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Abstract

In our society and around the world a lot of people suffer from panic attacks. These
panic attacks can be mild or very intense physical stimulations that may incapacitate
an individual at the spot when the panic attack occurs. The problem in this case
is, if the person suffers from a panic attack outside their house and loses control
over themselves, they might be subjected to external environmental hazard such as
getting into a car accident, etc. Therefore, if we can effectively track and detect
whether a person had a panic attack via their spatiotemporal and biometric data,
steps can be taken to help them recover from the panic attack or send help to
them, as quickly as possible. Keeping this in our mind, in this study we analysed
the performance of different neural network models and techniques to detect panic
attacks of individuals from their spatiotemporal and biometric data. Since detection
of panic attacks is an emergency use-case, model reliability is essential. To ensure
model reliability, we also represented the uncertainty analysis of these neural network
models using Monte Carlo Dropout. During our study, we found that among all the
models that were used, GRU (Gated Recurrent Unit) had the highest accuracy of
95.56%, and GRU also had one of the least amount of uncertainty. However, the
ensemble model had the least amount of uncertainty among all the models that were
used.

Keywords: Neural Network, GRU, Monte-Carlo Dropout, Uncertainty Analysis,
Panic Attack, Ensemble Learning
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Chapter 1

Introduction

Panic attack is a strong response to fear of the human body which can stem from
danger, stress, or sometimes excessive excitement [34]. Hence, detection of panic at-
tacks can be used to detect a person in danger. With more and more people working
outside their home, a lot of people are susceptible to panic attacks in the streets due
to external environmental hazards or stress. In cases of sever panic attack, people
may loss control of their body momentarily which may lead to accidents or open up
the person to other types of harm. In addition, the panic attack itself may indicate
that the person is in some kind of danger. So, if it is possible to detect an individual
having a panic attack, actions can be taken faster, like quick response from law
enforcement organizations, that can potentially save the person before something
severe can happen to them. In order to detect a person having a panic attack, we
can monitor some physical parameters of that person like their spatiotemporal and
biometric data.

According to the National Health Service (NHS) of the UK [36], some of the symp-
toms of panic attack are:

• Sudden spike in heartbeat

• Sweating

• Chest pain

• Being petrified

• Dizziness

• Numbness

• Trembling

• Shortness of breath, etc.

Some, or all, of the symptoms can be measured for panic attack detection. However,
monitoring some of these symptoms can be challenging and may require use of costly
and large devices. On the other hand, symptoms like a sudden spike in heartbeat,
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shortness of breath, etc. can be monitored using gadgets that we use on a regular
basis such as smart watches, etc.

In this study, we analyse neural network models for detecting an individual’s panic
attack. Our study uses models such as Artificial Neural Network (ANN), Convolu-
tional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term
Memory Networks (LSTM), Gated Recurrent Unit (GRU), Hybrid CNN-LSTM, Hy-
brid CNN-GRU neural network models, and an ensemble model consisting of RNN,
CNN, LSTM, GRU and Multi-Layer Perceptron (MLP). Apart from detecting panic
attacks, we also show the uncertainty of our models. We used Monte-Carlo dropout
to measure the uncertainty of predictions of our model.

1.1 Motivation

In today’s world, a lot of people are working outside their houses to earn a decent
living subjecting them to run into different types of danger outside their homes.
Often these people travel alone from place to place depending on their work, so if
they get into trouble or have an accident in a remote place, it might be very late
before other people figure out about it and take necessary action to help them. This
late reaction by others may be detrimental to the victim and may lead to severe
permanent damages. So an early detection of that person’s distress can potentially
help them from suffering any serious damage to their body.

Apart from the above mentioned situation, in many parts of the world, illegal mil-
itary actions are taking place where military fighter jets or artilleries often drop
bombs in residential areas. If during the initial bombings, an alarm system can be
set up to alert the people nearby, a lot of lives can be saved during the entire ongoing
illegal military activity.

Many people across the world suffer from a mental condition know as panic disorder.
Panic disorder is a condition when a person suddenly gets a panic attack. During
these panic attacks, they may experience very intense physical conditions such as
heartbeat increase, chest pain, trembling, chills, dizziness, numbness, a choking
sensation, etc. If the person experiences these symptoms in public or while doing
delicate tasks like driving, they may get into an accident or open themselves up
for harm to devious people leading to a life risk. So if their panic attacks can be
detected very early and some mechanism can be put in place so that the person
can be calmed down quickly after having a panic attack, then the chance of them
getting in any sort of harm would reduce by a lot.

All of the above mentioned scenarios are linked to fear among individuals, and during
fear is when a person has panic attacks, so we can detect people’s panic attacks by
measuring some of their physical parameters like their spatiotemporal and bio-metric
data. Data like these can easily be gained from digital smart watches and smart
phones. Then we can use those detection techniques for detecting panic attacks to
create systems to aid people in the situations mentioned above a great deal.
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1.2 Research Gap

In everyday life, a person can face dangers at any moment in time and may require
the aid of others. One of the ways to detect if a person is in danger is by detecting
if the person had a panic attack [26]. Some research has been conducted regarding
panic attack detection by others, like Rubin et al [6], Sapounaki et al [8], Cruz et al
[5] and Lazarou et al [26]. However, detection models of Rubin et al [6], Sapounaki
et al [8] and Cruz et al [5] focus on detection of panic attacks of people suffering
from panic disorder, which is a condition where people frequently suffer from panic
attacks. Since their dataset construction, training and testing were done focusing on
a specific condition, their model might not be able to detect readings that deviate
from the usual readings for panic attack. In addition, they did not use machine
learning techniques for detecting the panic attack, further increasing the chance of
giving wrong classification.

In the case of Lazarou et al [26], they did create a dataset for panic detection without
focusing on any particular cause of panic attack like in Rubin et al [6], Sapounaki
et al [8], and Cruz et al [5]. But they mainly used machine learning models and
just 2 neural network models. Their accuracy is fairly high but they did not show
anything to justify their model’s reliability which is necessary as the system they
proposed was meant to be used by “Emergency Response Systems” for public safety.
Therefore, in this study we analyse the performances of some neural network models
in identifying panic attacks. Furthermore, we use monte-carlo dropout to find out
the reliability of our models by finding the uncertainty of our models’ classifications.

1.3 Research Objective

In this study, we aim to analyse neural network models to detect if a person has had
a panic attack. The neural network models which we are using are: Artificial Neural
Network (ANN), Convolution Neural Network (CNN), Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Hybrid
CNN-LSTM, Hybrid CNN-GRU, and an ensemble learning model. Furthermore,
our study uses Monte-Carlo Dropout to determine the certainty of predictions of
the models we used. The objectives of our research are:

1. To understand how panic attacks can indicate a person being in trouble.

2. To understand how the neural network models we used works.

3. To accurately detect panic attacks using neural networks.

4. To evaluate the models we used.

5. To analyse the uncertainty of the models we used.

1.4 Thesis Organization

The remainder of the study is organized as follows: In Chapter 2, a thorough
overview of the existing literature affirming the originality of the work and acknowl-
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edgment of sources of help that is associated with this study is presented. Chapter
3 contains a discussion on the background that provides an overview of uncertainty
analysis, and the neural network models implemented in the study, including dia-
grams to illustrate them more clearly. The next chapter, Chapter 4, outlines the
methodology of our study by representing the stages we went through. Chapter
5 covers the implementation part, with details regarding the dataset used and the
data pre-processing steps. It also covers the parameters of the neural network mod-
els used, the evaluation metrics used to measure the performance of the models,
and an overview of the uncertainty analysis techniques used in this study. Then in
Chapter 6, a list of figures with corresponding references to diagrams illustrating
uncertainty analysis and other relevant visual representations are presented as re-
sults. In Chapter 7, distinct comparisons are made between related studies. It also
covers the limitations of our study. Finally, Chapter 8 provides a conclusion and
discusses scopes of future works.
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Chapter 2

Literature Review

In this chapter, the research studies done by other authors are discussed.

2.1 Related Works

This section discusses the works of others who suggested any hardware and/or soft-
ware models in order to detect panic attacks and also works of people who have used
monte carlo dropout for uncertainty analysis. Here our goal is to review people’s
work to get more insight about our topic.

2.1.1 Panic Detection Methods

Rubin et al [6] proposed a panic attack detection system which comprises of a wear-
able device that takes in readings of physical parameters that are used to detect the
panic attack. In their case, the parameters were heart rate, breathing rate, heart
rate variability, and core temperature. The wearable device was connected to an ap-
plication on a mobile via bluetooth. Based on the readings, an algorithm on a server
or the mobile application itself could detect an oncoming panic attack. If a panic
attack was detected, an intervention (some advice about what to do during the panic
attack) was given as a notification on the user’s mobile. They gathered data for cre-
ating their dataset from 10 individuals who had past panic disorder records. They
used anomaly detection to predict the attacks by constructing Gaussian probability
density distribution for every test subject and made a Gaussian fit. If a reading
produced sufficiently low probability, it was considered as an anomaly/panic attack.

Sapounaki et al [8] proposed a wearable panic attack detection system. They used
an open hardware/open software prototype device created by COTS products to
implement their system. The wearable device takes in data from the muscle sensor
and pulse sensor, and if the values exceed some threshold with respect to the values
of each sensor for 150 seconds, the device considers it a panic attack and plays a
melody through a speaker to make the person calm down. Their system was tested
on a male and a female of 20 years of age who were previously diagnosed with a
health issue related to panic attacks. They claimed their system detected panic
attacks with 100% accuracy.
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Cruz et al [5] proposed a combination of a mobile and a wearable system to detect
panic attacks of people with panic disorder. The wearable device is attached to the
user which reads and sends data via bluetooth to a mobile. The data read by the
wearable system are heart rate, breathing rate, heart rate variability, core temper-
ature, and activity. The data received by the mobile is sent to a data center where
the data is stored and evaluated to predict the panic attacks by using feature vectors
and anomaly detection algorithms. After detecting a panic attack, the data center
sends a notification with advice about what the person should do in that situation.
In order to train their system they gathered data from 7 individuals with 3 weeks
of monitoring.

Ammar et al [18] proposed an effective, real-time online technique for identifying
panic behavior in crowds of individuals. To recognize circumstances indicative of
panic, they used an LSTM neural network together with statistical analysis of non-
panic activities. This study improves the gradient of motion (GoM) feature, which
computes feature values between subsequent images in a video stream. In com-
parison attempts, DeepROD beat a method that made use of the GoM function,
providing superior results for most videos with the exception of a few.

Miranda et al [12] utilized wearable technology for emotion identification. The ar-
ticle provides a wearable-ready binary emotion identification method that makes
use of the blood volume pulse and galvanic resistance of skin, two wearable-ready
signals. These variables are used to detect fear and other negative emotions, and are
derived from publicly available datasets. The study also investigates how arousal
and valence ratings can be used to identify emotions within the emotional quadrant,
particularly fear and other negative emotions. The study highlights the importance
of conducting a thorough analysis of elements like system equilibrium, non-linear
components, reduction of dimensionality, algorithm selection, and performance as-
sessment when it comes to classifying emotions using physiological inputs in an
academic setting.

Schmidt et al [16] gives a detailed review and comprehension of the theoretical foun-
dations, methodologies, and best practices in wearable-based emotion and stress
assessment. Considering techniques that employ wearable sensors, notably those
that record physiological and inertial information, to detect changes in the user’s
emotional state. Support vector machine (SVM), k-nearest neighbor (KNN), and
decision-tree (DT) classification algorithms were presented. The authors also dis-
cuss the usage of ensemble techniques for classification, such as random-forest and
AdaBoost, as well as neural networks (NN).

Petrescu et al [22] uses physiological data and subjective reactions from the DEAP
dataset in order to focus on the binary categorisation of the emotion of dread. To
categorise fear based on physiological characteristics, they used a variety of machine
learning methods, including Decision Trees, k-nearest neighbour, Support Vector
Machines, and artificial networks. And in order to improve classification accuracy,
these algorithms were combined with dimensionality reduction, feature selection,
and hyper-parameter tweaking. By removing pertinent information from the phys-
iological data and fine-tuning the parameters of the machine learning algorithms,
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they achieved high prediction accuracy for fear categorisation, ranging from 91.7%
to 93.5%.

Lazarou et al [26], in their study, analyses the performance of several machine learn-
ing models and two neural network models to detect panic attacks. For their analysis
they created their own dataset. Firstly, by collecting spatiotemporal and biometric
data from 2 real human subjects and then by artificially generating data for 25 more
subjects. In total, their dataset consisted of 16200 rows. Apart from the collected
data, they also used 3 derived features in order to train their models. Lastly, they
only evaluated their models base on the accuracy score and the model that achieved
the highest accuracy was Gaussian SVM with a value of 94.5% while using raw
features along with a derived feature called HRMAD60 to train the model.

2.1.2 Use of Monte Carlo Dropout for Uncertainty Analysis

Islam et al [31] in their study worked on uncertainty analysis of transformers in
classifying image using Monte Carlo dropout. They worked with three different
transformers namely Vision Transformers (ViT), Swin Transformers (SWT), and
Compact Convolutional Transformers (CCT). In order to quantify the amount of
uncertainty on a specific image, they picked an image randomly from the test data
and calculated the predictive entropy of that image after running the models. The
higher the predictive entropy, the more uncertain the model was at predicting. In
their study CCT performed the best while the ViT performed the worst.

Joshi et al [20] in their paper, show the performance of four segmentation algo-
rithms in detecting Region of Interest (ROI) of fingerprints. Apart from this, they
also performed uncertainty analysis of the best performing model using Monte Carlo
dropout. Their best performing algorithm was RUnet upon which they implemented
Monte Carlo dropout. They calculated the model’s uncertainty by using predictive
variance and they also visualised the uncertainty of the predictions using heat maps
corresponding to each image input.

Abdar et al [27] in their paper worked on detection of covid-19 using chest com-
puted tomography and x-ray of patients. They proposed a deep learning feature
fusion model called UncertaintyFuseNet for the classifications. They quantified the
uncertainty of their model using ensemble of the predictions after running the model
with Monte Carlo dropout for multiple times.

Avci et al [19] in their study worked with U-Net with dropout layers to improve the
accuracy of quantitative MRI and used Monte Carlo dropout to quantify the uncer-
tainty of their model. To quantify the uncertainty, they generated multiple outputs
by running the model multiple times and then calculated the standard deviation of
the predictions.

While Deep Neural Networks (DNNs) perform well in categorizing ECG pictures,
they are not able to measure the degree of uncertainty in predictions, which might
cause problems with medical practitioners’ decision-making. So in their study, Is-
lam et al [29] used Convolutional Neural Networks (CNN) and Monte Carlo Dropout
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(MCD) technique to analyze uncertainty in the categorization of ECG images. The
mean and variance of predictions are used to detect uncertain samples, which aids
in understanding the dataset and locating problems with the model.

The goal of Islam et al’s study [30] is to investigate the issue of uncertainty esti-
mates in GNN models and how it affects performance assessment. To capture the
outcomes of stochastic forward passes and evaluate the prediction mean and model
uncertainty, the authors employ dropout neural networks (NN). To quantify uncer-
tainty in model parameters and assess model performance, they use GNN models,
such as PPNP, APPNP, GCN, GraphSAGE, and GAT.

Islam et al [32] use Monte Carlo dropout for introducing uncertainty-aware feature
to their model to reduce the risk factors and ensure robust and reliable performance
in the context of disease identification using images of cells. They do this by running
the Monte Carlo ensemble model 500 times on the test dataset and then selecting the
most uncertain observations from the Monte Carlo prediction based on the variance
from these 500 predictions. They then calculate the predictive entropy to find the
reliability of these uncertain predictions. High entropy means model is less confident
and vice-versa.

Islam et al [24] compare the uncertainty of Transformer-based models (BERT, XL-
Net) to that of RNN variations (LSTM, GRU) in classifying text data. They use
Monte Carlo Dropout to estimate uncertainty and quantify the uncertainty using
entropy. They found that with smaller amounts of data, baseline BERT outperforms
all the other models in terms of prediction confidence.

To the best of our knowledge there is no proper uncertainty analysis done in the
context of panic attacks. Since panic attack detection is an emergency use-case,
uncertainty analysis is necessary for enhancing model reliability in detecting panic
attacks.
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Chapter 3

Background

In this chapter, we described some of the key concepts related to our study and then
we also give some idea regarding the neural network models that we implemented.

3.1 Neural Networks

Neural networks are complex systems made up of interconnected nodes, or neurons,
that work together to solve complex issues. Neural networks are computational
models, intended to predict outcomes, understand patterns, and operate in different
kinds of applications in artificial intelligence. Neural networks are a part of machine
learning. A neural network is like a machine learning model which is designed to
emulate the structure and activities of the human brain. Numerous applications,
such as chatbots, image identification, predictive modeling, and natural language
processing heavily rely on neural networks.

An artificial neural network’s node layer is made up of three layers; input, one or
more hidden layers, and output. Within each artificial neuron or node, weights
and thresholds are combined. There is a predefined value which is called threshold
value. When a node’s output exceeds this value, it activates and sends data to the
network’s next tier. If not, no data is sent to the next tier of the network. Neural
networks are based on the artificial neuron, a simple processing unit that mimics its
biological counterpart. These networks, which are composed of layers of intercon-
nected neurons, have remarkable capacities for analysis, learning, and generalization
that are strikingly similar to the cognitive functions of the human brain.

In simple terms, a neural network is fed a lot of data at first. Before being used,
neural networks go through training based on rules and learning materials. Once an
input layer has been established, weights are applied. The output is more signifi-
cantly influenced by larger weights than by smaller ones, which helps determine the
relative relevance of each variable. Then, before being joined together, each input
is multiplied by its matching weight. After that, the output is obtained by applying
it to an activation function. When the node’s output reaches a predetermined level,
it activates and starts sending data to the network’s next layer. Consequently, the
output of one node becomes the input of the node that comes after it. Because of
the manner that information is transferred between layers in this neural network, it
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is categorized as a feedforward network.

Artificial neural networks come in several types, including feed-forward neural net-
works, recurrent neural networks (RNN), convolutional neural networks (CNN), and
so on. Similar to feedforward networks, convolutional neural networks are typically
used for pattern and image recognition. Recurrent neural networks are typically
used for prediction purposes, using sequential or time series data. The memory of
recurrent neural networks makes it different from other neural networks as it enables
them to change the input and output at any given time by utilizing data from earlier
inputs. There are several different kinds of RNN architectures, including Bidirec-
tional Recurrent Neural Networks (BRNN), LSTM, and GRU. Neural networks are
at the forefront of technological innovation and data-driven decision-making because
of their capacity to replicate the complex workings of the brain and adapt to a wide
range of situations. They make up the architecture of deep learning models.

3.2 Uncertainty analysis

The absence of information or assurance about anything is known as uncertainty.
There are two kinds of uncertainty when it comes to deep learning which are epis-
temic uncertainty and aleatoric uncertainty. Data uncertainty, known as aleatoric
uncertainty, is irreducible since it is an intrinsic quality of the data distribution
rather than a model’s property. On the other side, epistemic uncertainty, also
known as knowledge uncertainty, results from insufficient knowledge in training data.
Adding more data can reduce this kind of uncertainty. A model will never be ca-
pable of achieving epistemic confidence of zero since nothing can offer a limitless
quantity of data. For applications in the real world, where datasets may be large in
size but low in quality, epistemic uncertainty is a major issue.

A model’s capacity to generalize to unknown data is evaluated using uncertainty
analysis, which also measures the unpredictability or lacking of data in the out-
put of algorithms. Estimating uncertainty is particularly crucial in the context of
neural networks, which have a propensity for making overly optimistic predictions
[23]. In crucial use cases like autonomous vehicles or healthcare, incorrect overcon-
fident forecasts might be hazardous. Numerous research have looked into how deep
learning models may articulate uncertainty, including sparse Gaussian processes and
Bayesian neural networks. These are subject to several limitations, such as the lack
of expressiveness in deep Bayesian neural networks. Sparse Gaussian processes, on
the other hand, are more expressive but only gather uncertainty from higher-level
latent space. As a result, the deep learning model they are based on lacks under-
standing and fails to take into account uncertainty from the initial dataset. There
are some effective methods for quantifying uncertainty, such as deep ensembles,
Monte Carlo dropout, and deep Bayesian active learning.

3.3 Monte-Carlo Dropout

Monte-Carlo Dropout (MCD) is a technique used in neural networks with dropout
layers. It is a regularization technique used to prevent overfitting while training a
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deep learning model. While training, MCD turns off a certain number of neurons
during each backward and forward pass which helps in making the model not rely
too much on a particular set of neurons. Furthermore, a percentage of neurons in the
dropout layer are also turned off during the inference phase making the model give
different outputs for same input if ran multiple time. According to Gal Gahramani
et al [7], MCD allows uncertainty quantification using which a model’s robustness
and reliability can be figured out. Therefore, MCD is used in risky cases where the
model’s predictions need to be reliable like in medical and healthcare scenarios.

3.4 Entropy

Entropy is a representation of how much information there is in a random variable.
The lower the entropy, the less information it provides because it is “less surprising”
and vice versa. Therefore, entropy can be a measure of uncertainty [11]. Entropy
is represented by the letter H, and the formula for calculating entropy is as follows
[1]:

H = −
n∑

i=1

pi log pi

Where,
H is the entropy.
p is the probability of an event.

3.5 Standard Deviation

The amount of variation or dispersion in a set of values is called standard deviation.
In statistics, it provides a method to quantify the amount of spread or dispersion
in a distribution. Lower standard deviation means more data points are closer to
the mean, and the higher standard deviation means more data points have values
spread out over a wide range. For calculating standard deviation we can use the
formula below.

s =

√∑n
i=1(Xi − X̄)2

n− 1

Here,
s is the Sample standard deviation.
X is the Each individual data point in the sample.
X̄ is the Mean of the sample.
n is the Total number of data points in the sample.

Firstly, the mean (average) of the dataset has to be calculated. Then, the difference
between the mean and a data point is squared, it is done for all the data points and
then they are summed. After that, divide the result by (n-1). And lastly, take the
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square root of the result.

In a nutshell, it helps in assessing the reliability of statistical conclusions based on
a particular set of data.

3.6 Artificial Neural Network

Artificial Neural Network (ANN) is a computational model that was built to imitate
how neurons work in the human brain. Zupan et al [2] states ANNs are capable
of forming relationships between non-linear dependent inputs and outputs. ANNs
consist of an input layer, one or many hidden layers, and an output layer. Each layer
consists of neurons, and neurons of adjacent layers are connected to each other. Each
of the connections have a weight assigned to it, and each neuron has an activation
function which gives an output based on the inputs to the neuron. The weights of the
links keep changing to ultimately have values that help to accurately give output.
The weights change according to the difference between the predicted outputs of
the ANN and the actual outputs. ANNs are usually used for classification, speech
recognition, image recognition, natural language processing, etc. The figures 3.1
and 3.2 are illustrating ANN and a neuron in an ANN.

Figure 3.1: Structure of a Artificial Neural Network [9]
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Figure 3.2: Structure of a Neuron in Artificial Neural Network [3]

3.7 Convolutional Neural Network

Similar to conventional ANNs, convolutional neural networks (CNNs) are made up
of neurons that self-streamline as they learn. The main difference is that CNNs
are traditionally used in image processing. CNNs are fundamentally predicated on
the idea that the input will include images. Its architecture was constructed in a
way that best satisfies the need to take into account a certain type of data. Three
different types of layers make up the majority of CNN’s architecture which are
convolution, pooling, and fully linked layers. A simple CNN architecture is shown
in figure 3.3.

Figure 3.3: Architecture of a Convolutional Neural Network [14]

The most defining component of a CNN is the convolution layer, this is where high-
level feature extraction occurs. It takes in input data, a filter, and a feature map. To
put it simply, the filter will move across the receptive fields of the image extracting
high-level features from them.

The pooling layer is responsible for decreasing the number of parameters in the in-
put via the means of dimensionality reduction. It does so by sweeping a filter across
the entire input not unlike what is done in the convolution layer, with the difference
being that this filter lacks weights. Instead, the kernel populates the output array
by applying an aggregation function (maximum or average pooling) to the values in
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the receptive field.

Each node in the output layer is connected to a node in the fully-connected layer.
Finally, based on the computation and feature extraction by the preceding layers’
various filters, the fully-connected layer performs the classification [17].

3.8 Recurrent Neural Network

Recurrent neural network (RNN) is a type of neural network with a focus on handling
sequences of data x(t) = x(1), ..., x(τ) with the time step index t ranging from 1 to
τ . RNNs work well with sequential inputs, like speech. RNNs are called recurrent
because they carry out identical tasks for every element of a sequence and the new
output is dependent on the past outputs. To put it simply, RNNs have a “memory”
which is capable of retaining past information. Figure 3.4 illustrates what an RNN
looks like.

Figure 3.4: Architecture of a Recurrent Neural Network [33]

The left side of the figure 3.4 represents an RNN and the right side illustrates the
RNN being “unfolded” into a complete network sequence.

x(t) is the input of the network at time t.
h(t) represents a hidden state at corresponding time t and acts as the aforemen-
tioned “memory” of the neural network.

Based on the current input x(t) and the previous time step’s hidden state h(t− 1),
h(t) is calculated: h(t) = f(Ux(t) + Wh(t − 1)). The function f is a non-linear
transformation like tanh or ReLU [13].

3.9 Long Short-Term Memory Network

Long Short-Term Memory (LSTM) networks come within the category of recurrent
neural networks in the context of deep learning. LSTM stands out as a very well-
liked architecture that effectively tackles the vanishing gradient issue that is present
in traditional RNNs. LSTMs contain memory blocks in them, which enables them
to effectively remember long-term dependencies, making it better than RNN.
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Figure 3.5: Architecture of a Long Short-Term Memory Network [35]

The structure of a LSTM cell includes input, output, and forget gates. LSTM works
best with sequential data, and long sequences are able to take better advantage of
LSTM’s high efficiency. The memory cell managed by sigmoid gates within each
LSTM unit regulates both reading and writing operations. These gates affect the
input gate, forget gate, and output gate and operate as devices to enable information
to pass only under certain conditions. The input gate of the LSTM controls the
amount of new data to be added to the cell state and the forget gate controls the
amount of data to be kept from the previous cell state. Lastly, the output gate
controls the output of the cell by taking into consideration both the current input
and the current cell state.

3.10 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a more simplified variation of the LSTM. The
forget and input gates of the LSTM are combined into a single update gate. Essen-
tially, the update gate is responsible for determining the amount of past information
to retain for future computations which helps eliminate the vanishing gradient prob-
lem present in RNN. GRU also has a reset gate which is essentially responsible for
determining the amount of past information to forget. Figure 3.6 shows the overview
of the GRU architecture.
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Figure 3.6: Architecture of a Gated Recurrent Unit [21]

3.11 Hybrid Model of CNN-LSTM

Hybrid models are usually the use of two different neural network models that work
together to make accurate classification or regression. In the CNN-LSTM hybrid
model, the convolution layers and max-pooling/average-pooling layers are used to
extract high level information from the features [15]. The information extracted
from the CNN part is given as input to the LSTM which computes and gives an
output for the classification or regression problem. As mentioned before, an advan-
tage of using LSTM is that they are good at capturing long-term dependencies. The
figure 3.7 show how the hybrid model can be implemented.

Figure 3.7: Architecture of a Hybrid CNN-LSTM/GRU [28]
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3.12 Hybrid Model of CNN-GRU

As mentioned earlier, hybrid models are usually the use of two different neural net-
work models that work together to make accurate classification or regression. In the
CNN-GRU hybrid model, the convolution layers and max-pooling/average-pooling
layers are used to extract high level information from the features [25], as was the
case with CNN-LSTM. The information, which was extracted from the CNN part, is
given as input to the GRU that computes and gives an output for the classification
or regression task. As mentioned before, an advantage of using GRU is that they are
good at capturing long-term dependencies and they are a variation of LSTM with
fewer number of gates and hence has less computational complexity than LSTM.
The figure 3.7 shows how the hybrid model can be implemented.

3.13 Ensemble Learning Model

In Ensemble Learning, multiple machine learning or deep learning models are trained
using data from a dataset and then their predictions are combined by another model.
There are several ways to implement ensemble learning, some of which are bagging,
boosting, stacking and random subspace, etc [4]. The figure 3.8 represents how
stacking ensemble model is implemented.

Figure 3.8: Architecture of a Stacking Ensemble Model [10]
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Chapter 4

Methodology

The aim of the panic attack detection models is to identify whether the user is in
panic or not. To do this, the models are trained using the training dataset, then
tested using the testing dataset. The models output one of two predictions depend-
ing on if the person is in panic or not; “yes” or “no” respectively. Figure 4.1 shows
an overview of how the models work.

Our proposed model is responsible for classifying and producing an appropriate pre-
diction. It consists of four important stages:

1. Pre-processing the input data: This stage is focused on configuring the data
in a way that helps the models to process them easily.

2. Training: This stage is focused on training the neural network models such
as ANN, RNN, LSTM, GRU, CNN, Hybrid CNN-LSTM, Hybrid CNN-GRU
and Ensemble models using the pre-processed data.

3. Prediction: This stage is focused on utilizing the trained neural network models
for predicting whether the person is genuinely in panic or not.

4. Uncertainty Analysis: This stage is focused on visualisation and quantifica-
tion of the uncertainty of our neural network models by using Monte-Carlo
Dropout.

In the pre-processing stage, the dataset is split into two; the training data and the
testing data. The training data is then passed on to the models in order to train
them. The testing data is used to deduce the accuracy of the trained model in being
able to detect genuine panic attacks. And finally, uncertainty analysis is done on
them.
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Figure 4.1: Flow Chart Representing the Training and Evaluation of our Models
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Chapter 5

Implementation

5.1 Dataset

In our study, we used a dataset from the paper of Lazarou et al [26], who gave it
public access so that others can use it. They made the dataset by gathering infor-
mation from 27 different subjects of which only 2 were real humans and for the rest
of the subjects’ data was produced artificially. The 2 real subjects were monitored
for a short instance of time during which, their data was being read and collected
by a wearable and a smartphone. The features of the dataset are: secureid, times-
tamp, gender, age, weight, heartrate, hrv, speed, stepcount, activity, HRMAD10,
HRMAD30, HRMAD60. And the label of the dataset is Outcome. The description
of the features and label are given below:

• secureid - is an id unique to each subject which is taken from the phone.

• timestamp - is the date and time of readings.

• gender, age and weight - are self explanatory.

• heartrate - is the rate at which the heart beats per minute measured in bpm.

• hrv - is heart rate variation and is the time difference between 2 consecutive
heart beats measured in milliseconds (ms).

• speed - is the speed of the person, measured in km/hr.

• stepcount - is the step count of the person, measured in steps per minute.

• activity - what the person is doing

• HRMAD10 - is heart rate moving average deviation, measured the change in
heart rate for 10 seconds from a moving average rate.

• HRMAD30 - is heart rate moving average deviation, measured the change in
heart rate for 30 seconds from a moving average rate.

• HRMAD60 - is heart rate moving average deviation, measured the change in
heart rate for 60 seconds from a moving average rate.
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• Outcome - Whether the person is in panic or not. ”1” represents that the
subject is in panic, and ”0” represents that the subject is not in panic

Figure 5.1 shows some example rows of the dataset:

Figure 5.1: Example Rows of the Dataset

5.2 Data Pre-processing

In the previous section, the features of the dataset we used were mentioned. To
train our Neural Network models we had to do some pre-processing to the raw
features of the initial dataset. Firstly, we dropped 5 columns “secureid”, “times-
tamp”, “HRMAD10”, “HRMAD30” and “HRMAD60”. The columns “secureid”
and ”timestamp” were dropped because they are nominal categorical features. The
columns “HRMAD10”, “HRMAD30” and “HRMAD60” were dropped because they
were derived features which we did not want to use in order to reduce time and
computational complexities of the models. Secondly, the data of “gender” and “ac-
tivity” were given as ordinal categorical feature so we had to apply feature encoding
to these 2 columns. Lastly, we split the dataset having 16200 rows into 2 portions
for training and testing our models. The ratio of train : test sets were 90 : 10.

5.3 Neural Network Parameters

Table 5.1 shows the hyperparameters of the neural network models that we used.
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Table 5.1: Hyperparameters of the Neural Network Models

Neural Network Model Hyperparameters

ANN

Dense input layer with 64 units, Activation: relu,
Dense hidden layer with 32 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, Epochs: 10

CNN

Input Conv1D layer with 64 filters and kernel size of 3, Activation: relu,
MaxPooling1D with pool size 2,
Dense hidden layer with 32 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, Epochs: 10

RNN
Fully connected RNN input layer with 64 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, epochs: 10

LSTM
Fully connected LSTM input layer with 64 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, epochs: 10

GRU
Fully connected GRU input layer with 64 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, epochs: 10

CNN-LSTM

Input Conv1D layer with 64 filters and kernel size of 3, Activation: relu,
MaxPooling1D with pool size 2,
Fully connected LSTM with 32 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, epochs: 10

CNN-GRU

Input Conv1D layer with 64 filters and kernel size of 3, Activation: relu,
MaxPooling1D with pool size 2,
Fully connected GRU with 32 units, Activation: relu,
Dense output layer with 1 unit, Activation: sigmoid,
Optimizer: adam, Learning rate: 0.001, epochs: 10

Ensemble Learning
Used above mentioned CNN, RNN, LSTM, and GRU as the estimators, 10 epochs each,
MLPClassifier as the final estimator,
Optimizer: adam, Learning rate: 0.001

5.4 Evaluation Metrics

The performance of the models were compared based on four metrics; accuracy,
precision, recall and f1 − score. The formulas for calculating each of the metrics
are shown below:

Accuracy =
CorrectPredictions

TotalPredictions

Precision =
TruePositive

TruePositive+ FalsePositive

Recall =
TruePositive

TruePositive+ FalseNegative

F1Score = 2× Precision×Recall

Precision+Recall
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5.5 Uncertainty Analysis

For uncertainty analysis, we applied Monte-Carlo dropout on all the neural network
models we used for detecting panic attacks. Then we used different techniques to
visualise and quantify the uncertainty of the models we used.

5.5.1 Using Entropy

During the testing process, the prediction probability of the subject being in panic
or not were calculated for each model. If the probability was more than 0.5, the
subject will be classified as being in panic. Whereas, if the probability was less than
0.5, the subject is classified as not being in panic. Hence, the closer the probabilities
are to 0.5, the more uncertain the model is on whether the subject is in panic or
not. And if the probabilities are closer to 0 or 1, then the model is more certain of
the subject not being in panic or being in panic respectively. Based on this idea,
we use entropy to quantify the uncertainty of each model. In our case, the subject
has two possibilities; being in panic, or not being in panic. According to Shannon,
C. E. [1], when we have two probabilities p and q where q = 1− p, like in our case,
entropy can be calculated using:

H = −(p log2 p+ q log2 q)

Replacing q with 1− p, we get:

H = −(p log2 p+ (1− p) log2(1− p))

5.5.2 Using Standard Deviation

The second way we did uncertainty analysis is by running the models with Monte-
Carlo dropout numerous times using the test data. And then we calculated the
standard deviation of the predictions for each instance in the test dataset, next
we calculated the mean of all those standard deviations. A lower value of mean
standard deviation, represents lower uncertainty and vice versa.
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Chapter 6

Results and Analysis

After training the neural network models on the train dataset, they are run on the
test dataset to generate predictions and these are compared with the label of the
test dataset. As mentioned before, the performance of the models was analyzed
using accuracy, precision, recall, and f1− score:

The scores of each of the models are shown below on the graphs 6.1, 6.2, and table
6.1:

Figure 6.1: Accuracies of the our Models

Table 6.1 shows the performance of the neural network models including the fol-
lowing: ANN, CNN, RNN, LSTM, GRU, Ensemble model, Hybrid CNN-LSTM,
Hybrid CNN-GRU, and all models after implementing Monte Carlo dropout. The
range of accuracy values is 86.60% to 95.56%. With 95.56% accuracy, the GRU
model achieves the best accuracy. With 86.60% accuracy, the ANN MC model has
the lowest accuracy. With a 93.95% accuracy rate, the LSTM model likewise demon-
strates strong performance. The accuracy of the hybrid models, which combine the
best features of the CNN and LSTM/GRU models, is 92.10% for Hybrid CNN-
LSTM and 92.90% for Hybrid CNN-GRU. The accuracy of the ensemble model is
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Figure 6.2: Score of our Models

Table 6.1: Scores of the Models

Neural Network Model Accuracy Precision Recall F1-score
ANN 90.31 0.8139 0.5882 0.6829

ANN MC 86.60 0.8300 0.4649 0.5960
CNN 91.35 0.8677 0.7171 0.7852

CNN MC 89.88 0.8129 0.7058 0.7556
RNN 92.90 0.8829 0.7815 0.8291

RNN MC 87.96 0.7217 0.6975 0.7094
LSTM 93.95 0.9273 0.7871 0.8028

LSTM MC 91.48 0.8323 0.7787 0.8046
GRU 95.56 0.9305 0.8627 0.8953

GRU MC 90.62 0.8359 0.7563 0.7941
Hybrid CNN-LSTM 92.10 0.8934 0.7282 0.8024

Hybrid CNN-LSTM MC 90.31 0.8485 0.6750 0.7519
Hybrid CNN-GRU 92.90 0.8928 0.7703 0.8270

Hybrid CNN-GRU MC 90.62 0.8601 0.6890 0.7651
Ensemble model 91.23 0.8853 0.6919 0.7767

Ensemble model MC 90.62 0.8648 0.6807 0.7618
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91.23%.

Figure 6.2 and table 6.1 show that GRU has the best precision score at 0.9305. GRU
also has the best recall and F1-score at 0.8627 and 0.8953 respectively.

Based on the above figures and table, GRU has the best overall performance in
detecting panic attacks.

6.1 Uncertainty Analysis using Predictions

We plotted a scatter graph to visualise the uncertainty of each model by running
each model 10 times on the test data. Then we implemented entropy on each pre-
diction to get a numeric representation of the uncertainty of each prediction. The
formula used was shown in section 5.5.1. Summing entropy of all the predictions
and then dividing them by the total number of predictions gives the average entropy
of each prediction. The results are shown in table 6.3.

Furthermore, we used another method to quantify the uncertainty, where we cal-
culated the percentage of the predictions that were between 0.2 to 0.8 range. The
higher the percentage of predictions within the stated range, the more uncertain the
model is at predicting panic attacks. The graphs of each model are shown in figures
6.3 to 6.10, and the percentage of predictions in range 0.2 to 0.8 for each model are
given in table 6.2.

Table 6.2: Percentage of Prediction within 0.2 to 0.8 range of our models

Models
Percentage of Predictions
within 0.2 to 0.8

ANN MC 32.57%
CNN MC 24.16%
RNN MC 30.74%
LSTM MC 21.94%
GRU MC 18.00%
Hybrid CNN-LSTM MC 20.03%
Hybrid CNN-GRU MC 16.28%
Ensemble Model MC 15.30%

From the table 6.3, we can see that the GRU MC has the lowest entropy which is
0.3717 which makes it the most certain model. Apart from GRU MC, the Hybrid
CNN-GRU MC model has the second lowest entropy at 0.3885. And RNN MC
followed by ANN MC have the highest entropies at 0.5201 and 0.4288 respectively,
making them the least certain models in predicting panic attacks by use of this
uncertainty analysis technique.
From the table 6.2, we can see that the Ensemble model has the least percentage
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Table 6.3: Average Entropy of Predictions of our Models

Neural Network Model Average Entropy of Predictions
ANN MC 0.4288
CNN MC 0.4125
RNN MC 0.5201
LSTM MC 0.4028
GRU MC 0.3717

Hybrid CNN-LSTM MC 0.3961
Hybrid CNN-GRU MC 0.3885
Ensemble Model MC 0.3951

Figure 6.3: Uncertainty analysis for ANN MC

Figure 6.4: Uncertainty analysis for CNN MC

Figure 6.5: Uncertainty analysis for RNN MC
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Figure 6.6: Uncertainty analysis for LSTM MC

Figure 6.7: Uncertainty analysis for GRU MC

Figure 6.8: Uncertainty analysis for Hybrid CNN-LSTM MC

Figure 6.9: Uncertainty analysis for Hybrid CNN-GRU MC
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Figure 6.10: Uncertainty analysis for Ensemble Model MC

of predictions within the range of 0.2 to 0.8 which is 15.30%. That aside, Hybrid
CNN-GRU MC has the second-lowest percentage of prediction at 16.28%. Apart
from those, the GRU MC has the next lowest percentage of prediction at 18.00%
within the stated range. And ANN MC followed by RNN MC have the highest per-
centages at 32.57% and 30.74% respectively, making them the least certain models
in predicting panic attacks by use of this uncertainty analysis technique.

6.2 Uncertainty Analysis using Standard Devia-

tion

We also ran the models with Monte-Carlo dropout 100 times using the test data.
And then we calculated the standard deviation of each of the predictions for every
instance in the test data with which we plotted another scatter graph for each of
the models in order to visualise the uncertainty of the models. In the graphs, the
more number of points that are near zero the more certain the predictions are for
that model and the more number of points that are towards the top of the graph,
the more uncertain the predictions of the model are. Also, in order to quantify the
uncertainty from these graphs so that comparison of the models can be done, we
computed the mean standard deviation from the standard deviations we calculated
before. In case of the mean standard deviation, the lower it is the more certain the
model is about its predictions and the higher it is, the more uncertain the model is
about its prediction of the panic attacks. The graphs of the standard deviations are
shown in figures 6.11 to 6.18. The mean standard deviation of each model is given
in table 6.4.

From table 6.4, we can see that the mean standard deviation of the ensemble model
is the lowest, with a value of 0.0370 which makes it the most certain model with this
uncertainty analysis technique. That aside, GRU MC has the second lowest value
of mean standard deviation which makes it the second-most certain model. Apart
from those, Hybrid CNN-GRU MC model has a low standard deviation which is
0.0600 and is closely followed by the Hybrid CNN-LSTM MC model with a value
of 0.0645. ANN MC and RNN MC are the most uncertain models with the highest
mean standard deviation values at 0.1109 and 0.1051 respectively.
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Table 6.4: Mean Standard Deviation of the models

Models Mean Standard Deviation
ANN MC 0.1109
CNN MC 0.0648
RNN MC 0.1051
LSTM MC 0.0787
GRU MC 0.0562
Hybrid CNN-LSTM MC 0.0645
Hybrid CNN-GRU MC 0.0600
Ensemble Model 0.0370

Figure 6.11: Standard Deviation Plot for ANN MC

Figure 6.12: Standard Deviation Plot for CNN MC

Figure 6.13: Standard Deviation Plot for RNN MC
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Figure 6.14: Standard Deviation Plot for LSTM MC

Figure 6.15: Standard Deviation Plot for GRU MC

Figure 6.16: Standard Deviation Plot for Hybrid CNN-LSTM MC

Figure 6.17: Standard Deviation Plot for Hybrid CNN-GRU MC
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Figure 6.18: Standard Deviation Plot for Ensemble Model MC

To sum up, the Ensemble model overall performed best while evaluating uncer-
tainty by two different ways. GRU MC model performed best while evaluating
uncertainty by entropy. The Hybrid models also performed very well in all the
uncertainty evaluation techniques we used. The hybrid CNN-GRU MC performed
very close to GRU MC and even performed better than GRU MC when evaluated
using percentage of prediction in range of 0.2 to 0.8. Finally, RNN MC an ANN MC
both were the most uncertain models as they did the worst in all of the uncertainty
evaluation techniques.
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Chapter 7

Discussion

In this chapter, we will provide a comparative analysis of the studies that are related
to ours and also point out the limitations of our study.

7.1 Comparative Analysis

The table 7.1 shows a qualitative comparison between related studies. Here we can
see that many of them focuses on the panic detection of individuals [6], [8], [5],
[22], [26] and others on crowds of people [18]. Some aim to detect panic attacks in
general [18], [26], [8] while others focuses on specific type of panic attack [5], [6].
Also different types of approaches are taken for detecting panic attacks such as us-
ing machine learning models, deep learning models, logic-based algorithms, neural
network models, ensemble learning models and Personalised models. And different
kinds of data are used for the detections such as biometric/physiological data, spa-
tiotemporal data and video feeds.

However, no existing studies focuses on uncertainty analysis of their models’ predic-
tions. Our main focus in this study was to achieve high accuracy from the models
we used as well as to visualise and quantify the uncertainty of those models. The
performance matrices and uncertainty analysis matrices have been discussed and
presented in chapter 6. Furthermore, due to using the dataset created by [26] we
discuss and compare their study with ours in details, below. The scores of their [26]
models are shown in tables 7.2 and 7.3:

Table 7.2 shows the accuracy scores of the models implemented by Lazarou et al
[26] from this it can be seen that the Gaussian SVM has the highest accuracy of
93.2% and this accuracy was achieved by training the model with only raw features.
They also ran the models by including some derived features independently which
are HRMAD10, HRMAD30 and HRMAD60 and got the highest accuracy of 94.2%,
94.4% and 94.5% respectively the accuracy are shown in table 7.3. Apart from run-
ning ML models they also ran two neural network models DNN and LSTM and they
achieved the highest accuracies of 93.4% and 94.0% respectively when they trained
the models with raw feature and HRMAD60. When they trained those two mod-
els with only raw features their accuracies were 91.5% for DNN and 90.6% for LSTM.

In comparison, we trained our neural network models with only the raw features in
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Table 7.1: Qualitative Comparison of Related Studies

Author Year
Classification
using

Uses
Hardware

Focuses On
Detects Panic
Attacks of

Type of Data
Used

Uncertainty
Analysis

Lazarou et al 2022
ML and 2
Neural Network
models

Yes (Only
for Data
Generation)

Individual
People

All people,
no particular
target group

Biometric and
Spatiotemporal

No

Ammar et al 2021 DL models No
Crowds of
People

All people,
no particular
target group

Video Feed No

Petrescu et al 2021 ML models No
Individual
People

Detects
Dread

Physiological No

Sapounaki et al 2017
Logic-Based
Algorithm

Yes
Individual
People

All people,
no particular
target group

Biometric No

Rubin et al 2015
Personalised
Prediction
models

Yes
Individual
People

People with
Panic Disorder

Biometric No

Cruz et al 2015
Panic Prediction
models

Yes
Individual
People

People with
Panic Disorder

Biometric No

Our study 2024
Neural Network
and Ensemble
Learning models

No
Individual
People

All people,
no particular
target group

Biometric and
Spatiotemporal

Yes

Table 7.2: Accuracies of the machine learning Models of Lazarou et al [26]

ML Classifier Model Accuracy
SVM kernel 90.6%

Logistic Regression 89.6%
Gaussian Näıve Bayes 79.6%

Decision Tree 91.4%
Boosted Trees 90.90%

Kernel Näıve Bayes 80.3%
Gaussian SVM 93.2%

DNN 91.5%
LSTM 90.6%

Figure 7.1: Accuracies of Our Neural Network Models
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Table 7.3: Accuracies of The Models Used by Lazarou [26] with Derived Features

Classification Model
Accuracy
(Raw Features
+ HRMAD10)

Accuracy
(Raw Features
+ HRMAD30)

Accuracy
(Raw Features
+ HRMAD60)

Decision Tree 93.3% 92.8% 92.8%
Logistic Regression 89.5% 89.0% 89.5%
Gaussian Näıve Bayes 80.4% 80.6% 81.3%
Kernel Näıve Bayes 83.7% 84.3% 85.3%
Gaussian SVM 94.2% 94.4% 94.5%
SVM Kernel 91.8% 92.3% 94.1%
Boosted Trees 92.3% 93.3% 93.9%
DNN 91.8% 92.3% 93.4%
LSTM 90.8% 91.4% 94.0%

order to reduce computational complexity of adding more features like HRMAD60.
The highest accuracy we got was 95.56% for the GRU model, followed by LSTM
with an accuracy of 93.95%. The accuracies of our models without monte-carlo
dropout can be seen in figure 7.1. From this we can see that our LSTM performed
better than their [26] LSTM model trained with just the raw features and actually
outperformed their model with highest accuracy score which was 93.2% of the Gaus-
sian SVM model trained with just raw features. And our GRU model’s accuracy
is higher than their overall highest accuracy score which was achieved by their [26]
Gaussian SVM model being trained with the raw features and HRMAD60 the value
being 94.5%.

In summary, our neural network models achieved higher accuracy scores than the
models used by Lazarou [26] despite them using derived features to increase the
accuracies. Therefore, our models performed better with less amount of features and
also had reduced computational complexity due to not using the derived features.

7.2 Limitations

Our study may have certain limitations. Firstly, the dataset we used to train our
models is not very big so the models could be made more robust and accurate by
training them with more data. Moreover, we could not find any other datasets
relevant to our study, so we could not confirm the models’ performance on other
datasets. Secondly, the computational cost of training neural network models may
be more due to them being able to extract important features by themselves without
requiring much pre-processing. Finally, for real life use of these models to detect
panic attacks, devices like mobile phones and smart watches may not have the ca-
pability to run these neural network models with high computational complexity as
we have not tested the models on such devices.

To overcome these challenges, in the future we plan to gather more real world data
from people suffering from panic attacks and fine-tune our models’ hyper parameters
even more so that panic attacks can be detected from less number of features.
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Finally for real life usage of our system, we may utilise cloud computing for doing
the computations in order to detect panic attacks.
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Chapter 8

Conclusion

Incorporating neural network models, and Monte Carlo dropout for uncertainty
analysis, this study makes a crucial and new advance in the field of panic attack
detection. The novelty of this research comes from a crucial need for reliable panic
detection systems, particularly in situations where people’s safety and security are
crucial, such as on busy roadways and in metropolitan settings.

Today’s society requires innovative responses to new threats against personal safety
because of the unpredictable nature and inherent dangers connected with public
areas, roads, and urban surroundings. Crime, accidents, and medical emergencies
frequently happen without notice, leaving people exposed to unfavourable results.
Because it may be able to prevent injury, save lives, and lessen the widespread
anxiety brought on by the unpredictability of urban and roadside surroundings,
the ability to recognise and react to panic-inducing circumstances reaches a new
level of significance. Furthermore, by measuring the inherent risks associated with
real-world data, the inclusion of uncertainty analysis using Monte Carlo dropout
increases the robustness and credibility of panic detection. Finally, from our study
we came to a conclusion that GRU was the best neural network model for panic
attack detection as it had the best accuracy at 95.56% and was also among the least
uncertain models compared to the others.

For our future work, we would like to collect and use more data to train the models in
order to make the detection of panic attacks more robust and accurate. Furthermore,
we would like to implement a wearable system which would take in data of the wearer
in real time and apply our trained model with the best performance to detect panic
attacks of individuals in real world situations.
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