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Abstract
Bacteriophages, often known as phages, have a significant impact on the dynamics of
microbial ecosystems. This has led to their increased utilization in several research
areas, such as bacterial genome engineering, phage therapy, disease diagnostics, and
viral host identification. The structure of phages is made up of proteins called phage
virion proteins (PVP). Classifying these proteins is important for genomic research,
which in turn helps us understand the complex interactions between phages and their
hosts in the context of making antibacterial drugs. Replacing the tedious traditional
procedures, a growing number of computational strategies are being employed to an-
notate phage protein sequences acquired using high-throughput sequencing. Among
these techniques, deep learning approaches demonstrate improved performance in
classification outcomes. Such procedures require special sequence encodings for the
model to perceive the protein sequences with their distinctive features. Numerous
ways have been examined and assessed, while novel methods continue to emerge in
order to optimize the task in terms of resource utilization and prediction accuracy.
The objective of our work, ProteoKnight, is to explore and develop a unique encoding
technique for phage proteins and demonstrate its effectiveness via classification. In
our work, we make use of the time-separated PVP dataset that [47] introduced. Fur-
thermore, this study aims to address the lack of research conducted on uncertainty
analysis by exploring the domain of uncertainty in binary PVP classification using
Monte Carlo Dropout (MCD) method. The experimental findings demonstrate the
effectiveness of our strategy for binary classification, achieving a prediction accuracy
of 90.2%. However, the accuracy for multi-class classification remains suboptimal.
Furthermore, our uncertainty analysis reveals that the class and sequence length
show variability in prediction confidence for our suggested classification approach.

Keywords: Proteins, Classification, Phage Virion, Deep Learning, CNN, Uncer-
tainty, Monte Carlo Dropout, DNA-Walk.
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Chapter 1

Background

1.1 Proteins and PVP
Proteins are essential macromolecules responsible for the structural and functional
mechanisms of living things. They play a vital role in the organization, functioning,
and regulation of the body’s various tissues and organs and predominantly execute
their functions within cellular environments. Amino acids connect to one another
to generate peptide bonds, which are the fundamental building blocks of proteins,
as illustrated in Fig. 1.1. In every living organism, there are 20 different types of
standard amino acids. These amino acid residues are often denoted by a single letter
(e.g., Alanine: A, Cysteine: C, etc.). Phage structural proteins (i.e., virion proteins)
are a subclass of the protein family corresponding to the bacteriophages, which are
the most prevalent kind of biological creatures [16]. The PVPs are mainly associated
with building structural constituents of the bacteria [41], such as the baseplate and
head as shown in Fig. 1.2, enabling efficient host-phage binding for genome trans-
fer. The amino acid sequences, particularly those involved in structure synthesis,
exhibit significant diversity in sequences among phages and their respective groups
[9]. Consequently, characterizing these sequences becomes a challenging yet crucial
task, as the shortage of annotations for phage proteins has emerged as a hindrance
in numerous research studies focused on phage genomics [7].

1.2 Uncertainty in Deep Learning
Uncertainty in deep learning classification refers to the model’s challenge in pro-
viding a definitive and precise prediction, recognizing the inherent complexity and
ambiguity in real-world data. Unlike conventional models that produce determin-
istic results, deep learning systems frequently encounter uncertainty arising from
diverse causes.

Epistemic uncertainty arises from the model’s lack of knowledge about the data
distribution, and aleatoric uncertainty emerges from the inherent stochasticity or
randomness in the data. Even with extensive training data, aleatoric uncertainty
persists due to the intrinsic unpredictability of observed phenomena. Various meth-
ods such as Bayesian approaches, ensemble methods, and Monte Carlo dropout
techniques have been developed to quantify such uncertainties for a particular in-
ference task. These validation processes ensure that the model’s predictions are not
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Figure 1.1: Generalized illustration of a typical protein sequence.

Figure 1.2: Components comprising the structure of a Phage.
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just based on deterministic outcomes but also considering the inherent uncertainties
present in the data. Such an approach is particularly crucial in applications where
the consequences of model predictions have significant implications, as it allows for a
more comprehensive and cautious assessment of the model’s confidence in its results.

1.2.1 Monte Carlo Dropout
The concept of utilizing dropout was introduced by Gal and Ghahramani [17], who
employed it as a means of approximating probabilistic Bayesian models for deep
Gaussian processes. Dropout is a frequently employed regularization approach that
serves to mitigate the issue of overfitting. Bayesian neural networks aim to acquire
knowledge about the posterior distribution of weights, conditioned on a given input
sample. However, the computation of these posteriors in an analytical manner is
infeasible. Sampling techniques can be employed to estimate the weight posteriors
as an alternative. The proposed approach involves conducting numerous stochastic
evaluations utilizing distinct weight samples within our model.

Figure 1.3: Dropout Mechanism for Neural Networks [45]

Monte Carlo Dropout is such a sampling technique utilized to estimate the weight
posterior in a given set of data. The functioning of the mechanism involves the
utilization of a technique called ”dropout” during the training phase. Dropout refers
to the process of randomly selecting whether or not to retain nodes inside a neural
network. This decision is made based on the outcome of a Bernoulli random variable,
which follows a specific probability distribution denoted as P as shown in equation
1.1, where t indicates a specific trial for variable w. The dropout approach, as seen
in Figure 1.3, incorporates this probability parameter. Therefore, when the same
input is sent through a model, the resulting output may vary slightly depending
on which nodes are activated or dropped out. Each of these outputs represents a
distinct sample within our network.

3



Zw,t ∼ Bernoulli(p) ∀ w ∈ W (1.1)

In this scenario, essentially T samples from the weight distribution are selected
as shown in equation 1.2) and useed to perform T stochastic forward passes with
dropout where the input is denoted as X and the corresponding output is Y. This
allows the calculating of the expected value of predictions Y and the variance of these
predictions across the iterations as measured using equations 1.3 1.4. Thus, using T
stochastic forward passes using different samples of weights {Wt}Tt=1, dropout acts
as a form of stochastic sampling in this scenario. The observed variability in the T
stochastic outputs primarily represents the uncertainty inherent in the model or the
epistemic uncertainty . In other words, when the predictions exhibit a large variance,
it suggests that the model is characterized by significant epistemic uncertainty.

Wt = train(f ;X,Y) (1.2)

E(Ŷ | X) =
1

T

T∑
t=1

f(X | Wt) (1.3)

V ar(Ŷ | X) =
1

T

T∑
t=1

f(X)2 − E(Ŷ | X)2 (1.4)
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Chapter 2

Introduction

2.1 In-Silico Classification of PVP
With the advent of high-throughput sequencing technology, rapid additions of se-
quences are being observed in standard biological databases such as UniProt [48]
as illustrated in Fig.2.1, giving rise to the need for proper annotation of the se-
quences. Enhancement and forwarding of annotations for the phage family is vital
for exploring effective anti-bacterial drug synthesis [30][24], disease diagnosis [3],
food production [1] , bacterial genome remodeling [14], etc. The identification and
characterization of PVPs are commonly achieved through the utilization of mass
spectrometry and protein array techniques [6] [19]. However, these methods are as-
sociated with significant time, labor, and computational expenses [16]. The conven-
tional alignment-based approaches employed for predicting homology relationships
also fail to yield satisfactory outcomes in the classification of virion proteins as the
sequences show variety in residue frequency and position, leading to dissimilar se-
quences having similar structural conformations and vice versa. These constraints
on annotation, along with the rapid increase of sequenced data, have resulted in
50–90 % unannotated phage genes [4], with only 33% annotated phage proteins in
the RefSeq phage protein database.

In light of these issues, in-silico or computational approaches leveraging machine
learning techniques for faster and lower-cost classification of phage proteins are in-
creasingly gaining acclaim. The amino acid sequences are initially encoded using
various encoding schemes to enhance machine readability. These encodings vary
in dimension and feature selection, and each encoding scheme extracts specific fea-
tures from the protein sequence necessary for their identification. The prediction
models subsequently use these encoded sequences to perform their calculations. As
mentioned previously, alignment-based methods do not always work well with PVP
categorization due to the lack of collinearity [5] in viral genomes, resulting from in-
stances such as horizontal gene transfer, high mutation rates, etc. Thus, alignment-
free methods proved more plausible for approaching the classification task. These
methods can be categorized into model-based and feature-based. This study aims to
utilize machine learning by focusing on the feature-based technique, which involves
extracting features from raw sequences.
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Figure 2.1: Growth of UniProt databases over the last 10 years
[48]

These features are made up of different frequencies of peptides, side chains, k-mers,
and the vectorized one-hot numerical encoding of amino acid residues. Studies ana-
lyzing sequence data have demonstrated that when represented as 2-D images, they
exhibit enhanced characteristics due to increased feature space [46]. The augmenta-
tion of dimensionality typically results in improved performance and simplifies the
process of feature extraction by applying a standard text-to-image encoding on the
sequences, rather than relying on the collection of several distinct features based
on the sequences’ physiochemical properties. Therefore, numerous studies, such as

6



those mentioned in [47] and [39], have suggested the utilization of image encoding
techniques for biological sequences. The only study that applies picture encoding
for PVP classification is the one conducted by [47], which employs FCGR. However,
these encoding methods based on k-mer frequency have a tendency to remove the
spatial information of the sequences because of their compact transformation, as
mentioned in the study by Akbari et al. (2022) [39]. This highlights the need to
discover a more effective encoding strategy. Given the constraints of both earlier and
contemporary encodings, researchers are motivated to create innovative and more ef-
fective attributes that are customized to their particular objectives. However, these
attributes may vary depending on the taxa and techniques employed.

Coming onto the classification techniques, most traditional machine learning meth-
ods approach the PVP task as binary classification, classifying either PVP or non-
PVP [25] [49], structural or non-structural [11], capsid or non-capsid [18] etc. Based
on recent literature reviews [30] [36] pertaining to the classification of phage virions
using machine learning techniques, it has been observed that Naive Bayes (NB),
Random Forest (RF), Support Vector Machine (SVM) and Scoring Card Method
(SCM) were commonly used algorithms that demonstrated satisfactory classification
accuracy ranging from 70% to 80% on test sets. With room for improvement in clas-
sification results for phage sequences with low sequence conservation, deep learning
methods came into popularity, demonstrating better results over traditional ma-
chine learning methods. Some of these models aim to solve the binary classification
of PVPs, such as VironFinder [32], iVIREONS [10] while others, like DeepPVP
[40], and PhaANN [26], perform as multi-class classifiers by first identifying PVP
vs. non-PVP sequences, followed by classifying the PVP into different structural
groups. These deep learning models showcase better performance in terms of ac-
curacy while simultaneously incorporating more PVP classes for the classification
task.

2.2 Prediction Uncertainty for Phage Proteins
Although these deep learning models provide impressive accuracy, no study has yet
been conducted on the impact of uncertainty in phage virion classification. Studies
show that deep learning methods often give overconfident results [13] which might
lead to high uncertainty in situations previously unseen by the model. On a con-
trasting note, increased accuracy of prediction is at times positively correlated to
the model’s uncertainty [29]. The aforementioned uncertainty can be categorized
into two distinct types: Aleatoric Uncertainty, which is centered around the data,
and Epistemic Uncertainty, which is centered around the model. The nature of the
two uncertainties is illustrated in Figure 2.2.
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Figure 2.2: A schematic view of aleatoric and epistemic uncertainty in prediction.
[31]

These uncertainties are particularly worrisome in safety essential scenarios, such as
medical diagnosis and drug engineering, where result reliability is of utmost impor-
tance [34]. In such cases, it is more relevant to know whether a particular test result
is accurate rather than knowing the average accuracy of a set of test cases, which
can be ensured by analyzing the uncertainty trend of the model. Rather than hav-
ing point estimates for a task, uncertainty analysis attempts to deduce the variance
over the distribution of the data in consideration. This analysis provides insight into
both the reliability and accuracy of the model. It is important to note that a high
likelihood probability for a specific output does not necessarily indicate the model’s
confidence in that outcome. Although much work has been done in uncertainty
analysis for deep learning frameworks, the tasks dealt with are primarily based on
either computer vision, image processing, or natural language processing targeting
human language. In cases of protein sequences depicting biological language, studies
regarding uncertainty has been a field yet to be explored. Especially for PVP, where
the sequence conservation is low and training data is going through a specific set
of curations, there is a reasonable possibility of model uncertainty. Investigating
this uncertainty can lead to the building of better models with higher robustness,
along with providing a validation standard as to which kinds of sequences tend to
give better accuracy but with lower confidence, needing further assessment before
annotation.

2.3 Problem Statement
Newly sequenced phage virion proteins have heightened the need for efficient and
accurate computational classification techniques. An essential aspect of this task
involves refining the sequence representation schemes before training the models in
order to extract valuable local and global information. Previously, feature extrac-
tion for phages has primarily focused on one-dimensional data. In this approach,
the numerical representation of the strings is used as input for classification models,
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or numerous characteristics are manually derived based on the sequence composi-
tion, as mentioned earlier. While these methods yield satisfactory outcomes, the
potential for improved prediction through increasing dimensionality remains largely
unexplored. The sole task identified in this context is the utilization of [47], which
employs the k-mer based FCGR encoding. However, this encoding method restricts
the representation of spatial information in the resulting images. image encodings
have been developed for DNA sequences that have yielded excellent outcomes in
their specific applications through the utilization of the classical DNA-Walk method.
Thus, it is a compelling and significant question whether such an encoding can be
extended for the intricate protein sequences, specifically the phage family, in order
to yield more accurate prediction outcomes for PVPs.

Furthermore, in the previous studies on PVP categorization, the uncertainty com-
ponent of the predictive models used was not taken into account. In literature,
approaches for analyzing uncertainty in textual data mostly focus on natural lan-
guages and overlook the inclusion of biological sequences. However, it is important
to acknowledge that biological sequences possess distinct linguistic properties and
can be considered a kind of language in their own right [37]. The predictions on these
sequence data might depict uncertainty due to wrong model parameter initialization
or an imbalance of train-test distribution leading to inconsistent or wrong outcomes
with high confidence, which might be critical in cases where phage classification is
needed for disease diagnosis or drug synthesis. The extensive curation required for
such datasets might also lead to uncertainty, giving unreliable output likelihoods if
test sequences are unlike anything during training. Thus, it is imperative to assess
the degree of uncertainty in the process of PVP prediction. This evaluation provides
insight, as depicted in Figure 2.3, into the confidence level of prediction methods for
specific data samples.

Figure 2.3: Uncertainty of prediction
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2.4 Research Objective
In the preceding chapter, we examined the computational methodologies employed
in the categorization of phage virions using machine learning and deep learning
techniques and discussed about various encoding schemes . Additionally, we explored
the various ways utilized for quantifying uncertainty in the analysis of image and
text-based data. However, the prior investigations revealed the following limitations
or constraints:

• Lack of image based encoding exploration for protein family compared to DNA
or RNA families.

• Existing image based encoding works for phage proteins are susceptible to
spacial information loss

• The primary emphasis of uncertainty estimation studies lies in the realm of
non-proteomic data.

• Lack of analysis pertaining to the evaluation of deep learning techniques in
the context of both accuracy and uncertainty for PVP annotation.

2.5 Core Contributions
Given the existing limitations in the research on PVP and its encoding, our study
makes significant contributions to the academic discussion by providing the following
core contributions:

• Proposed a novel encoding strategy, “Knight Encoding” where the text based
protein sequences are converted into image based data.

• Conducted deep learning based classification to evaluate proposed encoding
algorithm.

• Explored areas of uncertainty quantification using Monte Carlo Dropout (MCD)
for PVP classification on pre-trained image classification models.

2.6 Thesis Organization
This thesis is organized in a manner that offers a systematic framework for thor-
oughly examining study findings, methodologies, and significant observations. The
first chapter of this thesis book provides an overview of the essential background
knowledge necessary for comprehending the work, including explanations of concepts
such as PVP and Uncertainty Quantification in Deep Learning. In addition, Chap-
ter 2 provides comprehensive introductions, highlighting the main contributions of
this study, research objectives, and problem description. Chapter 3 provides an ex-
planation of existing works and methodologies for classifying PVP. Chapter 4, which
is the integral part in our study discusses the unique encoding algorithm, used to
convert protein sequences into images. In addition, Chapter 4 also discusses the uti-
lization of deep learning-based image classification models and clarifies the process

10



of uncertainty analysis employing Monte Carlo Dropout. All the findings can be lo-
cated in Chapter 5. Chapter 6 contains the result discussion and a concise analysis
of the limitations. Finally, Chapter 7 outlines the future work and concludes this
study.
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Chapter 3

Literature Review

3.1 Computational PVP Annotation Techniques
In the field of bacteriophage research, culture-based methodologies were widely em-
ployed until the advent of high-throughput sequencing technology. This technolog-
ical advancement facilitated the rapid accumulation of sequence data, necessitating
the development of efficient and cost-effective methods for sequence identification.
Due to their labor-intensive and expensive nature, culture-based methods have re-
sulted in a growing preference for the utilization of machine learning techniques in
phage investigations [36]. Supervised learning methods, such as Random Forest,
Naive Bayes, and Support Vector Machines, are commonly employed in the clas-
sification of phage virions, which involves prediction based on evidence or labeled
data. In order to enhance the classification outcomes, researchers have explored the
utilization of diverse deep learning architectures, including Convolutional Neural
Networks (CNN), Artificial Neural Networks (ANN), and Transformers.

In the paper [27], Charoenkwan et al. introduced the use of a score card method
(SCM) in conjunction with propensity scores of dipeptides for the purpose of detect-
ing PVPs. The utilization of these strategies shown superior performance compared
to other intricate classifiers such as SVM, as they offer enhanced interpretability
regarding the physiochemical properties of the PVPs. The training dataset exhib-
ited an accuracy of 92.52%, whereas the independent dataset shown an accuracy
of 77.66%. The model demonstrated a significantly high degree of accuracy during
training on the dataset. However, its performance experiences a substantial fall when
evaluated on an independent dataset. Besides, Ding et al. [12] proposed a method
called PVPred, which uses the analysis of variance (ANOVA) method along with
incremental feature selection (IFS) techniques. This approach achieves an accuracy
rate of 85.02% and 71.3% for the training and independent datasets, respectively,
through the identification of an optimal feature set. In a previous study [22], a
comparable methodology was employed to identify PVPs. The approach utilized a
support vector machine (SVM) technique, incorporating ideal g-gap dipeptide com-
position. The identification process involved variance analysis (ANOVA) and the
minimal-redundancy-maximum-relevance (mRMR) with iterative feature selection
(IFS). The results demonstrated an accuracy of 87.95% on training datasets and
75.53% on independent datasets.
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Furthermore, Charoenkwan et al. [28] introduced Meta-iPVP, a novel method that
employs a distinctive technique for feature representation. This method incorpo-
rates four different machine learning methods to encode seven input features into
a probabilistic matrix . Afterwards, the generated probabilistic matrix is employed
as input for the SVM model to carry out the classification of PVPs, achieving an
accuracy of 0.871 and a Matthews Correlation Coefficient (MCC) of 0.642. In a pre-
vious study [21], another SVM-based approach was employed to predict PVPs and
non-PVPs’. This method used diverse sequence composition parameters, including
dipeptide composition, atomic composition, and amino acid composition as data
features. The results demonstrated an accuracy of 87% on the training datasets
and 79.8% on the independent datasets. Additionally, the study conducted by Bar-
man et al. [44] further ensemble learning techniques, concluding that the Gradient
Boosting Classifier (GBC) outperforms other methods in terms of accuracy, not only
on test datasets but also on independent datasets. This is in contrast to other ap-
proaches that demonstrate strong performance solely on the test data. Feng et al.
[11] employed an additional conventional machine learning approach wherein they
proposed a method based on NB for the prediction of PVPs and non-PVPs. This
method utilized proteins’ main sequence features such as amino acid composition
(AAC) and dipeptide composition (DPC). The researchers achieved an accuracy
rate of 79.15%, a sensitivity rate of 75.76%, and a specificity rate of 80.77% when
evaluating a training dataset. Nevertheless, the effectiveness of their approach on a
separate dataset was not addressed. Zhang et al. [15] did an additional study that
introduces a unique ensemble approach for predicting bacteriophage virion proteins
using phage protein sequences. The approach employs hybrid feature spaces that
integrate multiple methodologies, such as CTD (composition, transition, and dis-
tribution), bi-profile Bayes, PseAAC (pseudo-amino acid composition), and PSSM
(position-specific scoring matrix). The logistic regression method based on RF,
demonstrates superior performance in comparison to prior studies, attaining a sen-
sitivity of 0.853, an accuracy of 0.831, and a MCC of 0.662 on the independent
testing dataset.

Th research conducted by Seguritan et al. [10] introduce a novel artificial neural
network framework for the categorization of PVP via deep learning approach for
the very first time. The model initially distinguishes the structural protein from
the non-structural proteins by utilizing a topology consisting of 20 input nodes, 90
hidden layer nodes, and a single output node. This approach achieves an accuracy
of 86.5% in correctly predicting the protein type among a dataset of 12,000 pro-
tein sequences (6,000 structural and 6,000 non-structural sequences), which were
obtained from the GenBank non-redundant database. The inclusion of estimated
isometric points as a feature in ANNs further lead to improved classification of pro-
teins into main capsid and tail proteins, surpassing the accuracy achieved by the
structural ANN. The model results were additionally validated using in vivo gene
assembly, and the resulting structures were compared to the predicted models. A
different deep learning approach, referred to as VirionFinder [32], use the biological
characteristics of amino acids as encodings in order to predict entire PVPs. This
is achieved by utilizing a 1D convolutional neural network. Cantu et al. devel-
oped an artificial neural network (ANN) model called PhANN, which represents
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one of the initial attempts to expand the binary PVP classification problem into
a multi-class prediction task [26]. The study employs a total of 11 unique artifi-
cial neural networks (ANNs) for training purposes. These ANNs are trained using
a specific subset of diverse sequences with various features, such as the frequency
of ”side chains” of 2-mers (consisting of 49 features) and 3-mers (comprising 343
characteristics). Additionally, a 12th ANN is trained utilizing all 11,201 features
constructed. Each artificial neural network (ANN) in the study was composed of an
input layer, two hidden layers consisting of 200 neurons each, and an output layer
including 11 neurons. The purpose of these networks was to classify 10 sub-classes
of PVP protein, as well as categorize the remaining classes under the designation
of ”other” within the structural categorizations. Fang et al. completed a study that
proposes the use of a one-dimensional convolutional neural network (1-D CNN) ar-
chitecture, known as DeepPVP, for the classification of binary and multi-class phage
virions [40]. The primary component of this architectural design initially catego-
rizes a sequence as either PVP or non-PVP. Subsequently, an expanded module is
employed to classify the PVPs into ten major classes, such as major capsid, base-
plate, and tail fiber, among others. This approach is comparable to PhANNs, but
it achieves enhanced accuracy in classification. The latest research on this subject
was undertaken by Shang et al [47]., who introduced a unique sequence encoding
method utilizing chaos game representation (CGR). The resulting images generated
from this approach are then inputted into a high-performance vision transformer
classifier. In contrast to PhANN and DeePVP, PhaVIP employs a classification sys-
tem that categorizes PVPs into seven prevalent structural sub-classes, as opposed
to ten sub-classes used by the aforementioned methods. Despite this reduction in
sub-classification granularity, PhaVIP demonstrates superior precision, recall, and
F-1 scores when compared to existing deep learning approaches. The frameworks
PhANN, DeePVP, and PhaVIP have been identified as the sole models capable
of performing multi-class classification of virion proteins with state-of-the-art out-
comes. A concise comparison of these three models is presented in Table 3.1. The
deep learning approaches mentioned in this study are regarded as the benchmark
for our research on uncertainty, and their intricate mechanics is further examined in
the subsequent sections of the paper.

Tool Name Model Used Precision Recall F1 Score
PhANN ANN 0.76 0.91 0.83
DeePVP 1-D CNN 0.96 0.88 0.92
PhaVIP ViT 0.90 0.91 0.90

Table 3.1: Result analysis of existing deep learning approaches

3.2 Encoding Schemes for Protein Sequences
Both machine learning and deep learning models have been developed for the pur-
pose of classifying protein sequences, with a particular focus on phage virion pro-
teins. Nevertheless, despite sharing a common objective, these models employed
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distinct encoding strategies. Certain researchers have attempted to forecast protein
sequences by utilizing visual depictions of protein sequences using images, while
others have employed numerical values as a basis for prediction. The next section
provides an explanation of the utilized encoding techniques.

Project Name Encoding Technique Encoding Type Model
PhaVIP FCGR Image ViT
PhANN K-mer frequency count Text ANN
DeePVP One-hot Text CNN

PVPred-SCM N/A N/A SCM
This Work Knight Encoding Image CNN

Table 3.2: List of classifying models along with respective encoding techniques

FCGR: In PhaVIP [47] before feeding the sequence to the ViT or Vision Trans-
former, protein sequence have been converted to a CGR (Chaos Game Representa-
tion) image. In essence, CGR is a generalized scale-independent Markov probability
table for the sequence [23]. FCGR is a variation of Chaos Game Representation
where they use the k-mer frequency count of a sequence and make probability dis-
tribution to make a graph or image.

Figure 3.1: CGR representation of Sequence [23]

K-mer: A k-mer refers to a contiguous subsequence of length k within a given
string or sequence. K-mers refer to subsequences that are derived from a particular
sequence. In order to obtain all k-mers from a given sequence, it is necessary to
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extract the initial k characters, afterwards shifting by a single character to gener-
ate the subsequent k-mer, and repeating this process iteratively. Given a protein
sequence ”MIGMD,” an analysis of its 3-mers reveals the presence of three distinct
3-mers inside the sequence.

Sequence: MIGMD
3-mer #0: MIG
3-mer #1: IGM
3-mer #2: GMD

In PhANN [26], they have used the composition of 2-mers/dipeptides (di), 3-mers
/tripeptides (tri) or 4-mer/ tetrapeptide (tetra), or side chain groups (sc) to train
ANNs and have trained 12 ANN model in total based on the k-mers. Moreover, the
12th ANN contains all the features of the previous composition of the k-mers.

SCM (Scoring Card Method): The scoring card method classifies the query
sequence based on the comparison between the score of the protein and the threshold
value [8]. In PVPred-SCM they developed a Scoring Card Method and an IGA-
based (Interactive genetic algorithm) machine learning algorithm to classify the
PVP proteins [27].

Figure 3.2: Scoring Card of Sequences [27]

One-Hot encoding: One-hot encoding is a popular encoding technique where
categorical values are represented as numerical values this is important for training
machine learning models. In DeePVP they first transformed the sequence into one-
hot vectors or matrix then passed that matrix in 1D CNN [40].

16



Figure 3.3: One-Hot encoding of a Sequence
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Chapter 4

Methodology

4.1 Dataset Description
The datasets commonly employed for the detection of PVPs primarily comprise of
raw protein sequences that have been categorized as either PVP or non-PVP, as
shown in Figure 4.1. The sequences consist of strings of 20 amino acid characters
with varying lengths. These sequences can be analyzed to extract different features,
which can then be used to deduce the physiochemical properties of the PVP, aiding
in its classification. In the context of deep learning tasks, as discussed previously,
the sequences are encoded into various schemes without the need for further feature
engineering for the purpose of PVP identification.

Figure 4.1: PVP and Non-PVP sequence example
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4.2 Dataset Used in PVP Classification
For the purpose of this study, we have used one of the two existing benchmark
datasets used in deep learning-based PVP classification. The dataset used in [26][40],
which is the largest among all previous benchmark datasets, was built using anno-
tations prior to June 2020. Subsequently, additional sequences have been incorpo-
rated, and in certain instances, sequences have undergone re-annotation. Because
of these changes, the authors of [47] made a new dataset by getting the most up-
to-date sequence annotations (through December 2022) from the RefSeq viral pro-
tein database, which has been used in this research. In the study conducted by
[47], many data reconditionings were performed. The sequences that possessed low-
confidence labels, which introduced ambiguity, were eliminated from the dataset.
Subsequently, a search was conducted utilizing diverse keywords to identify and
extract the structural proteins from the remaining sequences. The non-structural
proteins were collected through a search process that involved identifying enzymes
with names ending in the suffix ‘ase’. The CD-hit algorithm was employed to iden-
tify clusters of sequences exhibiting a similarity threshold of 90%. The longest
sequence within each cluster was selected as the representative sequence. The ulti-
mate database comprises a total of 35,213 PVP sequences and 46,883 non-PVP
sequences with varying lengths. The PVP sequences are further categorized into
eight groups, curated for the purpose of conducting multi-class classification. An
illustration of overall the class breakdown and the multiclass data count is shown in
Figure 4.2 and Table 4.2 respectively.

Figure 4.2: Illustration of Dataset Classes
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Primary Classes Number of Entries

PVP 35,213

non-PVP 46,883

Table 4.1: Binary-Class Data Entries

PVP classes Number of Entries

Baseplate 3362

Portal 2770

Tail Fiber 2305

Major Capsid 2443

Minor Capsid 398

Major Tail 5083

Minor Tail 1458

Others 17385

Table 4.2: Multi-Class Data Entries of PVP

4.3 Proposed ‘Knight’ Encoding technique
As discussed in the earlier chapters, protein sequences lack image-based encoding in
comparison to DNA sequences. DNA and proteins are fundamental components of
living organisms, with DNA consisting of nucleotide building blocks (A, T, C, G)
and proteins being composed of 20 distinct amino acids. Random walk or DNA walk
has been commonly employed for encoding DNA in order to analyze the sequences
[2] and predict sequence families with high accuracy. Akbar et al. [39] employ DNA-
walk in their research to classify viral genomes using CNNs. They suggest that this
encoding serves as a substitute for k-mer based encodings, like FCGR, which tend
to have spacial information loss of encoded sequences. They also assert the use of
such method to be feasible for other sequence types like RNA and proteins, although
no such work has existed up until now. Considering this, we have devised a novel
walk-based encoding technique only for protein sequences to assess its efficacy in
characterizing protein families.
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This encoding approach utilizes the concept of polar coordinates to interpret a pro-
tein sequence. Each amino acid in the sequence is assigned an angle value such that
their summation is equal to 360◦. This angle indicates the direction that an amino
acid will walk towards from its current position. The letters (or amino acids) are
depicted using a distinctive color-coded marker or circular point for further distinc-
tion, and positioned on the image according to their corresponding angle values and
distance of movement, known as the radius. The equations 4.1, 4.2 are used to find
the x direction and y direction movement for a residue to be encoded, starting from
its current position.

x = r × cos(θ) (4.1)

y = r × sin(θ) (4.2)

For understanding purpose, the entire encoding algorithm can be divided into three
major parts:

• Definitions - List of amino acids and their respective color codes.

• Angle Calculation - Angle assignment to each amino acid residues.

• Placement - Position and order calculation for placing circular encoded points
corresponding to each amino acid.

Definitions
A list is defined that includes the letter representation of each amino acid, along
with a complimentary dictionary that maps each amino acid to a corresponding
color. These are subsequently utilized for the computation of angles and placement
of points.

List of amino acids for the encoding,

self.amino_acids = ['A', 'C', 'D', 'E', 'F',
'G', 'H', 'I', 'K', 'L',
'M', 'N', 'P', 'Q', 'R',
'S', 'T', 'V', 'W', 'Y']
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Amino acid to color mapping,

self.colors = {
'A': (255, 0, 0),
'C': (255, 255, 0),
'D': (0, 234, 255),
'E': (170, 0, 255),
'F': (255, 127, 0),
'G': (191, 255, 0),
'H': (0, 149, 255),
'I': (255, 0, 170),
'K': (237, 185, 185),
'L': (185, 215, 237),
'M': (231, 233, 185),
'N': (220, 185, 237),
'P': (185, 237, 224),
'Q': (143, 35, 35),
'R': (35, 98, 143),
'S': (143, 106, 35),
'T': (107, 35, 143),
'V': (115, 115, 155),
'W': (204, 204, 204),
'Y': (0, 64, 255)
}

Angle Calculation
• We have employed the structure of a 20-sided polygon called ‘Icosagon’ to rep-

resent the 20 amino acids.The amino acids are evenly distributed throughout
the 20 vertices of the Icosagon. Each point is separated from the others by a
constant angle of 18 degrees (360◦/ 20 = 18◦), as seen in the Figure 4.3.

• The angles for each letter in the amino acid are determined based on the index
position of the amino acids in the list mentioned previously. For instance, ‘C’
is at index 1 and ‘G’ is at index 5.

So for ‘C’, the associated angle is,

index of C = 0

θ = 1× 18◦ = 18◦

Similarly for ‘G’ the angle will be,

index of G = 5

θ = 5× 18◦ = 90◦

As we shall be using polar coordinate formulas in our study, the angles are
converted from degree to radians.
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Figure 4.3: Icosagon

Placement
• If the dimensions of the image are defined as M ×M , then the encoding will

start from the origin, which is located at the coordinates (x, y) = (M/2,M/2),
or in other words, from the middle of the image.

• For the first amino acid (or the first letter of our sequence), (x, y) = (M/2,M/2)
or the center of our image will act as the starting point i.e current coordinates.

• Using the fixed radius and corresponding angle of an amino acid, the horizontal
and vertical displacement (x’, y’) of the encoding is determined using 4.1 4.2,
relative to the current coordinated (x, y), as shown in Equations. 4.3 4.4.

x = x+ x′ (4.3)

y = y − y′ (4.4)

A circular point will be positioned at the coordinates (x, y) to represent the
amino acid being encoded, with its corresponding color. The polar coordinate
radius and point size remain consistent for all amino acids. These specifications
are listed in Table 4.3.

• Subsequently, the next character of the protein sequence will utilize the coor-
dinates (x, y) of the previous character as its starting point. A new horizontal
and vertical shift (x’, y’) will be generated based on the amino acids associated
angle. Using these new shift values (x’, y’), a new set of coordinates (x, y) are
calculated for placing the current amino acid character.
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Image Resolution Radius Point Size

512× 512 15 2

640× 640 15 2

Table 4.3: Parameters that were used to encode each sequence

• The remaining characters in the sequence will continue to follow the previously
specified technique until the entire sequence is encoded as shown in Figures.
4.4, 4.5, 4.6, 4.7. If a point hits the boundary of the image during encoding,
it will begin encoding from the center of the image at, (x, y) = (M/2,M/2).
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Figure 4.4: PVP(YP_009900749.1 minor
capsid protein [Lactococcus phage 62503])

Figure 4.5: PVP
(YP_009836980.1 minor tail
protein [Gordonia phage Adgers])

Figure 4.6: non-PVP(YP_009847768.1
(NAD(+)) DNA ligase [Vibrio phage
USC-1])

Figure 4.7: non-
PVP(YP_009621118.1 1,4-
dihydroxy-6-naphthoate synthase
[Vibrio phage Ceto])
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4.4 Algorithm Flowchart
The code implementation of this encoding can be found on this link.

Figure 4.8: Flowchart of the ‘Knight Encoding’ algorithm
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4.5 Demonstration
Below is a demonstration of the encoding algorithm operating on a 512 by 512 image,
utilizing the sequence ‘AGDY’.

Figure 4.9: Encoding A in the sequence ‘AGDY’

Figure 4.10: Encoding G in the sequence ‘AGDY’
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Figure 4.11: Encoding D in the sequence ‘AGDY’

Figure 4.12: Encoding Y in the sequence ‘AGDY’

4.6 Deep Learning Models
Deep learning is a specialized domain within the study of machine learning that
emphasizes the use of artificial neural networks (ANNs) with many layers, often
referred to as deep neural networks (DNNs). The word “deep” is used to denote the
existence of several concealed layers inside these networks. In contrast, the neural
network is a computer model that draws inspiration from the intricate structure
and intricate functionality of the human brain. The aforementioned model is a ma-
chine learning technique used in a range of applications within the fields of artificial
intelligence and data analysis. In the current epoch characterized by the accessibil-
ity of cost-effective next-generation sequencing technology, we are confronted with
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a substantial increase in the amount of new phage genome sequences. Therefore,
we have used image based encoding of PVP as our dataset which also follow the
criteria set out by the International Committee on Taxonomy of Viruses (ICTV).
Here we leveraged two of the most well performing architectures. The fundamental
architecture of these models are discusses below.

4.6.1 Convulational Neural Network
The Convolutional Neural Network (CNN) is a specialized kind of artificial neu-
ral network that has been developed exclusively for the purpose of processing and
evaluating visual input, including but not limited to photos and videos. They are
well recognized as one of the most often used models in contemporary usage. This
computational model, known as a neural network, utilizes a modified version of the
multilayer perceptron. It incorporates one or more convolutional layers, which may
be either fully linked or pooled. Moreover, the convolutional layers provide feature
maps that capture certain regions of the picture, which are then partitioned into
rectangular segments and sent for nonlinear processing. CNNs have shown remark-
able efficacy in several domains, including but not limited to picture categorization,
object identification, face recognition, and image synthesis. The success of computer
vision applications may be attributed to its inspiration from the structure and func-
tion of the human visual system. The model has many benefits, including a notable
degree of accuracy in picture recognition tasks, the ability to autonomously iden-
tify significant characteristics without human intervention, and the implementation
of weight sharing. CNNs have shown their efficacy in the categorization of phage
virion proteins by capitalizing on their inherent capacity to autonomously acquire
and extract pertinent information from protein sequences. The process is briefly
explained below.

Initially the data is prepared through collecting appropriate benchmark datasets of
protein sequences from phage virions, with each sequence associated with a class la-
bel indicating its functional or structural properties. Protein sequences are typically
composed of amino acids represented by letters (e.g., “ACDEFGH...”). By encoding
the sequence, they are inputted into the CNN. Common encoding methods include
one-hot encoding or using pre-trained embeddings (Word2Vec, ELMO, BERT) to
convert the sequences into numerical input. The Convolutional Layer is where this
model is unique. This layer uses filters (also called kernels) to scan across the input
sequences. Each filter slides across the input, computing a dot product with the
image segments it covers. This process is repeated across the entire encoded image,
generating feature maps that capture different patterns. An Activation Function is
also needed here. Applying an activation function (ReLU - Rectified Linear Unit)
element-wise to introduce non-linearity and capture complex patterns of our encod-
ing. To reduce the dimensionality of the feature maps produced by the convolutional
layers, pooling layers are used. Max-pooling is a common choice, where the max-
imum value within a small window is retained while the rest are discarded. Then
the data is flattened to 1D vector. This vector is then fed into one or more fully
connected layers. For output, softmax activation function is used to produce class
probabilities, indicating the likelihood of each protein belonging to a specific class.
Then the data is trained. Backpropagation and the Adam optimization algorithms

29



are used to adjust the network’s weights during training. Sometimes Hyperpa-
rameter Tuning is performed to gain better results. Experimenting with different
hyperparameters, such as the number of convolutional layers, filter sizes, pooling
strategies, and learning rates, to optimize the model’s performance.

Figure 4.13: CNN architecture

This is how CNNs are used for phage virion protein classification. They excel at
capturing local and hierarchical patterns in protein sequences, making them well-
suited for tasks that involve recognizing motifs or features associated with specific
protein functions or properties within phage virions [42].

4.6.2 Compact Convolutional Transformer
The Compact Convolutional Transformer (CCT) is a type of neural network archi-
tecture that combines elements of CNNs and Vision Transformers (ViTs) to process
image data efficiently. This architecture is designed to address some of the limita-
tions of both CNNs and ViTs when applied to computer vision tasks.

Now the classification of proteins using a CCT entails analyzing and categorizing
the distinctive characteristics of proteins, which are usually depicted in the form of
images obtained through techniques like electron microscopy, X-ray crystallography,
or other protein visualization methods [43]. This process can be broken down into
different steps which are briefly described below.
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Figure 4.14: Compact Convolutional Transformer architecture main blocks

The first step is to prepare the data accordingly. After collecting the protein im-
ages they need to be processed. This encompasses activities such as standardizing,
adjusting dimensions, and even enhancing the data to improve the variety of the
training dataset. The CCT begins with one or more layers of a CNN. This section
of the network is assigned with extracting specific features from the protein im-
ages. After this the generated feature maps are divided into patches.These patches
are then flattened and linearly projected (similar to how patches are prepared in
a standard Vision Transformer) to create a sequence of embeddings. Each embed-
ding corresponds to a distinct part of the protein image [33]. To capture the global
context the series of embeddings are loaded into the Transformer component of the
CCT. The Transformer employs self-attention processes to analyze the complete
sequence, effectively capturing global dependencies and connections among various
components of the image. This is an essential step in analyzing the protein’s image
based structure and functions. The result of the Transformer is transmitted through
a classification head, usually consisting of a few fully connected layers. Based on the
learnt features, this portion of the network predicts the protein’s class and outputs
the final classification. The CCT model performs training using a dataset of pro-
tein images that have been labeled. It acquires the ability to identify patterns and
features linked to various protein classes. The training process involves improving
the weights of both the CNN and Transformer components in order to minimize
the classification error. Following the training phase, the model is evaluated using
an independent test dataset to measure its accuracy, precision, recall, and other
relevant metrics. Ensuring that the model generalizes effectively to unfamiliar data
is very important at this stage.
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4.6.3 Pre-Trained Models
We employed CNN and CCT for our image based datset for classification. There are
plenty of pre-existing pre-trained models. Instead of creating and training a model
from scratch, we utilized these existing resources. After conducting experiments
with several iterations of CNN and transformer architectures, we finally identified
four models that exhibit the highest level of compatibility with our dataset and
available resources.

After creating our new image dataset of the protein sequences using ‘Knight En-
coding’, the next important task was to classify whether a sequence was PVP or
non-PVP. Moreover if a PVP was detected, among the 8 sub-classes the question
arised about the classification of the detected PVP. To predict these results Deep
Learning Image classification models were necessary. Moreover, we focused on find-
ing an image classification model that has fewer parameters but can achieve greater
results. Because of that reason for these image classification tasks we have selected
the below Pre-trained models,

• GoogLeNet

• CCT_7

• EfficientNet_V2_small

• MobileNet_V3

Each model was tweaked to suit our desired result and to fit the datasets. Among
these GoogLeNet showed the most optimized result.

GoogLeNet:

=========================================================================
Layer (type (var_name)) Input Shape Output Shape
=========================================================================
GoogLeNet (GoogLeNet) [1, 3, 224, 224] [1, 2]��
BasicConv2d (conv1) [1, 3, 224, 224] [1, 64, 112, 112]��
MaxPool2d (maxpool1) [1, 64, 112, 112] [1, 64, 56, 56]��
BasicConv2d (conv2) [1, 64, 56, 56] [1, 64, 56, 56]��
BasicConv2d (conv3) [1, 64, 56, 56] [1, 192, 56, 56]��
MaxPool2d (maxpool2) [1, 192, 56, 56] [1, 192, 28, 28]��
Inception (inception3a) [1, 192, 28, 28] [1, 256, 28, 28]��
Inception (inception3b) [1, 256, 28, 28] [1, 480, 28, 28]��
MaxPool2d (maxpool3) [1, 480, 28, 28] [1, 480, 14, 14]��
Inception (inception4a) [1, 480, 14, 14] [1, 512, 14, 14]��
Inception (inception4b) [1, 512, 14, 14] [1, 512, 14, 14]��
Inception (inception4c) [1, 512, 14, 14] [1, 512, 14, 14]��
Inception (inception4d) [1, 512, 14, 14] [1, 528, 14, 14]��
Inception (inception4e) [1, 528, 14, 14] [1, 832, 14, 14]��
MaxPool2d (maxpool4) [1, 832, 14, 14] [1, 832, 7, 7]��
Inception (inception5a) [1, 832, 7, 7] [1, 832, 7, 7]��
Inception (inception5b) [1, 832, 7, 7] [1, 1024, 7, 7]��
AdaptiveAvgPool2d (avgpool) [1, 1024, 7, 7] [1, 1024, 1, 1]��
Dropout (dropout) [1, 1024] [1, 1024]��
Linear (fc) [1, 1024] [1, 2]
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========================================================================
Trainable params: 5,601,954
Non-trainable params: 0
Total mult-adds (G): 1.50
========================================================================
Input size (MB): 0.60
Forward/backward pass size (MB): 51.62
Params size (MB): 22.41
Estimated Total Size (MB): 74.63
========================================================================

4.7 Monte Carlo Dropout

4.7.1 How Uncertainty is Estimated using MCD
As mentioned before, we employ GoogleNet as our primary model for PVP classi-
fication. To assess the level of uncertainty in binary classification, we activate the
models dropout layer with a dropout rate of 0.2% during the test phase. Conse-
quently, we develop a method to classify data values into distinct groups based on
sequence properties in order to analyze the level of uncertainty for each category.
Unlike typical text based data, protein sequences do not reveal unique variability,
apart from their class labels. The amino acid sequences might or might not display
patterns necessary for classifying a certain string. The only diversity that is notice-
able for these sequences is the length of these sequences. The data lengths for each
class, PVP and non-PVP, range from hundreds to thousands of residues, as depicted
in Figure 4.15 and Figure 4.16. Therefore, it can be a beneficial investigation for
the models’ robustness to determine whether the model is vulnerable to uncertainty
based on the length of sequences. The train data, both PVP and non-PVP, were
divided based on an equilibrium sequence length δ. This ensured that there was
nearly equal amount of data with lengths less than or equal to δ and length greater
than δ. The purpose of considering this equilibrium is to mitigate any data bias that
may be present in the training data across various sequence lengths. The sequences
that are smaller than δ are referred to as short sequences, while sequences that
are larger than δ are categorized as long sequences. Table 4.4 presents this data
distribution and δ values of PVP and non-PVP train data.
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Figure 4.15: Length Distribution of PVP sequences

Figure 4.16: Length Distribution of non-PVP sequences

The data points are separated into four categories, PVP (less than 350), PVP
(greater than 350), non-PVP (less than 275), and non-PVP (greater than 275).
For every category, a total of 100 sequences are randomly chosen, and each se-
quence (after image encoding) is predicted 100 times using our dropout model. This
provides a prediction distribution for every sequence within each category. The pre-
dictions passed through the softmax activation function, which transforms the raw
logit output of our model into prediction probabilities. The mean and variance of
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Class
#Sequences
less than
δ

#Sequences
greater than
δ

Total
Sequences

PVP (δ = 350) 12589 12060 24649

non-PVP (δ = 275) 16502 16316 32818

Table 4.4: Data Distribution for PVP and non-PVP δ-values

Figure 4.17: Softmax Distribution of PVP and non-PVP sample

these softmax probabilities from each category are then determined to compare the
models’ spectrum of uncertainty across the categories. As shown in Fig. 4.17 for a
specific sample the we expect a distribution of probabilty, the x-axis here represents
the softmax scores and y-axis indicate the number of predictions that gave a certain
softmax score.

Typically, for correct prediction, the histogram should gather on the right side of the
axis. This is because a softmax score >0.5 indicates that the model has classified
the data as belonging to that particular class. On the contrary, predictions towards
the left of the axis denotes incorrect predictions. The dispersion of the histogram i.e
the variation in its predictions, on the other hand, signifies the level of confidence
in the model’s predictions . A prediction with reduced variance is more confident ,
while higher variance indicates greater prediction uncertainty in the model for that
specific data.
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4.8 Workflow

Figure 4.18: Research Workflow
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Chapter 5

Experimental Analysis

5.1 Experimental Setup
TensorFlow, Keras, PyTorch and other Python libraries were used in the develop-
ment of the experiment’s training and testing procedures. To train and evaluate
the models a computer with AMD Ryzen 7 3700X 8-core CPU, 16GB DDR4 and
NVIDIA GeForce RTX 3060 Ti was used. Moreover, windows 11 Pro and Python
interpreter version 3.11 was used as the platform to run the experiments.

5.2 Evaluation Metrics
Evaluation metrics are numbers that are used to determine how well a machine
learning model or system works. These metrics enable us to assess our model’s
performance and compliance with task objectives in an unbiased way. The choice
of an appropriate evaluation metric depends on the type of machine learning task
that is being worked on. In our study we will be using the following metrics used
for classification. Let’s assume,

TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative

• Accuracy:
Accuracy measures the proportion of correctly predicted instances out of the
total instances in a classification problem but not suitable for imbalanced
datasets, where one class significantly outnumbers the other.

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions

Here,
Number of Correct Predictions = TP+TN
and Total Number of Predictions = TP+TN+FP+FN

• Precision:
Precision indicates the proportion of true positive predictions among all pos-
itive predictions made by the classifier. It helps measure the model’s ability
to avoid false positives. High precision means that when the model predicts a
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positive instance, it’s more likely to be correct.

Precision =
TP

TP + FP

• Recall(Sensitivity):
Recall measures the proportion of true positive predictions among all actual
positive instances in the dataset. It helps assess the model’s ability to identify
all relevant instances, minimizing false negatives. High recall means that the
model can identify most of the positive instances.

Recall =
TP

TP + FN

• F1-Score:
The F1-Score combines precision and recall into a single metric. It is the
harmonic mean of these two values, providing a balance between false positives
and false negatives. It’s useful when you want to strike a balance between
precision and recall, especially in situations with imbalanced classes.

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
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5.3 Results of Model Performance and Uncertainty
Estimation

As discussed in the introduction, PVP classification task involves both binary and
mult-iclass categorization. To gain a thorough grasp of the effectiveness of our
suggested encoding, we have utilized deep learning as it has been shown in literature
to outperform traditional machine learning methods in terms of prediction accuracy
and the simplicity of features extraction. Rather than constructing an entirely new
model from the scratch, we conducted training on our data by utilizing several
existing pre-trained CNN and transformer models. We were particularly interested
in evaluating the encoding efficiency on limited resources, which prompted us to
choose our selected models. The following sections provide a concise summary of
the performance of different architectures, along with a study of uncertainty for the
best performing model.

5.3.1 Pre-Trained Model Performance

Task Model Params Accuracy

Binary

Efficientnet_v2_small 21M 89.7%

GoogLeNet 5.5M 90.0%

CCT_7 4.5M 85.2%

MobileNet_v3_small 2.5M 85.3%

Multiclass

Efficientnet_v2_small 21M 77.4%

GoogLeNet 5.5M 78.8%

CCT_7 4.5M 72.1%

MobileNet_v3_small 2.5M 73.7%

Table 5.1: Model Comparisons on KnightEncoding

Task Model Params Accuracy F1 Score Recall

Binary GoogLeNet 5.5M 89.60% 89.87% 88.54%

Multiclass GoogLeNet 5.5M 76.37% 76.37% 76.37%

Table 5.2: Evaluation results of the most optimal model
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Work Precision F1 Score Recall

PhaVIP 91% 90% 91%

PhANN 76% 83% 91%

DeePVP 97% 92% 88%

VirionFinder 44% 59% 91%

Meta-iPVP 53% 65% 82%

PVPred-SCM 39% 40% 41%

ProteoKnight 91% 90% 89%

Table 5.3: Comparative analysis of different approaches for Binary Classifcation

Figure 5.1: Accuracy graph for Binary Classification (GoogLeNet)
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Figure 5.2: Accuracy graph for Multiclass Classification (GoogLeNet)

5.3.2 Uncertainty Analysis on PVP
Uncertainty estimations of deep learning models serve as a measure of the reliability
of their predictions. As stated in the methodology, the variance of the prediction
distribution during dropout passes is regarded as a standard uncertainty quantifying
metric. Entropy (H ) is another such commonly utilized metric in literature that
focus on uncertainty, as demonstrated by Milanes et al. (2021) and Kendall et al.
(2017) [35] [20]. In the context of machine learning, entropy is characterized as
the disorder or uncertainty of the prediction model or simply the level of ‘surprise’
of the model [38] when it sees particular data sample(s). The lower the value of
entropy, the better. Equation.5.1 is utilized in this paper to calculate the entropy
of our binary classification samples, where P is the prediction probability for the
particular data in concern.

Entropy =

(
P × log2(

1

P
)

)
+

(
(1− P)× log2

1

(1− P)

)
(5.1)

In our uncertainty analysis, we employ both variance and entropy. Variance is
computed for predictions across all four categories, while entropy is determined for
specific sequence encodings that exhibit greater variance in comparison to others.
For prediction, we primarily select the top-performing model, which is GoogLeNet.
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We collect images from four distinct sequence categories: PVP short sequence, PVP
long sequence, non-PVP short sequences, and non-PVP long sequences. The average
and variance of the prediction distribution are graphed and compared for each cat-
egory. During the class-based study, it was observed that the model exhibited lower
variance when predicting non-PVP sequences compared to PVP sequences. Con-
versely, in terms of length, the model showed higher prediction variance for longer
sequences compared to the shorter ones. We validated this uncertainty pattern by
employing various dropout rates (0.1, 0.2, 0.3) and altering the sequences chosen for
each of the four groups through numerous random shuffles. For purposes of illustra-
tion, all the figures displayed had been given the original dropout value of 0.2. The
variance of each category is listed alongside the corresponding MCD value in Table
5.4. It can be seen that for all MCD values, the short sequences have lower variance
than longer sequences, and non-PVP predictions display lower variance than PVP
sequences. Based on these predictions, samples were selected from each category
with the highest and lowest variance. The mean prediction entropy of these samples
was then calculated and presented in Table. 5.5, from which it can be noted that
the entropy values are lower in shorter sequences compared to longer ones. In the
analysis based on class, non-PVPs have exhibited lower entropy.

Categories MCD 0.1 MCD 0.2 MCD 0.3

PVP (short) 0.06801 0.08558 0.05536

PVP (long) 0.07276 0.09119 0.05926

non-PVP (short) 0.05914 0.07555 0.04860

non-PVP (long) 0.05994 0.07663 0.04900

Table 5.4: Variance for PVP and non-PVP with different dropouts

Categories Entropy (High Var) Entropy (Low Var)

PVP (short) 0.1259 0.1122

PVP (long) 0.3943 0.2111

non-PVP (short) 0.1398 0.1369

non-PVP (long) 0.1716 0.06539

Table 5.5: Entropy for PVP and non-PVP samples with high variance VS low
variance
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Chapter 6

Discussion

The objective of this work was to examine the practicality of utilizing a highly ef-
ficient DNA sequence encoding technique for the more intricate protein sequences
in phage protein classification, and to evaluate if the outcomes would be equally
effective as with DNA sequences. We utilized a variety of cutting-edge deep learn-
ing convolutional neural networks and transformer models to classify the encoded
images.To conduct an early examination of our prototype encoding, we opted to uti-
lize existing pre-trained models instead of developing a neural network from scratch.
This approach allowed us to save time and resources while still gaining an advantage.
We conducted a comprehensive evaluation of our encoding technique by testing it on
over several different variants of CNN and transformer models. The results of this
evaluation are presented in Table. 5.1, which lists our top four performing models.
GoogleNet outperformed the other three models and achieved superior results in
binary classification, with an accuracy of 90%. A results comparison of our method
with existing approaches are listed in Table. 5.3 and it is observed that KnightEn-
coding reaches performance similar to the state-of-the-art on binary classification.
The results of the multi-class classification, however, were not optimal as shown in
Table. 5.2, suggesting that our encoding algorithm and prediction model utilization
need further refinement. Furthermore, we performed an uncertainty analysis on the
most optimal model to evaluate its strengths and weaknesses. To comprehend the
source of uncertainty, we segregated the data based on shared attributes, specifically
the class and sequence lengths.

The class-based uncertainty analysis revealed that our model demonstrated greater
certainty when applied to non-PVP data as opposed to PVP data. This disparity
may be ascribed to the larger volume of training data available for the non-PVP
category in contrast to the PVP category, or as an alternative, it might be related
to their distinctive underlying sequence composition. With regard to length based
uncertainty, predictions showed higher variance for longer sequences indicating that
the model is less confident for longer sequence data compared to the shorter se-
quences. These gives us an overall insight that our method is most suitable for
classifying shorter sequences (especially short non-PVPs) compared to the longer
ones.
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It was further observed that the GoogLeNet model, while the dropout is active
during inference, experiences a considerable decline in its capacity to accurately
categorize the pvp sequences, regardless of their lengths. In contrast, the non-PVP
classification yields reliable and accurate predictions. In order to demonstrate the
disparity in predictions between training mode (with active dropout) and evaluation
mode (with inactive dropout), graph illustrations of the softmax predictions for both
PVP and non-PVP scenarios were constructed. As depicted in Figure. 6.3, the
graph on the left displays the model’s predictions on PVP without dropout. All
of the estimates are in close proximity to 1, resulting in accurate predictions. The
graph on the right displays predictions generated using the dropout. The softmax
predictions in this scenario exhibit a dispersed distribution, primarily concentrated
on the left side of the graph (i.e. prediction probability <0.5). This suggests that the
model lacks the capability to accurately recognize PVP sequences. Similarly, Figure.
6.4 illustrates the inference on non-PVP without dropout and with dropout. The
predictions made via dropout exhibit accuracy, as indicated by a softmax value close
to 1 and a lower variance compared to PVP, demonstrating the model’s high level of
confidence in accurately predicting non-PVP. This atypical observation could serve
as an anchor for future studies on quantifying uncertainty in biological sequences.
In this regard, Figures. 6.1, 6.2 further demonstrate the trend of softmax scores for
dropout induced predictions. Figure. 6.2 shows the softmax prediction distributions
for PVP gathering towards left (i.e incorrect predictions) and the scores for non-PVP
accumulating on the right (i.e correct predictions), as shown in Fig. 6.1.
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Figure 6.3: Softmax Distributions, with MCD (bottom) and without MCD (top) for
short PVP sequences
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Figure 6.4: Softmax Distributions, with MCD (bottom) and without MCD (top) for
short non-PVP sequences
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6.1 Limitations
When considering the extent of this study, it is crucial to recognize the research
constraints that could impact the classification prediction and uncertainty of cer-
tain data samples. Our proposed encoding method exhibited a limitation in which
several instances of dot overlap were seen when encoding a sequence, particularly
when the sequence is long. This phenomenon arises when many amino acids are
encoded at the same position on the picture axis. This phenomenon ignores the se-
quential data associated with the dots positioned below, causing data loss. Although
the limitation was effectively overcome for the less complex binary classification, but
it posed a challenge for the more challenging multi-class classification. Furthermore,
the optimization of hyperparameters related to encoding, such as point size, radius,
and image resolution, still requires more refinement and improvement.
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Figure 6.1: Softmax prediction distribution for sample non-PVP data
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Figure 6.2: Softmax prediction distribution for sample PVP data
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Chapter 7

Conclusion and Future Works

Phages demonstrate the ability to selectively target and infect bacteria, playing a
pivotal role in ecology. The classification of phage proteins, often referred to as
PVP, holds significant importance across various fields, especially in the context
of pathogen-targeted therapy. Successful implementation of computational models
for classification necessitates meticulous attention to feature extraction. This paper
introduced and assessed a novel encoding approach for PVP, achieving satisfac-
tory results in binary classification. Importantly, the proposed method overcomes
limitations observed in existing image-based PVP encodings by preserving spatial
information within sequences. Additionally, the study addresses uncertainties in bi-
ological data by employing Monte Carlo Dropout on the most efficient pre-trained
model. This strategy allows for the identification of the model’s susceptibility to
different protein groups and varying sequence lengths, resulting in a precise and
reliable methodology for PVP classification. While our study has made significant
progress, further work is required to solve its existing constraints. To address the
problem of encoding overlap, it is possible to utilize higher dimensions, such as 3D
encodings or frame segregation, for each amino acid representation. This would al-
low the model to more effectively process the point representation of each sequence
character, ensuring that no sequence information is compromised. Finally, our un-
certainty analysis focused solely on data length and class, but it can be expanded
to include additional characteristics, such as physiochemical compositions, in order
to gain a more comprehensive understanding of the predictions. Ultimately, this
study establishes a foundation for future research endeavors focused on examining
the most effective methods of encoding proteins for accurate classification.
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Thesis Github Repository

All the source code along with the notebook files and datasets that were used to
produce this thesis can be found at https://github.com/eniac00/ProteoKnight.
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