so that they can easily read and
write. Also, easy for the machine to parse and generate. In the Natural
Language process, JavaScript Object Notation (JSON) is mainly used to store
and exchange structured data. It is also used to represent other elements like
dataset configuration,annotations, model outputs and so on.

• Huggingface hub and transformers: It provides a repository for pre-
trained models and tools for working with them. Also, it is used in Question-
answering; it means the process of taking the answer out of the context, pro-
ducing summaries from the lengthy texts, it is helpful in text classification and
creating a new text using text-generation models like GPT. We have used the
Hugging Face ecosystem with the transformers library so that we are able to
work with the pre-trained language model, in our case we use llama-2.

• Torch(PyTorch): PyTorch is a comprehensive framework and an open-
source deep learning library.It is written in python so it is comparatively
easy to learn and use. It is mainly used for building and training models.
It provides dynamic computational graphs, making it flexible and suitable for
tasks like text classification, named entity recognition, image recognizing, and
understanding language.

• Pandas: This is the most powerful data manipulation and analysis library for
Python. It is helpful for manipulating the structured data. It also explores
and analyzes the data. Moreover, data is cleaned and loaded through the use
of this. So it is very powerful, efficient and easy to use.

• Datasets: We used the Datasets Library to handle our dataset.

• pprint: This is useful in printing the data structures. It is important when
it comes to debugging the code and making it easier to understand what is
happening in the code and easy to work with.

• Regular Expressions: This library determines if a particular string matches
a specific pattern or not using the match function. It is mainly a strong tool
that helps us to work with the regular expressions.

• LoRA: LoRA involves the immobilization of pre-trained model weights while
introducing trainable rank decomposition matrices into each layer of the Trans-
former architecture, resulting in a significant reduction in the number of train-
able parameters available for subsequent tasks.
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• BitsandBytes: It is a simple tool that wraps around CUDA functions which
is designed for matrix multiplication and quantization.

4.5 Prompt Engineering

Prompt engineering is the process of developing and enhancing prompts or queries
that generate certain outputs from AI models. It plays a vital role in formulating
queries that assist generative AI models comprehend the intentions and complexity
behind the query efficiently, not only the language. In order to obtain desired and
precise outcomes from AI models, prompts are used to instruct and make adapta-
tions to the intended behaviors. A high-grade, intelligent prompt responds appropri-
ately by understanding user intent, generating more relevant and consistent results
that positively affects the AI generated output quality. It entails the deliberate de-
sign of prompts to reduce biases, boost accuracy, and direct models towards desired
outputs. Well-designed prompts resolve ambiguity, accommodate a wide range of
applications, and facilitate the incorporation of subject-specific information.

The key elements of a prompt are-

• Instruction: This is the main directive of the prompt. It instructs the model
to gain the adaptability for a specific task that the model needs to perform.

• Context: Context adds details to assist in the model’s perception of the
broader scene or background. It is basically additional information or more
context that might help the model generate better results.

• Input Data: This is the particular data or information the model needs to
process.

• Output Indicator: This component instructs the model on the intended
answer type or format.

In our approach for generating multiple choice questions, We implemented two dis-
tinct prompts in our system, one is for filling in the gaps type questions and another
for open-ended questions. We initialized ‘Default System Prompt’ as the instruc-
tions of the model to familiarize about the intent. Here, we provided a sample article
and several sample questions from that article for the convenience of the model to
help with the comprehension. The motive behind that is to make understandable
the significance of questions in that particular article.While providing sample ques-
tions, we chose two types of questions to keep the diversity. In one prompt, we
chose several fill in the blanks questions and in another one, we provided sample
open-ended questions. This two-prompts method helps the model to grasp the abil-
ity in purpose of analyzing the significance of those questions in the article. For
better learning, we incorporated the system prompt with the dataset by combining
each article, corresponding question, provide options and answer. This mapping
ensures the recognition and prioritization of the important keywords from each arti-
cle, which thereby makes it better for generating relevant and significant questions.
Overall, this methodological approach assists the model with clear instructions with
necessary tools to generate insightful questions from articles.
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Here is a visual representation of our prompt engineering process for generating
questions and answers. We provided the model a sample article and some sample
questions along with our prompt. Then after fine-tuning, the model generated some
multiple choice questions.

Figure 4.2: Visualization of Prompt Engineering for our process
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4.6 Quantization

In the context of the Large Language Model(LLM), quantization basically denotes
the conversion of the model’s weights from higher precision to lower precision. The
main objective of this is to reduce the computational and memory costs of running
inference by representing the weights and activations with low-precision data types
like k-bit integer (intk) instead of the usual 32-bit floating point (float32). Instead
of using more complex precise numbers it simplifies those to fewer bits which helps
the model to become smaller and faster so that the particular model can run on the
devices which have limited resources.

In our proposed model, we applied a 4-bit quantization technique named Normal
Floating-4(NF4), a parameter of the “BitsAndBytesConfig” library that we im-
ported from transformers. It’s one of the most efficient techniques introduced by
QLoRA to minimize the memory allocations by keeping intact the performance. We
enabled the 4-bit quantization model by the variable load in 4bit ‘True’. For com-
putational data type, we chose ‘float16’ as it ensures memory efficiency.

Overall, it simplified 32 bit floating point numbers into 4 bits. By doing this, we
reduced the memory allocation by 8 times less. So quantization is like simplifying
and rounding numbers to make them easier to work with, saving space and speeding
up the process in the machine learning models. For our model llama-2 7b we used
quantization instead of 8-bit quantization. Because if we use 8 bit quantization it
will need 6.52 GB of memory for execution. Allocating such a significant amount of
storage solely for quantization would limit our ability to perform additional tasks,
as our VRAM is already occupied with other data during that period. So instead
of using 8 bit quantization we had to use 4-bit quantization because it took less
amount of storage space and we can perform other tasks at that time.
To calculate how much memory can be saved by 4-bit quantization:

memory saved = [1− (bit4 total memory/float32totalmemory)] ∗ 100

4.7 Tokenization

Tokenization is the process of breaking down a piece of text into smaller chunks.
These smaller chunks are referred to as a token. This token is helpful because for
this it is easy for the machine to process and understand the sentiment of a word. It
is a basic task in Natural Language Process because it helps in language modeling,
examining the sentiment and machine translation. This technique gives us a struc-
tured and organized way to represent and analyze sentences, it helps algorithms to
recognize the individuals or the subwords to understand their sentiment. Tokeniza-
tion approaches boost the performance of a machine to understand languages more
effectively and efficiently. In our model we created a tokenizer and our tokenizer
was associated with the pretrained model. We have set the padding token of the
tokenizer to be the end of the sequence token and the padding side is configured to
be on the right. Because to make the sentence equally long it needs padding like
adding spaces at the end of the sentence to make them equal so it does its job using
“end of sequence”. These things are needed when we try to teach our model how to
handle text.
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4.8 Parameter Fine-Tuning

We used SFT Trainer as our trainer which is a specifically designed model that is
designed to train large language models effectively while paying close attention to
memory economy and fine-tuning strategies. To maximize resource use, a gradient
accumulation of 8 is paired with a batch size of 2. The Paged AdamW optimizer and
chosen gradient clipping value of 0.3 provide stability, while mixed-precision training
with FP16 is supported for quicker calculation. Processing text input is limited by
the selected maximum sequence length of 1024.After two training epochs, the model
is evaluated at intervals of 175 steps using a cosine annealing learning rate schedule.
TensorBoard displays the training progress and saves checkpoints at the end of each
epoch. The purpose of these hyperparameter selections and approaches is to max-
imize training effectiveness and performance for our selected model architecture.
Then, we set a collate function to provide a consistent method for preprocessing
textual data while our machine learning model was being trained. Utilizing the tok-
enizer of the Hugging Face Transformers library with parameters set for truncation
and padding, the collate function ensures that input sequences are properly handled
before they’re included into the training pipeline. Finally, we trained our model
using the SFT Trainer.
The completely trained model could not be saved because of the large size and
abundance of parameters in Llama2 7B causing the storage constraint to surpass.
Furthermore, storing the complete model needs a large amount of memory, using
up more than our storage capacity. We used 4 bit quantization and by compressing
model weights and activations to 4 bits, 4-bit quantization greatly minimizes mem-
ory footprint and speeds up computations. But saving pretrained models are not yet
able to fully preserve the quantized model structure. For this reason, rather than
storing the complete model, we stored just the state dictionary. The learnt param-
eters as in weights and biases are stored in the state dictionary, which is typically
enough to load and continue training or to make predictions. We used PyTorch’s
torch.save() function to save the state dictionary of the model. Then we used the
Hugging Face Transformers library to save the configuration of the model.

In order to load our saved pretrained model, we need to follow the reversed steps of
saving the model. First, we have to create an instance of the model with the saved
configuration and then load the stored weights with that configured model. But
while loading the model, due to the massive size of the model, the session crashes
after using all available RAM before completing the loading process.
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4.9 Model Testing

In the testing phase, we used the same default system prompt that we used while
training along with the testing dataset articles for generating the prompt. Then we
tokenized the prompt and converted the tokens to pytorch tensors. Using our fine
tuned model, a tokenizer and the generated prompt, we generated the questions.
Using the max new tokens and temperature parameters respectively control the cre-
ated text’s length and variance.
Here are some sample generated questions and answers from a sample article.

Figure 4.3: Sample Article

After fine tuning the Llama-2 7B model with our training dataset, the model gener-
ated some insightful multiple choice questions based on our test dataset articles in
the testing phase. The following image displays some questions generated from that
one particular article. After generating the question there are four options and one
correct answer for each question. Moreover, there is a brief explanation for each of
the correct answers.
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Figure 4.4: Generated Questions
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Chapter 5

Result Analysis

5.1 Evaluation Findings

Through the exploration of BERT-based extractive text summarization techniques
in the preliminary stages of our research, implementing sentence-based multi-layered
embeddings and tokenization procedures to generate comprehensive summarized
texts from given context articles. Transformer-based encoding strategies proved to
be good enough for articles assigned with smaller context lengths but struggled
with reliable results in larger text generation tasks. Exploring the T5 model, after
analyzing 150 rows of test data, about 40% of them generated relevant readable
output with a training loss of 1.5946 and a validation loss of 1.6487. This may
primarily be caused by lowered training parameters due to hardware restrictions.
We selected 50 suitable outputs and evaluated their perplexity score and Semantic
similarity score with the context article and test question input in 2 sets. Per-
plexity serves as a statistical gauge of a language model’s prediction confidence
for a given text sample. It quantifies the level of unexpectedness or surprises
the model experiences when encountering new data. With an average perplexity
score range between (197.31 - 312.48). Which is not ideal for our transformer
model. Moreover, the semantic score that we found from testing was on aver-
age equal to or greater than 0.5. Both are not ideal for Large language trans-
former models. While BERT-based transformer models worked with the sentence-
level summarization process, we struggled to implement comprehensive methods
of generating questions and answers similar to the concise summarized text.

Figure 5.1: Sample Article
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Figure 5.2: BERT-based Extractive Text Summarization

In response to challenges encountered, we transitioned our approach to leverage
existing open-source Large Language Models (LLMs) for our research outcome and
analysis. Our research sphere primarily focused on utilizing Meta’s Llama-2 open-
sourced model. As the new wave of commercially available LLMs automatically
inherits text-summarization capabilities, we aimed to utilize its features by fine-
tuning with the RACE reading comprehension dataset, hoping to feed for data with
our final objective of question and answer generation, improving its customized
adaptability. The basic model was trained using a subset of 10,000 rows from the
dataset that was particularly designated for further model fine-tuning. After numer-
ous phases of prompt engineering tests and relevant results adhering to the intended
prompt structure of the Llama-2 model using

<< SY S >> − << /SY S >>, [INST ]/− [/INST ].

We instructed the LLM to first familiarize itself with our intended Multiple-choice
question and answer structure.Finally testing the fine-tuned trainer model on un-
seen context articles.
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Figure 5.3: Default System Prompt

5.2 Evaluation Metrics

The scientific community is striving towards finding better metrics for subsequently
evaluating Question and Answer generation systems. However, there has always been
a critique about using n-gram-based similarity metrics such as (ROUGE, BLEU, and
METEOR) scores for evaluating the performance of Automatic Question and An-
swer Generation (AQAG) systems.
As they generally focus on text summarization, translation, semantic relatedness and
similarity index with reference inputs. The extent of semantic similarity or proximity
between two or more words, sentences, or concepts is known as semantic related-
ness. It illustrates how much language and communication these components have
in common in terms of concepts, contexts, or associations. Low semantic relatedness
denotes a weaker or less prominent relationship, whereas high semantic relatedness
reflects a significant connection in meaning. In natural language processing, infor-
mation retrieval, and other linguistic applications where knowing the connections
between words and their meanings is critical, this idea of semantic relatedness is
significant.
In our research, we worked by benchmarking our fine-tuned Llama-2 model as a
whole with model perplexity scores. Perplexity is denoted as a statistical measure-
ment that measures the level of confidence when it comes to predicting a text sample.
It mainly measures how a model reacts when new data is introduced. In addition to
its applications, the perplexity metric is used to compare various language models,
find issues, and also help models in fine-tuning the parameters. In natural language
processing, It is a very fast and efficient metric that evaluates the model performance
by measuring the dataset log-likelihood. Moreover, it helps fine-tune the hyperpa-
rameters of natural language processing models on huge datasets. It is also helpful
to identify if the model is overfitting or underfitting. To sum up, with the decrease
in perplexity, the model produces better predictions of the text. We primarily used
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the WikiText-2 test set for our language model testing dataset, This contains a col-
lection of over 100 million tokens of Wikipedia articles, which is available under the
Creative Commons Attribution-ShareAlike License.
The formula for finding perplexity score,

Perplexity(X) = exp

{
−1

t

t∑
i=1

logPθ (i|x<i)

}
(5.1)

After evaluation, our custom fine-tuned model on average showed similar results
according to current industry benchmarks, keeping in mind the 4-bit quantization
process. Our customized model shows an overall score of 6.43. [21]

Model/Quantization q4 q8

llama-7b 6.0915 5.9063
llama-13b 5.3608 5.2547
llama-30b - -
llama-30b - -
llama-2-7b 6.0398 5.7897

llama-2-7b-chat 7.7853 7.5014
llama-2-13b 5.2115 5.1005

llama-2-13b-chat 6.7059 6.5361

llama-2-7b Fine-Tuned 6.43 -

Table 5.1: Perplexity on wikitext-2 test set

For analyzing the relevance score of each question with the context, we have imple-
mented the tfidf vectorizer, a feature of scikitlearn library. By using TFIDF vector-
izer we have converted the questions and articles in corresponding vectorized form
where each word carries a vector weight. After that, we have applied cosine similarity
to the vectorized article and question to find how relevant the generated question to
the corresponding article. We have calculated the score on our generated questions
that has been presented before. In the table, higher relevance score represents that
the question is more relevant to the sample article.

Generated Questions Relevance Score

Question-1 0.55533549
Question-2 0.51964122
Question-3 0.4624515
Question-4 0.75997221

Table 5.2: Relevance Score with the context
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Furthermore, for a decent multiple-choice question, it’s significantly important to
set all the available options to similar types of category. Thus, the question holds
a standard quality. It is crucial because it lessens biases and guarantees the as-
sessment’s fairness. So, we calculated the cosine similarity of each option with the
correct answer. For that, we used the en-core-web-ig model of spacy which can give
us the similarity score. In the following table, the similarity score of each option
with the correct answer is illustrated. Here, a higher score indicates that the option
has more similarity with the correct answer.

Generated Questions Options 1 Options 2 Options 3 Options 4

Question-1 1.0000001 0.58418226 0.48710752 0.5534273
Question-2 0.5847328 1.0000001 0.78906226 0.7800066
Question-3 1.0 0.93975097 0.9534698 0.9415601
Question-4 1.0 0.93176795 0.885403561 0.92620562

Table 5.3: Similarity Score of Listed Options with Correct Answer using Spacy

For evaluating both the scores, we have used the formula of cosine similarity,

cosine similarity(A,B) =
A ·B

∥A∥ · ∥B∥
(5.2)
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5.3 Training Loss

In the following, the visual representation of the decrease in training loss is illus-
trated, proportionately indicated improved performance over time.

Figure 5.4: Training Loss
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Chapter 6

Conclusion

In this paper, we talked about the importance of question and answer generation
in the education sector. We propose an approach to generate questions and cor-
responding answers from a document using a generative large language model. It
will utilize prompt engineering for generating insightful questions and corresponding
answers in different formats. We believe that our work will create a new dimension
to various sectors including education, e-commerce, medical and so on in this age
of automation. It will be highly beneficial to both learners and educators. Besides,
it will generate questions for the job applicants in terms of their qualifications and
interests. It will facilitate things for the interviewers. In addition, we believe that
our study will be a great assistance to the new researchers who will upgrade and
add new features to this kind of approach.In future, we aim to upgrade our model
which will be able to generate analytical questions and their corresponding answers.
We’ll improve its usability and efficiency so that it can automatically respond to the
inquiries of the e-commerce customers promptly.

6.1 Challenges

While progressively navigating our research journey, some challenging hurdles have
emerged. We selected Meta-Llama 2 as our base model, which had its open course li-
cense released in July 2023. Working with newly released models involves constraints
in finding necessary and relevant information resources, difficulties in orchestrating
the experiments, and ultimately putting in a challenging endeavor to get the de-
sired outcomes. Moreover, owing to limitations in high-capacity RAM requirements
for loading the GenAI models. We were constrained to only using the smaller 7
Billion parameter Llama 2 model. In full precision which requires 28 GB VRAM.
Due to the unavailability of adequate hardware, a 4-bit quantized version was in-
troduced to run in the local training setup. We have faced issues while training and
testing our pre-trained model, sacrificing performance for model execution. propor-
tionately affecting the proposed model’s efficiency and precision metrics. Talking
about one crucial factor in facing these challenges, is insufficient funding for access
to better GPU hardware and financial scarcity for undergraduate students. Which
significantly impedes our planned research endeavor.
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6.2 Limitations

While implementing the Automatic Question and Answer Generation model, we
have faced some constraints. First of all, as we know, for fine-tuning a pre-trained
model on a certain task, it should not encounter any biases during the training
phase. But, if we carefully look at our generated factual questions in testing, the
majority of the questions are like “What is the main idea of the passage?”. The
suspected reason lies in our training dataset, which carries this type of question
excessively in most articles, resulting in the model bias to this type of conceptual
question. Furthermore, we have encountered issues while generating questions when
the run-time gets larger. Secondly, the automatic question-answer generation system
can generate multiple questions simultaneously, but the overall quality is inconsis-
tent, particularly those questions that are generated later on in the testing phase.
This is because of the run-time limitations of V-Ram(higher specification of GPU).
Moreover, This approach could not produce analytical questions and their answers
as we only focus on the MCQ-based questions. The system can generate questions
and their respective answers based on a provided textual article, but it lacks the
ability to perform this task directly from a PDF or document format. Furthermore,
our proposed model has been fine-tuned focusing only on the English language,
therefore it can’t handle different languages which limits the potential of the model.

6.3 Future Work

In future work, we aim to extend upon our proposed model methodology and look
into the exploration of newer Large Language Models (LLMs) with better perfor-
mance emerging in the dynamic landscape of generative language models. Given
the continuous expansion in the realm of work in generative AI (GenAI), our re-
search endeavors will be dedicated to investigating, incorporating, and benchmark-
ing against the latest advancements in the industry. Furthermore, our experimental
study exhibits a relative bias toward generating conceptual questions based on a
given test article and a decline in question generation quality over multiple test
phases. We plan to investigate this using downstream layer representation strategies
employing Explainable AI (XAI) techniques. Future studies also plan to expand our
research agenda to include the multilingual and multi-file document (MfD) model
interpretability, striving for better performance, inclusivity, and efficacy.
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